/* * QEMU float support * * The code in this source file is derived from release 2a of the SoftFloat * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and * some later contributions) are provided under that license, as detailed below. * It has subsequently been modified by contributors to the QEMU Project, * so some portions are provided under: * the SoftFloat-2a license * the BSD license * GPL-v2-or-later * * Any future contributions to this file after December 1st 2014 will be * taken to be licensed under the Softfloat-2a license unless specifically * indicated otherwise. */ static void partsN(return_nan)(FloatPartsN *a, float_status *s) { switch (a->cls) { case float_class_snan: float_raise(float_flag_invalid | float_flag_invalid_snan, s); if (s->default_nan_mode) { parts_default_nan(a, s); } else { parts_silence_nan(a, s); } break; case float_class_qnan: if (s->default_nan_mode) { parts_default_nan(a, s); } break; default: g_assert_not_reached(); } } static FloatPartsN *partsN(pick_nan)(FloatPartsN *a, FloatPartsN *b, float_status *s) { if (is_snan(a->cls) || is_snan(b->cls)) { float_raise(float_flag_invalid | float_flag_invalid_snan, s); } if (s->default_nan_mode) { parts_default_nan(a, s); } else { int cmp = frac_cmp(a, b); if (cmp == 0) { cmp = a->sign < b->sign; } if (pickNaN(a->cls, b->cls, cmp > 0, s)) { a = b; } if (is_snan(a->cls)) { parts_silence_nan(a, s); } } return a; } static FloatPartsN *partsN(pick_nan_muladd)(FloatPartsN *a, FloatPartsN *b, FloatPartsN *c, float_status *s, int ab_mask, int abc_mask) { int which; bool infzero = (ab_mask == float_cmask_infzero); bool have_snan = (abc_mask & float_cmask_snan); if (unlikely(have_snan)) { float_raise(float_flag_invalid | float_flag_invalid_snan, s); } if (infzero) { /* This is (0 * inf) + NaN or (inf * 0) + NaN */ float_raise(float_flag_invalid | float_flag_invalid_imz, s); } if (s->default_nan_mode) { which = 3; } else { which = pickNaNMulAdd(a->cls, b->cls, c->cls, infzero, have_snan, s); } if (which == 3) { parts_default_nan(a, s); return a; } switch (which) { case 0: break; case 1: a = b; break; case 2: a = c; break; default: g_assert_not_reached(); } if (is_snan(a->cls)) { parts_silence_nan(a, s); } return a; } /* * Canonicalize the FloatParts structure. Determine the class, * unbias the exponent, and normalize the fraction. */ static void partsN(canonicalize)(FloatPartsN *p, float_status *status, const FloatFmt *fmt) { if (unlikely(p->exp == 0)) { if (likely(frac_eqz(p))) { p->cls = float_class_zero; } else if (status->flush_inputs_to_zero) { float_raise(float_flag_input_denormal, status); p->cls = float_class_zero; frac_clear(p); } else { int shift = frac_normalize(p); p->cls = float_class_normal; p->exp = fmt->frac_shift - fmt->exp_bias - shift + !fmt->m68k_denormal; } } else if (likely(p->exp < fmt->exp_max) || fmt->arm_althp) { p->cls = float_class_normal; p->exp -= fmt->exp_bias; frac_shl(p, fmt->frac_shift); p->frac_hi |= DECOMPOSED_IMPLICIT_BIT; } else if (likely(frac_eqz(p))) { p->cls = float_class_inf; } else { frac_shl(p, fmt->frac_shift); p->cls = (parts_is_snan_frac(p->frac_hi, status) ? float_class_snan : float_class_qnan); } } /* * Round and uncanonicalize a floating-point number by parts. There * are FRAC_SHIFT bits that may require rounding at the bottom of the * fraction; these bits will be removed. The exponent will be biased * by EXP_BIAS and must be bounded by [EXP_MAX-1, 0]. */ static void partsN(uncanon_normal)(FloatPartsN *p, float_status *s, const FloatFmt *fmt) { const int exp_max = fmt->exp_max; const int frac_shift = fmt->frac_shift; const uint64_t round_mask = fmt->round_mask; const uint64_t frac_lsb = round_mask + 1; const uint64_t frac_lsbm1 = round_mask ^ (round_mask >> 1); const uint64_t roundeven_mask = round_mask | frac_lsb; uint64_t inc; bool overflow_norm = false; int exp, flags = 0; switch (s->float_rounding_mode) { case float_round_nearest_even: if (N > 64 && frac_lsb == 0) { inc = ((p->frac_hi & 1) || (p->frac_lo & round_mask) != frac_lsbm1 ? frac_lsbm1 : 0); } else { inc = ((p->frac_lo & roundeven_mask) != frac_lsbm1 ? frac_lsbm1 : 0); } break; case float_round_ties_away: inc = frac_lsbm1; break; case float_round_to_zero: overflow_norm = true; inc = 0; break; case float_round_up: inc = p->sign ? 0 : round_mask; overflow_norm = p->sign; break; case float_round_down: inc = p->sign ? round_mask : 0; overflow_norm = !p->sign; break; case float_round_to_odd: overflow_norm = true; /* fall through */ case float_round_to_odd_inf: if (N > 64 && frac_lsb == 0) { inc = p->frac_hi & 1 ? 