/* * Copyright (C) 2009-2010 Nippon Telegraph and Telephone Corporation. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License version * 2 as published by the Free Software Foundation. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * Contributions after 2012-01-13 are licensed under the terms of the * GNU GPL, version 2 or (at your option) any later version. */ #include "qemu-common.h" #include "qemu-error.h" #include "qemu_socket.h" #include "block_int.h" #include "bitops.h" #define SD_PROTO_VER 0x01 #define SD_DEFAULT_ADDR "localhost" #define SD_DEFAULT_PORT "7000" #define SD_OP_CREATE_AND_WRITE_OBJ 0x01 #define SD_OP_READ_OBJ 0x02 #define SD_OP_WRITE_OBJ 0x03 #define SD_OP_NEW_VDI 0x11 #define SD_OP_LOCK_VDI 0x12 #define SD_OP_RELEASE_VDI 0x13 #define SD_OP_GET_VDI_INFO 0x14 #define SD_OP_READ_VDIS 0x15 #define SD_OP_FLUSH_VDI 0x16 #define SD_FLAG_CMD_WRITE 0x01 #define SD_FLAG_CMD_COW 0x02 #define SD_FLAG_CMD_CACHE 0x04 #define SD_RES_SUCCESS 0x00 /* Success */ #define SD_RES_UNKNOWN 0x01 /* Unknown error */ #define SD_RES_NO_OBJ 0x02 /* No object found */ #define SD_RES_EIO 0x03 /* I/O error */ #define SD_RES_VDI_EXIST 0x04 /* Vdi exists already */ #define SD_RES_INVALID_PARMS 0x05 /* Invalid parameters */ #define SD_RES_SYSTEM_ERROR 0x06 /* System error */ #define SD_RES_VDI_LOCKED 0x07 /* Vdi is locked */ #define SD_RES_NO_VDI 0x08 /* No vdi found */ #define SD_RES_NO_BASE_VDI 0x09 /* No base vdi found */ #define SD_RES_VDI_READ 0x0A /* Cannot read requested vdi */ #define SD_RES_VDI_WRITE 0x0B /* Cannot write requested vdi */ #define SD_RES_BASE_VDI_READ 0x0C /* Cannot read base vdi */ #define SD_RES_BASE_VDI_WRITE 0x0D /* Cannot write base vdi */ #define SD_RES_NO_TAG 0x0E /* Requested tag is not found */ #define SD_RES_STARTUP 0x0F /* Sheepdog is on starting up */ #define SD_RES_VDI_NOT_LOCKED 0x10 /* Vdi is not locked */ #define SD_RES_SHUTDOWN 0x11 /* Sheepdog is shutting down */ #define SD_RES_NO_MEM 0x12 /* Cannot allocate memory */ #define SD_RES_FULL_VDI 0x13 /* we already have the maximum vdis */ #define SD_RES_VER_MISMATCH 0x14 /* Protocol version mismatch */ #define SD_RES_NO_SPACE 0x15 /* Server has no room for new objects */ #define SD_RES_WAIT_FOR_FORMAT 0x16 /* Waiting for a format operation */ #define SD_RES_WAIT_FOR_JOIN 0x17 /* Waiting for other nodes joining */ #define SD_RES_JOIN_FAILED 0x18 /* Target node had failed to join sheepdog */ /* * Object ID rules * * 0 - 19 (20 bits): data object space * 20 - 31 (12 bits): reserved data object space * 32 - 55 (24 bits): vdi object space * 56 - 59 ( 4 bits): reserved vdi object space * 60 - 63 ( 4 bits): object type identifier space */ #define VDI_SPACE_SHIFT 32 #define VDI_BIT (UINT64_C(1) << 63) #define VMSTATE_BIT (UINT64_C(1) << 62) #define MAX_DATA_OBJS (UINT64_C(1) << 20) #define MAX_CHILDREN 1024 #define SD_MAX_VDI_LEN 256 #define SD_MAX_VDI_TAG_LEN 256 #define SD_NR_VDIS (1U << 24) #define SD_DATA_OBJ_SIZE (UINT64_C(1) << 22) #define SD_MAX_VDI_SIZE (SD_DATA_OBJ_SIZE * MAX_DATA_OBJS) #define SECTOR_SIZE 512 #define SD_INODE_SIZE (sizeof(SheepdogInode)) #define CURRENT_VDI_ID 0 typedef struct SheepdogReq { uint8_t proto_ver; uint8_t opcode; uint16_t flags; uint32_t epoch; uint32_t id; uint32_t data_length; uint32_t opcode_specific[8]; } SheepdogReq; typedef struct SheepdogRsp { uint8_t proto_ver; uint8_t opcode; uint16_t flags; uint32_t epoch; uint32_t id; uint32_t data_length; uint32_t result; uint32_t opcode_specific[7]; } SheepdogRsp; typedef struct SheepdogObjReq { uint8_t proto_ver; uint8_t opcode; uint16_t flags; uint32_t epoch; uint32_t id; uint32_t data_length; uint64_t oid; uint64_t cow_oid; uint32_t copies; uint32_t rsvd; uint64_t offset; } SheepdogObjReq; typedef struct SheepdogObjRsp { uint8_t proto_ver; uint8_t opcode; uint16_t flags; uint32_t epoch; uint32_t