/* * Copyright (C) 2014-2016 Broadcom Corporation * Copyright (c) 2017 Red Hat, Inc. * Written by Prem Mallappa, Eric Auger * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * Author: Prem Mallappa * */ #include "qemu/osdep.h" #include "trace.h" #include "exec/target_page.h" #include "hw/core/cpu.h" #include "hw/qdev-properties.h" #include "qapi/error.h" #include "qemu/jhash.h" #include "qemu/module.h" #include "qemu/error-report.h" #include "hw/arm/smmu-common.h" #include "smmu-internal.h" /* IOTLB Management */ static guint smmu_iotlb_key_hash(gconstpointer v) { SMMUIOTLBKey *key = (SMMUIOTLBKey *)v; uint32_t a, b, c; /* Jenkins hash */ a = b = c = JHASH_INITVAL + sizeof(*key); a += key->asid + key->vmid + key->level + key->tg; b += extract64(key->iova, 0, 32); c += extract64(key->iova, 32, 32); __jhash_mix(a, b, c); __jhash_final(a, b, c); return c; } static gboolean smmu_iotlb_key_equal(gconstpointer v1, gconstpointer v2) { SMMUIOTLBKey *k1 = (SMMUIOTLBKey *)v1, *k2 = (SMMUIOTLBKey *)v2; return (k1->asid == k2->asid) && (k1->iova == k2->iova) && (k1->level == k2->level) && (k1->tg == k2->tg) && (k1->vmid == k2->vmid); } SMMUIOTLBKey smmu_get_iotlb_key(int asid, int vmid, uint64_t iova, uint8_t tg, uint8_t level) { SMMUIOTLBKey key = {.asid = asid, .vmid = vmid, .iova = iova, .tg = tg, .level = level}; return key; } static SMMUTLBEntry *smmu_iotlb_lookup_all_levels(SMMUState *bs, SMMUTransCfg *cfg, SMMUTransTableInfo *tt, hwaddr iova) { uint8_t tg = (tt->granule_sz - 10) / 2; uint8_t inputsize = 64 - tt->tsz; uint8_t stride = tt->granule_sz - 3; uint8_t level = 4 - (inputsize - 4) / stride; SMMUTLBEntry *entry = NULL; while (level <= 3) { uint64_t subpage_size = 1ULL << level_shift(level, tt->granule_sz); uint64_t mask = subpage_size - 1; SMMUIOTLBKey key; key = smmu_get_iotlb_key(cfg->asid, cfg->s2cfg.vmid, iova & ~mask, tg, level); entry = g_hash_table_lookup(bs->iotlb, &key); if (entry) { break; } level++; } return entry; } /** * smmu_iotlb_lookup - Look up for a TLB entry. * @bs: SMMU state which includes the TLB instance * @cfg: Configuration of the translation * @tt: Translation table info (granule and tsz) * @iova: IOVA address to lookup * * returns a valid entry on success, otherwise NULL. * In case of nested translation, tt can be updated to include * the granule of the found entry as it might different from * the IOVA granule. */ SMMUTLBEntry *smmu_iotlb_lookup(SMMUState *bs, SMMUTransCfg *cfg, SMMUTransTableInfo *tt, hwaddr iova) { SMMUTLBEntry *entry = NULL; entry = smmu_iotlb_lookup_all_levels(bs, cfg, tt, iova); /* * For nested translation also try the s2 granule, as the TLB will insert * it if the size of s2 tlb entry was smaller. */ if (!entry && (cfg->stage == SMMU_NESTED) && (cfg->s2cfg.granule_sz != tt->granule_sz)) { tt->granule_sz = cfg->s2cfg.granule_sz; entry = smmu_iotlb_lookup_all_levels(bs, cfg, tt, iova); } if (entry) { cfg->iotlb_hits++; trace_smmu_iotlb_lookup_hit(cfg->asid, cfg->s2cfg.vmid, iova, cfg->iotlb_hits, cfg->iotlb_misses, 100 * cfg->iotlb_hits / (cfg->iotlb_hits + cfg->iotlb_misses)); } else { cfg->iotlb_misses++; trace_smmu_iotlb_lookup_miss(cfg->asid, cfg->s2cfg.vmid, iova, cfg->iotlb_hits, cfg->iotlb_misses, 100 * cfg->iotlb_hits / (cfg->iotlb_hits + cfg->iotlb_misses)); } return entry; } void smmu_iotlb_insert(SMMUState *bs, SMMUTransCfg *cfg, SMMUTLBEntry *new) { SMMUIOTLBKey *key = g_new0(SMMUIOTLBKey, 1); uint8_t tg = (new->granule - 10) / 2; if (g_hash_table_size(bs->iotlb) >= SMMU_IOTLB_MAX_SIZE) { smmu_iotlb_inv_all(bs); } *key = smmu_get_iotlb_key(cfg->asid, cfg->s2cfg.vmid, new->entry.iova, tg, new->level); trace_smmu_iotlb_insert(cfg->asid, cfg->s2cfg.vmid, new->entry.iova, tg, new->level); g_hash_table_insert(bs->iotlb, key, new); } void smmu_iotlb_inv_all(SMMUState *s) { trace_smmu_iotlb_inv_all(); g_hash_table_remove_all(s->iotlb); } static gboolean smmu_hash_remove_by_asid_vmid(gpointer key, gpointer value, gpointer user_data) { SMMUIOTLBPageInvInfo *info = (SMMUIOTLBPageInvInfo *)user_data; SMMUIOTLBKey *iotlb_key = (SMMUIOTLBKey *)key; return (SMMU_IOTLB_ASID(*iotlb_key) == info->asid) && (SMMU_IOTLB_VMID(*iotlb_key) == info->vmid); } static gboolean smmu_hash_remove_by_vmid(gpointer key, gpointer value, gpointer user_data) { int vmid = *(int *)user_data; SMMUIOTLBKey *iotlb_key = (SMMUIOTLBKey *)key; return SMMU_IOTLB_VMID(*iotlb_key) == vmid; } static gboolean smmu_hash_remove_by_vmid_s1(gpointer key, gpointer value, gpointer user_data) { int vmid = *(int *)user_data; SMMUIOTLBKey *iotlb_key = (SMMUIOTLBKey *)key; return (SMMU_IOTLB_VMID(*iotlb_key) == vmid) && (SMMU_IOTLB_ASID(*iotlb_key) >= 0); } static gboolean smmu_hash_remove_by_asid_vmid_iova(gpointer key, gpointer value, gpointer user_data) { SMMUTLBEntry *iter = (SMMUTLBEntry *)value; IOMMUTLBEntry *entry = &iter->entry; SMMUIOTLBPageInvInfo *info = (SMMUIOTLBPageInvInfo *)user_data; SMMUIOTLBKey iotlb_key = *(SMMUIOTLBKey *)key; if (info->asid >= 0 && info->asid != SMMU_IOTLB_ASID(iotlb_key)) { return false; } if (info->vmid >= 0 && info->vmid != SMMU_IOTLB_VMID(iotlb_key)) { return false; } return ((info->iova & ~entry->addr_mask) == entry->iova) || ((entry->iova & ~info->mask) == info->iova); } static gboolean smmu_hash_remove_by_vmid_ipa(gpointer key, gpointer value, gpointer user_data) { SMMUTLBEntry *iter = (SMMUTLBEntry *)value; IOMMUTLBEntry *entry = &iter->entry; SMMUIOTLBPageInvInfo *info = (SMMUIOTLBPageInvInfo *)user_data; SMMUIOTLBKey iotlb_key = *(SMMUIOTLBKey *)key; if (SMMU_IOTLB_ASID(iotlb_key) >= 0) { /* This is a stage-1 address. */ return false; } if (info->vmid != SMMU_IOTLB_VMID(iotlb_key)) { return false; } return ((info->iova & ~entry->addr_mask) == entry->iova) || ((entry->iova & ~info->mask) == info->iova); } void smmu_iotlb_inv_iova(SMMUState *s, int asid, int vmid, dma_addr_t iova, uint8_t tg, uint64_t num_pages, uint8_t ttl) { /* if tg is not set we use 4KB range invalidation */ uint8_t granule = tg ? tg * 2 + 10 : 12; if (ttl && (num_pages == 1) && (asid >= 0)) { SMMUIOTLBKey key = smmu_get_iotlb_key(asid, vmid, iova, tg, ttl); if (g_hash_table_remove(s->iotlb, &key)) { return; } /* * if the entry is not found, let's see if it does not * belong to a larger IOTLB entry */ } SMMUIOTLBPageInvInfo info = { .asid = asid, .iova = iova, .vmid = vmid, .mask = (num_pages * 1 << granule) - 1}; g_hash_table_foreach_remove(s->iotlb, smmu_hash_remove_by_asid_vmid_iova, &info); } /* * Similar to smmu_iotlb_inv_iova(), but for Stage-2, ASID is always -1, * in Stage-1 invalidation ASID = -1, means don't care. */ void smmu_iotlb_inv_ipa(SMMUState *s, int vmid, dma_addr_t ipa, uint8_t tg, uint64_t num_pages, uint8_t ttl) { uint8_t granule = tg ? tg * 2 + 10 : 12; int asid = -1; if (ttl && (num_pages == 1)) { SMMUIOTLBKey key = smmu_get_iotlb_key(asid, vmid, ipa, tg, ttl); if (g_hash_table_remove(s->iotlb, &key)) { return; } } SMMUIOTLBPageInvInfo info = { .iova = ipa, .vmid = vmid, .mask = (num_pages << granule) - 1}; g_hash_table_foreach_remove(s->iotlb, smmu_hash_remove_by_vmid_ipa, &info); } void smmu_iotlb_inv_asid_vmid(SMMUState *s, int asid, int vmid) { SMMUIOTLBPageInvInfo info = { .asid = asid, .vmid = vmid, }; trace_smmu_iotlb_inv_asid_vmid(asid, vmid); g_hash_table_foreach_remove(s->iotlb, smmu_hash_remove_by_asid_vmid, &info); } void smmu_iotlb_inv_vmid(SMMUState *s, int vmid) { trace_smmu_iotlb_inv_vmid(vmid); g_hash_table_foreach_remove(s->iotlb, smmu_hash_remove_by_vmid, &vmid); } inline void smmu_iotlb_inv_vmid_s1(SMMUState *s, int vmid) { trace_smmu_iotlb_inv_vmid_s1(vmid); g_hash_table_foreach_remove(s->iotlb, smmu_hash_remove_by_vmid_s1, &vmid); } /* VMSAv8-64 Translation */ /** * get_pte - Get the content of a page table entry located at * @base_addr[@index] */ static int get_pte(dma_addr_t baseaddr, uint32_t index, uint64_t *pte, SMMUPTWEventInfo *info) { int ret; dma_addr_t addr = baseaddr + index * sizeof(*pte); /* TODO: guarantee 64-bit single-copy atomicity */ ret = ldq_le_dma(&address_space_memory, addr, pte, MEMTXATTRS_UNSPECIFIED); if (ret != MEMTX_OK) { info->type = SMMU_PTW_ERR_WALK_EABT; info->addr = addr; return -EINVAL; } trace_smmu_get_pte(baseaddr, index, addr, *pte); return 0; } /* VMSAv8-64 Translation Table Format Descriptor Decoding */ /** * get_page_pte_address - returns the L3 descriptor output address, * ie. the page frame * ARM ARM spec: Figure D4-17 VMSAv8-64 level 3 descriptor format */ static inline hwaddr get_page_pte_address(uint64_t pte, int granule_sz) { return PTE_ADDRESS(pte, granule_sz); } /** * get_table_pte_address - return table descriptor output address, * ie. address of next level table * ARM ARM Figure D4-16 VMSAv8-64 level0, level1, and level 2 descriptor formats */ static inline hwaddr get_table_pte_address(uint64_t pte, int granule_sz) { return PTE_ADDRESS(pte, granule_sz); } /** * get_block_pte_address - return block descriptor output address and block size * ARM ARM Figure D4-16 VMSAv8-64 level0, level1, and level 2 descriptor formats */ static inline hwaddr get_block_pte_address(uint64_t pte, int level, int granule_sz, uint64_t *bsz) { int n = level_shift(level, granule_sz); *bsz = 1ULL << n; return PTE_ADDRESS(pte, n); } SMMUTransTableInfo *select_tt(SMMUTransCfg *cfg, dma_addr_t iova) { bool tbi = extract64(iova, 55, 