/* * Luminary Micro Stellaris peripherals * * Copyright (c) 2006 CodeSourcery. * Written by Paul Brook * * This code is licensed under the GPL. */ #include "qemu/osdep.h" #include "qapi/error.h" #include "hw/core/split-irq.h" #include "hw/sysbus.h" #include "hw/sd/sd.h" #include "hw/ssi/ssi.h" #include "hw/arm/boot.h" #include "qemu/timer.h" #include "hw/i2c/i2c.h" #include "net/net.h" #include "hw/boards.h" #include "qemu/log.h" #include "exec/address-spaces.h" #include "sysemu/sysemu.h" #include "hw/arm/armv7m.h" #include "hw/char/pl011.h" #include "hw/input/stellaris_gamepad.h" #include "hw/irq.h" #include "hw/watchdog/cmsdk-apb-watchdog.h" #include "migration/vmstate.h" #include "hw/misc/unimp.h" #include "hw/timer/stellaris-gptm.h" #include "hw/qdev-clock.h" #include "qom/object.h" #include "qapi/qmp/qlist.h" #include "ui/input.h" #define GPIO_A 0 #define GPIO_B 1 #define GPIO_C 2 #define GPIO_D 3 #define GPIO_E 4 #define GPIO_F 5 #define GPIO_G 6 #define BP_OLED_I2C 0x01 #define BP_OLED_SSI 0x02 #define BP_GAMEPAD 0x04 #define NUM_IRQ_LINES 64 #define NUM_PRIO_BITS 3 typedef const struct { const char *name; uint32_t did0; uint32_t did1; uint32_t dc0; uint32_t dc1; uint32_t dc2; uint32_t dc3; uint32_t dc4; uint32_t peripherals; } stellaris_board_info; /* System controller. */ #define TYPE_STELLARIS_SYS "stellaris-sys" OBJECT_DECLARE_SIMPLE_TYPE(ssys_state, STELLARIS_SYS) struct ssys_state { SysBusDevice parent_obj; MemoryRegion iomem; uint32_t pborctl; uint32_t ldopctl; uint32_t int_status; uint32_t int_mask; uint32_t resc; uint32_t rcc; uint32_t rcc2; uint32_t rcgc[3]; uint32_t scgc[3]; uint32_t dcgc[3]; uint32_t clkvclr; uint32_t ldoarst; qemu_irq irq; Clock *sysclk; /* Properties (all read-only registers) */ uint32_t user0; uint32_t user1; uint32_t did0; uint32_t did1; uint32_t dc0; uint32_t dc1; uint32_t dc2; uint32_t dc3; uint32_t dc4; }; static void ssys_update(ssys_state *s) { qemu_set_irq(s->irq, (s->int_status & s->int_mask) != 0); } static uint32_t pllcfg_sandstorm[16] = { 0x31c0, /* 1 Mhz */ 0x1ae0, /* 1.8432 Mhz */ 0x18c0, /* 2 Mhz */ 0xd573, /* 2.4576 Mhz */ 0x37a6, /* 3.57954 Mhz */ 0x1ae2, /* 3.6864 Mhz */ 0x0c40, /* 4 Mhz */ 0x98bc, /* 4.906 Mhz */ 0x935b, /* 4.9152 Mhz */ 0x09c0, /* 5 Mhz */ 0x4dee, /* 5.12 Mhz */ 0x0c41, /* 6 Mhz */ 0x75db, /* 6.144 Mhz */ 0x1ae6, /* 7.3728 Mhz */ 0x0600, /* 8 Mhz */ 0x585b /* 8.192 Mhz */ }; static uint32_t pllcfg_fury[16] = { 0x3200, /* 1 Mhz */ 0x1b20, /* 1.8432 Mhz */ 0x1900, /* 2 Mhz */ 0xf42b, /* 2.4576 Mhz */ 0x37e3, /* 3.57954 Mhz */ 0x1b21, /* 3.6864 Mhz */ 0x0c80, /* 4 Mhz */ 0x98ee, /* 4.906 Mhz */ 0xd5b4, /* 4.9152 Mhz */ 0x0a00, /* 5 Mhz */ 0x4e27, /* 5.12 Mhz */ 0x1902, /* 6 Mhz */ 0xec1c, /* 6.144 Mhz */ 0x1b23, /* 7.3728 Mhz */ 0x0640, /* 8 Mhz */ 0xb11c /* 8.192 Mhz */ }; #define DID0_VER_MASK 0x70000000 #define DID0_VER_0 0x00000000 #define DID0_VER_1 0x10000000 #define DID0_CLASS_MASK 0x00FF0000 #define DID0_CLASS_SANDSTORM 0x00000000 #define DID0_CLASS_FURY 0x00010000 static int ssys_board_class(const ssys_state *s) { uint32_t did0 = s->did0; switch (did0 & DID0_VER_MASK) { case DID0_VER_0: return DID0_CLASS_SANDSTORM; case DID0_VER_1: switch (did0 & DID0_CLASS_MASK) { case DID0_CLASS_SANDSTORM: case DID0_CLASS_FURY: return did0 & DID0_CLASS_MASK; } /* for unknown classes, fall through */ default: /* This can only happen if the hardwired constant did0 value * in this board's stellaris_board_info struct is wrong. */ g_assert_not_reached(); } } static uint64_t ssys_read(void *opaque, hwaddr offset, unsigned size) { ssys_state *s = (ssys_state *)opaque; switch (offset) { case 0x000: /* DID0 */ return s->did0; case 0x004: /* DID1 */ return s->did1; case 0x008: /* DC0 */ return s->dc0; case 0x010: /* DC1 */ return s->dc1; case 0x014: /* DC2 */ return s->dc2; case 0x018: /* DC3 */ return s->dc3; case 0x01c: /* DC4 */ return s->dc4; case 0x030: /* PBORCTL */ return s->pborctl; case 0x034: /* LDOPCTL */ return s->ldopctl; case 0x040: /* SRCR0 */ return 0; case 0x044: /* SRCR1 */ return 0; case 0x048: /* SRCR2 */ return 0; case 0x050: /* RIS */ return s->int_status; case 0x054: /* IMC */ return s->int_mask; case 0x058: /* MISC */ return s->int_status & s->int_mask; case 0x05c: /* RESC */ return s->resc; case 0x060: /* RCC */ return s->rcc; case 0x064: /* PLLCFG */ { int xtal; xtal = (s->rcc >> 6) & 0xf; switch (ssys_board_class(s)) { case DID0_CLASS_FURY: return pllcfg_fury[xtal]; case DID0_CLASS_SANDSTORM: return pllcfg_sandstorm[xtal]; default: g_assert_not_reached(); } } case 0x070: /* RCC2 */ return s->rcc2; case 0x100: /* RCGC0 */ return s->rcgc[0]; case 0x104: /* RCGC1 */ return s->rcgc[1]; case 0x108: /* RCGC2 */ return s->rcgc[2]; case 0x110: /* SCGC0 */ return s->scgc[0]; case 0x114: /* SCGC1 */ return s->scgc[1]; case 0x118: /* SCGC2 */ return s->scgc[2]; case 0x120: /* DCGC0 */ return s->dcgc[0]; case 0x124: /* DCGC1 */ return s->dcgc[1]; case 0x128: /* DCGC2 */ return s->dcgc[2]; case 0x150: /* CLKVCLR */ return s->clkvclr; case 0x160: /* LDOARST */ return s->ldoarst; case 0x1e0: /* USER0 */ return s->user0; case 0x1e4: /* USER1 */ return s->user1; default: qemu_log_mask(LOG_GUEST_ERROR, "SSYS: read at bad offset 0x%x\n", (int)offset); return 0; } } static bool ssys_use_rcc2(ssys_state *s) { return (s->rcc2 >> 31) & 0x1; } /* * Calculate the system clock period. We only want to propagate * this change to the rest of the system if we're not being called * from migration post-load. */ static void ssys_calculate_system_clock(ssys_state *s, bool propagate_clock) { int period_ns; /* * SYSDIV field specifies divisor: 0 == /1, 1 == /2, etc. Input * clock is 200MHz, which is a period of 5 ns. Dividing the clock * frequency by X is the same as multiplying the period by X. */ if (ssys_use_rcc2(s)) { period_ns = 5 * (((s->rcc2 >> 23) & 0x3f) + 1); } else { period_ns = 5 * (((s->rcc >> 23) & 0xf) + 1); } clock_set_ns(s->sysclk, period_ns); if (propagate_clock) { clock_propagate(s->sysclk); } } static void ssys_write(void *opaque, hwaddr offset, uint64_t value, unsigned size) { ssys_state *s = (ssys_state *)opaque; switch (offset) { case 0x030: /* PBORCTL */ s->pborctl = value & 0xffff; break; case 0x034: /* LDOPCTL */ s->ldopctl = value & 0x1f; break; case 0x040: /* SRCR0 */ case 0x044: /* SRCR1 */ case 0x048: /* SRCR2 */ qemu_log_mask(LOG_UNIMP, "Peripheral reset not implemented\n"); break; case 0x054: /* IMC */ s->int_mask = value & 0x7f; break; case 0x058: /* MISC */ s->int_status &= ~value; break; case 0x05c: /* RESC */ s->resc = value & 0x3f; break; case 0x060: /* RCC */ if ((s->rcc & (1 << 13)) != 0 && (value & (1 << 13)) == 0) { /* PLL enable. */ s->int_status |= (1 << 6); } s->rcc = value; ssys_calculate_system_clock(s, true); break; case 0x070: /* RCC2 */ if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) { break; } if ((s->rcc2 & (1 << 13)) != 0 && (value & (1 << 13)) == 0) { /* PLL enable. */ s->int_status |= (1 << 6); } s->rcc2 = value; ssys_calculate_system_clock(s, true); break; case 0x100: /* RCGC0 */ s->rcgc[0] = value; break; case 0x104: /* RCGC1 */ s->rcgc[1] = value; break; case 0x108: /* RCGC2 */ s->rcgc[2] = value; break; case 0x110: /* SCGC0 */ s->scgc[0] = value; break; case 0x114: /* SCGC1 */ s->scgc[1] = value; break; case 0x118: /* SCGC2 */ s->scgc[2] = value; break; case 0x120: /* DCGC0 */ s->dcgc[0] = value; break; case 0x124: /* DCGC1 */ s->dcgc[1] = value; break; case 0x128: /* DCGC2 */ s->dcgc[2] = value; break; case 0x150: /* CLKVCLR */ s->clkvclr = value; break; case 0x160: /* LDOARST */ s->ldoarst = value; break; default: qemu_log_mask(LOG_GUEST_ERROR, "SSYS: write at bad offset 0x%x\n", (int)offset); } ssys_update(s); } static const MemoryRegionOps ssys_ops = { .read = ssys_read, .write = ssys_write, .endianness = DEVICE_NATIVE_ENDIAN, }; static void stellaris_sys_reset_enter(Object *obj, ResetType type) { ssys_state *s = STELLARIS_SYS(obj); s->pborctl = 0x7ffd; s->rcc = 0x078e3ac0; if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) { s->rcc2 = 0; } else { s->rcc2 = 0x07802810; } s->rcgc[0] = 1; s->scgc[0] = 1; s->dcgc[0] = 1; } static void stellaris_sys_reset_hold(Object *obj, ResetType type) { ssys_state *s = STELLARIS_SYS(obj); /* OK to propagate clocks from the hold phase */ ssys_calculate_system_clock(s, true); } static void stellaris_sys_reset_exit(Object *obj, ResetType type) { } static int stellaris_sys_post_load(void *opaque, int version_id) { ssys_state *s = opaque; ssys_calculate_system_clock(s, false); return 0; } static const VMStateDescription vmstate_stellaris_sys = { .name = "stellaris_sys", .version_id = 2, .minimum_version_id = 1, .post_load = stellaris_sys_post_load, .fields = (const VMStateField[]) { VMSTATE_UINT32(pborctl, ssys_state), VMSTATE_UINT32(ldopctl, ssys_state), VMSTATE_UINT32(int_mask, ssys_state), VMSTATE_UINT32(int_status, ssys_state), VMSTATE_UINT32(resc, ssys_state), VMSTATE_UINT32(rcc, ssys_state), VMSTATE_UINT32_V(rcc2, ssys_state, 2), VMSTATE_UINT32_ARRAY(rcgc, ssys_state, 3), VMSTATE_UINT32_ARRAY(scgc, ssys_state, 3), VMSTATE_UINT32_ARRAY(dcgc, ssys_state, 3), VMSTATE_UINT32(clkvclr, ssys_state), VMSTATE_UINT32(ldoarst, ssys_state), /* No field for sysclk -- handled in post-load instead */ VMSTATE_END_OF_LIST() } }; static const Property stellaris_sys_properties[] = { DEFINE_PROP_UINT32("user0", ssys_state, user0, 0), DEFINE_PROP_UINT32("user1", ssys_state, user1, 0), DEFINE_PROP_UINT32("did0", ssys_state, did0, 0), DEFINE_PROP_UINT32("did1", ssys_state, did1, 