id; uint32_t data_length; uint32_t result; uint32_t copies; uint32_t pad[6]; } SheepdogObjRsp; typedef struct SheepdogVdiReq { uint8_t proto_ver; uint8_t opcode; uint16_t flags; uint32_t epoch; uint32_t id; uint32_t data_length; uint64_t vdi_size; uint32_t base_vdi_id; uint32_t copies; uint32_t snapid; uint32_t pad[3]; } SheepdogVdiReq; typedef struct SheepdogVdiRsp { uint8_t proto_ver; uint8_t opcode; uint16_t flags; uint32_t epoch; uint32_t id; uint32_t data_length; uint32_t result; uint32_t rsvd; uint32_t vdi_id; uint32_t pad[5]; } SheepdogVdiRsp; typedef struct SheepdogInode { char name[SD_MAX_VDI_LEN]; char tag[SD_MAX_VDI_TAG_LEN]; uint64_t ctime; uint64_t snap_ctime; uint64_t vm_clock_nsec; uint64_t vdi_size; uint64_t vm_state_size; uint16_t copy_policy; uint8_t nr_copies; uint8_t block_size_shift; uint32_t snap_id; uint32_t vdi_id; uint32_t parent_vdi_id; uint32_t child_vdi_id[MAX_CHILDREN]; uint32_t data_vdi_id[MAX_DATA_OBJS]; } SheepdogInode; /* * 64 bit FNV-1a non-zero initial basis */ #define FNV1A_64_INIT ((uint64_t)0xcbf29ce484222325ULL) /* * 64 bit Fowler/Noll/Vo FNV-1a hash code */ static inline uint64_t fnv_64a_buf(void *buf, size_t len, uint64_t hval) { unsigned char *bp = buf; unsigned char *be = bp + len; while (bp < be) { hval ^= (uint64_t) *bp++; hval += (hval << 1) + (hval << 4) + (hval << 5) + (hval << 7) + (hval << 8) + (hval << 40); } return hval; } static inline int is_data_obj_writable(SheepdogInode *inode, unsigned int idx) { return inode->vdi_id == inode->data_vdi_id[idx]; } static inline int is_data_obj(uint64_t oid) { return !(VDI_BIT & oid); } static inline uint64_t data_oid_to_idx(uint64_t oid) { return oid & (MAX_DATA_OBJS - 1); } static inline uint64_t vid_to_vdi_oid(uint32_t vid) { return VDI_BIT | ((uint64_t)vid << VDI_SPACE_SHIFT); } static inline uint64_t vid_to_vmstate_oid(uint32_t vid, uint32_t idx) { return VMSTATE_BIT | ((uint64_t)vid << VDI_SPACE_SHIFT) | idx; } static inline uint64_t vid_to_data_oid(uint32_t vid, uint32_t idx) { return ((uint64_t)vid << VDI_SPACE_SHIFT) | idx; } static inline int is_snapshot(struct SheepdogInode *inode) { return !!inode->snap_ctime; } #undef dprintf #ifdef DEBUG_SDOG #define dprintf(fmt, args...) \ do { \ fprintf(stdout, "%s %d: " fmt, __func__, __LINE__, ##args); \ } while (0) #else #define dprintf(fmt, args...) #endif typedef struct SheepdogAIOCB SheepdogAIOCB; typedef struct AIOReq { SheepdogAIOCB *aiocb; unsigned int iov_offset; uint64_t oid; uint64_t base_oid; uint64_t offset; unsigned int data_len; uint8_t flags; uint32_t id; QLIST_ENTRY(AIOReq) outstanding_aio_siblings; QLIST_ENTRY(AIOReq) aioreq_siblings; } AIOReq; enum AIOCBState { AIOCB_WRITE_UDATA, AIOCB_READ_UDATA, }; struct SheepdogAIOCB { BlockDriverAIOCB common; QEMUIOVector *qiov; int64_t sector_num; int nb_sectors; int ret; enum AIOCBState aiocb_type; Coroutine *coroutine; void (*aio_done_func)(SheepdogAIOCB *); int canceled; QLIST_HEAD(aioreq_head, AIOReq) aioreq_head; }; typedef struct BDRVSheepdogState { SheepdogInode inode; uint32_t min_dirty_data_idx; uint32_t max_dirty_data_idx; char name[SD_MAX_VDI_LEN]; int is_snapshot; uint8_t cache_enabled; char *addr; char *port; int fd; int flush_fd; CoMutex lock; Coroutine *co_send; Coroutine *co_recv; uint32_t aioreq_seq_num; QLIST_HEAD(outstanding_aio_head, AIOReq) outstanding_aio_head; } BDRVSheepdogState; static const char * sd_strerror(int err) { int i; static const struct { int err; const char *desc; } errors[] = { {SD_RES_SUCCESS, "Success"}, {SD_RES_UNKNOWN, "Unknown error"}, {SD_RES_NO_OBJ, "No object found"}, {SD_RES_EIO, "I/O error"}, {SD_RES_VDI_EXIST, "VDI exists already"}, {SD_RES_INVALID_PARMS, "Invalid parameters"}, {SD_RES_SYSTEM_ERROR, "System error"}, {SD_RES_VDI_LOCKED, "VDI is already locked"}, {SD_RES_NO_VDI, "No vdi found"}, {SD_RES_NO_BASE_VDI, "No