0 : round_mask; } else { inc = p->frac_lo & frac_lsb ? 0 : round_mask; } break; default: g_assert_not_reached(); } exp = p->exp + fmt->exp_bias; if (likely(exp > 0)) { if (p->frac_lo & round_mask) { flags |= float_flag_inexact; if (frac_addi(p, p, inc)) { frac_shr(p, 1); p->frac_hi |= DECOMPOSED_IMPLICIT_BIT; exp++; } p->frac_lo &= ~round_mask; } if (fmt->arm_althp) { /* ARM Alt HP eschews Inf and NaN for a wider exponent. */ if (unlikely(exp > exp_max)) { /* Overflow. Return the maximum normal. */ flags = float_flag_invalid; exp = exp_max; frac_allones(p); p->frac_lo &= ~round_mask; } } else if (unlikely(exp >= exp_max)) { flags |= float_flag_overflow; if (s->rebias_overflow) { exp -= fmt->exp_re_bias; } else if (overflow_norm) { flags |= float_flag_inexact; exp = exp_max - 1; frac_allones(p); p->frac_lo &= ~round_mask; } else { flags |= float_flag_inexact; p->cls = float_class_inf; exp = exp_max; frac_clear(p); } } frac_shr(p, frac_shift); } else if (unlikely(s->rebias_underflow)) { flags |= float_flag_underflow; exp += fmt->exp_re_bias; if (p->frac_lo & round_mask) { flags |= float_flag_inexact; if (frac_addi(p, p, inc)) { frac_shr(p, 1); p->frac_hi |= DECOMPOSED_IMPLICIT_BIT; exp++; } p->frac_lo &= ~round_mask; } frac_shr(p, frac_shift); } else if (s->flush_to_zero) { flags |= float_flag_output_denormal; p->cls = float_class_zero; exp = 0; frac_clear(p); } else { bool is_tiny = s->tininess_before_rounding || exp < 0; if (!is_tiny) { FloatPartsN discard; is_tiny = !frac_addi(&discard, p, inc); } frac_shrjam(p, !fmt->m68k_denormal - exp); if (p->frac_lo & round_mask) { /* Need to recompute round-to-even/round-to-odd. */ switch (s->float_rounding_mode) { case float_round_nearest_even: if (N > 64 && frac_lsb == 0) { inc = ((p->frac_hi & 1) || (p->frac_lo & round_mask) != frac_lsbm1 ? frac_lsbm1 : 0); } else { inc = ((p->frac_lo & roundeven_mask) != frac_lsbm1 ? frac_lsbm1 : 0); } break; case float_round_to_odd: case float_round_to_odd_inf: if (N > 64 && frac_lsb == 0) { inc = p->frac_hi & 1 ? 0 : round_mask; } else { inc = p->frac_lo & frac_lsb ? 0 : round_mask; } break; default: break; } flags |= float_flag_inexact; frac_addi(p, p, inc); p->frac_lo &= ~round_mask; } exp = (p->frac_hi & DECOMPOSED_IMPLICIT_BIT) && !fmt->m68k_denormal; frac_shr(p, frac_shift); if (is_tiny && (flags & float_flag_inexact)) { flags |= float_flag_underflow; } if (exp == 0 && frac_eqz(p)) { p->cls = float_class_zero; } } p->exp = exp; float_raise(flags, s); } static void partsN(uncanon)(FloatPartsN *p, float_status *s, const FloatFmt *fmt) { if (likely(p->cls == float_class_normal)) { parts_uncanon_normal(p, s, fmt); } else { switch (p->cls) { case float_class_zero: p->exp = 0; frac_clear(p); return; case float_class_inf: g_assert(!fmt->arm_althp); p->exp = fmt->exp_max; frac_clear(p); return; case float_class_qnan: case float_class_snan: g_assert(!fmt->arm_althp); p->exp = fmt->exp_max; frac_shr(p, fmt->frac_shift); return; default: break; } g_assert_not_reached(); } } /* * Returns the result of adding or subtracting the values of the * floating-point values `a' and `b'. The operation is performed * according to the IEC/IEEE Standard for Binary Floating-Point * Arithmetic. */ static FloatPartsN *partsN(addsub)(FloatPartsN *a, FloatPartsN *b, float_status *s, bool subtract) { bool b_sign = b->sign ^ subtract; int ab_mask = float_cmask(a->cls) | float_cmask(b->cls); if (a->sign != b_sign) { /* Subtraction */ if (likely(ab_mask == float_cmask_normal)) { if (parts_sub_normal(a, b)) { return a; } /* Subtract was exact, fall through to set sign. */ ab_mask = float_cmask_zero; } if (ab_mask == float_cmask_zero) { a->sign = s->float_rounding_mode == float_round_down; return a; } if (unlikely(ab_mask & float_cmask_anynan)) { goto p_nan; } if (ab_mask & float_cmask_inf) { if (a->cls != float_class_inf) { /* N - Inf */ goto return_b; } if (b->cls != float_class_inf) { /* Inf - N */ return a; } /* Inf - Inf */ float_raise(float_flag_invalid | float_flag_invalid_isi, s); parts_default_nan(a, s); return a; } } else { /* Addition */ if (likely(ab_mask == float_cmask_normal)) { parts_add_normal(a, b); return a; } if (ab_mask == float_cmask_zero) { return a; } if (unlikely(ab_mask & float_cmask_anynan)) { goto p_nan; } if (ab_mask & float_cmask_inf) { a->cls = float_class_inf; return a; } } if (b->cls == float_class_zero) { g_assert(a->cls == float_class_normal); return a; } g_assert(a->cls == float_class_zero); g_assert(b->cls == float_class_normal); return_b: b->sign = b_sign; return b; p_nan: return parts_pick_nan(a, b, s); } /* * Returns the result of multiplying the floating-point values `a' and * `b'. The operation is performed according to the IEC/IEEE Standard * for Binary Floating-Point Arithmetic. */ static FloatPartsN *partsN(mul)(FloatPartsN *a, FloatPartsN *b, float_status *s) { int ab_mask = float_cmask(a->cls) | float_cmask(b->cls); bool sign = a->sign ^ b->sign; if (likely(ab_mask == float_cmask_normal)) { FloatPartsW tmp; frac_mulw(&tmp, a, b); frac_truncjam(a, &tmp); a->exp += b->exp + 1; if (!