0), DEFINE_PROP_UINT32("dc0", ssys_state, dc0, 0), DEFINE_PROP_UINT32("dc1", ssys_state, dc1, 0), DEFINE_PROP_UINT32("dc2", ssys_state, dc2, 0), DEFINE_PROP_UINT32("dc3", ssys_state, dc3, 0), DEFINE_PROP_UINT32("dc4", ssys_state, dc4, 0), DEFINE_PROP_END_OF_LIST() }; static void stellaris_sys_instance_init(Object *obj) { ssys_state *s = STELLARIS_SYS(obj); SysBusDevice *sbd = SYS_BUS_DEVICE(s); memory_region_init_io(&s->iomem, obj, &ssys_ops, s, "ssys", 0x00001000); sysbus_init_mmio(sbd, &s->iomem); sysbus_init_irq(sbd, &s->irq); s->sysclk = qdev_init_clock_out(DEVICE(s), "SYSCLK"); } /* * I2C controller. * ??? For now we only implement the master interface. */ #define TYPE_STELLARIS_I2C "stellaris-i2c" OBJECT_DECLARE_SIMPLE_TYPE(stellaris_i2c_state, STELLARIS_I2C) struct stellaris_i2c_state { SysBusDevice parent_obj; I2CBus *bus; qemu_irq irq; MemoryRegion iomem; uint32_t msa; uint32_t mcs; uint32_t mdr; uint32_t mtpr; uint32_t mimr; uint32_t mris; uint32_t mcr; }; #define STELLARIS_I2C_MCS_BUSY 0x01 #define STELLARIS_I2C_MCS_ERROR 0x02 #define STELLARIS_I2C_MCS_ADRACK 0x04 #define STELLARIS_I2C_MCS_DATACK 0x08 #define STELLARIS_I2C_MCS_ARBLST 0x10 #define STELLARIS_I2C_MCS_IDLE 0x20 #define STELLARIS_I2C_MCS_BUSBSY 0x40 static uint64_t stellaris_i2c_read(void *opaque, hwaddr offset, unsigned size) { stellaris_i2c_state *s = (stellaris_i2c_state *)opaque; switch (offset) { case 0x00: /* MSA */ return s->msa; case 0x04: /* MCS */ /* We don't emulate timing, so the controller is never busy. */ return s->mcs | STELLARIS_I2C_MCS_IDLE; case 0x08: /* MDR */ return s->mdr; case 0x0c: /* MTPR */ return s->mtpr; case 0x10: /* MIMR */ return s->mimr; case 0x14: /* MRIS */ return s->mris; case 0x18: /* MMIS */ return s->mris & s->mimr; case 0x20: /* MCR */ return s->mcr; default: qemu_log_mask(LOG_GUEST_ERROR, "stellaris_i2c: read at bad offset 0x%x\n", (int)offset); return 0; } } static void stellaris_i2c_update(stellaris_i2c_state *s) { int level; level = (s->mris & s->mimr) != 0; qemu_set_irq(s->irq, level); } static void stellaris_i2c_write(void *opaque, hwaddr offset, uint64_t value, unsigned size) { stellaris_i2c_state *s = (stellaris_i2c_state *)opaque; switch (offset) { case 0x00: /* MSA */ s->msa = value & 0xff; break; case 0x04: /* MCS */ if ((s->mcr & 0x10) == 0) { /* Disabled. Do nothing. */ break; } /* Grab the bus if this is starting a transfer. */ if ((value & 2) && (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) { if (i2c_start_transfer(s->bus, s->msa >> 1, s->msa & 1)) { s->mcs |= STELLARIS_I2C_MCS_ARBLST; } else { s->mcs &= ~STELLARIS_I2C_MCS_ARBLST; s->mcs |= STELLARIS_I2C_MCS_BUSBSY; } } /* If we don't have the bus then indicate an error. */ if (!i2c_bus_busy(s->bus) || (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) { s->mcs |= STELLARIS_I2C_MCS_ERROR; break; } s->mcs &= ~STELLARIS_I2C_MCS_ERROR; if (value & 1) { /* Transfer a byte. */ /* TODO: Handle errors. */ if (s->msa & 1) { /* Recv */ s->mdr = i2c_recv(s->bus); } else { /* Send */ i2c_send(s->bus, s->mdr); } /* Raise an interrupt. */ s->mris |= 1; } if (value & 4) { /* Finish transfer. */ i2c_end_transfer(s->bus); s->mcs &= ~STELLARIS_I2C_MCS_BUSBSY; } break; case 0x08: /* MDR */ s->mdr = value & 0xff; break; case 0x0c: /* MTPR */ s->mtpr = value & 0xff; break; case 0x10: /* MIMR */ s->mimr = 1; break; case 0x1c: /* MICR */ s->mris &= ~value; break; case 0x20: /* MCR */ if (value & 1) { qemu_log_mask(LOG_UNIMP, "stellaris_i2c: Loopback not implemented\n"); } if (value & 0x20) { qemu_log_mask(LOG_UNIMP, "stellaris_i2c: Slave mode not implemented\n"); } s->mcr = value & 0x31; break; default: qemu_log_mask(LOG_GUEST_ERROR, "stellaris_i2c: write at bad offset 0x%x\n", (int)offset); } stellaris_i2c_update(s); } static void stellaris_i2c_reset_enter(Object *obj, ResetType type) { stellaris_i2c_state *s = STELLARIS_I2C(obj); if (s->mcs & STELLARIS_I2C_MCS_BUSBSY) i2c_end_transfer(s->bus); } static void stellaris_i2c_reset_hold(Object *obj, ResetType type) { stellaris_i2c_state *s = STELLARIS_I2C(obj); s->msa = 0; s->mcs = 0; s->mdr = 0; s->mtpr = 1; s->mimr = 0; s->mris = 0; s->mcr = 0; } static void stellaris_i2c_reset_exit(Object *obj, ResetType type) { stellaris_i2c_state *s = STELLARIS_I2C(obj); stellaris_i2c_update(s); } static const MemoryRegionOps stellaris_i2c_ops = { .read = stellaris_i2c_read, .write = stellaris_i2c_write, .endianness = DEVICE_NATIVE_ENDIAN, }; static const VMStateDescription vmstate_stellaris_i2c = { .name = "stellaris_i2c", .version_id = 1, .minimum_version_id = 1, .fields = (const VMStateField[]) { VMSTATE_UINT32(msa, stellaris_i2c_state), VMSTATE_UINT32(mcs, stellaris_i2c_state), VMSTATE_UINT32(mdr, stellaris_i2c_state), VMSTATE_UINT32(mtpr, stellaris_i2c_state), VMSTATE_UINT32(mimr, stellaris_i2c_state), VMSTATE_UINT32(mris, stellaris_i2c_state), VMSTATE_UINT32(mcr, stellaris_i2c_state), VMSTATE_END_OF_LIST() } }; static