/* * ARM SBSA Reference Platform emulation * * Copyright (c) 2018 Linaro Limited * Written by Hongbo Zhang * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2 or later, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program. If not, see . */ #include "qemu/osdep.h" #include "qemu/datadir.h" #include "qapi/error.h" #include "qemu/error-report.h" #include "qemu/units.h" #include "sysemu/device_tree.h" #include "sysemu/numa.h" #include "sysemu/runstate.h" #include "sysemu/sysemu.h" #include "exec/hwaddr.h" #include "kvm_arm.h" #include "hw/arm/boot.h" #include "hw/arm/fdt.h" #include "hw/arm/smmuv3.h" #include "hw/block/flash.h" #include "hw/boards.h" #include "hw/ide/internal.h" #include "hw/ide/ahci_internal.h" #include "hw/intc/arm_gicv3_common.h" #include "hw/loader.h" #include "hw/pci-host/gpex.h" #include "hw/qdev-properties.h" #include "hw/usb.h" #include "hw/char/pl011.h" #include "hw/watchdog/sbsa_gwdt.h" #include "net/net.h" #include "qom/object.h" #define RAMLIMIT_GB 8192 #define RAMLIMIT_BYTES (RAMLIMIT_GB * GiB) #define NUM_IRQS 256 #define NUM_SMMU_IRQS 4 #define NUM_SATA_PORTS 6 #define VIRTUAL_PMU_IRQ 7 #define ARCH_GIC_MAINT_IRQ 9 #define ARCH_TIMER_VIRT_IRQ 11 #define ARCH_TIMER_S_EL1_IRQ 13 #define ARCH_TIMER_NS_EL1_IRQ 14 #define ARCH_TIMER_NS_EL2_IRQ 10 enum { SBSA_FLASH, SBSA_MEM, SBSA_CPUPERIPHS, SBSA_GIC_DIST, SBSA_GIC_REDIST, SBSA_GIC_ITS, SBSA_SECURE_EC, SBSA_GWDT_WS0, SBSA_GWDT_REFRESH, SBSA_GWDT_CONTROL, SBSA_SMMU, SBSA_UART, SBSA_RTC, SBSA_PCIE, SBSA_PCIE_MMIO, SBSA_PCIE_MMIO_HIGH, SBSA_PCIE_PIO, SBSA_PCIE_ECAM, SBSA_GPIO, SBSA_SECURE_UART, SBSA_SECURE_UART_MM, SBSA_SECURE_MEM, SBSA_AHCI, SBSA_EHCI, }; struct SBSAMachineState { MachineState parent; struct arm_boot_info bootinfo; int smp_cpus; void *fdt; int fdt_size; int psci_conduit; DeviceState *gic; PFlashCFI01 *flash[2]; }; #define TYPE_SBSA_MACHINE MACHINE_TYPE_NAME("sbsa-ref") OBJECT_DECLARE_SIMPLE_TYPE(SBSAMachineState, SBSA_MACHINE) static const MemMapEntry sbsa_ref_memmap[] = { /* 512M boot ROM */ [SBSA_FLASH] = { 0, 0x20000000 }, /* 512M secure memory */ [SBSA_SECURE_MEM] = { 0x20000000, 0x20000000 }, /* Space reserved for CPU peripheral devices */ [SBSA_CPUPERIPHS] = { 0x40000000, 0x00040000 }, [SBSA_GIC_DIST] = { 0x40060000, 0x00010000 }, [SBSA_GIC_REDIST] = { 0x40080000, 0x04000000 }, [SBSA_GIC_ITS] = { 0x44081000, 0x00020000 }, [SBSA_SECURE_EC] = { 0x50000000, 0x00001000 }, [SBSA_GWDT_REFRESH] = { 0x50010000, 0x00001000 }, [SBSA_GWDT_CONTROL] = { 0x50011000, 0x00001000 }, [SBSA_UART] = { 0x60000000, 0x00001000 }, [SBSA_RTC] = { 0x60010000, 0x00001000 }, [SBSA_GPIO] = { 0x60020000, 0x00001000 }, [SBSA_SECURE_UART] = { 0x60030000, 0x00001000 }, [SBSA_SECURE_UART_MM] = { 0x60040000, 0x00001000 }, [SBSA_SMMU] = { 0x60050000, 0x00020000 }, /* Space here reserved for more SMMUs */ [SBSA_AHCI] = { 0x60100000, 0x00010000 }, [SBSA_EHCI] = { 0x60110000, 0x00010000 }, /* Space here reserved for other devices */ [SBSA_PCIE_PIO] = { 0x7fff0000, 0x00010000 }, /* 32-bit address PCIE MMIO space */ [SBSA_PCIE_MMIO] = { 0x80000000, 0x70000000 }, /* 256M PCIE ECAM space */ [SBSA_PCIE_ECAM] = { 0xf0000000, 0x10000000 }, /* ~1TB PCIE MMIO space (4GB to 1024GB boundary) */ [SBSA_PCIE_MMIO_HIGH] = { 0x100000000ULL, 