/* * ADC registers for Xilinx Zynq Platform * * Copyright (c) 2015 Guenter Roeck * Based on hw/misc/zynq_slcr.c, written by Michal Simek * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * You should have received a copy of the GNU General Public License along * with this program; if not, see . */ #include "qemu/osdep.h" #include "hw/irq.h" #include "hw/adc/zynq-xadc.h" #include "migration/vmstate.h" #include "qemu/timer.h" #include "qemu/log.h" #include "qemu/module.h" enum { CFG = 0x000 / 4, INT_STS, INT_MASK, MSTS, CMDFIFO, RDFIFO, MCTL, }; #define CFG_ENABLE BIT(31) #define CFG_CFIFOTH_SHIFT 20 #define CFG_CFIFOTH_LENGTH 4 #define CFG_DFIFOTH_SHIFT 16 #define CFG_DFIFOTH_LENGTH 4 #define CFG_WEDGE BIT(13) #define CFG_REDGE BIT(12) #define CFG_TCKRATE_SHIFT 8 #define CFG_TCKRATE_LENGTH 2 #define CFG_TCKRATE_DIV(x) (0x1 << (x - 1)) #define CFG_IGAP_SHIFT 0 #define CFG_IGAP_LENGTH 5 #define INT_CFIFO_LTH BIT(9) #define INT_DFIFO_GTH BIT(8) #define INT_OT BIT(7) #define INT_ALM_SHIFT 0 #define INT_ALM_LENGTH 7 #define INT_ALM_MASK (((1 << INT_ALM_LENGTH) - 1) << INT_ALM_SHIFT) #define INT_ALL (INT_CFIFO_LTH | INT_DFIFO_GTH | INT_OT | INT_ALM_MASK) #define MSTS_CFIFO_LVL_SHIFT 16 #define MSTS_CFIFO_LVL_LENGTH 4 #define MSTS_DFIFO_LVL_SHIFT 12 #define MSTS_DFIFO_LVL_LENGTH 4 #define MSTS_CFIFOF BIT(11) #define MSTS_CFIFOE BIT(10) #define MSTS_DFIFOF BIT(9) #define MSTS_DFIFOE BIT(8) #define MSTS_OT BIT(7) #define MSTS_ALM_SHIFT 0 #define MSTS_ALM_LENGTH 7 #define MCTL_RESET BIT(4) #define CMD_NOP 0x00 #define CMD_READ 0x01 #define CMD_WRITE 0x02 static void zynq_xadc_update_ints(ZynqXADCState *s) { /* We are fast, commands are actioned instantly so the CFIFO is always * empty (and below threshold). */ s->regs[INT_STS] |= INT_CFIFO_LTH; if (s->xadc_dfifo_entries > extract32(s->regs[CFG], CFG_DFIFOTH_SHIFT, CFG_DFIFOTH_LENGTH)) { s->regs[INT_STS] |= INT_DFIFO_GTH; } qemu_set_irq(s->irq, !!(s->regs[INT_STS] & ~s->regs[INT_MASK])); } static void zynq_xadc_reset(DeviceState *d) { ZynqXADCState *s = ZYNQ_XADC(d); s->regs[CFG] = 0x14 << CFG_IGAP_SHIFT | CFG_TCKRATE_DIV(4) << CFG_TCKRATE_SHIFT | CFG_REDGE; s->regs[INT_STS] = INT_CFIFO_LTH; s->regs[INT_MASK] = 0xffffffff; s->regs[CMDFIFO] = 0; s->regs[RDFIFO] = 0; s->regs[MCTL] = MCTL_RESET; memset(s->xadc_regs, 0, sizeof(s->xadc_regs)); memset(s->xadc_dfifo, 0, sizeof(s->xadc_dfifo)); s->xadc_dfifo_entries = 0; zynq_xadc_update_ints(s); } static uint16_t xadc_pop_dfifo(ZynqXADCState *s) { uint16_t rv = s->xadc_dfifo[0]; int i; if (s->xadc_dfifo_entries > 0) { s->xadc_dfifo_entries--; } for (i = 0; i < s->xadc_dfifo_entries; i++) { s->xadc_dfifo[i] = s->xadc_dfifo[i + 1]; } s->xadc_dfifo[s->xadc_dfifo_entries] = 0; zynq_xadc_update_ints(s); return rv; } static void xadc_push_dfifo(ZynqXADCState *s, uint16_t regval) { if (s->xadc_dfifo_entries < ZYNQ_XADC_FIFO_DEPTH) { s->xadc_dfifo[s->xadc_dfifo_entries++] = s->xadc_read_reg_previous; } s->xadc_read_reg_previous = regval; zynq_xadc_update_ints(s); } static bool zynq_xadc_check_offset(hwaddr offset, bool rnw) { switch (offset) { case CFG: case INT_MASK: case INT_STS: case MCTL: return true; case RDFIFO: case MSTS: return rnw; /* read only */ case CMDFIFO: return !rnw; /* write only */ default: return false; } } static uint64_t