/* * internal execution defines for qemu * * Copyright (c) 2003 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* allow to see translation results - the slowdown should be negligible, so we leave it */ #define DEBUG_DISAS #ifndef glue #define xglue(x, y) x ## y #define glue(x, y) xglue(x, y) #define stringify(s) tostring(s) #define tostring(s) #s #endif #if __GNUC__ < 3 #define __builtin_expect(x, n) (x) #endif #ifdef __i386__ #define REGPARM(n) __attribute((regparm(n))) #else #define REGPARM(n) #endif /* is_jmp field values */ #define DISAS_NEXT 0 /* next instruction can be analyzed */ #define DISAS_JUMP 1 /* only pc was modified dynamically */ #define DISAS_UPDATE 2 /* cpu state was modified dynamically */ #define DISAS_TB_JUMP 3 /* only pc was modified statically */ struct TranslationBlock; /* XXX: make safe guess about sizes */ #define MAX_OP_PER_INSTR 32 #define OPC_BUF_SIZE 512 #define OPC_MAX_SIZE (OPC_BUF_SIZE - MAX_OP_PER_INSTR) #define OPPARAM_BUF_SIZE (OPC_BUF_SIZE * 3) extern uint16_t gen_opc_buf[OPC_BUF_SIZE]; extern uint32_t gen_opparam_buf[OPPARAM_BUF_SIZE]; extern long gen_labels[OPC_BUF_SIZE]; extern int nb_gen_labels; extern target_ulong gen_opc_pc[OPC_BUF_SIZE]; extern target_ulong gen_opc_npc[OPC_BUF_SIZE]; extern uint8_t gen_opc_cc_op[OPC_BUF_SIZE]; extern uint8_t gen_opc_instr_start[OPC_BUF_SIZE]; extern target_ulong gen_opc_jump_pc[2]; extern uint32_t gen_opc_hflags[OPC_BUF_SIZE]; typedef void (GenOpFunc)(void); typedef void (GenOpFunc1)(long); typedef void (GenOpFunc2)(long, long); typedef void (GenOpFunc3)(long, long, long); #if defined(TARGET_I386) void optimize_flags_init(void); #endif extern FILE *logfile; extern int loglevel; int gen_intermediate_code(CPUState *env, struct TranslationBlock *tb); int gen_intermediate_code_pc(CPUState *env, struct TranslationBlock *tb); void dump_ops(const uint16_t *opc_buf, const uint32_t *opparam_buf); int cpu_gen_code(CPUState *env, struct TranslationBlock *tb, int max_code_size, int *gen_code_size_ptr); int cpu_restore_state(struct TranslationBlock *tb, CPUState *env, unsigned long searched_pc, void *puc); int cpu_gen_code_copy(CPUState *env, struct TranslationBlock *tb, int max_code_size, int *gen_code_size_ptr); int cpu_restore_state_copy(struct TranslationBlock *tb, CPUState *env, unsigned long searched_pc, void *puc); void cpu_resume_from_signal(CPUState *env1, void *puc); void cpu_exec_init(CPUState *env); int page_unprotect(target_ulong address, unsigned long pc, void *puc); void tb_invalidate_phys_page_range(target_ulong start, target_ulong end, int is_cpu_write_access); void tb_invalidate_page_range(target_ulong start, target_ulong end); void tlb_flush_page(CPUState *env, target_ulong addr); void tlb_flush(CPUState *env, int flush_global); int tlb_set_page_exec(CPUState *env, target_ulong vaddr, target_phys_addr_t paddr, int prot, int is_user, int is_softmmu); static inline int tlb_set_page(CPUState *env, target_ulong vaddr, target_phys_addr_t paddr, int prot, int is_user, int is_softmmu) { if (prot & PAGE_READ) prot |= PAGE_EXEC; return tlb_set_page_exec(env, vaddr, paddr, prot, is_user, is_softmmu); } #define CODE_GEN_MAX_SIZE 65536 #define CODE_GEN_ALIGN 16 /* must be >= of the size of a icache line */ #define CODE_GEN_PHYS_HASH_BITS 15 #define CODE_GEN_PHYS_HASH_SIZE (1 << CODE_GEN_PHYS_HASH_BITS) /* maximum total translate dcode allocated */ /* NOTE: the translated code area cannot be too big because on some archs the range of "fast" function calls is limited. Here is a summary of the ranges: i386 : signed 32 bits arm : signed 26 bits ppc : signed 24 bits sparc : signed 32 bits alpha : signed 23 bits */ #if defined(__alpha__) #define