(a->frac_hi & DECOMPOSED_IMPLICIT_BIT)) { frac_add(a, a, a); a->exp -= 1; } a->sign = sign; return a; } /* Inf * Zero == NaN */ if (unlikely(ab_mask == float_cmask_infzero)) { float_raise(float_flag_invalid | float_flag_invalid_imz, s); parts_default_nan(a, s); return a; } if (unlikely(ab_mask & float_cmask_anynan)) { return parts_pick_nan(a, b, s); } /* Multiply by 0 or Inf */ if (ab_mask & float_cmask_inf) { a->cls = float_class_inf; a->sign = sign; return a; } g_assert(ab_mask & float_cmask_zero); a->cls = float_class_zero; a->sign = sign; return a; } /* * Returns the result of multiplying the floating-point values `a' and * `b' then adding 'c', with no intermediate rounding step after the * multiplication. The operation is performed according to the * IEC/IEEE Standard for Binary Floating-Point Arithmetic 754-2008. * The flags argument allows the caller to select negation of the * addend, the intermediate product, or the final result. (The * difference between this and having the caller do a separate * negation is that negating externally will flip the sign bit on NaNs.) * * Requires A and C extracted into a double-sized structure to provide the * extra space for the widening multiply. */ static FloatPartsN *partsN(muladd)(FloatPartsN *a, FloatPartsN *b, FloatPartsN *c, int flags, float_status *s) { int ab_mask, abc_mask; FloatPartsW p_widen, c_widen; ab_mask = float_cmask(a->cls) | float_cmask(b->cls); abc_mask = float_cmask(c->cls) | ab_mask; /* * It is implementation-defined whether the cases of (0,inf,qnan) * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN * they return if they do), so we have to hand this information * off to the target-specific pick-a-NaN routine. */ if (unlikely(abc_mask & float_cmask_anynan)) { return parts_pick_nan_muladd(a, b, c, s, ab_mask, abc_mask); } if (flags & float_muladd_negate_c) { c->sign ^= 1; } /* Compute the sign of the product into A. */ a->sign ^= b->sign; if (flags & float_muladd_negate_product) { a->sign ^= 1; } if (unlikely(ab_mask != float_cmask_normal)) { if (unlikely(ab_mask == float_cmask_infzero)) { float_raise(float_flag_invalid | float_flag_invalid_imz, s); goto d_nan; } if (ab_mask & float_cmask_inf) { if (c->cls == float_class_inf && a->sign != c->sign) { float_raise(float_flag_invalid | float_flag_invalid_isi, s); goto d_nan; } goto return_inf; } g_assert(ab_mask & float_cmask_zero); if (c->cls == float_class_normal) { *a = *c; goto return_normal; } if (c->cls == float_class_zero) { if (a->sign != c->sign) { goto return_sub_zero; } goto return_zero; } g_assert(c->cls == float_class_inf); } if (unlikely(c->cls == float_class_inf)) { a->sign = c->sign; goto return_inf; } /* Perform the multiplication step. */ p_widen.sign = a->sign; p_widen.exp = a->exp + b->exp + 1; frac_mulw(&p_widen, a, b); if (!(p_widen.frac_hi & DECOMPOSED_IMPLICIT_BIT)) { frac_add(&p_widen, &p_widen, &p_widen); p_widen.exp -= 1; } /* Perform the addition step. */ if (c->cls != float_class_zero) { /* Zero-extend C to less significant bits. */ frac_widen(&c_widen, c); c_widen.exp = c->exp; if (a->sign == c->sign) { parts_add_normal(&p_widen, &c_widen); } else if (!parts_sub_normal(&p_widen, &c_widen)) { goto return_sub_zero; } } /* Narrow with sticky bit, for proper rounding later. */ frac_truncjam(a, &p_widen); a->sign = p_widen.sign; a->exp = p_widen.exp; return_normal: if (flags & float_muladd_halve_result) { a->exp -= 1; } finish_sign: if (flags & float_muladd_negate_result) { a->sign ^= 1; } return a; return_sub_zero: a->sign = s->float_rounding_mode == float_round_down; return_zero: a->cls = float_class_zero; goto finish_sign; return_inf: a->cls = float_class_inf; goto finish_sign; d_nan: parts_default_nan(a, s); return a; } /* * Returns the result of dividing the floating-point value `a' by the * corresponding value `b'. The