zynq_xadc_read(void *opaque, hwaddr offset, unsigned size) { ZynqXADCState *s = opaque; int reg = offset / 4; uint32_t rv = 0; if (!zynq_xadc_check_offset(reg, true)) { qemu_log_mask(LOG_GUEST_ERROR, "zynq_xadc: Invalid read access to " "addr %" HWADDR_PRIx "\n", offset); return 0; } switch (reg) { case CFG: case INT_MASK: case INT_STS: case MCTL: rv = s->regs[reg]; break; case MSTS: rv = MSTS_CFIFOE; rv |= s->xadc_dfifo_entries << MSTS_DFIFO_LVL_SHIFT; if (!s->xadc_dfifo_entries) { rv |= MSTS_DFIFOE; } else if (s->xadc_dfifo_entries == ZYNQ_XADC_FIFO_DEPTH) { rv |= MSTS_DFIFOF; } break; case RDFIFO: rv = xadc_pop_dfifo(s); break; } return rv; } static void zynq_xadc_write(void *opaque, hwaddr offset, uint64_t val, unsigned size) { ZynqXADCState *s = (ZynqXADCState *)opaque; int reg = offset / 4; int xadc_reg; int xadc_cmd; int xadc_data; if (!zynq_xadc_check_offset(reg, false)) { qemu_log_mask(LOG_GUEST_ERROR, "zynq_xadc: Invalid write access " "to addr %" HWADDR_PRIx "\n", offset); return; } switch (reg) { case CFG: s->regs[CFG] = val; break; case INT_STS: s->regs[INT_STS] &= ~val; break; case INT_MASK: s->regs[INT_MASK] = val & INT_ALL; break; case CMDFIFO: xadc_cmd = extract32(val, 26, 4); xadc_reg = extract32(val, 16, 10); xadc_data = extract32(val, 0, 16); if (s->regs[MCTL] & MCTL_RESET) { qemu_log_mask(LOG_GUEST_ERROR, "zynq_xadc: Sending command " "while comm channel held in reset: %" PRIx32 "\n", (uint32_t) val); break; } if (xadc_reg >= ZYNQ_XADC_NUM_ADC_REGS && xadc_cmd != CMD_NOP) { qemu_log_mask(LOG_GUEST_ERROR, "read/write op to invalid xadc " "reg 0x%x\n", xadc_reg); break; } switch (xadc_cmd) { case CMD_READ: xadc_push_dfifo(s, s->xadc_regs[xadc_reg]); break; case CMD_WRITE: s->xadc_regs[xadc_reg] = xadc_data; /* fallthrough */ case CMD_NOP: xadc_push_dfifo(s, 0); break; } break; case MCTL: s->regs[MCTL] = val & 0x00fffeff; break; } zynq_xadc_update_ints(s); } static const MemoryRegionOps xadc_ops = { .read = zynq_xadc_read, .write = zynq_xadc_write, .endianness = DEVICE_NATIVE_ENDIAN, }; static void zynq_xadc_init(Object *obj) { SysBusDevice *sbd = SYS_BUS_DEVICE(obj); ZynqXADCState *s = ZYNQ_XADC(obj); memory_region_init_io(&s->iomem, obj, &xadc_ops, s, "zynq-xadc", ZYNQ_XADC_MMIO_SIZE); sysbus_init_mmio(sbd, &s->iomem); sysbus_init_irq(sbd, &s->irq); } static const VMStateDescription vmstate_zynq_xadc = { .name = "zynq-xadc", .version_id = 1, .minimum_version_id = 1, .fields = (const VMStateField[]) { VMSTATE_UINT32_ARRAY(regs, ZynqXADCState, ZYNQ_XADC_NUM_IO_REGS), VMSTATE_UINT16_ARRAY(xadc_regs, ZynqXADCState, ZYNQ_XADC_NUM_ADC_REGS), VMSTATE_UINT16_ARRAY(xadc_dfifo, ZynqXADCState, ZYNQ_XADC_FIFO_DEPTH), VMSTATE_UINT16(xadc_read_reg_previous, ZynqXADCState), VMSTATE_UINT16(xadc_dfifo_entries, ZynqXADCState), VMSTATE_END_OF_LIST() } }; static void zynq_xadc_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->vmsd = &vmstate_zynq_xadc; device_class_set_legacy_reset(dc, zynq_xadc_reset); } static const TypeInfo zynq_xadc_info = { .class_init = zynq_xadc_class_init, .name = TYPE_ZYNQ_XADC, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(ZynqXADCState), .instance_init = zynq_xadc_init, }; static void zynq_xadc_register_types(void) { type_register_static(&zynq_xadc_info); } type_init(zynq_xadc_register_types)