base VDI found"}, {SD_RES_VDI_READ, "Failed read the requested VDI"}, {SD_RES_VDI_WRITE, "Failed to write the requested VDI"}, {SD_RES_BASE_VDI_READ, "Failed to read the base VDI"}, {SD_RES_BASE_VDI_WRITE, "Failed to write the base VDI"}, {SD_RES_NO_TAG, "Failed to find the requested tag"}, {SD_RES_STARTUP, "The system is still booting"}, {SD_RES_VDI_NOT_LOCKED, "VDI isn't locked"}, {SD_RES_SHUTDOWN, "The system is shutting down"}, {SD_RES_NO_MEM, "Out of memory on the server"}, {SD_RES_FULL_VDI, "We already have the maximum vdis"}, {SD_RES_VER_MISMATCH, "Protocol version mismatch"}, {SD_RES_NO_SPACE, "Server has no space for new objects"}, {SD_RES_WAIT_FOR_FORMAT, "Sheepdog is waiting for a format operation"}, {SD_RES_WAIT_FOR_JOIN, "Sheepdog is waiting for other nodes joining"}, {SD_RES_JOIN_FAILED, "Target node had failed to join sheepdog"}, }; for (i = 0; i < ARRAY_SIZE(errors); ++i) { if (errors[i].err == err) { return errors[i].desc; } } return "Invalid error code"; } /* * Sheepdog I/O handling: * * 1. In sd_co_rw_vector, we send the I/O requests to the server and * link the requests to the outstanding_list in the * BDRVSheepdogState. The function exits without waiting for * receiving the response. * * 2. We receive the response in aio_read_response, the fd handler to * the sheepdog connection. If metadata update is needed, we send * the write request to the vdi object in sd_write_done, the write * completion function. We switch back to sd_co_readv/writev after * all the requests belonging to the AIOCB are finished. */ static inline AIOReq *alloc_aio_req(BDRVSheepdogState *s, SheepdogAIOCB *acb, uint64_t oid, unsigned int data_len, uint64_t offset, uint8_t flags, uint64_t base_oid, unsigned int iov_offset) { AIOReq *aio_req; aio_req = g_malloc(sizeof(*aio_req)); aio_req->aiocb = acb; aio_req->iov_offset = iov_offset; aio_req->oid = oid; aio_req->base_oid = base_oid; aio_req->offset = offset; aio_req->data_len = data_len; aio_req->flags = flags; aio_req->id = s->aioreq_seq_num++; QLIST_INSERT_HEAD(&s->outstanding_aio_head, aio_req, outstanding_aio_siblings); QLIST_INSERT_HEAD(&acb->aioreq_head, aio_req, aioreq_siblings); return aio_req; } static inline int free_aio_req(BDRVSheepdogState *s, AIOReq *aio_req) { SheepdogAIOCB *acb = aio_req->aiocb; QLIST_REMOVE(aio_req, outstanding_aio_siblings); QLIST_REMOVE(aio_req, aioreq_siblings); g_free(aio_req); return !QLIST_EMPTY(&acb->aioreq_head); } static void coroutine_fn sd_finish_aiocb(SheepdogAIOCB *acb) { if (!acb->canceled) { qemu_coroutine_enter(acb->coroutine, NULL); } qemu_aio_release(acb); } static void sd_aio_cancel(BlockDriverAIOCB *blockacb) { SheepdogAIOCB *acb = (SheepdogAIOCB *)blockacb; /* * Sheepdog cannot cancel the requests which are already sent to * the servers, so we just complete the request with -EIO here. */ acb->ret = -EIO; qemu_coroutine_enter(acb->coroutine, NULL); acb->canceled = 1; } static AIOPool sd_aio_pool = { .aiocb_size = sizeof(SheepdogAIOCB), .cancel = sd_aio_cancel, }; static SheepdogAIOCB *sd_aio_setup(BlockDriverState *bs, QEMUIOVector *qiov, int64_t sector_num, int nb_sectors, BlockDriverCompletionFunc *cb, void *opaque) { SheepdogAIOCB *acb; acb = qemu_aio_get(&sd_aio_pool, bs, cb, opaque); acb->qiov = qiov; acb->sector_num = sector_num; acb->nb_sectors = nb_sectors; acb->aio_done_func = NULL; acb->canceled = 0; acb->coroutine = qemu_coroutine_self(); acb->ret = 0; QLIST_INIT(&acb->aioreq_head); return acb; } static int connect_to_sdog(const char *addr, const char *port) { char hbuf[NI_MAXHOST], sbuf[NI_MAXSERV]; int fd, ret; struct addrinfo hints, *res, *res0; if (!addr) { addr = SD_DEFAULT_ADDR; port = SD_DEFAULT_PORT; } memset(&hints, 0, sizeof(hints)); hints.ai_socktype = SOCK_STREAM; ret = getaddrinfo(addr, port, &hints, &res0); if (ret) { error_report("unable to