operation is performed according to * the IEC/IEEE Standard for Binary Floating-Point Arithmetic. */ static FloatPartsN *partsN(div)(FloatPartsN *a, FloatPartsN *b, float_status *s) { int ab_mask = float_cmask(a->cls) | float_cmask(b->cls); bool sign = a->sign ^ b->sign; if (likely(ab_mask == float_cmask_normal)) { a->sign = sign; a->exp -= b->exp + frac_div(a, b); return a; } /* 0/0 or Inf/Inf => NaN */ if (unlikely(ab_mask == float_cmask_zero)) { float_raise(float_flag_invalid | float_flag_invalid_zdz, s); goto d_nan; } if (unlikely(ab_mask == float_cmask_inf)) { float_raise(float_flag_invalid | float_flag_invalid_idi, s); goto d_nan; } /* All the NaN cases */ if (unlikely(ab_mask & float_cmask_anynan)) { return parts_pick_nan(a, b, s); } a->sign = sign; /* Inf / X */ if (a->cls == float_class_inf) { return a; } /* 0 / X */ if (a->cls == float_class_zero) { return a; } /* X / Inf */ if (b->cls == float_class_inf) { a->cls = float_class_zero; return a; } /* X / 0 => Inf */ g_assert(b->cls == float_class_zero); float_raise(float_flag_divbyzero, s); a->cls = float_class_inf; return a; d_nan: parts_default_nan(a, s); return a; } /* * Floating point remainder, per IEC/IEEE, or modulus. */ static FloatPartsN *partsN(modrem)(FloatPartsN *a, FloatPartsN *b, uint64_t *mod_quot, float_status *s) { int ab_mask = float_cmask(a->cls) | float_cmask(b->cls); if (likely(ab_mask == float_cmask_normal)) { frac_modrem(a, b, mod_quot); return a; } if (mod_quot) { *mod_quot = 0; } /* All the NaN cases */ if (unlikely(ab_mask & float_cmask_anynan)) { return parts_pick_nan(a, b, s); } /* Inf % N; N % 0 */ if (a->cls == float_class_inf || b->cls == float_class_zero) { float_raise(float_flag_invalid, s); parts_default_nan(a, s); return a; } /* N % Inf; 0 % N */ g_assert(b->cls == float_class_inf || a->cls == float_class_zero); return a; } /* * Square Root * * The base algorithm is lifted from * https://git.musl-libc.org/cgit/musl/tree/src/math/sqrtf.c * https://git.musl-libc.org/cgit/musl/tree/src/math/sqrt.c * https://git.musl-libc.org/cgit/musl/tree/src/math/sqrtl.c * and is thus MIT licenced. */ static void partsN(sqrt)(FloatPartsN *a, float_status *status, const FloatFmt *fmt) { const uint32_t three32 = 3u << 30; const uint64_t three64 = 3ull << 62; uint32_t d32, m32, r32, s32, u32; /* 32-bit computation */ uint64_t d64, m64, r64, s64, u64; /* 64-bit computation */ uint64_t dh, dl, rh, rl, sh, sl, uh, ul; /* 128-bit computation */ uint64_t d0h, d0l, d1h, d1l, d2h, d2l; uint64_t discard; bool exp_odd; size_t index; if (unlikely(a->cls != float_class_normal)) { switch (a->cls) { case float_class_snan: case float_class_qnan: parts_return_nan(a, status); return; case float_class_zero: return; case float_class_inf: if (unlikely(a->sign)) { goto d_nan; } return; default: g_assert_not_reached(); } } if (unlikely(a->sign)) { goto d_nan; } /* * Argument reduction. * x = 4^e frac; with integer e, and frac in [1, 4) * m = frac fixed point at bit 62, since we're in base 4. * If base-2 exponent is odd, exchange that for multiply by 2, * which results in no shift. */ exp_odd = a->exp & 1; index = extract64(a->frac_hi, 57, 6) | (!exp_odd << 6); if (!exp_odd) { frac_shr(a, 1); } /* * Approximate r ~= 1/sqrt(m) and s ~= sqrt(m) when m in [1, 4). * * Initial estimate: * 7-bit lookup table (1-bit exponent and 6-bit significand). * * The relative error (e = r0*sqrt(m)-1) of a linear estimate * (r0 = a*m + b) is |e| < 0.085955 ~ 0x1.6p-4 at best; * a table lookup is faster and needs one less iteration. * The 7-bit table gives |e| < 0x1.fdp-9. * * A Newton-Raphson iteration for r is * s = m*r * d = s*r * u = 3 - d * r = r*u/2 * * Fixed point representations: * m, s, d, u, three are all 2.30; r is 0.32 */ m64 = a->frac_hi; m32 = m64 >> 32; r32 = rsqrt_tab[index] << 16; /* |r*sqrt(m) - 1| < 0x1.FDp-9 */ s32 = ((uint64_t)m32 * r32) >> 32; d32 = ((uint64_t)s32 * r32) >> 32; u32 = three32 - d32; if (N == 64) { /* float64 or smaller */ r32 = ((uint64_t)r32 * u32) >> 31; /* |r*sqrt(m) - 1| < 0x1.7Bp-16 */ s32 = ((uint64_t)m32 * r32) >> 32; d32 = ((uint64_t)s32 * r32) >> 32; u32 = three32 - d32; if (fmt->frac_size <= 23) { /* float32 or smaller */ s32 = ((uint64_t)s32 * u32) >> 32; /* 3.29 */ s32 = (s32 - 1) >> 6; /* 9.23 */ /* s < sqrt(m) < s + 0x1.08p-23 */ /* compute nearest rounded result to 2.23 bits */ uint32_t d0 = (m32 << 16) - s32 * s32; uint32_t d1 = s32 - d0; uint32_t d2 = d1 + s32 + 1; s32 += d1 >> 31; a->frac_hi = (uint64_t)s32 << (64 - 