/* * Generic Dynamic compiler generator * * Copyright (c) 2003 Fabrice Bellard * * The COFF object format support was extracted from Kazu's QEMU port * to Win32. * * Mach-O Support by Matt Reda and Pierre d'Herbemont * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include #include "config-host.h" /* NOTE: we test CONFIG_WIN32 instead of _WIN32 to enabled cross compilation */ #if defined(CONFIG_WIN32) #define CONFIG_FORMAT_COFF #elif defined(CONFIG_DARWIN) #define CONFIG_FORMAT_MACH #else #define CONFIG_FORMAT_ELF #endif #ifdef CONFIG_FORMAT_ELF /* elf format definitions. We use these macros to test the CPU to allow cross compilation (this tool must be ran on the build platform) */ #if defined(HOST_I386) #define ELF_CLASS ELFCLASS32 #define ELF_ARCH EM_386 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) #undef ELF_USES_RELOCA #elif defined(HOST_X86_64) #define ELF_CLASS ELFCLASS64 #define ELF_ARCH EM_X86_64 #define elf_check_arch(x) ((x) == EM_X86_64) #define ELF_USES_RELOCA #elif defined(HOST_PPC) #define ELF_CLASS ELFCLASS32 #define ELF_ARCH EM_PPC #define elf_check_arch(x) ((x) == EM_PPC) #define ELF_USES_RELOCA #elif defined(HOST_S390) #define ELF_CLASS ELFCLASS32 #define ELF_ARCH EM_S390 #define elf_check_arch(x) ((x) == EM_S390) #define ELF_USES_RELOCA #elif defined(HOST_ALPHA) #define ELF_CLASS ELFCLASS64 #define ELF_ARCH EM_ALPHA #define elf_check_arch(x) ((x) == EM_ALPHA) #define ELF_USES_RELOCA #elif defined(HOST_IA64) #define ELF_CLASS ELFCLASS64 #define ELF_ARCH EM_IA_64 #define elf_check_arch(x) ((x) == EM_IA_64) #define ELF_USES_RELOCA #elif defined(HOST_SPARC) #define ELF_CLASS ELFCLASS32 #define ELF_ARCH EM_SPARC #define elf_check_arch(x) ((x) == EM_SPARC || (x) == EM_SPARC32PLUS) #define ELF_USES_RELOCA #elif defined(HOST_SPARC64) #define ELF_CLASS ELFCLASS64 #define ELF_ARCH EM_SPARCV9 #define elf_check_arch(x) ((x) == EM_SPARCV9) #define ELF_USES_RELOCA #elif defined(HOST_ARM) #define ELF_CLASS ELFCLASS32 #define ELF_ARCH EM_ARM #define elf_check_arch(x) ((x) == EM_ARM) #define ELF_USES_RELOC #elif defined(HOST_M68K) #define ELF_CLASS ELFCLASS32 #define ELF_ARCH EM_68K #define elf_check_arch(x) ((x) == EM_68K) #define ELF_USES_RELOCA #else #error unsupported CPU - please update the code #endif #include "elf.h" #if ELF_CLASS == ELFCLASS32 typedef int32_t host_long; typedef uint32_t host_ulong; #define swabls(x) swab32s(x) #else typedef int64_t host_long; typedef uint64_t host_ulong; #define swabls(x) swab64s(x) #endif #ifdef ELF_USES_RELOCA #define SHT_RELOC SHT_RELA #else #define SHT_RELOC SHT_REL #endif #define EXE_RELOC ELF_RELOC #define EXE_SYM ElfW(Sym) #endif /* CONFIG_FORMAT_ELF */ #ifdef CONFIG_FORMAT_COFF #include "a.out.h" typedef int32_t host_long; typedef uint32_t host_ulong; #define FILENAMELEN 256 typedef struct coff_sym { struct external_syment *st_syment; char st_name[FILENAMELEN]; uint32_t st_value; int st_size; uint8_t st_type; uint8_t st_shndx; } coff_Sym; typedef struct coff_rel { struct external_reloc *r_reloc; int r_offset; uint8_t r_type; } coff_Rel; #define EXE_RELOC struct coff_rel #define EXE_SYM struct coff_sym #endif /* CONFIG_FORMAT_COFF */ #ifdef CONFIG_FORMAT_MACH #include #include #include #include # define check_mach_header(x) (x.magic == MH_MAGIC) typedef int32_t host_long; typedef uint32_t host_ulong; struct nlist_extended { union { char *n_name; long n_strx; } n_un; unsigned char n_type; unsigned char n_sect; short st_desc; unsigned long st_value; unsigned long st_size; }; #define EXE_RELOC struct relocation_info #define EXE_SYM struct nlist_extended #endif /* CONFIG_FORMAT_MACH */ #include "bswap.h" enum { OUT_GEN_OP, OUT_CODE, OUT_INDEX_OP, }; /* all dynamically generated functions begin with this code */ #define OP_PREFIX "op_" int do_swap; void __attribute__((noreturn)) __attribute__((format (printf, 1, 2))) error(const char *fmt, ...) { va_list ap; va_start(ap, fmt); fprintf(stderr, "dyngen: "); vfprintf(stderr, fmt, ap); fprintf(stderr, "\n"); va_end(ap); exit(1); } void *load_data(int fd, long offset, unsigned int size) { char *data; data = malloc(size); if (!data) return NULL; lseek(fd, offset, SEEK_SET); if (read(fd, data, size) != size) { free(data); return NULL; } return data; } int strstart(const char *str, const char *val, const char **ptr) { const char *p, *q; p = str; q = val; while (*q != '\0') { if (*p != *q) return 0; p++; q++; } if (ptr) *ptr = p; return 1; } void pstrcpy(char *buf, int buf_size, const char *str) { int c; char *q = buf; if (buf_size <= 0) return; for(;;) { c = *str++; if (c == 0 || q >= buf + buf_size - 1) break; *q++ = c; } *q = '\0'; } void swab16s(uint16_t *p) { *p = bswap16(*p); } void swab32s(uint32_t *p) { *p = bswap32(*p); } void swab64s(uint64_t *p) { *p = bswap64(*p); } uint16_t get16(uint16_t *p) { uint16_t val; val = *p; if (do_swap) val = bswap16(val); return val; } uint32_t get32(uint32_t *p) { uint32_t val; val = *p; if (do_swap) val = bswap32(val); return val; } void put16(uint16_t *p, uint16_t val) { if (do_swap) val = bswap16(val); *p = val; } void put32(uint32_t *p, uint32_t val) { if (do_swap) val = bswap32(val); *p = val; } /* executable information */ EXE_SYM *symtab; int nb_syms; int text_shndx; uint8_t *text; EXE_RELOC *relocs; int nb_relocs; #ifdef CONFIG_FORMAT_ELF /* ELF file info */ struct elf_shdr *shdr; uint8_t **sdata; struct elfhdr ehdr; char *strtab; int elf_must_swap(struct elfhdr *h) { union { uint32_t i; uint8_t b[4]; } swaptest; swaptest.i = 1; return (h->e_ident[EI_DATA] == ELFDATA2MSB) != (swaptest.b[0] == 0); } void elf_swap_ehdr(struct elfhdr *h) { swab16s(&h->e_type); /* Object file type */ swab16s(&h-> e_machine); /* Architecture */ swab32s(&h-> e_version); /* Object file version */ swabls(&h-> e_entry); /* Entry point virtual address */ swabls(&h-> e_phoff); /* Program header table file offset */ swabls(&h-> e_shoff); /* Section header table file offset */ swab32s(&h-> e_flags); /* Processor-specific flags */ swab16s(&h-> e_ehsize); /* ELF header size in bytes */ swab16s(&h-> e_phentsize); /* Program header table entry size */ swab16s(&h-> e_phnum); /* Program header table entry count */ swab16s(&h-> e_shentsize); /* Section header table entry size */ swab16s(&h-> e_shnum); /* Section header table entry count */ swab16s(&h-> e_shstrndx); /* Section header string table index */ } void elf_swap_shdr(struct elf_shdr *h) { swab32s(&h-> sh_name); /* Section name (string tbl index) */ swab32s(&h-> sh_type); /* Section type */ swabls(&h-> sh_flags); /* Section flags */ swabls(&h-> sh_addr); /* Section virtual addr at execution */ swabls(&h-> sh_offset); /* Section file offset */ swabls(&h-> sh_size); /* Section size in bytes */ swab32s(&h-> sh_link); /* Link to another section */ swab32s(&h-> sh_info); /* Additional section information */ swabls(&h-> sh_addralign); /* Section alignment */ swabls(&h-> sh_entsize); /* Entry size if section holds table */ } void elf_swap_phdr(struct elf_phdr *h) { swab32s(&h->p_type); /* Segment type */ swabls(&h->p_offset); /* Segment file offset */ swabls(&h->p_vaddr); /* Segment virtual address */ swabls(&h->p_paddr); /* Segment physical address */ swabls(&h->p_filesz); /* Segment size in file */ swabls(&h->p_memsz); /* Segment size in memory */ swab32s(&h->p_flags); /* Segment flags */ swabls(&h->p_align); /* Segment alignment */ } void elf_swap_rel(ELF_RELOC *rel) { swabls(&rel->r_offset); swabls(&rel->r_info); #ifdef ELF_USES_RELOCA swabls(&rel->r_addend); #endif } struct elf_shdr *find_elf_section(struct elf_shdr *shdr, int shnum, const char *shstr, const char *name) { int i; const char *shname; struct elf_shdr *sec; for(i = 0; i < shnum; i++) { sec = &shdr[i]; if (!sec->sh_name) continue; shname = shstr + sec->sh_name; if (!strcmp(shname, name)) return sec; } return NULL; } int find_reloc(int sh_index) { struct elf_shdr *sec; int i; for(i = 0; i < ehdr.e_shnum; i++) { sec = &shdr[i]; if (sec->sh_type == SHT_RELOC && sec->sh_info == sh_index) return i; } return 0; } static host_ulong get_rel_offset(EXE_RELOC *rel) { return rel->r_offset; } static char *get_rel_sym_name(EXE_RELOC *rel) { return strtab + symtab[ELFW(R_SYM)(rel->r_info)].st_name; } static char *get_sym_name(EXE_SYM *sym) { return strtab + sym->st_name; } /* load an elf object file */ int load_object(const char *filename) { int fd; struct elf_shdr *sec, *symtab_sec, *strtab_sec, *text_sec; int i, j; ElfW(Sym) *sym; char *shstr; ELF_RELOC *rel; fd = open(filename, O_RDONLY); if (fd < 0) error("can't open file '%s'", filename); /* Read ELF header. */ if (read(fd, &ehdr, sizeof (ehdr)) != sizeof (ehdr)) error("unable to read file header"); /* Check ELF identification. */ if (ehdr.e_ident[EI_MAG0] != ELFMAG0 || ehdr.e_ident[EI_MAG1] != ELFMAG1 || ehdr.e_ident[EI_MAG2] != ELFMAG2 || ehdr.e_ident[EI_MAG3] != ELFMAG3 || ehdr.e_ident[EI_VERSION] != EV_CURRENT) { error("bad ELF header"); } do_swap = elf_must_swap(&ehdr); if (do_swap) elf_swap_ehdr(&ehdr); if (ehdr.e_ident[EI_CLASS] != ELF_CLASS) error("Unsupported ELF class"); if (ehdr.e_type != ET_REL) error("ELF object file expected"); if (ehdr.e_version != EV_CURRENT) error("Invalid ELF version"); if (!elf_check_arch(ehdr.e_machine)) error("Unsupported CPU (e_machine=%d)", ehdr.e_machine); /* read section headers */ shdr = load_data(fd, ehdr.e_shoff, ehdr.e_shnum * sizeof(struct elf_shdr)); if (do_swap) { for(i = 0; i < ehdr.e_shnum; i++) { elf_swap_shdr(&shdr[i]); } } /* read all section data */ sdata = malloc(sizeof(void *) * ehdr.e_shnum); memset(sdata, 0, sizeof(void *) * ehdr.e_shnum); for(i = 0;i < ehdr.e_shnum; i++) { sec = &shdr[i]; if (sec->sh_type != SHT_NOBITS) sdata[i] = load_data(fd, sec->sh_offset, sec->sh_size); } sec = &shdr[ehdr.e_shstrndx]; shstr = sdata[ehdr.e_shstrndx]; /* swap relocations */ for(i = 0; i < ehdr.e_shnum; i++) { sec = &shdr[i]; if (sec->sh_type == SHT_RELOC) { nb_relocs = sec->sh_size / sec->sh_entsize; if (do_swap) { for(j = 0, rel = (ELF_RELOC *)sdata[i]; j < nb_relocs; j++, rel++) elf_swap_rel(rel); } } } /* text section */ text_sec = find_elf_section(shdr, ehdr.e_shnum, shstr, ".text"); if (!text_sec) error("could not find .text section"); text_shndx = text_sec - shdr; text = sdata[text_shndx]; /* find text relocations, if any */ relocs = NULL; nb_relocs = 0; i = find_reloc(text_shndx); if (i != 0) { relocs = (ELF_RELOC *)sdata[i]; nb_relocs = shdr[i].sh_size / shdr[i].sh_entsize; } symtab_sec = find_elf_section(shdr, ehdr.e_shnum, shstr, ".symtab"); if (!symtab_sec) error("could not find .symtab section"); strtab_sec = &shdr[symtab_sec->sh_link]; symtab = (ElfW(Sym) *)sdata[symtab_sec - shdr]; strtab = sdata[symtab_sec->sh_link]; nb_syms = symtab_sec->sh_size / sizeof(ElfW(Sym)); if (do_swap) { for(i = 0, sym = symtab; i < nb_syms; i++, sym++) { swab32s(&sym->st_name); swabls(&sym->st_value); swabls(&sym->st_size); swab16s(&sym->st_shndx); } } close(fd); return 0; } #endif /* CONFIG_FORMAT_ELF */ #ifdef CONFIG_FORMAT_COFF /* COFF file info */ struct external_scnhdr *shdr; uint8_t **sdata; struct external_filehdr fhdr; struct external_syment *coff_symtab; char *strtab; int coff_text_shndx, coff_data_shndx; int data_shndx; #define STRTAB_SIZE 4 #define DIR32 0x06 #define DISP32 0x14 #define T_FUNCTION 0x20 #define C_EXTERNAL 2 void sym_ent_name(struct external_syment *ext_sym, EXE_SYM *sym) { char *q; int c, i, len; if (ext_sym->e.e.e_zeroes != 0) { q = sym->st_name; for(i = 0; i < 8; i++) { c = ext_sym->e.e_name[i]; if (c == '\0') break; *q++ = c; } *q = '\0'; } else { pstrcpy(sym->st_name, sizeof(sym->st_name), strtab + ext_sym->e.e.e_offset); } /* now convert the name to a C name (suppress the leading '_') */ if (sym->st_name[0] == '_') { len = strlen(sym->st_name); memmove(sym->st_name, sym->st_name + 1, len - 1); sym->st_name[len - 1] = '\0'; } } char *name_for_dotdata(struct coff_rel *rel) { int i; struct coff_sym *sym; uint32_t text_data; text_data = *(uint32_t *)(text + rel->r_offset); for (i = 0, sym = symtab; i < nb_syms; i++, sym++) { if (sym->st_syment->e_scnum == data_shndx && text_data >= sym->st_value && text_data < sym->st_value + sym->st_size) { return sym->st_name; } } return NULL; } static char *get_sym_name(EXE_SYM *sym) { return sym->st_name; } static char *get_rel_sym_name(EXE_RELOC *rel) { char *name; name = get_sym_name(symtab + *(uint32_t *)(rel->r_reloc->r_symndx)); if (!strcmp(name, ".data")) name = name_for_dotdata(rel); if (name[0] == '.') return NULL; return name; } static host_ulong get_rel_offset(EXE_RELOC *rel) { return rel->r_offset; } struct external_scnhdr *find_coff_section(struct external_scnhdr *shdr, int shnum, const char *name) { int i; const char *shname; struct external_scnhdr *sec; for(i = 0; i < shnum; i++) { sec = &shdr[i]; if (!sec->s_name) continue; shname = sec->s_name; if (!strcmp(shname, name)) return sec; } return NULL; } /* load a coff object file */ int load_object(const char *filename) { int fd; struct external_scnhdr *sec, *text_sec, *data_sec; int i; struct external_syment *ext_sym; struct external_reloc *coff_relocs; struct external_reloc *ext_rel; uint32_t *n_strtab; EXE_SYM *sym; EXE_RELOC *rel; fd = open(filename, O_RDONLY #ifdef _WIN32 | O_BINARY #endif ); if (fd < 0) error("can't open file '%s'", filename); /* Read COFF header. */ if (read(fd, &fhdr, sizeof (fhdr)) != sizeof (fhdr)) error("unable to read file header"); /* Check COFF identification. */ if (fhdr.f_magic != I386MAGIC) { error("bad COFF header"); } do_swap = 0; /* read section headers */ shdr = load_data(fd, sizeof(struct external_filehdr) + fhdr.f_opthdr, fhdr.f_nscns * sizeof(struct external_scnhdr)); /* read all section data */ sdata = malloc(sizeof(void *) * fhdr.f_nscns); memset(sdata, 0, sizeof(void *) * fhdr.f_nscns); const char *p; for(i = 0;i < fhdr.f_nscns; i++) { sec = &shdr[i]; if (!strstart(sec->s_name, ".bss", &p)) sdata[i] = load_data(fd, sec->s_scnptr, sec->s_size); } /* text section */ text_sec = find_coff_section(shdr, fhdr.f_nscns, ".text"); if (!text_sec) error("could not find .text section"); coff_text_shndx = text_sec - shdr; text = sdata[coff_text_shndx]; /* data section */ data_sec = find_coff_section(shdr, fhdr.f_nscns, ".data"); if (!data_sec) error("could not find .data section"); coff_data_shndx = data_sec - shdr; coff_symtab = load_data(fd, fhdr.f_symptr, fhdr.f_nsyms*SYMESZ); for (i = 0, ext_sym = coff_symtab; i < nb_syms; i++, ext_sym++) { for(i=0;i<8;i++) printf(" %02x", ((uint8_t *)ext_sym->e.e_name)[i]); printf("\n"); } n_strtab = load_data(fd, (fhdr.f_symptr + fhdr.f_nsyms*SYMESZ), STRTAB_SIZE); strtab = load_data(fd, (fhdr.f_symptr + fhdr.f_nsyms*SYMESZ), *n_strtab); nb_syms = fhdr.f_nsyms; for (i = 0, ext_sym = coff_symtab; i < nb_syms; i++, ext_sym++) { if (strstart(ext_sym->e.e_name, ".text", NULL)) text_shndx = ext_sym->e_scnum; if (strstart(ext_sym->e.e_name, ".data", NULL)) data_shndx = ext_sym->e_scnum; } /* set coff symbol */ symtab = malloc(sizeof(struct coff_sym) * nb_syms); int aux_size, j; for (i = 0, ext_sym = coff_symtab, sym = symtab; i < nb_syms; i++, ext_sym++, sym++) { memset(sym, 0, sizeof(*sym)); sym->st_syment = ext_sym; sym_ent_name(ext_sym, sym); sym->st_value = ext_sym->e_value; aux_size = *(int8_t *)ext_sym->e_numaux; if (ext_sym->e_scnum == text_shndx && ext_sym->e_type == T_FUNCTION) { for (j = aux_size + 1; j < nb_syms - i; j++) { if ((ext_sym + j)->e_scnum == text_shndx && (ext_sym + j)->e_type == T_FUNCTION ){ sym->st_size = (ext_sym + j)->e_value - ext_sym->e_value; break; } else if (j == nb_syms - i - 1) { sec = &shdr[coff_text_shndx]; sym->st_size = sec->s_size - ext_sym->e_value; break; } } } else if (ext_sym->e_scnum == data_shndx && *(uint8_t *)ext_sym->e_sclass == C_EXTERNAL) { for (j = aux_size + 1; j < nb_syms - i; j++) { if ((ext_sym + j)->e_scnum == data_shndx) { sym->st_size = (ext_sym + j)->e_value - ext_sym->e_value; break; } else if (j == nb_syms - i - 1) { sec = &shdr[coff_data_shndx]; sym->st_size = sec->s_size - ext_sym->e_value; break; } } } else { sym->st_size = 0; } sym->st_type = ext_sym->e_type; sym->st_shndx = ext_sym->e_scnum; } /* find text relocations, if any */ sec = &shdr[coff_text_shndx]; coff_relocs = load_data(fd, sec->s_relptr, sec->s_nreloc*RELSZ); nb_relocs = sec->s_nreloc; /* set coff relocation */ relocs = malloc(sizeof(struct coff_rel) * nb_relocs); for (i = 0, ext_rel = coff_relocs, rel = relocs; i < nb_relocs; i++, ext_rel++, rel++) { memset(rel, 0, sizeof(*rel)); rel->r_reloc = ext_rel; rel->r_offset = *(uint32_t *)ext_rel->r_vaddr; rel->r_type = *(uint16_t *)ext_rel->r_type; } return 0; } #endif /* CONFIG_FORMAT_COFF */ #ifdef CONFIG_FORMAT_MACH /* File Header */ struct mach_header mach_hdr; /* commands */ struct segment_command *segment = 0; struct dysymtab_command *dysymtabcmd = 0; struct symtab_command *symtabcmd = 0; /* section */ struct section *section_hdr; struct section *text_sec_hdr; uint8_t **sdata; /* relocs */ struct relocation_info *relocs; /* symbols */ EXE_SYM *symtab; struct nlist *symtab_std; char *strtab; /* indirect symbols */ uint32_t *tocdylib; /* Utility functions */ static inline char *find_str_by_index(int index) { return strtab+index; } /* Used by dyngen common code */ static char *get_sym_name(EXE_SYM *sym) { char *name = find_str_by_index(sym->n_un.n_strx); if ( sym->n_type & N_STAB ) /* Debug symbols are ignored */ return "debug"; if(!name) return name; if(name[0]=='_') return name + 1; else return name; } /* find a section index given its segname, sectname */ static int find_mach_sec_index(struct section *section_hdr, int shnum, const char *segname, const char *sectname) { int i; struct section *sec = section_hdr; for(i = 0; i < shnum; i++, sec++) { if (!sec->segname || !sec->sectname) continue; if (!strcmp(sec->sectname, sectname) && !strcmp(sec->segname, segname)) return i; } return -1; } /* find a section header given its segname, sectname */ struct section *find_mach_sec_hdr(struct section *section_hdr, int shnum, const char *segname, const char *sectname) { int index = find_mach_sec_index(section_hdr, shnum, segname, sectname); if(index == -1) return NULL; return section_hdr+index; } static inline void fetch_next_pair_value(struct relocation_info * rel, unsigned int *value) { struct scattered_relocation_info * scarel; if(R_SCATTERED & rel->r_address) { scarel = (struct scattered_relocation_info*)rel; if(scarel->r_type != PPC_RELOC_PAIR) error("fetch_next_pair_value: looking for a pair which was not found (1)"); *value = scarel->r_value; } else { if(rel->r_type != PPC_RELOC_PAIR) error("fetch_next_pair_value: looking for a pair which was not found (2)"); *value = rel->r_address; } } /* find a sym name given its value, in a section number */ static const char * find_sym_with_value_and_sec_number( int value, int sectnum, int * offset ) { int i, ret = -1; for( i = 0 ; i < nb_syms; i++ ) { if( !(symtab[i].n_type & N_STAB) && (symtab[i].n_type & N_SECT) && (symtab[i].n_sect == sectnum) && (symtab[i].st_value <= value) ) { if( (ret<0) || (symtab[i].st_value >= symtab[ret].st_value) ) ret = i; } } if( ret < 0 ) { *offset = 0; return 0; } else { *offset = value - symtab[ret].st_value; return get_sym_name(&symtab[ret]); } } /* * Find symbol name given a (virtual) address, and a section which is of type * S_NON_LAZY_SYMBOL_POINTERS or S_LAZY_SYMBOL_POINTERS or S_SYMBOL_STUBS */ static const char * find_reloc_name_in_sec_ptr(int address, struct section * sec_hdr) { unsigned int tocindex, symindex, size; const char *name = 0; /* Sanity check */ if(!( address >= sec_hdr->addr && address < (sec_hdr->addr + sec_hdr->size) ) ) return (char*)0; if( sec_hdr->flags & S_SYMBOL_STUBS ){ size = sec_hdr->reserved2; if(size == 0) error("size = 0"); } else if( sec_hdr->flags & S_LAZY_SYMBOL_POINTERS || sec_hdr->flags & S_NON_LAZY_SYMBOL_POINTERS) size = sizeof(unsigned long); else return 0; /* Compute our index in toc */ tocindex = (address - sec_hdr->addr)/size; symindex = tocdylib[sec_hdr->reserved1 + tocindex]; name = get_sym_name(&symtab[symindex]); return name; } static const char * find_reloc_name_given_its_address(int address) { unsigned int i; for(i = 0; i < segment->nsects ; i++) { const char * name = find_reloc_name_in_sec_ptr(address, §ion_hdr[i]); if((long)name != -1) return name; } return 0; } static const char * get_reloc_name(EXE_RELOC * rel, int * sslide) { char * name = 0; struct scattered_relocation_info * sca_rel = (struct scattered_relocation_info*)rel; int sectnum = rel->r_symbolnum; int sectoffset; int other_half=0; /* init the slide value */ *sslide = 0; if(R_SCATTERED & rel->r_address) return (char *)find_reloc_name_given_its_address(sca_rel->r_value); if(rel->r_extern) { /* ignore debug sym */ if ( symtab[rel->r_symbolnum].n_type & N_STAB ) return 0; return get_sym_name(&symtab[rel->r_symbolnum]); } /* Intruction contains an offset to the symbols pointed to, in the rel->r_symbolnum section */ sectoffset = *(uint32_t *)(text + rel->r_address) & 0xffff; if(sectnum==0xffffff) return 0; /* Sanity Check */ if(sectnum > segment->nsects) error("sectnum > segment->nsects"); switch(rel->r_type) { case PPC_RELOC_LO16: fetch_next_pair_value(rel+1, &other_half); sectoffset |= (other_half << 16); break; case PPC_RELOC_HI16: fetch_next_pair_value(rel+1, &other_half); sectoffset = (sectoffset << 16) | (uint16_t)(other_half & 0xffff); break; case PPC_RELOC_HA16: fetch_next_pair_value(rel+1, &other_half); sectoffset = (sectoffset << 16) + (int16_t)(other_half & 0xffff); break; case PPC_RELOC_BR24: sectoffset = ( *(uint32_t *)(text + rel->r_address) & 0x03fffffc ); if (sectoffset & 0x02000000) sectoffset |= 0xfc000000; break; default: error("switch(rel->type) not found"); } if(rel->r_pcrel) sectoffset += rel->r_address; if (rel->r_type == PPC_RELOC_BR24) name = (char *)find_reloc_name_in_sec_ptr((int)sectoffset, §ion_hdr[sectnum-1]); /* search it in the full symbol list, if not found */ if(!name) name = (char *)find_sym_with_value_and_sec_number(sectoffset, sectnum, sslide); return name; } /* Used by dyngen common code */ static const char * get_rel_sym_name(EXE_RELOC * rel) { int sslide; return get_reloc_name( rel, &sslide); } /* Used by dyngen common code */ static host_ulong get_rel_offset(EXE_RELOC *rel) { struct scattered_relocation_info * sca_rel = (struct scattered_relocation_info*)rel; if(R_SCATTERED & rel->r_address) return sca_rel->r_address; else return rel->r_address; } /* load a mach-o object file */ int load_object(const char *filename) { int fd; unsigned int offset_to_segment = 0; unsigned int offset_to_dysymtab = 0; unsigned int offset_to_symtab = 0; struct load_command lc; unsigned int i, j; EXE_SYM *sym; struct nlist *syment; fd = open(filename, O_RDONLY); if (fd < 0) error("can't open file '%s'", filename); /* Read Mach header. */ if (read(fd, &mach_hdr, sizeof (mach_hdr)) != sizeof (mach_hdr)) error("unable to read file header"); /* Check Mach identification. */ if (!check_mach_header(mach_hdr)) { error("bad Mach header"); } if (mach_hdr.cputype != CPU_TYPE_POWERPC) error("Unsupported CPU"); if (mach_hdr.filetype != MH_OBJECT) error("Unsupported Mach Object"); /* read segment headers */ for(i=0, j=sizeof(mach_hdr); insects * sizeof(struct section)); /* read all section data */ sdata = (uint8_t **)malloc(sizeof(void *) * segment->nsects); memset(sdata, 0, sizeof(void *) * segment->nsects); /* Load the data in section data */ for(i = 0; i < segment->nsects; i++) { sdata[i] = load_data(fd, section_hdr[i].offset, section_hdr[i].size); } /* text section */ text_sec_hdr = find_mach_sec_hdr(section_hdr, segment->nsects, SEG_TEXT, SECT_TEXT); i = find_mach_sec_index(section_hdr, segment->nsects, SEG_TEXT, SECT_TEXT); if (i == -1 || !text_sec_hdr) error("could not find __TEXT,__text section"); text = sdata[i]; /* Make sure dysym was loaded */ if(!