get address info %s, %s", addr, strerror(errno)); return -errno; } for (res = res0; res; res = res->ai_next) { ret = getnameinfo(res->ai_addr, res->ai_addrlen, hbuf, sizeof(hbuf), sbuf, sizeof(sbuf), NI_NUMERICHOST | NI_NUMERICSERV); if (ret) { continue; } fd = socket(res->ai_family, res->ai_socktype, res->ai_protocol); if (fd < 0) { continue; } reconnect: ret = connect(fd, res->ai_addr, res->ai_addrlen); if (ret < 0) { if (errno == EINTR) { goto reconnect; } break; } dprintf("connected to %s:%s\n", addr, port); goto success; } fd = -errno; error_report("failed connect to %s:%s", addr, port); success: freeaddrinfo(res0); return fd; } static int send_req(int sockfd, SheepdogReq *hdr, void *data, unsigned int *wlen) { int ret; ret = qemu_send_full(sockfd, hdr, sizeof(*hdr), 0); if (ret < sizeof(*hdr)) { error_report("failed to send a req, %s", strerror(errno)); return -errno; } ret = qemu_send_full(sockfd, data, *wlen, 0); if (ret < *wlen) { error_report("failed to send a req, %s", strerror(errno)); ret = -errno; } return ret; } static coroutine_fn int send_co_req(int sockfd, SheepdogReq *hdr, void *data, unsigned int *wlen) { int ret; ret = qemu_co_send(sockfd, hdr, sizeof(*hdr)); if (ret < sizeof(*hdr)) { error_report("failed to send a req, %s", strerror(errno)); return ret; } ret = qemu_co_send(sockfd, data, *wlen); if (ret < *wlen) { error_report("failed to send a req, %s", strerror(errno)); } return ret; } static int do_req(int sockfd, SheepdogReq *hdr, void *data, unsigned int *wlen, unsigned int *rlen) { int ret; socket_set_block(sockfd); ret = send_req(sockfd, hdr, data, wlen); if (ret < 0) { goto out; } ret = qemu_recv_full(sockfd, hdr, sizeof(*hdr), 0); if (ret < sizeof(*hdr)) { error_report("failed to get a rsp, %s", strerror(errno)); ret = -errno; goto out; } if (*rlen > hdr->data_length) { *rlen = hdr->data_length; } if (*rlen) { ret = qemu_recv_full(sockfd, data, *rlen, 0); if (ret < *rlen) { error_report("failed to get the data, %s", strerror(errno)); ret = -errno; goto out; } } ret = 0; out: socket_set_nonblock(sockfd); return ret; } static void restart_co_req(void *opaque) { Coroutine *co = opaque; qemu_coroutine_enter(co, NULL); } static coroutine_fn int do_co_req(int sockfd, SheepdogReq *hdr, void *data, unsigned int *wlen, unsigned int *rlen) { int ret; Coroutine *co; co = qemu_coroutine_self(); qemu_aio_set_fd_handler(sockfd, NULL, restart_co_req, NULL, co); socket_set_block(sockfd); ret = send_co_req(sockfd, hdr, data, wlen); if (ret < 0) { goto out; } qemu_aio_set_fd_handler(sockfd, restart_co_req, NULL, NULL, co); ret = qemu_co_recv(sockfd, hdr, sizeof(*hdr)); if (ret < sizeof(*hdr)) { error_report("failed to get a rsp, %s", strerror(errno)); ret = -errno; goto out; } if (*rlen > hdr->data_length) { *rlen = hdr->data_length; } if (*rlen) { ret = qemu_co_recv(sockfd, data, *rlen); if (ret < *rlen) { error_report("failed to get the data, %s", strerror(errno)); ret = -errno; goto out; } } ret = 0; out: qemu_aio_set_fd_handler(sockfd, NULL, NULL, NULL, NULL); socket_set_nonblock(sockfd); return ret; } static int coroutine_fn add_aio_request(BDRVSheepdogState *s, AIOReq *aio_req, struct iovec *iov, int niov, int create, enum AIOCBState aiocb_type); /* * This function searchs pending requests to the object `oid', and * sends them. */ static void coroutine_fn send_pending_req(BDRVSheepdogState *s, uint64_t oid, uint32_t id) { AIOReq *aio_req, *next; SheepdogAIOCB *acb; int ret; QLIST_FOREACH_SAFE(aio_req, &s->outstanding_aio_head, outstanding_aio_siblings, next) { if (id == aio_req->id) { continue; } if (aio_req->oid != oid) { continue; } acb = aio_req->aiocb; ret = add_aio_request(s, aio_req, acb->qiov->iov, acb->qiov->niov, 0, acb->aiocb_type); if (ret < 0) { error_report("add_aio_request is failed"); free_aio_req(s, aio_req); if (QLIST_EMPTY(&acb->aioreq_head)) { sd_finish_aiocb(acb); } } } } /* * Receive responses of the I/O requests. * * This function is registered as a fd handler, and called from the * main loop when s->fd is ready for reading responses. */ static void coroutine_fn aio_read_response(void *opaque) { SheepdogObjRsp rsp; BDRVSheepdogState *s = opaque; int fd = s->fd; int ret; AIOReq *aio_req = NULL; SheepdogAIOCB *acb; int rest; unsigned long idx; if (QLIST_EMPTY(&s->outstanding_aio_head)) { goto out; } /* read a header */ ret = qemu_co_recv(fd, &rsp, sizeof(rsp)); if (ret < 0) { error_report("failed to get the header, %s", strerror(errno)); goto out; } /* find the right aio_req from the outstanding_aio list */ QLIST_FOREACH(aio_req, &s->outstanding_aio_head, outstanding_aio_siblings) { if (aio_req->id == rsp.id) { break; } } if (!aio_req) { error_report("cannot find aio_req %x", rsp.id); goto out; } acb = aio_req->aiocb; switch (acb->aiocb_type) { case AIOCB_WRITE_UDATA: /* this coroutine context is no longer suitable for co_recv * because we may send data to update vdi objects */ s->co_recv = NULL; if (!is_data_obj(aio_req->oid)) { break; } idx = data_oid_to_idx(aio_req->oid); if (s->inode.data_vdi_id[idx] != s->inode.vdi_id) { /* * If the object is newly created one, we need to update * the vdi object (metadata object). min_dirty_data_idx * and max_dirty_data_idx are changed to include updated * index between them. */ s->inode.data_vdi_id[idx] = s->inode.vdi_id; s->max_dirty_data_idx = MAX(idx, s->max_dirty_data_idx); s->min_dirty_data_idx = MIN(idx, s->min_dirty_data_idx); /* * Some requests may be blocked because simultaneous * create requests are not allowed, so we search the * pending requests here. */ send_pending_req(s, vid_to_data_oid(s->inode.vdi_id, idx), rsp.id); } break; case AIOCB_READ_UDATA: ret = qemu_co_recvv(fd, acb->qiov->iov, rsp.data_length, aio_req->iov_offset); if (ret < 0) { error_report("failed to get the data, %s", strerror(errno)); goto out; } break; } if (rsp.result != SD_RES_SUCCESS) { acb->ret = -EIO; error_report("%s", sd_strerror(rsp.result)); } rest = free_aio_req(s, aio_req); if (!rest) { /* * We've finished all requests which belong to the AIOCB, so * we can switch back to sd_co_readv/writev now. */ acb->aio_done_func(acb); } out: s->co_recv = NULL; } static void co_read_response(void *opaque) { BDRVSheepdogState *s = opaque; if (!s->co_recv) { s->co_recv = qemu_coroutine_create(aio_read_response); } qemu_coroutine_enter(s->co_recv, opaque); } static void co_write_request(void *opaque) { BDRVSheepdogState *s = opaque; qemu_coroutine_enter(s->co_send, NULL); } static int aio_flush_request(void *opaque) { BDRVSheepdogState *s = opaque; return !QLIST_EMPTY(&s->outstanding_aio_head); } static int set_nodelay(int fd) { int ret, opt; opt = 1; ret = setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&opt, sizeof(opt)); return ret; } /* * Return a socket discriptor to read/write objects. * * We cannot use this discriptor for other operations because * the block driver may be on waiting response from the server. */ static int get_sheep_fd(BDRVSheepdogState *s) { int ret, fd; fd = connect_to_sdog(s->addr, s->port); if (fd < 0) { error_report("%s", strerror(errno)); return fd; } socket_set_nonblock(fd); ret = set_nodelay(fd); if (ret) { error_report("%s", strerror(errno)); closesocket(fd); return -errno; } qemu_aio_set_fd_handler(fd, co_read_response, NULL, aio_flush_request, s); return fd; } /* * Parse a filename * * filename must be one of the following formats: * 1. [vdiname] * 2. [vdiname]:[snapid] * 3. [vdiname]:[tag] * 4. [hostname]:[port]:[vdiname] * 5. [hostname]:[port]:[vdiname]:[snapid] * 6. [hostname]:[port]:[vdiname]:[tag] * * You can boot from the snapshot images by specifying `snapid` or * `tag'. * * You can run VMs outside the Sheepdog cluster