25); /* increment or decrement for inexact */ if (d2 != 0) { a->frac_hi += ((int32_t)(d1 ^ d2) < 0 ? -1 : 1); } goto done; } /* float64 */ r64 = (uint64_t)r32 * u32 * 2; /* |r*sqrt(m) - 1| < 0x1.37-p29; convert to 64-bit arithmetic */ mul64To128(m64, r64, &s64, &discard); mul64To128(s64, r64, &d64, &discard); u64 = three64 - d64; mul64To128(s64, u64, &s64, &discard); /* 3.61 */ s64 = (s64 - 2) >> 9; /* 12.52 */ /* Compute nearest rounded result */ uint64_t d0 = (m64 << 42) - s64 * s64; uint64_t d1 = s64 - d0; uint64_t d2 = d1 + s64 + 1; s64 += d1 >> 63; a->frac_hi = s64 << (64 - 54); /* increment or decrement for inexact */ if (d2 != 0) { a->frac_hi += ((int64_t)(d1 ^ d2) < 0 ? -1 : 1); } goto done; } r64 = (uint64_t)r32 * u32 * 2; /* |r*sqrt(m) - 1| < 0x1.7Bp-16; convert to 64-bit arithmetic */ mul64To128(m64, r64, &s64, &discard); mul64To128(s64, r64, &d64, &discard); u64 = three64 - d64; mul64To128(u64, r64, &r64, &discard); r64 <<= 1; /* |r*sqrt(m) - 1| < 0x1.a5p-31 */ mul64To128(m64, r64, &s64, &discard); mul64To128(s64, r64, &d64, &discard); u64 = three64 - d64; mul64To128(u64, r64, &rh, &rl); add128(rh, rl, rh, rl, &rh, &rl); /* |r*sqrt(m) - 1| < 0x1.c001p-59; change to 128-bit arithmetic */ mul128To256(a->frac_hi, a->frac_lo, rh, rl, &sh, &sl, &discard, &discard); mul128To256(sh, sl, rh, rl, &dh, &dl, &discard, &discard); sub128(three64, 0, dh, dl, &uh, &ul); mul128To256(uh, ul, sh, sl, &sh, &sl, &discard, &discard); /* 3.125 */ /* -0x1p-116 < s - sqrt(m) < 0x3.8001p-125 */ sub128(sh, sl, 0, 4, &sh, &sl); shift128Right(sh, sl, 13, &sh, &sl); /* 16.112 */ /* s < sqrt(m) < s + 1ulp */ /* Compute nearest rounded result */ mul64To128(sl, sl, &d0h, &d0l); d0h += 2 * sh * sl; sub128(a->frac_lo << 34, 0, d0h, d0l, &d0h, &d0l); sub128(sh, sl, d0h, d0l, &d1h, &d1l); add128(sh, sl, 0, 1, &d2h, &d2l); add128(d2h, d2l, d1h, d1l, &d2h, &d2l); add128(sh, sl, 0, d1h >> 63, &sh, &sl); shift128Left(sh, sl, 128 - 114, &sh, &sl); /* increment or decrement for inexact */ if (d2h | d2l) { if ((int64_t)(d1h ^ d2h) < 0) { sub128(sh, sl, 0, 1, &sh, &sl); } else { add128(sh, sl, 0, 1, &sh, &sl); } } a->frac_lo = sl; a->frac_hi = sh; done: /* Convert back from base 4 to base 2. */ a->exp >>= 1; if (!(a->frac_hi & DECOMPOSED_IMPLICIT_BIT)) { frac_add(a, a, a); } else { a->exp += 1; } return; d_nan: float_raise(float_flag_invalid | float_flag_invalid_sqrt, status); parts_default_nan(a, status); } /* * Rounds the floating-point value `a' to an integer, and returns the * result as a floating-point value. The operation is performed * according to the IEC/IEEE Standard for Binary Floating-Point * Arithmetic. * * parts_round_to_int_normal is an internal helper function for * normal numbers only, returning true for inexact but not directly * raising float_flag_inexact. */ static bool partsN(round_to_int_normal)(FloatPartsN *a, FloatRoundMode rmode, int scale, int frac_size) { uint64_t frac_lsb, frac_lsbm1, rnd_even_mask, rnd_mask, inc; int shift_adj; scale = MIN(MAX(scale, -0x10000), 0x10000); a->exp += scale; if (a->exp < 0) { bool one; /* All fractional */ switch (rmode) { case float_round_nearest_even: one = false; if (a->exp == -1) { FloatPartsN tmp; /* Shift left one, discarding DECOMPOSED_IMPLICIT_BIT */ frac_add(&tmp, a, a); /* Anything remaining means frac > 0.5. */ one = !frac_eqz(&tmp); } break; case float_round_ties_away: one = a->exp == -1; break; case float_round_to_zero: one = false; break; case float_round_up: one = !a->sign; break; case float_round_down: one = a->sign; break; case float_round_to_odd: one = true; break; default: g_assert_not_reached(); } frac_clear(a); a->exp = 0; if (one) { a->frac_hi = DECOMPOSED_IMPLICIT_BIT; } else { a->cls = float_class_zero; } return true; } if (a->exp >= frac_size) { /* All integral */ return false; } if (N > 64 && a->exp < N - 64) { /* * Rounding is not in the low word -- shift lsb to bit 2, * which leaves room for sticky and rounding bit. */ shift_adj = (N - 1) - (a->exp + 2); frac_shrjam(a, shift_adj); frac_lsb = 1 << 2; } else { shift_adj = 0; frac_lsb = DECOMPOSED_IMPLICIT_BIT >> (a->exp & 63); } frac_lsbm1 = frac_lsb >> 1; rnd_mask = frac_lsb - 1; rnd_even_mask = rnd_mask | frac_lsb; if (!(a->frac_lo & rnd_mask)) { /* Fractional bits already clear, undo the shift above. */ frac_shl(a, shift_adj); return false; } switch (rmode) { case float_round_nearest_even: inc = ((a->frac_lo & rnd_even_mask) != frac_lsbm1 ? frac_lsbm1 : 0); break; case float_round_ties_away: inc = frac_lsbm1; break; case float_round_to_zero: inc = 0; break; case float_round_up: inc = a->sign ? 