CODE_GEN_BUFFER_SIZE (2 * 1024 * 1024) #elif defined(__ia64) #define CODE_GEN_BUFFER_SIZE (4 * 1024 * 1024) /* range of addl */ #elif defined(__powerpc__) #define CODE_GEN_BUFFER_SIZE (6 * 1024 * 1024) #else #define CODE_GEN_BUFFER_SIZE (16 * 1024 * 1024) #endif //#define CODE_GEN_BUFFER_SIZE (128 * 1024) /* estimated block size for TB allocation */ /* XXX: use a per code average code fragment size and modulate it according to the host CPU */ #if defined(CONFIG_SOFTMMU) #define CODE_GEN_AVG_BLOCK_SIZE 128 #else #define CODE_GEN_AVG_BLOCK_SIZE 64 #endif #define CODE_GEN_MAX_BLOCKS (CODE_GEN_BUFFER_SIZE / CODE_GEN_AVG_BLOCK_SIZE) #if defined(__powerpc__) #define USE_DIRECT_JUMP #endif #if defined(__i386__) && !defined(_WIN32) #define USE_DIRECT_JUMP #endif typedef struct TranslationBlock { target_ulong pc; /* simulated PC corresponding to this block (EIP + CS base) */ target_ulong cs_base; /* CS base for this block */ unsigned int flags; /* flags defining in which context the code was generated */ uint16_t size; /* size of target code for this block (1 <= size <= TARGET_PAGE_SIZE) */ uint16_t cflags; /* compile flags */ #define CF_CODE_COPY 0x0001 /* block was generated in code copy mode */ #define CF_TB_FP_USED 0x0002 /* fp ops are used in the TB */ #define CF_FP_USED 0x0004 /* fp ops are used in the TB or in a chained TB */ #define CF_SINGLE_INSN 0x0008 /* compile only a single instruction */ uint8_t *tc_ptr; /* pointer to the translated code */ /* next matching tb for physical address. */ struct TranslationBlock *phys_hash_next; /* first and second physical page containing code. The lower bit of the pointer tells the index in page_next[] */ struct TranslationBlock *page_next[2]; target_ulong page_addr[2]; /* the following data are used to directly call another TB from the code of this one. */ uint16_t tb_next_offset[2]; /* offset of original jump target */ #ifdef USE_DIRECT_JUMP uint16_t tb_jmp_offset[4]; /* offset of jump instruction */ #else uint32_t tb_next[2]; /* address of jump generated code */ #endif /* list of TBs jumping to this one. This is a circular list using the two least significant bits of the pointers to tell what is the next pointer: 0 = jmp_next[0], 1 = jmp_next[1], 2 = jmp_first */ struct TranslationBlock *jmp_next[2]; struct TranslationBlock *jmp_first; } TranslationBlock; static inline unsigned int tb_jmp_cache_hash_func(target_ulong pc) { return (pc ^ (pc >> TB_JMP_CACHE_BITS)) & (TB_JMP_CACHE_SIZE - 1); } static inline unsigned int tb_phys_hash_func(unsigned long pc) { return pc & (CODE_GEN_PHYS_HASH_SIZE - 1); } TranslationBlock *tb_alloc(target_ulong pc); void tb_flush(CPUState *env); void tb_link_phys(TranslationBlock *tb, target_ulong phys_pc, target_ulong phys_page2); extern TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE]; extern uint8_t code_gen_buffer[CODE_GEN_BUFFER_SIZE]; extern uint8_t *code_gen_ptr; #if defined(USE_DIRECT_JUMP) #if defined(__powerpc__) static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr) { uint32_t val, *ptr; /* patch the branch destination */ ptr = (uint32_t *)jmp_addr; val = *ptr; val = (val & ~0x03fffffc) | ((addr - jmp_addr) & 0x03fffffc); *ptr = val; /* flush icache */ asm volatile ("dcbst 0,%0" : : "r"(ptr) : "memory"); asm volatile ("sync" : : : "memory"); asm volatile ("icbi 0,%0" : : "r"(ptr) : "memory"); asm volatile ("sync" : : : "memory"); asm volatile ("isync" : : : "memory"); } #elif defined(__i386__) static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr) { /* patch the branch destination */ *(uint32_t *)jmp_addr = addr - (jmp_addr + 4); /* no need to flush icache explicitely */ } #endif static inline void tb_set_jmp_target(TranslationBlock *tb, int n, unsigned long addr) { unsigned long offset; offset = tb->tb_jmp_offset[n]; tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr); offset = tb->tb_jmp_offset[n + 2]; if (offset != 0xffff) tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr); } #else /* set the jump target */ static inline void tb_set_jmp_target(TranslationBlock *tb, int n, unsigned long addr) { tb->tb_next[n] = addr; } #endif static inline void tb_add_jump(TranslationBlock *tb, int n, TranslationBlock *tb_next) { /* NOTE: this test is only needed for thread safety */ if (!tb->jmp_next[n]) { /* patch the native jump address */ tb_set_jmp_target(tb, n, (unsigned long)tb_next->tc_ptr); /* add in TB jmp circular list */ tb->jmp_next[n] = tb_next->jmp_first; tb_next->jmp_first = (TranslationBlock *)((long)(tb) | (n)); } } TranslationBlock *tb_find_pc(unsigned long pc_ptr); #ifndef offsetof #define offsetof(type, field) ((size_t) &((type *)0)->field) #endif #if defined(_WIN32) #define ASM_DATA_SECTION ".section \".data\"\n" #define ASM_PREVIOUS_SECTION ".section .text\n" #elif defined(__APPLE__) #define ASM_DATA_SECTION ".data\n" #define ASM_PREVIOUS_SECTION ".text\n" #else #define ASM_DATA_SECTION ".section \".data\"\n" #define ASM_PREVIOUS_SECTION ".previous\n" #endif #define ASM_OP_LABEL_NAME(n, opname) \ ASM_NAME(__op_label) #n "." ASM_NAME(opname) #if defined(__powerpc__) /* we patch the jump instruction directly */ #define GOTO_TB(opname, tbparam, n)\ do {\ asm volatile (ASM_DATA_SECTION\ ASM_OP_LABEL_NAME(n, opname) ":\n"\ ".long 1f\n"\ ASM_PREVIOUS_SECTION \ "b " ASM_NAME(__op_jmp) #n "\n"\ "1:\n");\ } while (0) #elif defined(__i386__) && defined(USE_DIRECT_JUMP) /* we patch the jump instruction directly */ #define GOTO_TB(opname, tbparam, n)\ do {\ asm volatile (".section .data\n"\ ASM_OP_LABEL_NAME(n, opname) ":\n"\ ".long 1f\n"\ ASM_PREVIOUS_SECTION \ "jmp " ASM_NAME(__op_jmp) #n "\n"\ "1:\n");\ } while (0) #else /* jump to next block operations (more portable code, does not need cache flushing, but slower because of indirect jump) */ #define GOTO_TB(opname, tbparam, n)\ do {\ static void __attribute__((unused)) *dummy ## n = &&dummy_label ## n;\ static void __attribute__((unused)) *__op_label ## n \ __asm__(ASM_OP_LABEL_NAME(n, opname)) = &&label ## n;\ goto *(void *)(((TranslationBlock *)tbparam)->tb_next[n]);\ label ## n: ;\ dummy_label ## n: ;\ } while (0) #endif extern CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4]; extern CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4]; extern void *io_mem_opaque[IO_MEM_NB_ENTRIES]; #ifdef __powerpc__ static inline int testandset (int *p) { int ret; __asm__ __volatile__ ( "0: lwarx %0,0,%1\n" " xor. %0,%3,%0\n" " bne 1f\n" " stwcx. %2,0,%1\n" " bne- 0b\n" "1: " : "=&r" (ret) : "r" (p), "r" (1), "r" (0) : "cr0", "memory"); return ret; } #endif #ifdef __i386__ static inline int testandset (int *p) { long int readval = 0; __asm__ __volatile__ ("lock; cmpxchgl %2, %0" : "+m" (*p), "+a" (readval) : "r" (1) : "cc"); return readval; } #endif #ifdef __x86_64__ static inline int testandset (int *p) { long int readval = 0; __asm__ __volatile__ ("lock; cmpxchgl %2, %0" : "+m" (*p), "+a" (readval) : "r" (1) : "cc"); return readval; } #endif #ifdef __s390__ static inline int testandset (int *p) { int ret; __asm__ __volatile__ ("0: cs %0,%1,0(%2)\n" " jl 0b" : "=&d" (ret) : "r" (1), "a" (p), "0" (*p) : "cc", "memory" ); return ret; } #endif #ifdef __alpha__ static inline int testandset (int *p) { int ret; unsigned long one; __asm__ __volatile__ ("0: mov 1,%2\n" " ldl_l %0,%1\n" " stl_c %2,%1\n" " beq %2,1f\n" ".subsection 2\n" "1: br 0b\n" ".previous" : "=r" (ret), "=m" (*p), "=r" (one) : "m" (*p)); return ret; } #endif #ifdef __sparc__ static inline int testandset (int *p) { int ret; __asm__ __volatile__("ldstub [%1], %0" : "=r" (ret) : "r" (p) : "memory"); return (ret ? 