by specifying * `hostname' and `port' (experimental). */ static int parse_vdiname(BDRVSheepdogState *s, const char *filename, char *vdi, uint32_t *snapid, char *tag) { char *p, *q; int nr_sep; p = q = g_strdup(filename); /* count the number of separators */ nr_sep = 0; while (*p) { if (*p == ':') { nr_sep++; } p++; } p = q; /* use the first two tokens as hostname and port number. */ if (nr_sep >= 2) { s->addr = p; p = strchr(p, ':'); *p++ = '\0'; s->port = p; p = strchr(p, ':'); *p++ = '\0'; } else { s->addr = NULL; s->port = 0; } strncpy(vdi, p, SD_MAX_VDI_LEN); p = strchr(vdi, ':'); if (p) { *p++ = '\0'; *snapid = strtoul(p, NULL, 10); if (*snapid == 0) { strncpy(tag, p, SD_MAX_VDI_TAG_LEN); } } else { *snapid = CURRENT_VDI_ID; /* search current vdi */ } if (s->addr == NULL) { g_free(q); } return 0; } static int find_vdi_name(BDRVSheepdogState *s, char *filename, uint32_t snapid, char *tag, uint32_t *vid, int for_snapshot) { int ret, fd; SheepdogVdiReq hdr; SheepdogVdiRsp *rsp = (SheepdogVdiRsp *)&hdr; unsigned int wlen, rlen = 0; char buf[SD_MAX_VDI_LEN + SD_MAX_VDI_TAG_LEN]; fd = connect_to_sdog(s->addr, s->port); if (fd < 0) { return fd; } memset(buf, 0, sizeof(buf)); strncpy(buf, filename, SD_MAX_VDI_LEN); strncpy(buf + SD_MAX_VDI_LEN, tag, SD_MAX_VDI_TAG_LEN); memset(&hdr, 0, sizeof(hdr)); if (for_snapshot) { hdr.opcode = SD_OP_GET_VDI_INFO; } else { hdr.opcode = SD_OP_LOCK_VDI; } wlen = SD_MAX_VDI_LEN + SD_MAX_VDI_TAG_LEN; hdr.proto_ver = SD_PROTO_VER; hdr.data_length = wlen; hdr.snapid = snapid; hdr.flags = SD_FLAG_CMD_WRITE; ret = do_req(fd, (SheepdogReq *)&hdr, buf, &wlen, &rlen); if (ret) { goto out; } if (rsp->result != SD_RES_SUCCESS) { error_report("cannot get vdi info, %s, %s %d %s", sd_strerror(rsp->result), filename, snapid, tag); if (rsp->result == SD_RES_NO_VDI) { ret = -ENOENT; } else { ret = -EIO; } goto out; } *vid = rsp->vdi_id; ret = 0; out: closesocket(fd); return ret; } static int coroutine_fn add_aio_request(BDRVSheepdogState *s, AIOReq *aio_req, struct iovec *iov, int niov, int create, enum AIOCBState aiocb_type) { int nr_copies = s->inode.nr_copies; SheepdogObjReq hdr; unsigned int wlen; int ret; uint64_t oid = aio_req->oid; unsigned int datalen = aio_req->data_len; uint64_t offset = aio_req->offset; uint8_t flags = aio_req->flags; uint64_t old_oid = aio_req->base_oid; if (!nr_copies) { error_report("bug"); } memset(&hdr, 0, sizeof(hdr)); if (aiocb_type == AIOCB_READ_UDATA) { wlen = 0; hdr.opcode = SD_OP_READ_OBJ; hdr.flags = flags; } else if (create) { wlen = datalen; hdr.opcode = SD_OP_CREATE_AND_WRITE_OBJ; hdr.flags = SD_FLAG_CMD_WRITE | flags; } else { wlen = datalen; hdr.opcode = SD_OP_WRITE_OBJ; hdr.flags = SD_FLAG_CMD_WRITE | flags; } if (s->cache_enabled) { hdr.flags |= SD_FLAG_CMD_CACHE; } hdr.oid = oid; hdr.cow_oid = old_oid; hdr.copies = s->inode.nr_copies; hdr.data_length = datalen; hdr.offset = offset; hdr.id = aio_req->id; qemu_co_mutex_lock(&s->lock); s->co_send = qemu_coroutine_self(); qemu_aio_set_fd_handler(s->fd, co_read_response, co_write_request, aio_flush_request, s); socket_set_cork(s->fd, 1); /* send a header */ ret = qemu_co_send(s->fd, &hdr, sizeof(hdr)); if (ret < 0) { qemu_co_mutex_unlock(&s->lock); error_report("failed to send a req, %s", strerror(errno)); return -errno; } if (wlen) { ret = qemu_co_sendv(s->fd, iov, wlen, aio_req->iov_offset); if (ret < 0) { qemu_co_mutex_unlock(&s->lock); error_report("failed to send a data, %s", strerror(errno)); return -errno; } } socket_set_cork(s->fd, 0); qemu_aio_set_fd_handler(s->fd, co_read_response, NULL, aio_flush_request, s); qemu_co_mutex_unlock(&s->lock); return 0; } static int read_write_object(int fd, char *buf, uint64_t oid, int copies, unsigned int datalen, uint64_t offset, int write, int create, uint8_t cache) { SheepdogObjReq hdr; SheepdogObjRsp *rsp = (SheepdogObjRsp *)&hdr; unsigned int wlen, rlen; int ret; memset(&hdr, 0, sizeof(hdr)); if (write) { wlen = datalen; rlen = 0; hdr.flags = SD_FLAG_CMD_WRITE; if (create) { hdr.opcode = SD_OP_CREATE_AND_WRITE_OBJ; } else { hdr.opcode = SD_OP_WRITE_OBJ; } } else { wlen = 0; rlen = datalen; hdr.opcode = SD_OP_READ_OBJ; } if (cache) { hdr.flags |= SD_FLAG_CMD_CACHE; } hdr.oid = oid; hdr.data_length = datalen; hdr.offset = offset; hdr.copies = copies; ret = do_req(fd, (SheepdogReq *)&hdr, buf, &wlen, &rlen); if (ret) { error_report("failed to send a request to the sheep"); return ret; } switch (rsp->result) { case SD_RES_SUCCESS: return 0; default: error_report("%s", sd_strerror(rsp->result)); return -EIO; } } static int read_object(int fd, char *buf, uint64_t oid, int copies, unsigned int datalen, uint64_t offset, uint8_t cache) { return read_write_object(fd, buf, oid, copies, datalen, offset, 0, 0, cache); } static int write_object(int fd, char *buf, uint64_t oid, int copies, unsigned int datalen, uint64_t offset, int create, uint8_t cache) { return read_write_object(fd, buf, oid, copies, datalen, offset, 1, create, cache); } static int sd_open(BlockDriverState *bs, const char *filename, int flags) { int ret, fd; uint32_t vid = 0; BDRVSheepdogState *s = bs->opaque; char vdi[SD_MAX_VDI_LEN], tag[SD_MAX_VDI_TAG_LEN]; uint32_t snapid; char *buf = NULL; strstart(filename, "sheepdog:", (const char **)&filename); QLIST_INIT(&s->outstanding_aio_head); s->fd = -1; memset(vdi, 0, sizeof(vdi)); memset(tag, 0, sizeof(tag)); if (parse_vdiname(s, filename, vdi, &snapid, tag) < 0) { ret = -EINVAL; goto out; } s->fd = get_sheep_fd(s); if (s->fd < 0) { ret = s->fd; goto out; } ret = find_vdi_name(s, vdi, snapid, tag, &vid, 0); if (ret) { goto out; } if (flags & BDRV_O_CACHE_WB) { s->cache_enabled = 1; s->flush_fd = connect_to_sdog(s->addr, s->port); if (s->flush_fd < 0) { error_report("failed to connect"); ret = s->flush_fd; goto out; } } if (snapid || tag[0] != '\0') { dprintf("%" PRIx32 " snapshot inode was open.\n", vid); s->is_snapshot = 1; } fd = connect_to_sdog(s->addr, s->port); if (fd < 0) { error_report("failed to connect"); ret = fd; goto out; } buf = g_malloc(SD_INODE_SIZE); ret = read_object(fd, buf, vid_to_vdi_oid(vid), 0, SD_INODE_SIZE, 0, s->cache_enabled); closesocket(fd); if (ret) { goto out; } memcpy(&s->inode, buf, sizeof(s->inode)); s->min_dirty_data_idx = UINT32_MAX; s->max_dirty_data_idx = 0; bs->total_sectors = s->inode.vdi_size / SECTOR_SIZE; strncpy(s->name, vdi, sizeof(s->name)); qemu_co_mutex_init(&s->lock); g_free(buf); return 0; out: qemu_aio_set_fd_handler(s->fd, NULL, NULL, NULL, NULL); if (s->fd >= 0) { closesocket(s->fd); } g_free(buf); return ret; } static int do_sd_create(char *filename, int64_t vdi_size, uint32_t base_vid, uint32_t *vdi_id, int snapshot, const char *addr, const char *port) { SheepdogVdiReq hdr; SheepdogVdiRsp *rsp = (SheepdogVdiRsp *)&hdr; int fd, ret; unsigned int wlen, rlen = 0; char buf[SD_MAX_VDI_LEN]; fd = connect_to_sdog(addr, port); if (fd < 0) { return fd; } memset(buf, 0, sizeof(buf)); strncpy(buf, filename, SD_MAX_VDI_LEN); memset(&hdr, 0, sizeof(hdr)); hdr.opcode = SD_OP_NEW_VDI; hdr.base_vdi_id = base_vid; wlen = SD_MAX_VDI_LEN; hdr.flags = SD_FLAG_CMD_WRITE; hdr.snapid = snapshot; hdr.data_length = wlen; hdr.vdi_size = vdi_size; ret = do_req(fd, (SheepdogReq *)&hdr, buf, &wlen, &rlen); closesocket(fd); if (ret) { return ret; } if (rsp->result != SD_RES_SUCCESS) { error_report("%s, %s", sd_strerror(rsp->result), filename); return -EIO; } if (vdi_id) { *vdi_id = rsp->vdi_id; } return 0; } static int sd_prealloc(const char *filename) { BlockDriverState *bs = NULL; uint32_t idx, max_idx; int64_t vdi_size; void *buf = g_malloc0(SD_DATA_OBJ_SIZE); int ret; ret = bdrv_file_open(&bs, filename, BDRV_O_RDWR); if (ret < 