0 : rnd_mask; break; case float_round_down: inc = a->sign ? rnd_mask : 0; break; case float_round_to_odd: inc = a->frac_lo & frac_lsb ? 0 : rnd_mask; break; default: g_assert_not_reached(); } if (shift_adj == 0) { if (frac_addi(a, a, inc)) { frac_shr(a, 1); a->frac_hi |= DECOMPOSED_IMPLICIT_BIT; a->exp++; } a->frac_lo &= ~rnd_mask; } else { frac_addi(a, a, inc); a->frac_lo &= ~rnd_mask; /* Be careful shifting back, not to overflow */ frac_shl(a, shift_adj - 1); if (a->frac_hi & DECOMPOSED_IMPLICIT_BIT) { a->exp++; } else { frac_add(a, a, a); } } return true; } static void partsN(round_to_int)(FloatPartsN *a, FloatRoundMode rmode, int scale, float_status *s, const FloatFmt *fmt) { switch (a->cls) { case float_class_qnan: case float_class_snan: parts_return_nan(a, s); break; case float_class_zero: case float_class_inf: break; case float_class_normal: if (parts_round_to_int_normal(a, rmode, scale, fmt->frac_size)) { float_raise(float_flag_inexact, s); } break; default: g_assert_not_reached(); } } /* * Returns the result of converting the floating-point value `a' to * the two's complement integer format. The conversion is performed * according to the IEC/IEEE Standard for Binary Floating-Point * Arithmetic---which means in particular that the conversion is * rounded according to the current rounding mode. If `a' is a NaN, * the largest positive integer is returned. Otherwise, if the * conversion overflows, the largest integer with the same sign as `a' * is returned. */ static int64_t partsN(float_to_sint)(FloatPartsN *p, FloatRoundMode rmode, int scale, int64_t min, int64_t max, float_status *s) { int flags = 0; uint64_t r; switch (p->cls) { case float_class_snan: flags |= float_flag_invalid_snan; /* fall through */ case float_class_qnan: flags |= float_flag_invalid; r = max; break; case float_class_inf: flags = float_flag_invalid | float_flag_invalid_cvti; r = p->sign ? min : max; break; case float_class_zero: return 0; case float_class_normal: /* TODO: N - 2 is frac_size for rounding; could use input fmt. */ if (parts_round_to_int_normal(p, rmode, scale, N - 2)) { flags = float_flag_inexact; } if (p->exp <= DECOMPOSED_BINARY_POINT) { r = p->frac_hi >> (DECOMPOSED_BINARY_POINT - p->exp); } else { r = UINT64_MAX; } if (p->sign) { if (r <= -(uint64_t)min) { r = -r; } else { flags = float_flag_invalid | float_flag_invalid_cvti; r = min; } } else if (r > max) { flags = float_flag_invalid | float_flag_invalid_cvti; r = max; } break; default: g_assert_not_reached(); } float_raise(flags, s); return r; } /* * Returns the result of converting the floating-point value `a' to * the unsigned integer format. The conversion is performed according * to the IEC/IEEE Standard for Binary Floating-Point * Arithmetic---which means in particular that the conversion is * rounded according to the current rounding mode. If `a' is a NaN, * the largest unsigned integer is returned. Otherwise, if the * conversion overflows, the largest unsigned integer is returned. If * the 'a' is negative, the result is rounded and zero is returned; * values that do not round to zero will raise the inexact exception * flag. */ static uint64_t partsN(float_to_uint)(FloatPartsN *p, FloatRoundMode rmode, int scale, uint64_t max, float_status *s) { int flags = 0; uint64_t r; switch (p->cls) { case float_class_snan: flags |= float_flag_invalid_snan; /* fall through */ case float_class_qnan: flags |= float_flag_invalid; r = max; break; case float_class_inf: flags = float_flag_invalid | float_flag_invalid_cvti; r = p->sign ? 0 : max; break; case float_class_zero: return 0; case float_class_normal: /* TODO: N - 2 is frac_size for rounding; could use input fmt. */ if (parts_round_to_int_normal(p, rmode, scale, N - 2)) { flags = float_flag_inexact; if (p->cls == float_class_zero) { r = 0; break; } } if (p->sign) { flags = float_flag_invalid | float_flag_invalid_cvti; r = 0; } else if (p->exp > DECOMPOSED_BINARY_POINT) { flags = float_flag_invalid | float_flag_invalid_cvti; r = max; } else { r = p->frac_hi >> (DECOMPOSED_BINARY_POINT - p->exp); if (r > max) { flags = float_flag_invalid | float_flag_invalid_cvti; r = max; } } break; default: g_assert_not_reached(); } float_raise(flags, s); return r; } /* * Like partsN(float_to_sint), except do not saturate the result. * Instead, return the rounded unbounded precision two's compliment result, * modulo 2**(bitsm1 + 1). */ static