0xFF00000000ULL }, [SBSA_MEM] = { 0x10000000000ULL, RAMLIMIT_BYTES }, }; static const int sbsa_ref_irqmap[] = { [SBSA_UART] = 1, [SBSA_RTC] = 2, [SBSA_PCIE] = 3, /* ... to 6 */ [SBSA_GPIO] = 7, [SBSA_SECURE_UART] = 8, [SBSA_SECURE_UART_MM] = 9, [SBSA_AHCI] = 10, [SBSA_EHCI] = 11, [SBSA_SMMU] = 12, /* ... to 15 */ [SBSA_GWDT_WS0] = 16, }; static const char * const valid_cpus[] = { ARM_CPU_TYPE_NAME("cortex-a57"), ARM_CPU_TYPE_NAME("cortex-a72"), ARM_CPU_TYPE_NAME("neoverse-n1"), ARM_CPU_TYPE_NAME("max"), }; static bool cpu_type_valid(const char *cpu) { int i; for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) { if (strcmp(cpu, valid_cpus[i]) == 0) { return true; } } return false; } static uint64_t sbsa_ref_cpu_mp_affinity(SBSAMachineState *sms, int idx) { uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER; return arm_cpu_mp_affinity(idx, clustersz); } static void sbsa_fdt_add_gic_node(SBSAMachineState *sms) { char *nodename; nodename = g_strdup_printf("/intc"); qemu_fdt_add_subnode(sms->fdt, nodename); qemu_fdt_setprop_sized_cells(sms->fdt, nodename, "reg", 2, sbsa_ref_memmap[SBSA_GIC_DIST].base, 2, sbsa_ref_memmap[SBSA_GIC_DIST].size, 2, sbsa_ref_memmap[SBSA_GIC_REDIST].base, 2, sbsa_ref_memmap[SBSA_GIC_REDIST].size); nodename = g_strdup_printf("/intc/its"); qemu_fdt_add_subnode(sms->fdt, nodename); qemu_fdt_setprop_sized_cells(sms->fdt, nodename, "reg", 2, sbsa_ref_memmap[SBSA_GIC_ITS].base, 2, sbsa_ref_memmap[SBSA_GIC_ITS].size); g_free(nodename); } /* * Firmware on this machine only uses ACPI table to load OS, these limited * device tree nodes are just to let firmware know the info which varies from * command line parameters, so it is not necessary to be fully compatible * with the kernel CPU and NUMA binding rules. */ static void create_fdt(SBSAMachineState *sms) { void *fdt = create_device_tree(&sms->fdt_size); const MachineState *ms = MACHINE(sms); int nb_numa_nodes = ms->numa_state->num_nodes; int cpu; if (!fdt) { error_report("create_device_tree() failed"); exit(1); } sms->fdt = fdt; qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,sbsa-ref"); qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2); qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2); /* * This versioning scheme is for informing platform fw only. It is neither: * - A QEMU versioned machine type; a given version of QEMU will emulate * a given version of the platform. * - A reflection of level of SBSA (now SystemReady SR) support provided. * * machine-version-major: updated when changes breaking fw compatibility * are introduced. * machine-version-minor: updated when features are added that don't break * fw compatibility. */ qemu_fdt_setprop_cell(fdt, "/", "machine-version-major", 0); qemu_fdt_setprop_cell(fdt, "/", "machine-version-minor", 2); if (ms->numa_state->have_numa_distance) { int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t); uint32_t *matrix = g_malloc0(size); int idx, i, j; for (i = 0; i < nb_numa_nodes; i++) { for (j = 0; j < nb_numa_nodes; j++) { idx = (i * nb_numa_nodes + j) * 3; matrix[idx + 0] = cpu_to_be32(i); matrix[idx + 1] = cpu_to_be32(j); matrix[idx + 