void stellaris_i2c_init(Object *obj) { DeviceState *dev = DEVICE(obj); stellaris_i2c_state *s = STELLARIS_I2C(obj); SysBusDevice *sbd = SYS_BUS_DEVICE(obj); I2CBus *bus; sysbus_init_irq(sbd, &s->irq); bus = i2c_init_bus(dev, "i2c"); s->bus = bus; memory_region_init_io(&s->iomem, obj, &stellaris_i2c_ops, s, "i2c", 0x1000); sysbus_init_mmio(sbd, &s->iomem); } /* Analogue to Digital Converter. This is only partially implemented, enough for applications that use a combined ADC and timer tick. */ #define STELLARIS_ADC_EM_CONTROLLER 0 #define STELLARIS_ADC_EM_COMP 1 #define STELLARIS_ADC_EM_EXTERNAL 4 #define STELLARIS_ADC_EM_TIMER 5 #define STELLARIS_ADC_EM_PWM0 6 #define STELLARIS_ADC_EM_PWM1 7 #define STELLARIS_ADC_EM_PWM2 8 #define STELLARIS_ADC_FIFO_EMPTY 0x0100 #define STELLARIS_ADC_FIFO_FULL 0x1000 #define TYPE_STELLARIS_ADC "stellaris-adc" typedef struct StellarisADCState StellarisADCState; DECLARE_INSTANCE_CHECKER(StellarisADCState, STELLARIS_ADC, TYPE_STELLARIS_ADC) struct StellarisADCState { SysBusDevice parent_obj; MemoryRegion iomem; uint32_t actss; uint32_t ris; uint32_t im; uint32_t emux; uint32_t ostat; uint32_t ustat; uint32_t sspri; uint32_t sac; struct { uint32_t state; uint32_t data[16]; } fifo[4]; uint32_t ssmux[4]; uint32_t ssctl[4]; uint32_t noise; qemu_irq irq[4]; }; static uint32_t stellaris_adc_fifo_read(StellarisADCState *s, int n) { int tail; tail = s->fifo[n].state & 0xf; if (s->fifo[n].state & STELLARIS_ADC_FIFO_EMPTY) { s->ustat |= 1 << n; } else { s->fifo[n].state = (s->fifo[n].state & ~0xf) | ((tail + 1) & 0xf); s->fifo[n].state &= ~STELLARIS_ADC_FIFO_FULL; if (tail + 1 == ((s->fifo[n].state >> 4) & 0xf)) s->fifo[n].state |= STELLARIS_ADC_FIFO_EMPTY; } return s->fifo[n].data[tail]; } static void stellaris_adc_fifo_write(StellarisADCState *s, int n, uint32_t value) { int head; /* TODO: Real hardware has limited size FIFOs. We have a full 16 entry FIFO fir each sequencer. */ head = (s->fifo[n].state >> 4) & 0xf; if (s->fifo[n].state & STELLARIS_ADC_FIFO_FULL) { s->ostat |= 1 << n; return; } s->fifo[n].data[head] = value; head = (head + 1) & 0xf; s->fifo[n].state &= ~STELLARIS_ADC_FIFO_EMPTY; s->fifo[n].state = (s->fifo[n].state & ~0xf0) | (head << 4); if ((s->fifo[n].state & 0xf) == head) s->fifo[n].state |= STELLARIS_ADC_FIFO_FULL; } static void stellaris_adc_update(StellarisADCState *s) { int level; int n; for (n = 0; n < 4; n++) { level = (s->ris & s->im & (1 << n)) != 0; qemu_set_irq(s->irq[n], level); } } static void stellaris_adc_trigger(void *opaque, int irq, int level) { StellarisADCState *s = opaque; int n; for (n = 0; n < 4; n++) { if ((s->actss & (1 << n)) == 0) { continue; } if (((s->emux >> (n * 4)) & 0xff) != 5) { continue; } /* Some applications use the ADC as a random number source, so introduce some variation into the signal. */ s->noise = s->noise * 314159 + 1; /* ??? actual inputs not implemented. Return an arbitrary value. */ stellaris_adc_fifo_write(s, n, 0x200 + ((s->noise >> 16) & 7)); s->ris |= (1 << n); stellaris_adc_update(s); } } static void stellaris_adc_reset_hold(Object *obj, ResetType type) { StellarisADCState *s = STELLARIS_ADC(obj); int n; for (n = 0; n < 4; n++) { s->ssmux[n] = 0; s->ssctl[n] = 0; s->fifo[n].state = STELLARIS_ADC_FIFO_EMPTY; } } static uint64_t stellaris_adc_read(void *opaque, hwaddr offset, unsigned size) { StellarisADCState *s = opaque; /* TODO: Implement this. */ if (offset >= 0x40 && offset < 0xc0) { int n; n = (offset - 0x40) >> 5; switch (offset & 0x1f) { case 0x00: /* SSMUX */ return s->ssmux[n]; case 0x04: /* SSCTL */ return s->ssctl[n]; case 0x08: /* SSFIFO */ return stellaris_adc_fifo_read(s, n); case 0x0c: /* SSFSTAT */ return s->fifo[n].state; default: break; } } switch (offset) { case 0x00: /* ACTSS */ return s->actss; case 0x04: /* RIS */ return s->ris; case 0x08: /* IM */ return s->im; case 0x0c: /* ISC */ return s->ris & s->im; case 0x10: /* OSTAT */ return s->ostat; case 0x14: /* EMUX */ return s->emux; case 0x18: /* USTAT */ return s->ustat; case 0x20: /* SSPRI */ return s->sspri; case 0x30: /* SAC */ return s->sac; default: qemu_log_mask(LOG_GUEST_ERROR, "stellaris_adc: read at bad offset 0x%x\n", (int)offset); return 0; } } static void stellaris_adc_write(void *opaque, hwaddr offset, uint64_t value, unsigned size) { StellarisADCState *s = opaque; /* TODO: Implement this. */ if (offset >= 0x40 && offset < 0xc0) { int n; n = (offset - 0x40) >> 5; switch (offset & 0x1f) { case 0x00: /* SSMUX */ s->ssmux[n] = value & 0x33333333; return; case 0x04: /* SSCTL */ if (value != 6) { qemu_log_mask(LOG_UNIMP, "ADC: Unimplemented sequence %" PRIx64 "\n", value); } s->ssctl[n] = value; return; default: break; } } switch (offset) { case 0x00: /* ACTSS */ s->actss = value & 0xf; break; case 0x08: /* IM */ s->im = value; break; case 0x0c: /* ISC */ s->ris &= ~value; break; case 0x10: /* OSTAT */ s->ostat &= ~value; break; case 0x14: /* EMUX */ s->emux = value; break; case 0x18: /* USTAT */ s->ustat &= ~value; break; case 0x20: /* SSPRI */ s->sspri = value; break; case 0x28: /* PSSI */ qemu_log_mask(LOG_UNIMP, "ADC: sample initiate unimplemented\n"); break; case 0x30: /* SAC */ s->sac = value; break; default: qemu_log_mask(LOG_GUEST_ERROR, "stellaris_adc: write at bad offset 0x%x\n", (int)offset); } stellaris_adc_update(s); } static const MemoryRegionOps stellaris_adc_ops = { .read = stellaris_adc_read, .write = stellaris_adc_write, .endianness = DEVICE_NATIVE_ENDIAN, }; static const VMStateDescription vmstate_stellaris_adc = { .name = "stellaris_adc", .version_id = 1, .minimum_version_id = 1, .fields = (const VMStateField[]) { VMSTATE_UINT32(actss, StellarisADCState), VMSTATE_UINT32(ris, StellarisADCState), VMSTATE_UINT32(im, StellarisADCState), VMSTATE_UINT32(emux, StellarisADCState), VMSTATE_UINT32(ostat, StellarisADCState), VMSTATE_UINT32(ustat, StellarisADCState), VMSTATE_UINT32(sspri, StellarisADCState), VMSTATE_UINT32(sac, StellarisADCState), VMSTATE_UINT32(fifo[0].state, StellarisADCState), VMSTATE_UINT32_ARRAY(fifo[0].data, StellarisADCState, 16), VMSTATE_UINT32(ssmux[0], StellarisADCState), VMSTATE_UINT32(ssctl[0], StellarisADCState), VMSTATE_UINT32(fifo[1].state, StellarisADCState), VMSTATE_UINT32_ARRAY(fifo[1].data, StellarisADCState, 16), VMSTATE_UINT32(ssmux[1], StellarisADCState), VMSTATE_UINT32(ssctl[1], StellarisADCState), VMSTATE_UINT32(fifo[2].state, StellarisADCState), VMSTATE_UINT32_ARRAY(fifo[2].data, StellarisADCState, 16), VMSTATE_UINT32(ssmux[2], StellarisADCState), VMSTATE_UINT32(ssctl[2], StellarisADCState), VMSTATE_UINT32(fifo[3].state, StellarisADCState), VMSTATE_UINT32_ARRAY(fifo[3].data, StellarisADCState, 16), VMSTATE_UINT32(ssmux[3], StellarisADCState), VMSTATE_UINT32(ssctl[3], StellarisADCState), VMSTATE_UINT32(noise, StellarisADCState), VMSTATE_END_OF_LIST() } }; static void stellaris_adc_init(Object *obj) { DeviceState *dev = DEVICE(obj); StellarisADCState *s = STELLARIS_ADC(obj); SysBusDevice *sbd = SYS_BUS_DEVICE(obj); int n; for (n = 0; n < 4; n++) { sysbus_init_irq(sbd, &s->irq[n]); } memory_region_init_io(&s->iomem, obj, &stellaris_adc_ops, s, "adc", 0x1000); sysbus_init_mmio(sbd, &s->iomem); qdev_init_gpio_in(dev, stellaris_adc_trigger, 1); } /* Board init. */ static stellaris_board_info stellaris_boards[] = { { "LM3S811EVB", 0, 0x0032000e, 0x001f001f, /* dc0 */ 0x001132bf, 0x01071013, 0x3f0f01ff, 0x0000001f, BP_OLED_I2C }, { "LM3S6965EVB", 0x10010002, 0x1073402e, 0x00ff007f, /* dc0 */ 0x001133ff, 0x030f5317, 0x0f0f87ff, 0x5000007f, BP_OLED_SSI | BP_GAMEPAD } }; static void stellaris_init(MachineState *ms, stellaris_board_info *board) { static const int uart_irq[] = {5, 6, 33, 34}; static const int timer_irq[] = {19, 21, 23, 35}; static const uint32_t gpio_addr[7] = { 0x40004000, 0x40005000, 0x40006000, 0x40007000, 0x40024000, 0x40025000, 0x40026000}; static const int gpio_irq[7] = {0, 1, 2, 3, 4, 30, 31}; /* Memory map of SoC devices, from * Stellaris LM3S6965 Microcontroller Data Sheet (rev I) * http://www.ti.com/lit/ds/symlink/lm3s6965.pdf * * 40000000 wdtimer * 40002000 i2c (unimplemented) * 40004000 GPIO * 40005000 GPIO * 40006000 GPIO * 40007000 GPIO * 40008000 SSI * 4000c000 UART * 4000d000 UART * 4000e000 UART * 40020000 i2c * 40021000 i2c (unimplemented) * 40024000 GPIO * 40025000 GPIO * 40026000 GPIO * 40028000 PWM (unimplemented) * 4002c000 QEI (unimplemented) * 4002d000 QEI (unimplemented) * 40030000 gptimer * 40031000 gptimer * 40032000 gptimer * 40033000 gptimer * 40038000 ADC * 4003c000 analogue comparator (unimplemented) * 40048000 ethernet * 400fc000 hibernation module (unimplemented) * 400fd000 flash memory control (unimplemented) * 400fe000 system control */ Object *soc_container; DeviceState *gpio_dev[7], *nvic; qemu_irq gpio_in[7][8]; qemu_irq gpio_out[7][8]; qemu_irq adc; int sram_size; int flash_size; I2CBus *i2c; DeviceState *dev; DeviceState *ssys_dev; int i; int j; NICInfo *nd; MACAddr mac; MemoryRegion *sram = g_new(MemoryRegion, 1); MemoryRegion *flash = g_new(MemoryRegion, 1); MemoryRegion *system_memory = get_system_memory(); flash_size = (((board->dc0 & 0xffff) + 1) << 1) * 1024; sram_size = ((board->dc0 >> 18) + 1) * 1024; soc_container = object_new("container"); object_property_add_child(OBJECT(ms), "soc", soc_container); /* Flash programming is done via the SCU, so pretend it is ROM. */ memory_region_init_rom(flash, NULL, "stellaris.flash", flash_size, &error_fatal); memory_region_add_subregion(system_memory, 0, flash); memory_region_init_ram(sram, NULL, "stellaris.sram", sram_size, &error_fatal); memory_region_add_subregion(system_memory, 0x20000000, sram); /* * Create the system-registers object early, because we will * need its sysclk output. */ ssys_dev = qdev_new(TYPE_STELLARIS_SYS); object_property_add_child(soc_container, "sys", OBJECT(ssys_dev)); /* * Most devices come preprogrammed with a MAC address in the user data. * Generate a MAC address now, if there isn't a matching -nic for it. */ nd = qemu_find_nic_info("stellaris_enet", true, "stellaris"); if (nd) { memcpy(mac.a, nd->macaddr.a, sizeof(mac.a)); } else { qemu_macaddr_default_if_unset(&mac); } qdev_prop_set_uint32(ssys_dev, "user0", mac.a[0] | (mac.a[1] << 8) | (mac.a[2] << 16)); qdev_prop_set_uint32(ssys_dev, "user1", mac.a[3] | (mac.a[4] << 8) | (mac.a[5] << 16)); qdev_prop_set_uint32(ssys_dev, "did0", board->did0); qdev_prop_set_uint32(ssys_dev, "did1", board->did1); qdev_prop_set_uint32(ssys_dev, "dc0", board->dc0); qdev_prop_set_uint32(ssys_dev, "dc1", board->dc1); qdev_prop_set_uint32(ssys_dev, "dc2", board->dc2); qdev_prop_set_uint32(ssys_dev, "dc3", board->dc3); qdev_prop_set_uint32(ssys_dev, "dc4", board->dc4); sysbus_realize_and_unref(SYS_BUS_DEVICE(ssys_dev), &error_fatal); nvic = qdev_new(TYPE_ARMV7M); object_property_add_child(soc_container, "v7m", OBJECT(nvic)); qdev_prop_set_uint32(nvic, "num-irq", NUM_IRQ_LINES); qdev_prop_set_uint8(nvic, "num-prio-bits", NUM_PRIO_BITS); qdev_prop_set_string(nvic, "cpu-type", ms->cpu_type); qdev_prop_set_bit(nvic, "enable-bitband", true); qdev_connect_clock_in(nvic, "cpuclk", qdev_get_clock_out(ssys_dev, "SYSCLK")); /* This SoC does not connect the systick reference clock */ object_property_set_link(OBJECT(nvic), "memory", OBJECT(get_system_memory()), &error_abort); /* This will exit with an error if the user passed us a bad cpu_type */ sysbus_realize_and_unref(SYS_BUS_DEVICE(nvic), &error_fatal); /* Now we can wire up the IRQ and MMIO of the system registers */ sysbus_mmio_map(SYS_BUS_DEVICE(ssys_dev), 0, 0x400fe000); sysbus_connect_irq(SYS_BUS_DEVICE(ssys_dev), 0, qdev_get_gpio_in(nvic, 28)); if (board->dc1 & (1 << 16)) { dev = sysbus_create_varargs(TYPE_STELLARIS_ADC, 0x40038000, qdev_get_gpio_in(nvic, 14), qdev_get_gpio_in(nvic, 15), qdev_get_gpio_in(nvic, 16), qdev_get_gpio_in(nvic, 17), NULL); adc = qdev_get_gpio_in(dev, 0); } else { adc = NULL; } for (i = 0; i < 4; i++) { if (board->dc2 & (0x10000 << i)) { SysBusDevice *sbd; dev = qdev_new(TYPE_STELLARIS_GPTM); sbd = SYS_BUS_DEVICE(dev); object_property_add_child(soc_container, "gptm[*]", OBJECT(dev)); qdev_connect_clock_in(dev, "clk", qdev_get_clock_out(ssys_dev, "SYSCLK")); sysbus_realize_and_unref(sbd, &error_fatal); sysbus_mmio_map(sbd, 0, 0x40030000 + i * 0x1000); sysbus_connect_irq(sbd, 0, qdev_get_gpio_in(nvic, timer_irq[i])); /* TODO: This is incorrect, but we get away with it because the ADC output is only ever pulsed. */ qdev_connect_gpio_out(dev, 0, adc); } } if (board->dc1 & (1 << 3)) { /* watchdog present */ dev = qdev_new(TYPE_LUMINARY_WATCHDOG); object_property_add_child(soc_container, "wdg", OBJECT(dev)); qdev_connect_clock_in(dev, "WDOGCLK", qdev_get_clock_out(ssys_dev, "SYSCLK")); sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, 0x40000000u); sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(nvic, 18)); } for (i = 0; i < 7; i++) { if (board->dc4 & (1 << i)) { gpio_dev[i] = sysbus_create_simple("pl061_luminary", gpio_addr[i], qdev_get_gpio_in(nvic, gpio_irq[i])); for (j = 0; j < 8; j++) { gpio_in[i][j] = qdev_get_gpio_in(gpio_dev[i], j); gpio_out[i][j] = NULL; } } } if (board->dc2 & (1 << 12)) { dev = sysbus_create_simple(TYPE_STELLARIS_I2C, 0x40020000, qdev_get_gpio_in(nvic, 8)); i2c = (I2CBus *)qdev_get_child_bus(dev, "i2c"); if (board->peripherals & BP_OLED_I2C) { i2c_slave_create_simple(i2c, "ssd0303", 0x3d); } } for (i = 0; i < 4; i++) { if (board->dc2 & (1 << i)) { SysBusDevice *sbd; dev = qdev_new("pl011_luminary"); object_property_add_child(soc_container, "uart[*]", OBJECT(dev)); sbd = SYS_BUS_DEVICE(dev); qdev_prop_set_chr(dev, "chardev", serial_hd(i)); sysbus_realize_and_unref(sbd, &error_fatal); sysbus_mmio_map(sbd, 0, 0x4000c000 + i * 0x1000); sysbus_connect_irq(sbd, 0, qdev_get_gpio_in(nvic, uart_irq[i])); } } if (board->dc2 & (1 << 4)) { dev = sysbus_create_simple("pl022", 0x40008000, qdev_get_gpio_in(nvic, 7)); if (board->peripherals & BP_OLED_SSI) { void *bus; DeviceState *sddev; DeviceState *ssddev; DriveInfo *dinfo; DeviceState *carddev; DeviceState *gpio_d_splitter; BlockBackend *blk; /* * Some boards have both an OLED controller and SD card connected to * the same SSI port, with the SD card