int64_t partsN(float_to_sint_modulo)(FloatPartsN *p, FloatRoundMode rmode, int bitsm1, float_status *s) { int flags = 0; uint64_t r; bool overflow = false; switch (p->cls) { case float_class_snan: flags |= float_flag_invalid_snan; /* fall through */ case float_class_qnan: flags |= float_flag_invalid; r = 0; break; case float_class_inf: overflow = true; r = 0; break; case float_class_zero: return 0; case float_class_normal: /* TODO: N - 2 is frac_size for rounding; could use input fmt. */ if (parts_round_to_int_normal(p, rmode, 0, N - 2)) { flags = float_flag_inexact; } if (p->exp <= DECOMPOSED_BINARY_POINT) { /* * Because we rounded to integral, and exp < 64, * we know frac_low is zero. */ r = p->frac_hi >> (DECOMPOSED_BINARY_POINT - p->exp); if (p->exp < bitsm1) { /* Result in range. */ } else if (p->exp == bitsm1) { /* The only in-range value is INT_MIN. */ overflow = !p->sign || p->frac_hi != DECOMPOSED_IMPLICIT_BIT; } else { overflow = true; } } else { /* Overflow, but there might still be bits to return. */ int shl = p->exp - DECOMPOSED_BINARY_POINT; if (shl < N) { frac_shl(p, shl); r = p->frac_hi; } else { r = 0; } overflow = true; } if (p->sign) { r = -r; } break; default: g_assert_not_reached(); } if (overflow) { flags = float_flag_invalid | float_flag_invalid_cvti; } float_raise(flags, s); return r; } /* * Integer to float conversions * * Returns the result of converting the two's complement integer `a' * to the floating-point format. The conversion is performed according * to the IEC/IEEE Standard for Binary Floating-Point Arithmetic. */ static void partsN(sint_to_float)(FloatPartsN *p, int64_t a, int scale, float_status *s) { uint64_t f = a; int shift; memset(p, 0, sizeof(*p)); if (a == 0) { p->cls = float_class_zero; return; } p->cls = float_class_normal; if (a < 0) { f = -f; p->sign = true; } shift = clz64(f); scale = MIN(MAX(scale, -0x10000), 0x10000); p->exp = DECOMPOSED_BINARY_POINT - shift + scale; p->frac_hi = f << shift; } /* * Unsigned Integer to float conversions * * Returns the result of converting the unsigned integer `a' to the * floating-point format. The conversion is performed according to the * IEC/IEEE Standard for Binary Floating-Point Arithmetic. */ static void partsN(uint_to_float)(FloatPartsN *p, uint64_t a, int scale, float_status *status) { memset(p, 0, sizeof(*p)); if (a == 0) { p->cls = float_class_zero; } else { int shift = clz64(a); scale = MIN(MAX(scale, -0x10000), 0x10000); p->cls = float_class_normal; p->exp = DECOMPOSED_BINARY_POINT - shift + scale; p->frac_hi = a << shift; } } /* * Float min/max. */ static FloatPartsN *partsN(minmax)(FloatPartsN *a, FloatPartsN *b, float_status *s, int flags) { int ab_mask = float_cmask(a->cls) | float_cmask(b->cls); int a_exp, b_exp, cmp; if (unlikely(ab_mask & float_cmask_anynan)) { /* * For minNum/maxNum (IEEE 754-2008) * or minimumNumber/maximumNumber (IEEE 754-2019), * if one operand is a QNaN, and the other * operand is numerical, then return numerical argument. */ if ((flags & (minmax_isnum | minmax_isnumber)) && !(ab_mask & float_cmask_snan) && (ab_mask & ~float_cmask_qnan)) { return is_nan(a->cls) ? b : a; } /* * In IEEE 754-2019, minNum, maxNum, minNumMag and maxNumMag * are removed and replaced with minimum, minimumNumber, maximum * and maximumNumber. * minimumNumber/maximumNumber behavior for SNaN is changed to: * If both operands are NaNs, a QNaN is returned. * If either operand is a SNaN, * an invalid operation exception is signaled, * but unless both operands are NaNs, * the SNaN is otherwise ignored and not converted to a QNaN. */ if ((flags & minmax_isnumber) && (ab_mask & float_cmask_snan) && (ab_mask & ~float_cmask_anynan)) { float_raise(float_flag_invalid, s); return is_nan(a->cls) ? b : a; } return parts_pick_nan(a, b, s); } a_exp = a->exp; b_exp = b->exp; if (unlikely(ab_mask != float_cmask_normal)) { switch (a->cls) { case float_class_normal: break; case float_class_inf: a_exp = INT16_MAX; break; case float_class_zero: a_exp = INT16_MIN; break; default: g_assert_not_reached(); } switch (b->cls) { case float_class_normal: break; case float_class_inf: b_exp = INT16_MAX; break; case float_class_zero: b_exp = INT16_MIN; break; default: g_assert_not_reached(); } } /* Compare magnitudes. */ cmp = a_exp - b_exp; if (cmp == 0) { cmp = frac_cmp(a, b); } /* * Take the sign into account. * For ismag, only do this if the magnitudes are equal. */ if (!