(int)dysymtabcmd) error("could not find __DYSYMTAB segment"); /* read the table of content of the indirect sym */ tocdylib = load_data( fd, dysymtabcmd->indirectsymoff, dysymtabcmd->nindirectsyms * sizeof(uint32_t) ); /* Make sure symtab was loaded */ if(!(int)symtabcmd) error("could not find __SYMTAB segment"); nb_syms = symtabcmd->nsyms; symtab_std = load_data(fd, symtabcmd->symoff, symtabcmd->nsyms * sizeof(struct nlist)); strtab = load_data(fd, symtabcmd->stroff, symtabcmd->strsize); symtab = malloc(sizeof(EXE_SYM) * nb_syms); /* Now transform the symtab, to an extended version, with the sym size, and the C name */ for(i = 0, sym = symtab, syment = symtab_std; i < nb_syms; i++, sym++, syment++) { struct nlist *sym_follow, *sym_next = 0; unsigned int j; memset(sym, 0, sizeof(*sym)); if ( syment->n_type & N_STAB ) /* Debug symbols are skipped */ continue; memcpy(sym, syment, sizeof(*syment)); /* Find the following symbol in order to get the current symbol size */ for(j = 0, sym_follow = symtab_std; j < nb_syms; j++, sym_follow++) { if ( sym_follow->n_sect != 1 || sym_follow->n_type & N_STAB || !(sym_follow->n_value > sym->st_value)) continue; if(!sym_next) { sym_next = sym_follow; continue; } if(!(sym_next->n_value > sym_follow->n_value)) continue; sym_next = sym_follow; } if(sym_next) sym->st_size = sym_next->n_value - sym->st_value; else sym->st_size = text_sec_hdr->size - sym->st_value; } /* Find Reloc */ relocs = load_data(fd, text_sec_hdr->reloff, text_sec_hdr->nreloc * sizeof(struct relocation_info)); nb_relocs = text_sec_hdr->nreloc; close(fd); return 0; } #endif /* CONFIG_FORMAT_MACH */ void get_reloc_expr(char *name, int name_size, const char *sym_name) { const char *p; if (strstart(sym_name, "__op_param", &p)) { snprintf(name, name_size, "param%s", p); } else if (strstart(sym_name, "__op_gen_label", &p)) { snprintf(name, name_size, "gen_labels[param%s]", p); } else { #ifdef HOST_SPARC if (sym_name[0] == '.') snprintf(name, name_size, "(long)(&__dot_%s)", sym_name + 1); else #endif snprintf(name, name_size, "(long)(&%s)", sym_name); } } #ifdef HOST_IA64 #define PLT_ENTRY_SIZE 16 /* 1 bundle containing "brl" */ struct plt_entry { struct plt_entry *next; const char *name; unsigned long addend; } *plt_list; static int get_plt_index (const char *name, unsigned long addend) { struct plt_entry *plt, *prev= NULL; int index = 0; /* see if we already have an entry for this target: */ for (plt = plt_list; plt; ++index, prev = plt, plt = plt->next) if (strcmp(plt->name, name) == 0 && plt->addend == addend) return index; /* nope; create a new PLT entry: */ plt = malloc(sizeof(*plt)); if (!plt) { perror("malloc"); exit(1); } memset(plt, 0, sizeof(*plt)); plt->name = strdup(name); plt->addend = addend; /* append to plt-list: */ if (prev) prev->next = plt; else plt_list = plt; return index; } #endif #ifdef HOST_ARM int arm_emit_ldr_info(const char *name, unsigned long start_offset, FILE *outfile, uint8_t *p_start, uint8_t *p_end, ELF_RELOC *relocs, int nb_relocs) { uint8_t *p; uint32_t insn; int offset, min_offset, pc_offset, data_size; uint8_t data_allocated[1024]; unsigned int data_index; memset(data_allocated, 0, sizeof(data_allocated)); p = p_start; min_offset = p_end - p_start; while (p < p_start + min_offset) { insn = get32((uint32_t *)p); if ((insn & 0x0d5f0000) == 0x051f0000) { /* ldr reg, [pc, #im] */ offset = insn & 0xfff; if (!(insn & 0x00800000)) offset = -offset; if ((offset & 3) !=0) error("%s:%04x: ldr pc offset must be 32 bit aligned", name, start_offset + p - p_start); pc_offset = p - p_start + offset + 8; if (pc_offset <= (p - p_start) || pc_offset >= (p_end - p_start)) error("%s:%04x: ldr pc offset must point inside the function code", name, start_offset + p - p_start); if (pc_offset < min_offset) min_offset = pc_offset; if (outfile) { /* ldr position */ fprintf(outfile, " arm_ldr_ptr->ptr = gen_code_ptr + %d;\n", p - p_start); /* ldr data index */ data_index = ((p_end - p_start) - pc_offset - 4) >> 2; fprintf(outfile, " arm_ldr_ptr->data_ptr = arm_data_ptr + %d;\n", data_index); fprintf(outfile, " arm_ldr_ptr++;\n"); if (data_index >= sizeof(data_allocated)) error("%s: too many data", name); if (!data_allocated[data_index]) { ELF_RELOC *rel; int i, addend, type; const char *sym_name, *p; char relname[1024]; data_allocated[data_index] = 1; /* data value */ addend = get32((uint32_t *)(p_start + pc_offset)); relname[0] = '\0'; for(i = 0, rel = relocs;i < nb_relocs; i++, rel++) { if (rel->r_offset == (pc_offset + start_offset)) { sym_name = get_rel_sym_name(rel); /* the compiler leave some unnecessary references to the code */ get_reloc_expr(relname, sizeof(relname), sym_name); type = ELF32_R_TYPE(rel->r_info); if (type != R_ARM_ABS32) error("%s: unsupported data relocation", name); break; } } fprintf(outfile, " arm_data_ptr[%d] = 0x%x", data_index, addend); if (relname[0] != '\0') fprintf(outfile, " + %s", relname); fprintf(outfile, ";\n"); } } } p += 4; } data_size = (p_end - p_start) - min_offset; if (data_size > 0 && outfile) { fprintf(outfile, " arm_data_ptr += %d;\n", data_size >> 2); } /* the last instruction must be a mov pc, lr */ if (p == p_start) goto arm_ret_error; p -= 4; insn = get32((uint32_t *)p); if ((insn & 0xffff0000) != 0xe91b0000) { arm_ret_error: if (!outfile) printf("%s: invalid epilog\n", name); } return p - p_start; } #endif #define MAX_ARGS 3 /* generate op code */ void gen_code(const char *name, host_ulong offset, host_ulong size, FILE *outfile, int gen_switch) { int copy_size = 0; uint8_t *p_start, *p_end; host_ulong start_offset; int nb_args, i, n; uint8_t args_present[MAX_ARGS]; const char *sym_name, *p; EXE_RELOC *rel; /* Compute exact size excluding prologue and epilogue instructions. * Increment start_offset to skip epilogue instructions, then compute * copy_size the indicate the size of the remaining instructions (in * bytes). */ p_start = text + offset; p_end = p_start + size; start_offset = offset; #if defined(HOST_I386) || defined(HOST_X86_64) #ifdef CONFIG_FORMAT_COFF { uint8_t *p; p = p_end - 1; if (p == p_start) error("empty code for %s", name); while (*p != 0xc3) { p--; if (p <= p_start) error("ret or jmp expected at the end of %s", name); } copy_size = p - p_start; } #else { int len; len = p_end - p_start; if (len == 0) error("empty code for %s", name); if (p_end[-1] == 0xc3) { len--; } else { error("ret or jmp expected at the end of %s", name); } copy_size = len; } #endif #elif defined(HOST_PPC) { uint8_t *p; p = (void *)(p_end - 4); if (p == p_start) error("empty code for %s", name); if (get32((uint32_t *)p) != 0x4e800020) error("blr expected at the end of %s", name); copy_size = p - p_start; } #elif defined(HOST_S390) { uint8_t *p; p = (void *)(p_end - 2); if (p == p_start) error("empty code for %s", name); if (get16((uint16_t *)p) != 0x07fe && get16((uint16_t *)p) != 0x07f4) error("br %%r14 expected at the end of %s", name); copy_size = p - p_start; } #elif defined(HOST_ALPHA) { uint8_t *p; p = p_end - 4; #if 0 /* XXX: check why it occurs */ if (p == p_start) error("empty code for %s", name); #endif if (get32((uint32_t *)p) != 0x6bfa8001) error("ret expected at the end of %s", name); copy_size = p - p_start; } #elif defined(HOST_IA64) { uint8_t *p; p = (void *)(p_end - 4); if (p == p_start) error("empty code for %s", name); /* br.ret.sptk.many b0;; */ /* 08 00 84 00 */ if (get32((uint32_t *)p) != 0x00840008) error("br.ret.sptk.many b0;; expected at the end of %s", name); copy_size = p_end - p_start; } #elif defined(HOST_SPARC) { uint32_t start_insn, end_insn1, end_insn2; uint8_t *p; p = (void *)(p_end - 8); if (p <= p_start) error("empty code for %s", name); start_insn = get32((uint32_t *)(p_start + 0x0)); end_insn1 = get32((uint32_t *)(p + 0x0)); end_insn2 = get32((uint32_t *)(p + 0x4)); if ((start_insn & ~0x1fff) == 0x9de3a000) { p_start += 0x4; start_offset += 0x4; if ((int)(start_insn | ~0x1fff) < -128) error("Found bogus save at the start of %s", name); if (end_insn1 != 0x81c7e008 || end_insn2 != 0x81e80000) error("ret; restore; not found at end of %s", name); } else { error("No save at the beginning of %s", name); } #if 0 /* Skip a preceeding nop, if present. */ if (p > p_start) { skip_insn = get32((uint32_t *)(p - 0x4)); if (skip_insn == 0x01000000) p -= 4; } #endif copy_size = p - p_start; } #elif defined(HOST_SPARC64) { uint32_t start_insn, end_insn1, end_insn2, skip_insn; uint8_t *p; p = (void *)(p_end - 8); if (p <= p_start) error("empty code for %s", name); start_insn = get32((uint32_t *)(p_start + 0x0)); end_insn1 = get32((uint32_t *)(p + 0x0)); end_insn2 = get32((uint32_t *)(p + 0x4)); if ((start_insn & ~0x1fff) == 0x9de3a000) { p_start += 0x4; start_offset += 0x4; if ((int)(start_insn | ~0x1fff) < -256) error("Found bogus save at the start of %s", name); if (end_insn1 != 0x81c7e008 || end_insn2 != 0x81e80000) error("ret; restore; not found at end of %s", name); } else { error("No save at the beginning of %s", name); } /* Skip a preceeding nop, if present. */ if (p > p_start) { skip_insn = get32((uint32_t *)(p - 0x4)); if (skip_insn == 0x01000000) p -= 4; } copy_size = p - p_start; } #elif defined(HOST_ARM) { if ((p_end - p_start) <= 16) error("%s: function too small", name); if (get32((uint32_t *)p_start) != 0xe1a0c00d || (get32((uint32_t *)(p_start + 4)) & 0xffff0000) != 0xe92d0000 || get32((uint32_t *)(p_start + 8)) != 0xe24cb004) error("%s: invalid prolog", name); p_start += 12; start_offset += 12; copy_size = arm_emit_ldr_info(name, start_offset, NULL, p_start, p_end, relocs, nb_relocs); } #elif defined(HOST_M68K) { uint8_t *p; p = (void *)(p_end - 2); if (p == p_start) error("empty code for %s", name); // remove NOP's, probably added for alignment while ((get16((uint16_t *)p) == 0x4e71) && (p>p_start)) p -= 2; if (get16((uint16_t *)p) != 0x4e75) error("rts expected at the end of %s", name); copy_size = p - p_start; } #else #error unsupported CPU #endif /* compute the number of arguments by looking at the relocations */ for(i = 0;i < MAX_ARGS; i++) args_present[i] = 0; for(i = 0, rel = relocs;i < nb_relocs; i++, rel++) { host_ulong offset = get_rel_offset(rel); if (offset >= start_offset && offset < start_offset + (p_end - p_start)) { sym_name = get_rel_sym_name(rel); if(!sym_name) continue; if (strstart(sym_name, "__op_param", &p) || strstart(sym_name, "__op_gen_label", &p)) { n = strtoul(p, NULL, 10); if (n > MAX_ARGS) error("too many arguments in %s", name); args_present[n - 1] = 1; } } } nb_args = 0; while (nb_args < MAX_ARGS && args_present[nb_args]) nb_args++; for(i = nb_args; i < MAX_ARGS; i++) { if (args_present[i]) error("inconsistent argument numbering in %s", name); } if (gen_switch == 2) { fprintf(outfile, "DEF(%s, %d, %d)\n", name + 3, nb_args, copy_size); } else if (gen_switch == 1) { /* output C code */ fprintf(outfile, "case INDEX_%s: {\n", name); if (nb_args > 0) { fprintf(outfile, " long "); for(i = 0; i < nb_args; i++) { if (i != 0) fprintf(outfile, ", "); fprintf(outfile, "param%d", i + 1); } fprintf(outfile, ";\n"); } #if defined(HOST_IA64) fprintf(outfile, " extern char %s;\n", name); #else fprintf(outfile, " extern void %s();\n", name); #endif for(i = 0, rel = relocs;i < nb_relocs; i++, rel++) { host_ulong offset = get_rel_offset(rel); if (offset >= start_offset && offset < start_offset + (p_end - p_start)) { sym_name = get_rel_sym_name(rel); if(!sym_name) continue; if (*sym_name && !strstart(sym_name, "__op_param", NULL) && !strstart(sym_name, "__op_jmp", NULL) && !strstart(sym_name, "__op_gen_label", NULL)) { #if defined(HOST_SPARC) if (sym_name[0] == '.') { fprintf(outfile, "extern char __dot_%s __asm__(\"%s\");\n", sym_name+1, sym_name); continue; } #endif #if defined(__APPLE__) /* set __attribute((unused)) on darwin because we wan't to avoid warning when we don't use the symbol */ fprintf(outfile, "extern char %s __attribute__((unused));\n", sym_name); #elif defined(HOST_IA64) if (ELF64_R_TYPE(rel->r_info) != R_IA64_PCREL21B) /* * PCREL21 br.call targets generally * are out of range and need to go * through an "import stub". */ fprintf(outfile, " extern char %s;\n", sym_name); #else fprintf(outfile, "extern char %s;\n", sym_name); #endif } } } fprintf(outfile, " memcpy(gen_code_ptr, (void *)((char *)&%s+%d), %d);\n", name, (int)(start_offset - offset), copy_size); /* emit code offset information */ { EXE_SYM *sym; const char *sym_name, *p; unsigned long val; int n; for(i = 0, sym = symtab; i < nb_syms; i++, sym++) { sym_name = get_sym_name(sym); if (strstart(sym_name, "__op_label", &p)) { uint8_t *ptr; unsigned long offset; /* test if the variable refers to a label inside the code we are generating */ #ifdef CONFIG_FORMAT_COFF if (sym->st_shndx == text_shndx) { ptr = sdata[coff_text_shndx]; } else if (sym->st_shndx == data_shndx) { ptr = sdata[coff_data_shndx]; } else { ptr = NULL; } #elif defined(CONFIG_FORMAT_MACH) if(!sym->n_sect) continue; ptr = sdata[sym->n_sect-1]; #else ptr = sdata[sym->st_shndx]; #endif if (!ptr) error("__op_labelN in invalid section"); offset = sym->st_value; #ifdef CONFIG_FORMAT_MACH offset -= section_hdr[sym->n_sect-1].addr; #endif val = *(unsigned long *)(ptr + offset); #ifdef ELF_USES_RELOCA { int reloc_shndx, nb_relocs1, j; /* try to find a matching relocation */ reloc_shndx = find_reloc(sym->st_shndx); if (reloc_shndx) { nb_relocs1 = shdr[reloc_shndx].sh_size / shdr[reloc_shndx].sh_entsize; rel = (ELF_RELOC *)sdata[reloc_shndx]; for(j = 0; j < nb_relocs1; j++) { if (rel->r_offset == offset) { val = rel->r_addend; break; } rel++; } } } #endif if (val >= start_offset && val <= start_offset + copy_size) { n = strtol(p, NULL, 10); fprintf(outfile, " label_offsets[%d] = %ld + (gen_code_ptr - gen_code_buf);\n", n, (long)(val - start_offset)); } } } } /* load parameres in variables */ for(i = 0; i < nb_args; i++) { fprintf(outfile, " param%d = *opparam_ptr++;\n", i + 1); } /* patch relocations */ #if defined(HOST_I386) { char name[256]; int type; int addend; int reloc_offset; for(i = 0, rel = relocs;i < nb_relocs; i++, rel++) { if (rel->r_offset >= start_offset && rel->r_offset < start_offset + copy_size) { sym_name = get_rel_sym_name(rel); if (!sym_name) continue; reloc_offset = rel->r_offset - start_offset; if (strstart(sym_name, "__op_jmp", &p)) { int n; n = strtol(p, NULL, 10); /* __op_jmp relocations are done at runtime to do translated block chaining: the offset of the instruction needs to be stored */ fprintf(outfile, " jmp_offsets[%d] = %d + (gen_code_ptr - gen_code_buf);\n", n, reloc_offset); continue; } get_reloc_expr(name, sizeof(name), sym_name); addend = get32((uint32_t *)(text + rel->r_offset)); #ifdef CONFIG_FORMAT_ELF type = ELF32_R_TYPE(rel->r_info); switch(type) { case R_386_32: fprintf(outfile, " *(uint32_t *)(gen_code_ptr + %d) = %s + %d;\n", reloc_offset, name, addend); break; case R_386_PC32: fprintf(outfile, " *(uint32_t *)(gen_code_ptr + %d) = %s - (long)(gen_code_ptr + %d) + %d;\n", reloc_offset, name, reloc_offset, addend); break; default: error("unsupported i386 relocation (%d)", type); } #elif defined(CONFIG_FORMAT_COFF) { char *temp_name; int j; EXE_SYM *sym; temp_name = get_sym_name(symtab + *(uint32_t *)(rel->r_reloc->r_symndx)); if (!strcmp(temp_name, ".data")) { for (j = 0, sym = symtab; j < nb_syms; j++, sym++) { if (strstart(sym->st_name, sym_name, NULL)) { addend -= sym->st_value; } } } } type = rel->r_type; switch(type) { case DIR32: fprintf(outfile, " *(uint32_t *)(gen_code_ptr + %d) = %s + %d;\n", reloc_offset, name, addend); break; case DISP32: fprintf(outfile, " *(uint32_t *)(gen_code_ptr + %d) = %s - (long)(gen_code_ptr + %d) + %d -4;\n", reloc_offset, name, reloc_offset, addend); break; default: error("unsupported i386 relocation (%d)", type); } #else #error unsupport object format #endif } } } #elif defined(HOST_X86_64) { char name[256]; int type; int addend; int reloc_offset; for(i = 0, rel = relocs;i < nb_relocs; i++, rel++) { if (rel->r_offset >= start_offset && rel->r_offset < start_offset + copy_size) { sym_name = strtab + symtab[ELFW(R_SYM)(rel->r_info)].st_name; get_reloc_expr(name, sizeof(name), sym_name); type = ELF32_R_TYPE(rel->r_info); addend = rel->r_addend; reloc_offset = rel->r_offset - start_offset; switch(type) { case R_X86_64_32: fprintf(outfile, " *(uint32_t *)(gen_code_ptr + %d) = (uint32_t)%s + %d;\n", reloc_offset, name, addend); break; case R_X86_64_32S: fprintf(outfile, " *(uint32_t *)(gen_code_ptr + %d) = (int32_t)%s + %d;\n", reloc_offset, name, addend); break; case R_X86_64_PC32: fprintf(outfile, " *(uint32_t *)(gen_code_ptr + %d) = %s - (long)(gen_code_ptr + %d) + %d;\n", reloc_offset, name, reloc_offset, addend); break; default: error("unsupported X86_64 relocation (%d)", type); } } } } #elif defined(HOST_PPC) { #ifdef CONFIG_FORMAT_ELF char name[256]; int type; int addend; int reloc_offset; for(i = 0, rel = relocs;i < nb_relocs; i++, rel++) { if (rel->r_offset >= start_offset && rel->r_offset < start_offset + copy_size) { sym_name = strtab + symtab[ELFW(R_SYM)(rel->r_info)].st_name; reloc_offset = rel->r_offset - start_offset; if (strstart(sym_name, "__op_jmp", &p)) { int n; n = strtol(p, NULL, 10); /* __op_jmp relocations are done at runtime to do translated block chaining: the offset of the instruction needs to be stored */ fprintf(outfile, " jmp_offsets[%d] = %d + (gen_code_ptr - gen_code_buf);\n", n, reloc_offset); continue; } get_reloc_expr(name, sizeof(name), sym_name); type = ELF32_R_TYPE(rel->r_info); addend = rel->r_addend; switch(type) { case R_PPC_ADDR32: fprintf(outfile, " *(uint32_t *)(gen_code_ptr + %d) = %s + %d;\n", reloc_offset, name, addend); break; case R_PPC_ADDR16_LO: fprintf(outfile, " *(uint16_t *)(gen_code_ptr + %d) = (%s + %d);\n", reloc_offset, name, addend); break; case R_PPC_ADDR16_HI: fprintf(outfile, " *(uint16_t *)(gen_code_ptr + %d) = (%s + %d) >> 16;\n", reloc_offset, name, addend); break; case R_PPC_ADDR16_HA: fprintf(outfile, " *(uint16_t *)(gen_code_ptr + %d) = (%s + %d + 0x8000) >> 16;\n", reloc_offset, name, addend); break; case R_PPC_REL24: /* warning: must be at 32 MB distancy */ fprintf(outfile, " *(uint32_t *)(gen_code_ptr + %d) = (*(uint32_t *)(gen_code_ptr + %d) & ~0x03fffffc) | ((%s - (long)(gen_code_ptr + %d) + %d) & 0x03fffffc);\n", reloc_offset, reloc_offset, name, reloc_offset, addend); break; default: error("unsupported powerpc relocation (%d)", type); } } } #elif defined(CONFIG_FORMAT_MACH) struct scattered_relocation_info *scarel; struct relocation_info * rel; char final_sym_name[256]; const char *sym_name; const char *p; int slide, sslide; int i; for(i = 0, rel = relocs; i < nb_relocs; i++, rel++) { unsigned int offset, length, value = 0; unsigned int type, pcrel, isym = 0; unsigned int usesym = 0; if(R_SCATTERED & rel->r_address) { scarel = (struct scattered_relocation_info*)rel; offset = (unsigned int)scarel->r_address; length = scarel->r_length; pcrel = scarel->r_pcrel; type = scarel->r_type; value = scarel->r_value; } else { value = isym = rel->r_symbolnum; usesym = (rel->r_extern); offset = rel->r_address; length = rel->r_length; pcrel = rel->r_pcrel; type = rel->r_type; } slide = offset - start_offset; if (!(offset >= start_offset && offset < start_offset + size)) continue; /* not in our range */ sym_name = get_reloc_name(rel, &sslide); if(usesym && symtab[isym].n_type & N_STAB) continue; /* don't handle STAB (debug sym) */ if (sym_name && strstart(sym_name, "__op_jmp", &p)) { int n; n = strtol(p, NULL, 10); fprintf(outfile, " jmp_offsets[%d] = %d + (gen_code_ptr - gen_code_buf);\n", n, slide); continue; /* Nothing more to do */ } if(!sym_name) { fprintf(outfile, "/* #warning relocation not handled in %s (value 0x%x, %s, offset 0x%x, length 0x%x, %s, type 0x%x) */\n", name, value, usesym ? "use sym" : "don't use sym", offset, length, pcrel ? "pcrel":"", type); continue; /* dunno how to handle without final_sym_name */ } get_reloc_expr(final_sym_name, sizeof(final_sym_name), sym_name); switch(type) { case PPC_RELOC_BR24: if (!strstart(sym_name,"__op_gen_label",&p)) { fprintf(outfile, "{\n"); fprintf(outfile, " uint32_t imm = *(uint32_t *)(gen_code_ptr + %d) & 0x3fffffc;\n", slide); fprintf(outfile, " *(uint32_t *)(gen_code_ptr + %d) = (*(uint32_t *)(gen_code_ptr + %d) & ~0x03fffffc) | ((imm + ((long)%s - (long)gen_code_ptr) + %d) & 0x03fffffc);\n", slide, slide, name, sslide ); fprintf(outfile, "}\n"); } else { fprintf(outfile, " *(uint32_t *)(gen_code_ptr + %d) = (*(uint32_t *)(gen_code_ptr + %d) & ~0x03fffffc) | (((long)%s - (long)gen_code_ptr - %d) & 0x03fffffc);\n", slide, slide, final_sym_name, slide); } break; case PPC_RELOC_HI16: fprintf(outfile, " *(uint16_t *)(gen_code_ptr + %d + 2) = (%s + %d) >> 16;\n", slide, final_sym_name, sslide); break; case PPC_RELOC_LO16: fprintf(outfile, " *(uint16_t *)(gen_code_ptr + %d + 2) = (%s + %d);\n", slide, final_sym_name, sslide); break; case PPC_RELOC_HA16: fprintf(outfile, " *(uint16_t *)(gen_code_ptr + %d + 2) = (%s + %d + 0x8000) >> 16;\n", slide, final_sym_name, sslide); break; default: error("unsupported powerpc relocation (%d)", type); } } #else #error unsupport object format #endif } #elif defined(HOST_S390) { char name[256]; int type; int addend; int reloc_offset; for(i = 0, rel = relocs;i < nb_relocs; i++, rel++) { if (rel->r_offset >= start_offset && rel->r_offset < start_offset + copy_size) { sym_name = strtab + symtab[ELFW(R_SYM)(rel->r_info)].st_name; get_reloc_expr(name, sizeof(name), sym_name); type = ELF32_R_TYPE(rel->r_info); addend = rel->r_addend; reloc_offset = rel->r_offset - start_offset; switch(type) { case R_390_32: fprintf(outfile, " *(uint32_t *)(gen_code_ptr + %d) = %s + %d;\n", reloc_offset, name, addend); break; case R_390_16: fprintf(outfile, " *(uint16_t *)(gen_code_ptr + %d) = %s + %d;\n", reloc_offset, name, addend); break; case R_390_8: fprintf(outfile, " *(uint8_t *)(gen_code_ptr + %d) = %s + %d;\n", reloc_offset, name, addend); break; default: error("unsupported s390 relocation (%d)", type); } } } } #elif defined(HOST_ALPHA) { for (i = 0, rel = relocs; i < nb_relocs; i++, rel++) { if (rel->r_offset >= start_offset && rel->r_offset < start_offset + copy_size) { int type; long reloc_offset; type = ELF64_R_TYPE(rel->r_info); sym_name = strtab + symtab[ELF64_R_SYM(rel->r_info)].st_name; reloc_offset = rel->r_offset - start_offset; switch (type) { case R_ALPHA_GPDISP: /* The gp is just 32 bit, and never changes, so it's easiest to emit it as an immediate instead of constructing it from the pv or ra. */ fprintf(outfile, " immediate_ldah(gen_code_ptr + %ld, gp);\n", reloc_offset); fprintf(outfile, " immediate_lda(gen_code_ptr + %ld, gp);\n", reloc_offset + (int)rel->r_addend); break; case R_ALPHA_LITUSE: /* jsr to literal hint. Could be used to optimize to bsr. Ignore for now, since some called functions (libc) need pv to be set up. */ break; case R_ALPHA_HINT: /* Branch target prediction hint. Ignore for now. Should be already correct for in-function jumps. */ break; case R_ALPHA_LITERAL: /* Load a literal from the GOT relative to the gp. Since there's only a single gp, nothing is to be done. */ break; case R_ALPHA_GPRELHIGH: /* Handle fake relocations against __op_param symbol. Need to emit the high part of the immediate value instead. Other symbols need no special treatment. */ if (strstart(sym_name, "__op_param", &p)) fprintf(outfile, " immediate_ldah(gen_code_ptr + %ld, param%s);\n", reloc_offset, p); break; case R_ALPHA_GPRELLOW: if (strstart(sym_name, "__op_param", &p)) fprintf(outfile, " immediate_lda(gen_code_ptr + %ld, param%s);\n", reloc_offset, p); break; case R_ALPHA_BRSGP: /* PC-relative jump. Tweak offset to skip the two instructions that try to set up the gp from the pv. */ fprintf(outfile, " fix_bsr(gen_code_ptr + %ld, (uint8_t *) &%s - (gen_code_ptr + %ld + 4) + 8);\n", reloc_offset, sym_name, reloc_offset); break; default: error("unsupported Alpha relocation (%d)", type); } } } } #elif defined(HOST_IA64) { unsigned long sym_idx; long code_offset; char name[256]; int type; long addend; for(i = 0, rel = relocs;i < nb_relocs; i++, rel++) { sym_idx = ELF64_R_SYM(rel->r_info); if (rel->r_offset < start_offset || rel->r_offset >= start_offset + copy_size) continue; sym_name = (strtab + symtab[sym_idx].st_name); code_offset = rel->r_offset - start_offset; if (strstart(sym_name, "__op_jmp", &p)) { int n; n = strtol(p, NULL, 10); /* __op_jmp relocations are done at runtime to do translated block chaining: the offset of the instruction needs to be stored */ fprintf(outfile, " jmp_offsets[%d] =" "%ld + (gen_code_ptr - gen_code_buf);\n", n, code_offset); continue; } get_reloc_expr(name, sizeof(name), sym_name); type = ELF64_R_TYPE(rel->r_info); addend = rel->r_addend; switch(type) { case R_IA64_IMM64: fprintf(outfile, " ia64_imm64(gen_code_ptr + %ld, " "%s + %ld);\n", code_offset, name, addend); break; case R_IA64_LTOFF22X: case R_IA64_LTOFF22: fprintf(outfile, " IA64_LTOFF(gen_code_ptr + %ld," " %s + %ld, %d);\n", code_offset, name, addend, (type == R_IA64_LTOFF22X)); break; case R_IA64_LDXMOV: fprintf(outfile, " ia64_ldxmov(gen_code_ptr + %ld," " %s + %ld);\n", code_offset, name, addend); break; case R_IA64_PCREL21B: if (strstart(sym_name, "__op_gen_label", NULL)) { fprintf(outfile, " ia64_imm21b(gen_code_ptr + %ld," " (long) (%s + %ld -\n\t\t" "((long) gen_code_ptr + %ld)) >> 4);\n", code_offset, name, addend, code_offset & ~0xfUL); } else { fprintf(outfile, " IA64_PLT(gen_code_ptr + %ld, " "%d);\t/* %s + %ld */\n", code_offset, get_plt_index(sym_name, addend), sym_name, addend); } break; default: error("unsupported ia64 relocation (0x%x)", type); } } fprintf(outfile, " ia64_nop_b(gen_code_ptr + %d);\n", copy_size - 16 + 2); } #elif defined(HOST_SPARC) { char name[256]; int type; int addend; int reloc_offset; for(i = 0, rel = relocs;i < nb_relocs; i++, rel++) { if (rel->r_offset >= start_offset && rel->r_offset < start_offset + copy_size) { sym_name = strtab + symtab[ELF32_R_SYM(rel->r_info)].st_name; get_reloc_expr(name, sizeof(name), sym_name); type = ELF32_R_TYPE(rel->r_info); addend = rel->r_addend; reloc_offset = rel->r_offset - start_offset; switch(type) { case R_SPARC_32: fprintf(outfile, " *(uint32_t *)(gen_code_ptr + %d) = %s + %d;\n", reloc_offset, name, addend); break; case R_SPARC_HI22: fprintf(outfile, " *(uint32_t *)(gen_code_ptr + %d) = " "((*(uint32_t *)(gen_code_ptr + %d)) " " & ~0x3fffff) " " | (((%s + %d) >> 10) & 0x3fffff);\n", reloc_offset, reloc_offset, name, addend); break; case R_SPARC_LO10: fprintf(outfile, " *(uint32_t *)(gen_code_ptr + %d) = " "((*(uint32_t *)(gen_code_ptr + %d)) " " & ~0x3ff) " " | ((%s + %d) & 0x3ff);\n", reloc_offset, reloc_offset, name, addend); break; case R_SPARC_WDISP30: fprintf(outfile, " *(uint32_t *)(gen_code_ptr + %d) = " "((*(uint32_t *)(gen_code_ptr + %d)) " " & ~0x3fffffff) " " | ((((%s + %d) - (long)(gen_code_ptr + %d))>>2) " " & 0x3fffffff);\n", reloc_offset, reloc_offset, name, addend, reloc_offset); break; default: error("unsupported sparc relocation (%d)", type); } } } } #elif defined(HOST_SPARC64) { char name[256]; int type; int addend; int reloc_offset; for(i = 0, rel = relocs;i < nb_relocs; i++, rel++) { if (rel->r_offset >= start_offset && rel->r_offset < start_offset + copy_size) { sym_name = strtab + symtab[ELF64_R_SYM(rel->r_info)].st_name; get_reloc_expr(name, sizeof(name), sym_name); type = ELF64_R_TYPE(rel->r_info); addend = rel->r_addend; reloc_offset = rel->r_offset - start_offset; switch(type) { case R_SPARC_32: fprintf(outfile, " *(uint32_t *)(gen_code_ptr + %d) = %s + %d;\n", reloc_offset, name, addend); break; case R_SPARC_HI22: fprintf(outfile, " *(uint32_t *)(gen_code_ptr + %d) = " "((*(uint32_t *)(gen_code_ptr + %d)) " " & ~0x3fffff) " " | (((%s + %d) >> 10) & 0x3fffff);\n", reloc_offset, reloc_offset, name, addend); break; case R_SPARC_LO10: fprintf(outfile, " *(uint32_t *)(gen_code_ptr + %d) = " "((*(uint32_t *)(gen_code_ptr + %d)) " " & ~0x3ff) " " | ((%s + %d) & 0x3ff);\n", reloc_offset, reloc_offset, name, addend); break; case R_SPARC_WDISP30: fprintf(outfile, " *(uint32_t *)(gen_code_ptr + %d) = " "((*(uint32_t *)(gen_code_ptr + %d)) " " & ~0x3fffffff) " " | ((((%s + %d) - (long)(gen_code_ptr + %d))>>2) " " & 0x3fffffff);\n", reloc_offset, reloc_offset, name, addend, reloc_offset); break; default: error("unsupported sparc64 relocation (%d)", type); } } } } #elif defined(HOST_ARM) { char name[256]; int type; int addend; int reloc_offset; arm_emit_ldr_info(name, start_offset, outfile, p_start, p_end, relocs, nb_relocs); for(i = 0, rel = relocs;i < nb_relocs; i++, rel++) { if (rel->r_offset >= start_offset && rel->r_offset < start_offset + copy_size) { sym_name = strtab + symtab[ELFW(R_SYM)(rel->r_info)].st_name; /* the compiler leave some unnecessary references to the code */ if (sym_name[0] == '\0') continue; get_reloc_expr(name, sizeof(name), sym_name); type = ELF32_R_TYPE(rel->r_info); addend = get32((uint32_t *)(text + rel->r_offset)); reloc_offset = rel->r_offset - start_offset; switch(type) { case R_ARM_ABS32: fprintf(outfile, " *(uint32_t *)(gen_code_ptr + %d) = %s + %d;\n", reloc_offset, name, addend); break; case R_ARM_PC24: fprintf(outfile, " arm_reloc_pc24((uint32_t *)(gen_code_ptr + %d), 0x%x, %s);\n", reloc_offset, addend, name); break; default: error("unsupported arm relocation (%d)", type); } } } } #elif defined(HOST_M68K) { char name[256]; int type; int addend; int reloc_offset; Elf32_Sym *sym; for(i = 0, rel = relocs;i < nb_relocs; i++, rel++) { if (rel->r_offset >= start_offset && rel->r_offset < start_offset + copy_size) { sym = &(symtab[ELFW(R_SYM)(rel->r_info)]); sym_name = strtab + symtab[ELFW(R_SYM)(rel->r_info)].st_name; get_reloc_expr(name, sizeof(name), sym_name); type = ELF32_R_TYPE(rel->r_info); addend = get32((uint32_t *)(text + rel->r_offset)) + rel->r_addend; reloc_offset = rel->r_offset - start_offset; switch(type) { case R_68K_32: fprintf(outfile, " /* R_68K_32 RELOC, offset %x */\n", rel->r_offset) ; fprintf(outfile, " *(uint32_t *)(gen_code_ptr + %d) = %s + %#x;\n", reloc_offset, name, addend ); break; case R_68K_PC32: fprintf(outfile, " /* R_68K_PC32 RELOC, offset %x */\n", rel->r_offset); fprintf(outfile, " *(uint32_t *)(gen_code_ptr + %d) = %s - (long)(gen_code_ptr + %#x) + %#x;\n", reloc_offset, name, reloc_offset, /*sym->st_value+*/ addend); break; default: error("unsupported m68k relocation (%d)", type); } } } } #else #error unsupported CPU #endif fprintf(outfile, " gen_code_ptr += %d;\n", copy_size); fprintf(outfile, "}\n"); fprintf(outfile, "break;\n\n"); } else { fprintf(outfile, "static inline void gen_%s(", name); if (nb_args == 0) { fprintf(outfile, "void"); } else { for(i = 0; i < nb_args; i++) { if (i != 0) fprintf(outfile, ", "); fprintf(outfile, "long param%d", i + 1); } } fprintf(outfile, ")\n"); fprintf(outfile, "{\n"); for(i = 0; i < nb_args; i++) { fprintf(outfile, " *gen_opparam_ptr++ = param%d;\n", i + 1); } fprintf(outfile, " *gen_opc_ptr++ = INDEX_%s;\n", name); fprintf(outfile, "}\n\n"); } } int gen_file(FILE *outfile, int out_type) { int i; EXE_SYM *sym; if (out_type == OUT_INDEX_OP) { fprintf(outfile, "DEF(end, 0, 0)\n"); fprintf(outfile, "DEF(nop, 0, 0)\n"); fprintf(outfile, "DEF(nop1, 1, 0)\n"); fprintf(outfile, "DEF(nop2, 2, 0)\n"); fprintf(outfile, "DEF(nop3, 3, 0)\n"); for(i = 0, sym = symtab; i < nb_syms; i++, sym++) { const char *name; name = get_sym_name(sym); if (strstart(name, OP_PREFIX, NULL)) { gen_code(name, sym->st_value, sym->st_size, outfile, 2); } } } else if (out_type == OUT_GEN_OP) { /* generate gen_xxx functions */ fprintf(outfile, "#include \"dyngen-op.h\"\n"); for(i = 0, sym = symtab; i < nb_syms; i++, sym++) { const char *name; name = get_sym_name(sym); if (strstart(name, OP_PREFIX, NULL)) { #if defined(CONFIG_FORMAT_ELF) || defined(CONFIG_FORMAT_COFF) if (sym->st_shndx != text_shndx) error("invalid section for opcode (0x%x)", sym->st_shndx); #endif gen_code(name, sym->st_value, sym->st_size, outfile, 0); } } } else { /* generate big code generation switch */ fprintf(outfile, "int dyngen_code(uint8_t *gen_code_buf,\n" " uint16_t *label_offsets, uint16_t *jmp_offsets,\n" " const uint16_t *opc_buf, const uint32_t *opparam_buf, const long *gen_labels)\n" "{\n" " uint8_t *gen_code_ptr;\n" " const uint16_t *opc_ptr;\n" " const uint32_t *opparam_ptr;\n"); #ifdef HOST_ARM fprintf(outfile, " uint8_t *last_gen_code_ptr = gen_code_buf;\n" " LDREntry *arm_ldr_ptr = arm_ldr_table;\n" " uint32_t *arm_data_ptr = arm_data_table;\n"); #endif #ifdef HOST_IA64 { long addend, not_first = 0; unsigned long sym_idx; int index, max_index; const char *sym_name; EXE_RELOC *rel; max_index = -1; for (i = 0, rel = relocs;i < nb_relocs; i++, rel++) { sym_idx = ELF64_R_SYM(rel->r_info); sym_name = (strtab + symtab[sym_idx].st_name); if (strstart(sym_name, "__op_gen_label", NULL)) continue; if (ELF64_R_TYPE(rel->r_info) != R_IA64_PCREL21B) continue; addend = rel->r_addend; index = get_plt_index(sym_name, addend); if (index <= max_index) continue; max_index = index; fprintf(outfile, " extern void %s(void);\n", sym_name); } fprintf(outfile, " struct ia64_fixup *plt_fixes = NULL, " "*ltoff_fixes = NULL;\n" " static long plt_target[] = {\n\t"); max_index = -1; for (i = 0, rel = relocs;i < nb_relocs; i++, rel++) { sym_idx = ELF64_R_SYM(rel->r_info); sym_name = (strtab + symtab[sym_idx].st_name); if (strstart(sym_name, "__op_gen_label", NULL)) continue; if (ELF64_R_TYPE(rel->r_info) != R_IA64_PCREL21B) continue; addend = rel->r_addend; index = get_plt_index(sym_name, addend); if (index <= max_index) continue; max_index = index; if (not_first) fprintf(outfile, ",\n\t"); not_first = 1; if (addend) fprintf(outfile, "(long) &%s + %ld", sym_name, addend); else fprintf(outfile, "(long) &%s", sym_name); } fprintf(outfile, "\n };\n" " unsigned int plt_offset[%u] = { 0 };\n", max_index + 1); } #endif fprintf(outfile, "\n" " gen_code_ptr = gen_code_buf;\n" " opc_ptr = opc_buf;\n" " opparam_ptr = opparam_buf;\n"); /* Generate prologue, if needed. */ fprintf(outfile, " for(;;) {\n" " switch(*opc_ptr++) {\n" ); for(i = 0, sym = symtab; i < nb_syms; i++, sym++) { const char *name; name = get_sym_name(sym); if (strstart(name, OP_PREFIX, NULL)) { #if 0 printf("%4d: %s pos=0x%08x len=%d\n", i, name, sym->st_value, sym->st_size); #endif #if defined(CONFIG_FORMAT_ELF) || defined(CONFIG_FORMAT_COFF) if (sym->st_shndx != text_shndx) error("invalid section for opcode (0x%x)", sym->st_shndx); #endif gen_code(name, sym->st_value, sym->st_size, outfile, 1); } } fprintf(outfile, " case INDEX_op_nop:\n" " break;\n" " case INDEX_op_nop1:\n" " opparam_ptr++;\n" " break;\n" " case INDEX_op_nop2:\n" " opparam_ptr += 2;\n" " break;\n" " case INDEX_op_nop3:\n" " opparam_ptr += 3;\n" " break;\n" " default:\n" " goto the_end;\n" " }\n"); #ifdef HOST_ARM /* generate constant table if needed */ fprintf(outfile, " if ((gen_code_ptr - last_gen_code_ptr) >= (MAX_FRAG_SIZE - MAX_OP_SIZE)) {\n" " gen_code_ptr = arm_flush_ldr(gen_code_ptr, arm_ldr_table, arm_ldr_ptr, arm_data_table, arm_data_ptr, 1);\n" " last_gen_code_ptr = gen_code_ptr;\n" " arm_ldr_ptr = arm_ldr_table;\n" " arm_data_ptr = arm_data_table;\n" " }\n"); #endif fprintf(outfile, " }\n" " the_end:\n" ); #ifdef HOST_IA64 fprintf(outfile, " {\n" " extern char code_gen_buffer[];\n" " ia64_apply_fixes(&gen_code_ptr, ltoff_fixes, " "(uint64_t) code_gen_buffer + 2*(1<<20), plt_fixes,\n\t\t\t" "sizeof(plt_target)/sizeof(plt_target[0]),\n\t\t\t" "plt_target, plt_offset);\n }\n"); #endif /* generate some code patching */ #ifdef HOST_ARM fprintf(outfile, "gen_code_ptr = arm_flush_ldr(gen_code_ptr, arm_ldr_table, arm_ldr_ptr, arm_data_table, arm_data_ptr, 0);\n"); #endif /* flush instruction cache */ fprintf(outfile, "flush_icache_range((unsigned long)gen_code_buf, (unsigned long)gen_code_ptr);\n"); fprintf(outfile, "return gen_code_ptr - gen_code_buf;\n"); fprintf(outfile, "}\n\n"); } return 0; } void usage(void) { printf("dyngen (c) 2003 Fabrice Bellard\n" "usage: dyngen [-o outfile] [-c] objfile\n" "Generate a dynamic code generator from an object file\n" "-c output enum of operations\n" "-g output gen_op_xx() functions\n" ); exit(1); } int main(int argc, char **argv) { int c, out_type; const char *filename, *outfilename; FILE *outfile; outfilename = "out.c"; out_type = OUT_CODE; for(;;) { c = getopt(argc, argv, "ho:cg"); if (c == -1) break; switch(c) { case 'h': usage(); break; case 'o': outfilename = optarg; break; case 'c': out_type = OUT_INDEX_OP; break; case 'g': out_type = OUT_GEN_OP; break; } } if (optind >= argc) usage(); filename = argv[optind]; outfile = fopen(outfilename, "w"); if (!outfile) error("could not open '%s'", outfilename); load_object(filename); gen_file(outfile, out_type); fclose(outfile); return 0; }