chip select connected to a * GPIO pin. Technically the OLED chip select is connected to the * SSI Fss pin. We do not bother emulating that as both devices * should never be selected simultaneously, and our OLED controller * ignores stray 0xff commands that occur when deselecting the SD * card. * * The h/w wiring is: * - GPIO pin D0 is wired to the active-low SD card chip select * - GPIO pin A3 is wired to the active-low OLED chip select * - The SoC wiring of the PL061 "auxiliary function" for A3 is * SSI0Fss ("frame signal"), which is an output from the SoC's * SSI controller. The SSI controller takes SSI0Fss low when it * transmits a frame, so it can work as a chip-select signal. * - GPIO A4 is aux-function SSI0Rx, and wired to the SD card Tx * (the OLED never sends data to the CPU, so no wiring needed) * - GPIO A5 is aux-function SSI0Tx, and wired to the SD card Rx * and the OLED display-data-in * - GPIO A2 is aux-function SSI0Clk, wired to SD card and OLED * serial-clock input * So a guest that wants to use the OLED can configure the PL061 * to make pins A2, A3, A5 aux-function, so they are connected * directly to the SSI controller. When the SSI controller sends * data it asserts SSI0Fss which selects the OLED. * A guest that wants to use the SD card configures A2, A4 and A5 * as aux-function, but leaves A3 as a software-controlled GPIO * line. It asserts the SD card chip-select by using the PL061 * to control pin D0, and lets the SSI controller handle Clk, Tx * and Rx. (The SSI controller asserts Fss during tx cycles as * usual, but because A3 is not set to aux-function this is not * forwarded to the OLED, and so the OLED stays unselected.) * * The QEMU implementation instead is: * - GPIO pin D0 is wired to the active-low SD card chip select, * and also to the OLED chip-select which is implemented * as *active-high* * - SSI controller signals go to the devices regardless of * whether the guest programs A2, A4, A5 as aux-function or not * * The problem with this implementation is if the guest doesn't * care about the SD card and only uses the OLED. In that case it * may choose never to do anything with D0 (leaving it in its * default floating state, which reliably leaves the card disabled * because an SD card has a pullup on CS within the card itself), * and only set up A2, A3, A5. This for us would mean the OLED * never gets the chip-select assert it needs. We work around * this with a manual raise of D0 here (despite board creation * code being the wrong place to raise IRQ lines) to put the OLED * into an initially selected state. * * In theory the right way to model this would be: * - Implement aux-function support in the PL061, with an * extra set of AFIN and AFOUT GPIO lines (set up so that * if a GPIO line is in auxfn mode the main GPIO in and out * track the AFIN and AFOUT lines) * - Wire the AFOUT for D0 up to either a line from the * SSI controller that's pulled low around every transmit, * or at least to an always-0 line here on the board * - Make the ssd0323 OLED controller chipselect active-low */ bus = qdev_get_child_bus(dev, "ssi"); sddev = ssi_create_peripheral(bus, "ssi-sd"); dinfo = drive_get(IF_SD, 0, 0); blk = dinfo ? blk_by_legacy_dinfo(dinfo) : NULL; carddev = qdev_new(TYPE_SD_CARD_SPI); qdev_prop_set_drive_err(carddev, "drive", blk, &error_fatal); qdev_realize_and_unref(carddev, qdev_get_child_bus(sddev, "sd-bus"), &error_fatal); ssddev = qdev_new("ssd0323"); object_property_add_child(OBJECT(ms), "oled", OBJECT(ssddev)); qdev_prop_set_uint8(ssddev, "cs", 1); qdev_realize_and_unref(ssddev, bus, &error_fatal); gpio_d_splitter = qdev_new(TYPE_SPLIT_IRQ); object_property_add_child(OBJECT(ms), "splitter", OBJECT(gpio_d_splitter)); qdev_prop_set_uint32(gpio_d_splitter, "num-lines", 2); qdev_realize_and_unref(gpio_d_splitter, NULL, &error_fatal); qdev_connect_gpio_out( gpio_d_splitter, 0, qdev_get_gpio_in_named(sddev, SSI_GPIO_CS, 0)); qdev_connect_gpio_out( gpio_d_splitter, 1, qdev_get_gpio_in_named(ssddev, SSI_GPIO_CS, 0)); gpio_out[GPIO_D][0] = qdev_get_gpio_in(gpio_d_splitter, 0); gpio_out[GPIO_C][7] = qdev_get_gpio_in(ssddev, 0); /* Make sure the select pin is high. */ qemu_irq_raise(gpio_out[GPIO_D][0]); } } if (board->dc4 & (1 << 28)) { DeviceState *enet; enet = qdev_new("stellaris_enet"); object_property_add_child(soc_container, "enet", OBJECT(enet)); if (nd) { qdev_set_nic_properties(enet, nd); } else { qdev_prop_set_macaddr(enet, "mac", mac.a); } sysbus_realize_and_unref(SYS_BUS_DEVICE(enet), &error_fatal); sysbus_mmio_map(SYS_BUS_DEVICE(enet), 0, 0x40048000); sysbus_connect_irq(SYS_BUS_DEVICE(enet), 0, qdev_get_gpio_in(nvic, 42)); } if (board->peripherals & BP_GAMEPAD) { QList *gpad_keycode_list = qlist_new(); static const int