1) ? TBI1(cfg->tbi) : TBI0(cfg->tbi); uint8_t tbi_byte = tbi * 8; if (cfg->tt[0].tsz && !extract64(iova, 64 - cfg->tt[0].tsz, cfg->tt[0].tsz - tbi_byte)) { /* there is a ttbr0 region and we are in it (high bits all zero) */ return &cfg->tt[0]; } else if (cfg->tt[1].tsz && sextract64(iova, 64 - cfg->tt[1].tsz, cfg->tt[1].tsz - tbi_byte) == -1) { /* there is a ttbr1 region and we are in it (high bits all one) */ return &cfg->tt[1]; } else if (!cfg->tt[0].tsz) { /* ttbr0 region is "everything not in the ttbr1 region" */ return &cfg->tt[0]; } else if (!cfg->tt[1].tsz) { /* ttbr1 region is "everything not in the ttbr0 region" */ return &cfg->tt[1]; } /* in the gap between the two regions, this is a Translation fault */ return NULL; } /* Translate stage-1 table address using stage-2 page table. */ static inline int translate_table_addr_ipa(SMMUState *bs, dma_addr_t *table_addr, SMMUTransCfg *cfg, SMMUPTWEventInfo *info) { dma_addr_t addr = *table_addr; SMMUTLBEntry *cached_entry; int asid; /* * The translation table walks performed from TTB0 or TTB1 are always * performed in IPA space if stage 2 translations are enabled. */ asid = cfg->asid; cfg->stage = SMMU_STAGE_2; cfg->asid = -1; cached_entry = smmu_translate(bs, cfg, addr, IOMMU_RO, info); cfg->asid = asid; cfg->stage = SMMU_NESTED; if (cached_entry) { *table_addr = CACHED_ENTRY_TO_ADDR(cached_entry, addr); return 0; } info->stage = SMMU_STAGE_2; info->addr = addr; info->is_ipa_descriptor = true; return -EINVAL; } /** * smmu_ptw_64_s1 - VMSAv8-64 Walk of the page tables for a given IOVA * @bs: smmu state which includes TLB instance * @cfg: translation config * @iova: iova to translate * @perm: access type * @tlbe: SMMUTLBEntry (out) * @info: handle to an error info * * Return 0 on success, < 0 on error. In case of error, @info is filled * and tlbe->perm is set to IOMMU_NONE. * Upon success, @tlbe is filled with translated_addr and entry * permission rights. */ static int smmu_ptw_64_s1(SMMUState *bs, SMMUTransCfg *cfg, dma_addr_t iova, IOMMUAccessFlags perm, SMMUTLBEntry *tlbe, SMMUPTWEventInfo *info) { dma_addr_t baseaddr, indexmask; SMMUStage stage = cfg->stage; SMMUTransTableInfo *tt = select_tt(cfg, iova); uint8_t level, granule_sz, inputsize, stride; if (!tt || tt->disabled) { info->type = SMMU_PTW_ERR_TRANSLATION; goto error; } granule_sz = tt->granule_sz; stride = VMSA_STRIDE(granule_sz); inputsize = 64 - tt->tsz; level = 4 - (inputsize - 4) / stride; indexmask = VMSA_IDXMSK(inputsize, stride, level); baseaddr = extract64(tt->ttb, 0, cfg->oas); baseaddr &= ~indexmask; while (level < VMSA_LEVELS) { uint64_t subpage_size = 1ULL << level_shift(level, granule_sz); uint64_t mask = subpage_size - 1; uint32_t offset = iova_level_offset(iova, inputsize, level, granule_sz); uint64_t pte, gpa; dma_addr_t pte_addr = baseaddr + offset * sizeof(pte); uint8_t ap; if (get_pte(baseaddr, offset, &pte, info)) { goto error; } trace_smmu_ptw_level(stage, level, iova, subpage_size, baseaddr, offset, pte); if (is_invalid_pte(pte) || is_reserved_pte(pte, level)) { trace_smmu_ptw_invalid_pte(stage, level, baseaddr, pte_addr, offset, pte); break; } if (is_table_pte(pte, level)) { ap = PTE_APTABLE(pte); if (is_permission_fault(ap, perm) && !tt->had) { info->type = SMMU_PTW_ERR_PERMISSION; goto error; } baseaddr = get_table_pte_address(pte, granule_sz); if (cfg->stage == SMMU_NESTED) { if (translate_table_addr_ipa(bs, &baseaddr, cfg, info)) { goto error; } } level++; continue; } else if (is_page_pte(pte, level)) { gpa = get_page_pte_address(pte, granule_sz); trace_smmu_ptw_page_pte(stage, level, iova, baseaddr, pte_addr, pte, gpa); } else { uint64_t block_size; gpa = get_block_pte_address(pte, level, granule_sz, &block_size); trace_smmu_ptw_block_pte(stage, level, baseaddr, pte_addr, pte, iova, gpa, block_size >> 20); } /* * QEMU does not currently implement HTTU, so if AFFD and PTE.AF * are 0 we take an Access flag fault. (5.4. Context Descriptor) * An Access flag fault takes priority over a Permission fault. */ if (!PTE_AF(pte) && !cfg->affd) { info->type = SMMU_PTW_ERR_ACCESS; goto error; } ap = PTE_AP(pte); if (is_permission_fault(ap, perm)) { info->type = SMMU_PTW_ERR_PERMISSION; goto error; } /* * The address output from the translation causes a stage 1 Address * Size fault if it exceeds the range of the effective IPA size for * the given CD. */ if (gpa >= (1ULL << cfg->oas)) { info->type = SMMU_PTW_ERR_ADDR_SIZE; goto error; } tlbe->entry.translated_addr = gpa; tlbe->entry.iova = iova & ~mask; tlbe->entry.addr_mask = mask; tlbe->parent_perm = PTE_AP_TO_PERM(ap); tlbe->entry.perm = tlbe->parent_perm; tlbe->level = level; tlbe->granule = granule_sz; return 0; } info->type = SMMU_PTW_ERR_TRANSLATION; error: info->stage = SMMU_STAGE_1; tlbe->entry.perm = IOMMU_NONE; return -EINVAL; } /** * smmu_ptw_64_s2 - VMSAv8-64 Walk of the page tables for a given ipa * for stage-2. * @cfg: translation config * @ipa: ipa to translate * @perm: access type * @tlbe: SMMUTLBEntry (out) * @info: handle to an error info * * Return 0 on success, < 0 on error. In case of error, @info is filled * and tlbe->perm is set to IOMMU_NONE. * Upon success, @tlbe is filled with translated_addr and entry * permission rights. */ static int smmu_ptw_64_s2(SMMUTransCfg *cfg, dma_addr_t ipa, IOMMUAccessFlags perm, SMMUTLBEntry *tlbe, SMMUPTWEventInfo *info) { const SMMUStage stage = SMMU_STAGE_2; int granule_sz = cfg->s2cfg.granule_sz; /* ARM DDI0487I.a: Table D8-7. */ int inputsize = 64 - cfg->s2cfg.tsz; int level = get_start_level(cfg->s2cfg.sl0, granule_sz); int stride = VMSA_STRIDE(granule_sz); int idx = pgd_concat_idx(level, granule_sz, ipa); /* * Get the ttb from concatenated structure. * The offset is the idx * size of each ttb(number of ptes * (sizeof(pte)) */ uint64_t baseaddr = extract64(cfg->s2cfg.vttb, 0, cfg->s2cfg.eff_ps) + (1 << stride) * idx * sizeof(uint64_t); dma_addr_t indexmask = VMSA_IDXMSK(inputsize, stride, level); baseaddr &= ~indexmask; /* * On input, a stage 2 Translation fault occurs if the IPA is outside the * range configured by the relevant S2T0SZ field of the STE. */ if (ipa >= (1ULL << inputsize)) { info->type = SMMU_PTW_ERR_TRANSLATION; goto error_ipa; } while (level < VMSA_LEVELS) { uint64_t subpage_size = 1ULL << level_shift(level, granule_sz); uint64_t mask = subpage_size - 1; uint32_t offset = iova_level_offset(ipa, inputsize, level, granule_sz); uint64_t pte, gpa; dma_addr_t pte_addr = baseaddr + offset * sizeof(pte); uint8_t s2ap; if (get_pte(baseaddr, offset, &pte, info)) { goto error; } trace_smmu_ptw_level(stage, level, ipa, subpage_size, baseaddr, offset, pte); if (is_invalid_pte(pte) || is_reserved_pte(pte, level)) { trace_smmu_ptw_invalid_pte(stage, level, baseaddr, pte_addr, offset, pte); break; } if (is_table_pte(pte, level)) { baseaddr = get_table_pte_address(pte, granule_sz); level++; continue; } else if (is_page_pte(pte, level)) { gpa = get_page_pte_address(pte, granule_sz); trace_smmu_ptw_page_pte(stage, level, ipa, baseaddr, pte_addr, pte, gpa); } else { uint64_t block_size; gpa = get_block_pte_address(pte, level, granule_sz, &block_size); trace_smmu_ptw_block_pte(stage, level, baseaddr, pte_addr, pte, ipa, gpa, block_size >> 20); } /* * If S2AFFD and PTE.AF are 0 => fault. (5.2. Stream Table Entry) * An Access fault takes priority over a Permission fault. */ if (!PTE_AF(pte) && !cfg->s2cfg.affd) { info->type = SMMU_PTW_ERR_ACCESS; goto error_ipa; } s2ap = PTE_AP(pte); if (is_permission_fault_s2(s2ap, perm)) { info->type = SMMU_PTW_ERR_PERMISSION; goto error_ipa; } /* * The address output from the translation causes a stage 2 Address * Size fault if it exceeds the effective PA output range. */ if (gpa >= (1ULL << cfg->s2cfg.eff_ps)) { info->type = SMMU_PTW_ERR_ADDR_SIZE; goto error_ipa; } tlbe->entry.translated_addr = gpa; tlbe->entry.iova = ipa & ~mask; tlbe->entry.addr_mask = mask; tlbe->parent_perm = s2ap; tlbe->entry.perm = tlbe->parent_perm; tlbe->level = level; tlbe->granule = granule_sz; return 0; } info->type = SMMU_PTW_ERR_TRANSLATION; error_ipa: info->addr = ipa; error: info->stage = SMMU_STAGE_2; tlbe->entry.perm = IOMMU_NONE; return -EINVAL; } /* * combine S1 and S2 TLB entries into a single entry. * As a result the S1 entry is overridden with combined data. */ static void combine_tlb(SMMUTLBEntry *tlbe, SMMUTLBEntry *tlbe_s2, dma_addr_t iova, SMMUTransCfg *cfg) { if (tlbe_s2->entry.addr_mask < tlbe->entry.addr_mask) { tlbe->entry.addr_mask = tlbe_s2->entry.addr_mask; tlbe->granule = tlbe_s2->granule; tlbe->level = tlbe_s2->level; } tlbe->entry.translated_addr = CACHED_ENTRY_TO_ADDR(tlbe_s2, tlbe->entry.translated_addr); tlbe->entry.iova = iova & ~tlbe->entry.addr_mask; /* parent_perm has s2 perm while perm keeps s1 perm. */ tlbe->parent_perm = tlbe_s2->entry.perm; return; } /** * smmu_ptw - Walk the page tables for an IOVA, according to @cfg * * @bs: smmu state which includes TLB instance * @cfg: translation configuration * @iova: iova to translate * @perm: tentative access type * @tlbe: returned entry * @info: ptw event handle * * return 0 on success */ int smmu_ptw(SMMUState *bs, SMMUTransCfg *cfg, dma_addr_t iova, IOMMUAccessFlags perm, SMMUTLBEntry *tlbe, SMMUPTWEventInfo *info) { int ret; SMMUTLBEntry tlbe_s2; dma_addr_t ipa; if (cfg->stage == SMMU_STAGE_1) { return