(flags & minmax_ismag) || cmp == 0) { if (a->sign != b->sign) { /* For differing signs, the negative operand is less. */ cmp = a->sign ? -1 : 1; } else if (a->sign) { /* For two negative operands, invert the magnitude comparison. */ cmp = -cmp; } } if (flags & minmax_ismin) { cmp = -cmp; } return cmp < 0 ? b : a; } /* * Floating point compare */ static FloatRelation partsN(compare)(FloatPartsN *a, FloatPartsN *b, float_status *s, bool is_quiet) { int ab_mask = float_cmask(a->cls) | float_cmask(b->cls); if (likely(ab_mask == float_cmask_normal)) { FloatRelation cmp; if (a->sign != b->sign) { goto a_sign; } if (a->exp == b->exp) { cmp = frac_cmp(a, b); } else if (a->exp < b->exp) { cmp = float_relation_less; } else { cmp = float_relation_greater; } if (a->sign) { cmp = -cmp; } return cmp; } if (unlikely(ab_mask & float_cmask_anynan)) { if (ab_mask & float_cmask_snan) { float_raise(float_flag_invalid | float_flag_invalid_snan, s); } else if (!is_quiet) { float_raise(float_flag_invalid, s); } return float_relation_unordered; } if (ab_mask & float_cmask_zero) { if (ab_mask == float_cmask_zero) { return float_relation_equal; } else if (a->cls == float_class_zero) { goto b_sign; } else { goto a_sign; } } if (ab_mask == float_cmask_inf) { if (a->sign == b->sign) { return float_relation_equal; } } else if (b->cls == float_class_inf) { goto b_sign; } else { g_assert(a->cls == float_class_inf); } a_sign: return a->sign ? float_relation_less : float_relation_greater; b_sign: return b->sign ? float_relation_greater : float_relation_less; } /* * Multiply A by 2 raised to the power N. */ static void partsN(scalbn)(FloatPartsN *a, int n, float_status *s) { switch (a->cls) { case float_class_snan: case float_class_qnan: parts_return_nan(a, s); break; case float_class_zero: case float_class_inf: break; case float_class_normal: a->exp += MIN(MAX(n, -0x10000), 0x10000); break; default: g_assert_not_reached(); } } /* * Return log2(A) */ static void partsN(log2)(FloatPartsN *a, float_status *s, const FloatFmt *fmt) { uint64_t a0, a1, r, t, ign; FloatPartsN f; int i, n, a_exp, f_exp; if (unlikely(a->cls != float_class_normal)) { switch (a->cls) { case float_class_snan: case float_class_qnan: parts_return_nan(a, s); return; case float_class_zero: float_raise(float_flag_divbyzero, s); /* log2(0) = -inf */ a->cls = float_class_inf; a->sign = 1; return; case float_class_inf: if (unlikely(a->sign)) { goto d_nan; } return; default: break; } g_assert_not_reached(); } if (unlikely(a->sign)) { goto d_nan; } /* TODO: This algorithm looses bits too quickly for float128. */ g_assert(N == 64); a_exp = a->exp; f_exp = -1; r = 0; t = DECOMPOSED_IMPLICIT_BIT; a0 = a->frac_hi; a1 = 0; n = fmt->frac_size + 2; if (unlikely(a_exp == -1)) { /* * When a_exp == -1, we're computing the log2 of a value [0.5,1.0). * When the value is very close to 1.0, there are lots of 1's in * the msb parts of the fraction. At the end, when we subtract * this value from -1.0, we can see a catastrophic loss of precision, * as 0x800..000 - 0x7ff..ffx becomes 0x000..00y, leaving only the * bits of y in the final result. To minimize this, compute as many * digits as we can. * ??? This case needs another algorithm to avoid this. */ n = fmt->frac_size * 2 + 2; /* Don't compute a value overlapping the sticky bit */ n = MIN(n, 62); } for (i = 0; i < n; i++) { if (a1) { mul128To256(a0, a1, a0, a1, &a0, &a1, &ign, &ign); } else if (a0 & 0xffffffffull) { mul64To128(a0, a0, &a0, &a1); } else if (a0 & ~DECOMPOSED_IMPLICIT_BIT) { a0 >>= 32; a0 *= a0; } else { goto exact; } if (a0 & DECOMPOSED_IMPLICIT_BIT) { if (unlikely(a_exp == 0 && r == 0)) { /* * When a_exp == 0, we're computing the log2 of a value * [1.0,2.0). When the value is very close to 1.0, there * are lots of 0's in the msb parts of the fraction. * We need to compute more digits to produce a correct * result -- restart at the top of the fraction. * ??? This is likely to lose precision quickly, as for * float128; we may need another method. */ f_exp -= i; t = r = DECOMPOSED_IMPLICIT_BIT; i = 0; } else { r |= t; } } else { add128(a0, a1, a0, a1, &a0, &a1); } t >>= 1; } /* Set sticky for inexact. */ r |= (a1 || a0 & ~DECOMPOSED_IMPLICIT_BIT); exact: parts_sint_to_float(a, a_exp, 0, s); if (r == 0) { return; } memset(&f, 0, sizeof(f)); f.cls = float_class_normal; f.frac_hi = r; f.exp = f_exp - frac_normalize(&f); if (a_exp < 0) { parts_sub_normal(a, &f); } else if (a_exp > 0) { parts_add_normal(a, &f); } else { *a = f; } return; d_nan: float_raise(float_flag_invalid, s); parts_default_nan(a, s); }