1 : 0); } #endif #ifdef __arm__ static inline int testandset (int *spinlock) { register unsigned int ret; __asm__ __volatile__("swp %0, %1, [%2]" : "=r"(ret) : "0"(1), "r"(spinlock)); return ret; } #endif #ifdef __mc68000 static inline int testandset (int *p) { char ret; __asm__ __volatile__("tas %1; sne %0" : "=r" (ret) : "m" (p) : "cc","memory"); return ret; } #endif #ifdef __ia64 #include <ia64intrin.h> static inline int testandset (int *p) { return __sync_lock_test_and_set (p, 1); } #endif typedef int spinlock_t; #define SPIN_LOCK_UNLOCKED 0 #if defined(CONFIG_USER_ONLY) static inline void spin_lock(spinlock_t *lock) { while (testandset(lock)); } static inline void spin_unlock(spinlock_t *lock) { *lock = 0; } static inline int spin_trylock(spinlock_t *lock) { return !testandset(lock); } #else static inline void spin_lock(spinlock_t *lock) { } static inline void spin_unlock(spinlock_t *lock) { } static inline int spin_trylock(spinlock_t *lock) { return 1; } #endif extern spinlock_t tb_lock; extern int tb_invalidated_flag; #if !defined(CONFIG_USER_ONLY) void tlb_fill(target_ulong addr, int is_write, int is_user, void *retaddr); #define ACCESS_TYPE 3 #define MEMSUFFIX _code #define env cpu_single_env #define DATA_SIZE 1 #include "softmmu_header.h" #define DATA_SIZE 2 #include "softmmu_header.h" #define DATA_SIZE 4 #include "softmmu_header.h" #define DATA_SIZE 8 #include "softmmu_header.h" #undef ACCESS_TYPE #undef MEMSUFFIX #undef env #endif #if defined(CONFIG_USER_ONLY) static inline target_ulong get_phys_addr_code(CPUState *env, target_ulong addr) { return addr; } #else /* NOTE: this function can trigger an exception */ /* NOTE2: the returned address is not exactly the physical address: it is the offset relative to phys_ram_base */ static inline target_ulong get_phys_addr_code(CPUState *env, target_ulong addr) { int is_user, index, pd; index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); #if defined(TARGET_I386) is_user = ((env->hflags & HF_CPL_MASK) == 3); #elif defined (TARGET_PPC) is_user = msr_pr; #elif defined (TARGET_MIPS) is_user = ((env->hflags & MIPS_HFLAG_MODE) == MIPS_HFLAG_UM); #elif defined (TARGET_SPARC) is_user = (env->psrs == 0); #elif defined (TARGET_ARM) is_user = ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR); #else #error unimplemented CPU #endif if (__builtin_expect(env->tlb_table[is_user][index].addr_code != (addr & TARGET_PAGE_MASK), 0)) { ldub_code(addr); } pd = env->tlb_table[is_user][index].addr_code & ~TARGET_PAGE_MASK; if (pd > IO_MEM_ROM) { cpu_abort(env, "Trying to execute code outside RAM or ROM at 0x%08lx\n", addr); } return addr + env->tlb_table[is_user][index].addend - (unsigned long)phys_ram_base; } #endif #ifdef USE_KQEMU #define KQEMU_MODIFY_PAGE_MASK (0xff & ~(VGA_DIRTY_FLAG | CODE_DIRTY_FLAG)) int kqemu_init(CPUState *env); int kqemu_cpu_exec(CPUState *env); void kqemu_flush_page(CPUState *env, target_ulong addr); void kqemu_flush(CPUState *env, int global); void kqemu_set_notdirty(CPUState *env, ram_addr_t ram_addr); void kqemu_modify_page(CPUState *env, ram_addr_t ram_addr); void kqemu_cpu_interrupt(CPUState *env); void kqemu_record_dump(void); static inline int kqemu_is_ok(CPUState *env) { return(env->kqemu_enabled && (env->cr[0] & CR0_PE_MASK) && !(env->hflags & HF_INHIBIT_IRQ_MASK) && (env->eflags & IF_MASK) && !(env->eflags & VM_MASK) && (env->kqemu_enabled == 2 || ((env->hflags & HF_CPL_MASK) == 3 && (env->eflags & IOPL_MASK) != IOPL_MASK))); } #endif