2] = cpu_to_be32(ms->numa_state->nodes[i].distance[j]); } } qemu_fdt_add_subnode(fdt, "/distance-map"); qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix", matrix, size); g_free(matrix); } /* * From Documentation/devicetree/bindings/arm/cpus.yaml * On ARM v8 64-bit systems this property is required * and matches the MPIDR_EL1 register affinity bits. * * * If cpus node's #address-cells property is set to 2 * * The first reg cell bits [7:0] must be set to * bits [39:32] of MPIDR_EL1. * * The second reg cell bits [23:0] must be set to * bits [23:0] of MPIDR_EL1. */ qemu_fdt_add_subnode(sms->fdt, "/cpus"); qemu_fdt_setprop_cell(sms->fdt, "/cpus", "#address-cells", 2); qemu_fdt_setprop_cell(sms->fdt, "/cpus", "#size-cells", 0x0); for (cpu = sms->smp_cpus - 1; cpu >= 0; cpu--) { char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu); ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu)); CPUState *cs = CPU(armcpu); uint64_t mpidr = sbsa_ref_cpu_mp_affinity(sms, cpu); qemu_fdt_add_subnode(sms->fdt, nodename); qemu_fdt_setprop_u64(sms->fdt, nodename, "reg", mpidr); if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) { qemu_fdt_setprop_cell(sms->fdt, nodename, "numa-node-id", ms->possible_cpus->cpus[cs->cpu_index].props.node_id); } g_free(nodename); } sbsa_fdt_add_gic_node(sms); } #define SBSA_FLASH_SECTOR_SIZE (256 * KiB) static PFlashCFI01 *sbsa_flash_create1(SBSAMachineState *sms, const char *name, const char *alias_prop_name) { /* * Create a single flash device. We use the same parameters as * the flash devices on the Versatile Express board. */ DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01); qdev_prop_set_uint64(dev, "sector-length", SBSA_FLASH_SECTOR_SIZE); qdev_prop_set_uint8(dev, "width", 4); qdev_prop_set_uint8(dev, "device-width", 2); qdev_prop_set_bit(dev, "big-endian", false); qdev_prop_set_uint16(dev, "id0", 0x89); qdev_prop_set_uint16(dev, "id1", 0x18); qdev_prop_set_uint16(dev, "id2", 0x00); qdev_prop_set_uint16(dev, "id3", 0x00); qdev_prop_set_string(dev, "name", name); object_property_add_child(OBJECT(sms), name, OBJECT(dev)); object_property_add_alias(OBJECT(sms), alias_prop_name, OBJECT(dev), "drive"); return PFLASH_CFI01(dev); } static void sbsa_flash_create(SBSAMachineState *sms) { sms->flash[0] = sbsa_flash_create1(sms, "sbsa.flash0", "pflash0"); sms->flash[1] = sbsa_flash_create1(sms, "sbsa.flash1", "pflash1"); } static void sbsa_flash_map1(PFlashCFI01 *flash, hwaddr base, hwaddr size, MemoryRegion *sysmem) { DeviceState *dev = DEVICE(flash); assert(QEMU_IS_ALIGNED(size, SBSA_FLASH_SECTOR_SIZE)); assert(size / SBSA_FLASH_SECTOR_SIZE <= UINT32_MAX); qdev_prop_set_uint32(dev, "num-blocks", size / SBSA_FLASH_SECTOR_SIZE); sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); memory_region_add_subregion(sysmem, base, sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0)); } static void sbsa_flash_map(SBSAMachineState *sms, MemoryRegion *sysmem, MemoryRegion *secure_sysmem) { /* * Map two flash devices to fill the SBSA_FLASH space in the memmap. * sysmem is the system memory space. secure_sysmem is the secure view * of the system, and the first flash device should be made visible only * there. The second flash device is visible to both secure and nonsecure. */ hwaddr flashsize = sbsa_ref_memmap[SBSA_FLASH].size / 2; hwaddr flashbase = sbsa_ref_memmap[SBSA_FLASH].base; sbsa_flash_map1(sms->flash[0], flashbase, flashsize, secure_sysmem); sbsa_flash_map1(sms->flash[1], flashbase + flashsize, flashsize, sysmem); } static bool sbsa_firmware_init(SBSAMachineState *sms, MemoryRegion *sysmem, MemoryRegion *secure_sysmem) { const char *bios_name; int i; BlockBackend *pflash_blk0; /* Map legacy -drive if=pflash to machine properties */ for (i = 0; i < ARRAY_SIZE(sms->flash); i++) { pflash_cfi01_legacy_drive(sms->flash[i], drive_get(IF_PFLASH, 0, i)); } sbsa_flash_map(sms, sysmem, secure_sysmem); pflash_blk0 = pflash_cfi01_get_blk(sms->flash[0]); bios_name = MACHINE(sms)->firmware; if (bios_name) { char *fname; MemoryRegion *mr; int image_size; if (pflash_blk0) { error_report("The contents of the first flash device may be " "specified with -bios or with -drive if=pflash... " "but you cannot use both options at once"); exit(1); } /* Fall back to -bios */ fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); if (!fname) { error_report("Could not find ROM image '%s'", bios_name); exit(1); } mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(sms->flash[0]), 0); image_size = load_image_mr(fname, mr); g_free(fname); if (image_size < 0) { error_report("Could not load ROM image '%s'", bios_name); exit(1); } } return pflash_blk0 || bios_name; } static void create_secure_ram(SBSAMachineState *sms, MemoryRegion *secure_sysmem) { MemoryRegion *secram = g_new(MemoryRegion, 1); hwaddr base = sbsa_ref_memmap[SBSA_SECURE_MEM].base; hwaddr size = sbsa_ref_memmap[SBSA_SECURE_MEM].size; memory_region_init_ram(secram, NULL, "sbsa-ref.secure-ram", size, &error_fatal); memory_region_add_subregion(secure_sysmem, base, secram); } static void create_its(SBSAMachineState *sms) { const char *itsclass = its_class_name(); DeviceState *dev; dev = qdev_new(itsclass); object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(sms->gic), &error_abort); sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, sbsa_ref_memmap[SBSA_GIC_ITS].base); } static void create_gic(SBSAMachineState *sms, MemoryRegion *mem) { unsigned int smp_cpus = MACHINE(sms)->smp.cpus; SysBusDevice *gicbusdev; const char *gictype; uint32_t redist0_capacity, redist0_count; int i; gictype = gicv3_class_name(); sms->gic = qdev_new(gictype); qdev_prop_set_uint32(sms->gic, "revision", 3); qdev_prop_set_uint32(sms->gic, "num-cpu", smp_cpus); /* * Note that the num-irq property counts both internal and external * interrupts; there are always 32 of the former (mandated by GIC spec). */ qdev_prop_set_uint32(sms->gic, "num-irq", NUM_IRQS + 32); qdev_prop_set_bit(sms->gic, "has-security-extensions", true); redist0_capacity = sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE; redist0_count = MIN(smp_cpus, redist0_capacity); qdev_prop_set_uint32(sms->gic, "len-redist-region-count", 1); qdev_prop_set_uint32(sms->gic, "redist-region-count[0]", redist0_count); object_property_set_link(OBJECT(sms->gic), "sysmem", OBJECT(mem), &error_fatal); qdev_prop_set_bit(sms->gic, "has-lpi", true); gicbusdev = SYS_BUS_DEVICE(sms->gic); sysbus_realize_and_unref(gicbusdev, &error_fatal); sysbus_mmio_map(gicbusdev, 0, sbsa_ref_memmap[SBSA_GIC_DIST].base); sysbus_mmio_map(gicbusdev, 