smmu_ptw_64_s1(bs, cfg, iova, perm, tlbe, info); } else if (cfg->stage == SMMU_STAGE_2) { /* * If bypassing stage 1(or unimplemented), the input address is passed * directly to stage 2 as IPA. If the input address of a transaction * exceeds the size of the IAS, a stage 1 Address Size fault occurs. * For AA64, IAS = OAS according to (IHI 0070.E.a) "3.4 Address sizes" */ if (iova >= (1ULL << cfg->oas)) { info->type = SMMU_PTW_ERR_ADDR_SIZE; info->stage = SMMU_STAGE_1; tlbe->entry.perm = IOMMU_NONE; return -EINVAL; } return smmu_ptw_64_s2(cfg, iova, perm, tlbe, info); } /* SMMU_NESTED. */ ret = smmu_ptw_64_s1(bs, cfg, iova, perm, tlbe, info); if (ret) { return ret; } ipa = CACHED_ENTRY_TO_ADDR(tlbe, iova); ret = smmu_ptw_64_s2(cfg, ipa, perm, &tlbe_s2, info); if (ret) { return ret; } combine_tlb(tlbe, &tlbe_s2, iova, cfg); return 0; } SMMUTLBEntry *smmu_translate(SMMUState *bs, SMMUTransCfg *cfg, dma_addr_t addr, IOMMUAccessFlags flag, SMMUPTWEventInfo *info) { SMMUTLBEntry *cached_entry = NULL; SMMUTransTableInfo *tt; int status; /* * Combined attributes used for TLB lookup, holds the attributes for * the input stage. */ SMMUTransTableInfo tt_combined; if (cfg->stage == SMMU_STAGE_2) { /* Stage2. */ tt_combined.granule_sz = cfg->s2cfg.granule_sz; tt_combined.tsz = cfg->s2cfg.tsz; } else { /* Select stage1 translation table. */ tt = select_tt(cfg, addr); if (!tt) { info->type = SMMU_PTW_ERR_TRANSLATION; info->stage = SMMU_STAGE_1; return NULL; } tt_combined.granule_sz = tt->granule_sz; tt_combined.tsz = tt->tsz; } cached_entry = smmu_iotlb_lookup(bs, cfg, &tt_combined, addr); if (cached_entry) { if ((flag & IOMMU_WO) && !(cached_entry->entry.perm & cached_entry->parent_perm & IOMMU_WO)) { info->type = SMMU_PTW_ERR_PERMISSION; info->stage = !(cached_entry->entry.perm & IOMMU_WO) ? SMMU_STAGE_1 : SMMU_STAGE_2; return NULL; } return cached_entry; } cached_entry = g_new0(SMMUTLBEntry, 1); status = smmu_ptw(bs, cfg, addr, flag, cached_entry, info); if (status) { g_free(cached_entry); return NULL; } smmu_iotlb_insert(bs, cfg, cached_entry); return cached_entry; } /** * The bus number is used for lookup when SID based invalidation occurs. * In that case we lazily populate the SMMUPciBus array from the bus hash * table. At the time the SMMUPciBus is created (smmu_find_add_as), the bus * numbers may not be always initialized yet. */ SMMUPciBus *smmu_find_smmu_pcibus(SMMUState *s, uint8_t bus_num) { SMMUPciBus *smmu_pci_bus = s->smmu_pcibus_by_bus_num[bus_num]; GHashTableIter iter; if (smmu_pci_bus) { return smmu_pci_bus; } g_hash_table_iter_init(&iter, s->smmu_pcibus_by_busptr); while (g_hash_table_iter_next(&iter, NULL, (void **)&smmu_pci_bus)) { if (pci_bus_num(smmu_pci_bus->bus) == bus_num) { s->smmu_pcibus_by_bus_num[bus_num] = smmu_pci_bus; return smmu_pci_bus; } } return NULL; } static AddressSpace *smmu_find_add_as(PCIBus *bus, void *opaque, int devfn) { SMMUState *s = opaque; SMMUPciBus *sbus = g_hash_table_lookup(s->smmu_pcibus_by_busptr, bus); SMMUDevice *sdev; static unsigned int index; if (!sbus) { sbus = g_malloc0(sizeof(SMMUPciBus) + sizeof(SMMUDevice *) * SMMU_PCI_DEVFN_MAX); sbus->bus = bus; g_hash_table_insert(s->smmu_pcibus_by_busptr, bus, sbus); } sdev = sbus->pbdev[devfn]; if (!sdev) { char *name = g_strdup_printf("%s-%d-%d", s->mrtypename, devfn, index++); sdev = sbus->pbdev[devfn] = g_new0(SMMUDevice, 1); sdev->smmu = s; sdev->bus = bus; sdev->devfn = devfn; memory_region_init_iommu(&sdev->iommu, sizeof(sdev->iommu), s->mrtypename, OBJECT(s), name, UINT64_MAX); address_space_init(&sdev->as, MEMORY_REGION(&sdev->iommu), name); trace_smmu_add_mr(name); g_free(name); } return &sdev->as; } static const PCIIOMMUOps smmu_ops = { .get_address_space = smmu_find_add_as, }; SMMUDevice *smmu_find_sdev(SMMUState *s, uint32_t sid) { uint8_t bus_n, devfn; SMMUPciBus *smmu_bus; bus_n = PCI_BUS_NUM(sid); smmu_bus = smmu_find_smmu_pcibus(s, bus_n); if (smmu_bus) { devfn = SMMU_PCI_DEVFN(sid); return smmu_bus->pbdev[devfn]; } return NULL; } /* Unmap all notifiers attached to @mr */ static void smmu_inv_notifiers_mr(IOMMUMemoryRegion *mr) { IOMMUNotifier *n; trace_smmu_inv_notifiers_mr(mr->parent_obj.name); IOMMU_NOTIFIER_FOREACH(n, mr) { memory_region_unmap_iommu_notifier_range(n); } } /* Unmap all notifiers of all mr's */ void smmu_inv_notifiers_all(SMMUState *s) { SMMUDevice *sdev; QLIST_FOREACH(sdev, &s->devices_with_notifiers, next) { smmu_inv_notifiers_mr(&sdev->iommu); } } static void smmu_base_realize(DeviceState *dev, Error **errp) { SMMUState *s = ARM_SMMU(dev); SMMUBaseClass *sbc = ARM_SMMU_GET_CLASS(dev); Error *local_err = NULL; sbc->parent_realize(dev, &local_err); if (local_err) { error_propagate(errp, local_err); return; } s->configs = g_hash_table_new_full(NULL, NULL, NULL, g_free); s->iotlb = g_hash_table_new_full(smmu_iotlb_key_hash, smmu_iotlb_key_equal, g_free, g_free); s->smmu_pcibus_by_busptr = g_hash_table_new(NULL, NULL); if (s->primary_bus) { pci_setup_iommu(s->primary_bus, &smmu_ops, s); } else { error_setg(errp, "SMMU is not attached to any PCI bus!"); } } static void smmu_base_reset_hold(Object *obj, ResetType type) { SMMUState *s = ARM_SMMU(obj); memset(s->smmu_pcibus_by_bus_num, 0, sizeof(s->smmu_pcibus_by_bus_num)); g_hash_table_remove_all(s->configs); g_hash_table_remove_all(s->iotlb); } static const Property smmu_dev_properties[] = { DEFINE_PROP_UINT8("bus_num", SMMUState, bus_num, 0), DEFINE_PROP_LINK("primary-bus", SMMUState, primary_bus, TYPE_PCI_BUS, PCIBus *), DEFINE_PROP_END_OF_LIST(), }; static void smmu_base_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); ResettableClass *rc = RESETTABLE_CLASS(klass); SMMUBaseClass *sbc = ARM_SMMU_CLASS(klass); device_class_set_props(dc, smmu_dev_properties); device_class_set_parent_realize(dc, smmu_base_realize, &sbc->parent_realize); rc->phases.hold = smmu_base_reset_hold; } static const TypeInfo smmu_base_info = { .name = TYPE_ARM_SMMU, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(SMMUState), .class_data = NULL, .class_size = sizeof(SMMUBaseClass), .class_init = smmu_base_class_init, .abstract = true, }; static void smmu_base_register_types(void) { type_register_static(&smmu_base_info); } type_init(smmu_base_register_types)