gpad_keycode[5] = { Q_KEY_CODE_UP, Q_KEY_CODE_DOWN, Q_KEY_CODE_LEFT, Q_KEY_CODE_RIGHT, Q_KEY_CODE_CTRL, }; DeviceState *gpad; gpad = qdev_new(TYPE_STELLARIS_GAMEPAD); object_property_add_child(OBJECT(ms), "gamepad", OBJECT(gpad)); for (i = 0; i < ARRAY_SIZE(gpad_keycode); i++) { qlist_append_int(gpad_keycode_list, gpad_keycode[i]); } qdev_prop_set_array(gpad, "keycodes", gpad_keycode_list); sysbus_realize_and_unref(SYS_BUS_DEVICE(gpad), &error_fatal); qdev_connect_gpio_out(gpad, 0, qemu_irq_invert(gpio_in[GPIO_E][0])); /* up */ qdev_connect_gpio_out(gpad, 1, qemu_irq_invert(gpio_in[GPIO_E][1])); /* down */ qdev_connect_gpio_out(gpad, 2, qemu_irq_invert(gpio_in[GPIO_E][2])); /* left */ qdev_connect_gpio_out(gpad, 3, qemu_irq_invert(gpio_in[GPIO_E][3])); /* right */ qdev_connect_gpio_out(gpad, 4, qemu_irq_invert(gpio_in[GPIO_F][1])); /* select */ } for (i = 0; i < 7; i++) { if (board->dc4 & (1 << i)) { for (j = 0; j < 8; j++) { if (gpio_out[i][j]) { qdev_connect_gpio_out(gpio_dev[i], j, gpio_out[i][j]); } } } } /* Add dummy regions for the devices we don't implement yet, * so guest accesses don't cause unlogged crashes. */ create_unimplemented_device("i2c-0", 0x40002000, 0x1000); create_unimplemented_device("i2c-2", 0x40021000, 0x1000); create_unimplemented_device("PWM", 0x40028000, 0x1000); create_unimplemented_device("QEI-0", 0x4002c000, 0x1000); create_unimplemented_device("QEI-1", 0x4002d000, 0x1000); create_unimplemented_device("analogue-comparator", 0x4003c000, 0x1000); create_unimplemented_device("hibernation", 0x400fc000, 0x1000); create_unimplemented_device("flash-control", 0x400fd000, 0x1000); armv7m_load_kernel(ARM_CPU(first_cpu), ms->kernel_filename, 0, flash_size); } /* FIXME: Figure out how to generate these from stellaris_boards. */ static void lm3s811evb_init(MachineState *machine) { stellaris_init(machine, &stellaris_boards[0]); } static void lm3s6965evb_init(MachineState *machine) { stellaris_init(machine, &stellaris_boards[1]); } static void lm3s811evb_class_init(ObjectClass *oc, void *data) { MachineClass *mc = MACHINE_CLASS(oc); mc->desc = "Stellaris LM3S811EVB (Cortex-M3)"; mc->init = lm3s811evb_init; mc->ignore_memory_transaction_failures = true; mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3"); } static const TypeInfo lm3s811evb_type = { .name = MACHINE_TYPE_NAME("lm3s811evb"), .parent = TYPE_MACHINE, .class_init = lm3s811evb_class_init, }; static void lm3s6965evb_class_init(ObjectClass *oc, void *data) { MachineClass *mc = MACHINE_CLASS(oc); mc->desc = "Stellaris LM3S6965EVB (Cortex-M3)"; mc->init = lm3s6965evb_init; mc->ignore_memory_transaction_failures = true; mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3"); } static const TypeInfo lm3s6965evb_type = { .name = MACHINE_TYPE_NAME("lm3s6965evb"), .parent = TYPE_MACHINE, .class_init = lm3s6965evb_class_init, }; static void stellaris_machine_init(void) { type_register_static(&lm3s811evb_type); type_register_static(&lm3s6965evb_type); } type_init(stellaris_machine_init) static void stellaris_i2c_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); ResettableClass *rc = RESETTABLE_CLASS(klass); rc->phases.enter = stellaris_i2c_reset_enter; rc->phases.hold = stellaris_i2c_reset_hold; rc->phases.exit = stellaris_i2c_reset_exit; dc->vmsd = &vmstate_stellaris_i2c; } static const TypeInfo stellaris_i2c_info = { .name = TYPE_STELLARIS_I2C, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(stellaris_i2c_state), .instance_init = stellaris_i2c_init, .class_init = stellaris_i2c_class_init, }; static void stellaris_adc_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); ResettableClass *rc = RESETTABLE_CLASS(klass); rc->phases.hold = stellaris_adc_reset_hold; dc->vmsd = &vmstate_stellaris_adc; } static const TypeInfo stellaris_adc_info = { .name = TYPE_STELLARIS_ADC, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(StellarisADCState), .instance_init = stellaris_adc_init, .class_init = stellaris_adc_class_init, }; static void stellaris_sys_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); ResettableClass *rc = RESETTABLE_CLASS(klass); dc->vmsd = &vmstate_stellaris_sys; rc->phases.enter = stellaris_sys_reset_enter; rc->phases.hold = stellaris_sys_reset_hold; rc->phases.exit = stellaris_sys_reset_exit; device_class_set_props(dc, stellaris_sys_properties); } static const TypeInfo stellaris_sys_info = { .name = TYPE_STELLARIS_SYS, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(ssys_state), .instance_init = stellaris_sys_instance_init, .class_init = stellaris_sys_class_init, }; static void stellaris_register_types(void) { type_register_static(&stellaris_i2c_info); type_register_static(&stellaris_adc_info); type_register_static(&stellaris_sys_info); } type_init(stellaris_register_types)