1, sbsa_ref_memmap[SBSA_GIC_REDIST].base); /* * Wire the outputs from each CPU's generic timer and the GICv3 * maintenance interrupt signal to the appropriate GIC PPI inputs, * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs. */ for (i = 0; i < smp_cpus; i++) { DeviceState *cpudev = DEVICE(qemu_get_cpu(i)); int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS; int irq; /* * Mapping from the output timer irq lines from the CPU to the * GIC PPI inputs used for this board. */ const int timer_irq[] = { [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ, [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ, [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ, [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ, }; for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) { qdev_connect_gpio_out(cpudev, irq, qdev_get_gpio_in(sms->gic, ppibase + timer_irq[irq])); } qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0, qdev_get_gpio_in(sms->gic, ppibase + ARCH_GIC_MAINT_IRQ)); qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0, qdev_get_gpio_in(sms->gic, ppibase + VIRTUAL_PMU_IRQ)); sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ)); sysbus_connect_irq(gicbusdev, i + smp_cpus, qdev_get_gpio_in(cpudev, ARM_CPU_FIQ)); sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus, qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ)); sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus, qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ)); } create_its(sms); } static void create_uart(const SBSAMachineState *sms, int uart, MemoryRegion *mem, Chardev *chr) { hwaddr base = sbsa_ref_memmap[uart].base; int irq = sbsa_ref_irqmap[uart]; DeviceState *dev = qdev_new(TYPE_PL011); SysBusDevice *s = SYS_BUS_DEVICE(dev); qdev_prop_set_chr(dev, "chardev", chr); sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0)); sysbus_connect_irq(s, 0, qdev_get_gpio_in(sms->gic, irq)); } static void create_rtc(const SBSAMachineState *sms) { hwaddr base = sbsa_ref_memmap[SBSA_RTC].base; int irq = sbsa_ref_irqmap[SBSA_RTC]; sysbus_create_simple("pl031", base, qdev_get_gpio_in(sms->gic, irq)); } static void create_wdt(const SBSAMachineState *sms) { hwaddr rbase = sbsa_ref_memmap[SBSA_GWDT_REFRESH].base; hwaddr cbase = sbsa_ref_memmap[SBSA_GWDT_CONTROL].base; DeviceState *dev = qdev_new(TYPE_WDT_SBSA); SysBusDevice *s = SYS_BUS_DEVICE(dev); int irq = sbsa_ref_irqmap[SBSA_GWDT_WS0]; sysbus_realize_and_unref(s, &error_fatal); sysbus_mmio_map(s, 0, rbase); sysbus_mmio_map(s, 1, cbase); sysbus_connect_irq(s, 0, qdev_get_gpio_in(sms->gic, irq)); } static DeviceState *gpio_key_dev; static void sbsa_ref_powerdown_req(Notifier *n, void *opaque) { /* use gpio Pin 3 for power button event */ qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1); } static Notifier sbsa_ref_powerdown_notifier = { .notify = sbsa_ref_powerdown_req }; static void create_gpio(const SBSAMachineState *sms) { DeviceState *pl061_dev; hwaddr base = sbsa_ref_memmap[SBSA_GPIO].base; int irq = sbsa_ref_irqmap[SBSA_GPIO]; pl061_dev = sysbus_create_simple("pl061", base, qdev_get_gpio_in(sms->gic, irq)); gpio_key_dev = sysbus_create_simple("gpio-key", -1, qdev_get_gpio_in(pl061_dev, 3)); /* connect powerdown request */ qemu_register_powerdown_notifier(&sbsa_ref_powerdown_notifier); } static void create_ahci(const SBSAMachineState *sms) { hwaddr base = sbsa_ref_memmap[SBSA_AHCI].base; int irq = sbsa_ref_irqmap[SBSA_AHCI]; DeviceState *dev; DriveInfo *hd[NUM_SATA_PORTS]; SysbusAHCIState *sysahci; AHCIState *ahci; int i; dev = qdev_new("sysbus-ahci"); qdev_prop_set_uint32(dev, "num-ports", NUM_SATA_PORTS); sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base); sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(sms->gic, irq)); sysahci = SYSBUS_AHCI(dev); ahci = &sysahci->ahci; ide_drive_get(hd, ARRAY_SIZE(hd)); for (i = 0; i < ahci->ports; i++) { if (hd[i] == NULL) { continue; } ide_bus_create_drive(&ahci->dev[i].port, 0, hd[i]); } } static void create_ehci(const SBSAMachineState *sms) { hwaddr base = sbsa_ref_memmap[SBSA_EHCI].base; int irq = sbsa_ref_irqmap[SBSA_EHCI]; sysbus_create_simple("platform-ehci-usb", base, qdev_get_gpio_in(sms->gic, irq)); } static void create_smmu(const SBSAMachineState *sms, PCIBus *bus) { hwaddr base = sbsa_ref_memmap[SBSA_SMMU].base; int irq = sbsa_ref_irqmap[SBSA_SMMU]; DeviceState *dev; int i; dev = qdev_new(TYPE_ARM_SMMUV3); object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus), &error_abort); sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base); for (i = 0; i < NUM_SMMU_IRQS; i++) { sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, qdev_get_gpio_in(sms->gic, irq + i)); } } static void create_pcie(SBSAMachineState *sms) { hwaddr base_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].base; hwaddr size_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].size; hwaddr base_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].base; hwaddr size_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].size; hwaddr base_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].base; hwaddr size_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].size; hwaddr base_pio = sbsa_ref_memmap[SBSA_PCIE_PIO].base; int irq = sbsa_ref_irqmap[SBSA_PCIE]; MachineClass *mc = MACHINE_GET_CLASS(sms); MemoryRegion *mmio_alias, *mmio_alias_high, *mmio_reg; MemoryRegion *ecam_alias, *ecam_reg; DeviceState *dev; PCIHostState *pci; int i; dev = qdev_new(TYPE_GPEX_HOST); sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); /* Map ECAM space */ ecam_alias = g_new0(MemoryRegion, 1); ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0); memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam", ecam_reg, 0, size_ecam); memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias); /* Map the MMIO space */ mmio_alias = g_new0(MemoryRegion, 1); mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1); memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio", mmio_reg, base_mmio, size_mmio); memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias); /* Map the MMIO_HIGH space */ mmio_alias_high = g_new0(MemoryRegion, 1); memory_region_init_alias(mmio_alias_high, OBJECT(dev), "pcie-mmio-high", mmio_reg, base_mmio_high, size_mmio_high); memory_region_add_subregion(get_system_memory(), base_mmio_high, mmio_alias_high); /* Map IO port space */ sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio); for (i = 0; i < GPEX_NUM_IRQS; i++) { sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, qdev_get_gpio_in(sms->gic, irq + i)); gpex_set_irq_num(GPEX_HOST(dev), i, irq + i); } pci = PCI_HOST_BRIDGE(dev); if (pci->bus) { for (i = 0; i < nb_nics; i++) { NICInfo *nd = &nd_table[i]; if (!nd->model) { nd->model = g_strdup(mc->default_nic); } pci_nic_init_nofail(nd, pci->bus, nd->model, NULL); } } pci_create_simple(pci->bus, -1, "bochs-display"); create_smmu(sms, pci->bus); } static void *sbsa_ref_dtb(const struct arm_boot_info *binfo, int *fdt_size) { const SBSAMachineState *board = container_of(binfo, SBSAMachineState, bootinfo); *fdt_size = board->fdt_size; return board->fdt; } static void create_secure_ec(MemoryRegion *mem) { hwaddr base = sbsa_ref_memmap[SBSA_SECURE_EC].base; DeviceState *dev = qdev_new("sbsa-ec"); SysBusDevice *s = SYS_BUS_DEVICE(dev); memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0)); } static void sbsa_ref_init(MachineState *machine) { unsigned int smp_cpus = machine->smp.cpus; unsigned int max_cpus = machine->smp.max_cpus; SBSAMachineState *sms = SBSA_MACHINE(machine); MachineClass *mc = MACHINE_GET_CLASS(machine); MemoryRegion *sysmem = get_system_memory(); MemoryRegion *secure_sysmem = g_new(MemoryRegion, 1); bool firmware_loaded; const CPUArchIdList *possible_cpus; int n, sbsa_max_cpus; if (!cpu_type_valid(machine->cpu_type)) { error_report("sbsa-ref: CPU type %s not supported", machine->cpu_type); exit(1); } if (kvm_enabled()) { error_report("sbsa-ref: KVM is not supported for this machine"); exit(1); } /* * The Secure view of the world is the same as the NonSecure, * but with a few extra devices. Create it as a container region * containing the system memory at low priority; any secure-only * devices go in at higher priority and take precedence. */ memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory", UINT64_MAX); memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1); firmware_loaded = sbsa_firmware_init(sms, sysmem, secure_sysmem); /* * This machine has EL3 enabled, external firmware should supply PSCI * implementation, so the QEMU's internal PSCI is disabled. */ sms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED; sbsa_max_cpus = sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE; if (max_cpus > sbsa_max_cpus) { error_report("Number of SMP CPUs requested (%d) exceeds max CPUs " "supported by machine 'sbsa-ref' (%d)", max_cpus, sbsa_max_cpus); exit(1); } sms->smp_cpus = smp_cpus; if (machine->ram_size > sbsa_ref_memmap[SBSA_MEM].size) { error_report("sbsa-ref: cannot model more than %dGB RAM", RAMLIMIT_GB); exit(1); } possible_cpus = mc->possible_cpu_arch_ids(machine); for (n = 0; n < possible_cpus->len; n++) { Object *cpuobj; CPUState *cs; if (n >= smp_cpus) { break; } cpuobj = object_new(possible_cpus->cpus[n].type); object_property_set_int(cpuobj, "mp-affinity", possible_cpus->cpus[n].arch_id, NULL); cs = CPU(cpuobj); cs->cpu_index = n; numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj), &error_fatal); if (object_property_find(cpuobj, "reset-cbar")) { object_property_set_int(cpuobj, "reset-cbar", sbsa_ref_memmap[SBSA_CPUPERIPHS].base, &error_abort); } object_property_set_link(cpuobj, "memory", OBJECT(sysmem), &error_abort); object_property_set_link(cpuobj, "secure-memory", OBJECT(secure_sysmem), &error_abort); qdev_realize(DEVICE(cpuobj), NULL, &error_fatal); object_unref(cpuobj); } memory_region_add_subregion(sysmem, sbsa_ref_memmap[SBSA_MEM].base, machine->ram); create_fdt(sms); create_secure_ram(sms, secure_sysmem); create_gic(sms, sysmem); create_uart(sms, SBSA_UART, sysmem, serial_hd(0)); create_uart(sms, SBSA_SECURE_UART, secure_sysmem, serial_hd(1)); /* Second secure UART for RAS and MM from EL0 */ create_uart(sms, SBSA_SECURE_UART_MM, secure_sysmem, serial_hd(2)); create_rtc(sms); create_wdt(sms); create_gpio(sms); create_ahci(sms); create_ehci(sms); create_pcie(sms); create_secure_ec(secure_sysmem); sms->bootinfo.ram_size = machine->ram_size; sms->bootinfo.board_id = -1; sms->bootinfo.loader_start = sbsa_ref_memmap[SBSA_MEM].base; sms->bootinfo.get_dtb = sbsa_ref_dtb; sms->bootinfo.firmware_loaded = firmware_loaded; arm_load_kernel(ARM_CPU(first_cpu), machine, &sms->bootinfo); } static const CPUArchIdList *sbsa_ref_possible_cpu_arch_ids(MachineState *ms) { unsigned int max_cpus = ms->smp.max_cpus; SBSAMachineState *sms = SBSA_MACHINE(ms); int n; if (ms->possible_cpus) { assert(ms->possible_cpus->len == max_cpus); return ms->possible_cpus; } ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + sizeof(CPUArchId) * max_cpus); ms->possible_cpus->len = max_cpus; for (n = 0; n < ms->possible_cpus->len; n++) { ms->possible_cpus->cpus[n].type = ms->cpu_type; ms->possible_cpus->cpus[n].arch_id = sbsa_ref_cpu_mp_affinity(sms, n); ms->possible_cpus->cpus[n].props.has_thread_id = true; ms->possible_cpus->cpus[n].props.thread_id = n; } return ms->possible_cpus; } static CpuInstanceProperties sbsa_ref_cpu_index_to_props(MachineState *ms, unsigned cpu_index) { MachineClass *mc = MACHINE_GET_CLASS(ms); const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms); assert(cpu_index < possible_cpus->len); return possible_cpus->cpus[cpu_index].props; } static int64_t sbsa_ref_get_default_cpu_node_id(const MachineState *ms, int idx) { return idx % ms->numa_state->num_nodes; } static void sbsa_ref_instance_init(Object *obj) { SBSAMachineState *sms = SBSA_MACHINE(obj); sbsa_flash_create(sms); } static void sbsa_ref_class_init(ObjectClass *oc, void *data) { MachineClass *mc = MACHINE_CLASS(oc); mc->init = sbsa_ref_init; mc->desc = "QEMU 'SBSA Reference' ARM Virtual Machine"; mc->default_cpu_type = ARM_CPU_TYPE_NAME("neoverse-n1"); mc->max_cpus = 512; mc->pci_allow_0_address = true; mc->minimum_page_bits = 12; mc->block_default_type = IF_IDE; mc->no_cdrom = 1; mc->default_nic = "e1000e"; mc->default_ram_size = 1 * GiB; mc->default_ram_id = "sbsa-ref.ram"; mc->default_cpus = 4; mc->possible_cpu_arch_ids = sbsa_ref_possible_cpu_arch_ids; mc->cpu_index_to_instance_props = sbsa_ref_cpu_index_to_props; mc->get_default_cpu_node_id = sbsa_ref_get_default_cpu_node_id; /* platform instead of architectural choice */ mc->cpu_cluster_has_numa_boundary = true; } static const TypeInfo sbsa_ref_info = { .name = TYPE_SBSA_MACHINE, .parent = TYPE_MACHINE, .instance_init = sbsa_ref_instance_init, .class_init = sbsa_ref_class_init, .instance_size = sizeof(SBSAMachineState), }; static void sbsa_ref_machine_init(void) { type_register_static(&sbsa_ref_info); } type_init(sbsa_ref_machine_init);