0) { goto out; } vdi_size = bdrv_getlength(bs); if (vdi_size < 0) { ret = vdi_size; goto out; } max_idx = DIV_ROUND_UP(vdi_size, SD_DATA_OBJ_SIZE); for (idx = 0; idx < max_idx; idx++) { /* * The created image can be a cloned image, so we need to read * a data from the source image. */ ret = bdrv_pread(bs, idx * SD_DATA_OBJ_SIZE, buf, SD_DATA_OBJ_SIZE); if (ret < 0) { goto out; } ret = bdrv_pwrite(bs, idx * SD_DATA_OBJ_SIZE, buf, SD_DATA_OBJ_SIZE); if (ret < 0) { goto out; } } out: if (bs) { bdrv_delete(bs); } g_free(buf); return ret; } static int sd_create(const char *filename, QEMUOptionParameter *options) { int ret = 0; uint32_t vid = 0, base_vid = 0; int64_t vdi_size = 0; char *backing_file = NULL; BDRVSheepdogState *s; char vdi[SD_MAX_VDI_LEN], tag[SD_MAX_VDI_TAG_LEN]; uint32_t snapid; int prealloc = 0; const char *vdiname; s = g_malloc0(sizeof(BDRVSheepdogState)); strstart(filename, "sheepdog:", &vdiname); memset(vdi, 0, sizeof(vdi)); memset(tag, 0, sizeof(tag)); if (parse_vdiname(s, vdiname, vdi, &snapid, tag) < 0) { error_report("invalid filename"); ret = -EINVAL; goto out; } while (options && options->name) { if (!strcmp(options->name, BLOCK_OPT_SIZE)) { vdi_size = options->value.n; } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FILE)) { backing_file = options->value.s; } else if (!strcmp(options->name, BLOCK_OPT_PREALLOC)) { if (!options->value.s || !strcmp(options->value.s, "off")) { prealloc = 0; } else if (!strcmp(options->value.s, "full")) { prealloc = 1; } else { error_report("Invalid preallocation mode: '%s'", options->value.s); ret = -EINVAL; goto out; } } options++; } if (vdi_size > SD_MAX_VDI_SIZE) { error_report("too big image size"); ret = -EINVAL; goto out; } if (backing_file) { BlockDriverState *bs; BDRVSheepdogState *s; BlockDriver *drv; /* Currently, only Sheepdog backing image is supported. */ drv = bdrv_find_protocol(backing_file); if (!drv || strcmp(drv->protocol_name, "sheepdog") != 0) { error_report("backing_file must be a sheepdog image"); ret = -EINVAL; goto out; } ret = bdrv_file_open(&bs, backing_file, 0); if (ret < 0) { goto out; } s = bs->opaque; if (!is_snapshot(&s->inode)) { error_report("cannot clone from a non snapshot vdi"); bdrv_delete(bs); ret = -EINVAL; goto out; } base_vid = s->inode.vdi_id; bdrv_delete(bs); } ret = do_sd_create(vdi, vdi_size, base_vid, &vid, 0, s->addr, s->port); if (!prealloc || ret) { goto out; } ret = sd_prealloc(filename); out: g_free(s); return ret; } static void sd_close(BlockDriverState *bs) { BDRVSheepdogState *s = bs->opaque; SheepdogVdiReq hdr; SheepdogVdiRsp *rsp = (SheepdogVdiRsp *)&hdr; unsigned int wlen, rlen = 0; int fd, ret; dprintf("%s\n", s->name); fd = connect_to_sdog(s->addr, s->port); if (fd < 0) { return; } memset(&hdr, 0, sizeof(hdr)); hdr.opcode = SD_OP_RELEASE_VDI; wlen = strlen(s->name) + 1; hdr.data_length = wlen; hdr.flags = SD_FLAG_CMD_WRITE; ret = do_req(fd, (SheepdogReq *)&hdr, s->name, &wlen, &rlen); closesocket(fd); if (!ret && rsp->result != SD_RES_SUCCESS && rsp->result != SD_RES_VDI_NOT_LOCKED) { error_report("%s, %s", sd_strerror(rsp->result), s->name); } qemu_aio_set_fd_handler(s->fd, NULL, NULL, NULL, NULL); closesocket(s->fd); if (s->cache_enabled) { closesocket(s->flush_fd); } g_free(s->addr); } static int64_t sd_getlength(BlockDriverState *bs) { BDRVSheepdogState *s = bs->opaque; return s->inode.vdi_size; } static int sd_truncate(BlockDriverState *bs, int64_t offset) { BDRVSheepdogState *s = bs->opaque; int ret, fd; unsigned int datalen; if (offset < s->inode.vdi_size) { error_report("shrinking is not supported"); return -EINVAL; } else if (offset > SD_MAX_VDI_SIZE) { error_report("too big image size"); return -EINVAL; } fd = connect_to_sdog(s->addr, s->port); if (fd < 0) { return fd; } /* we don't need to update entire object */ datalen = SD_INODE_SIZE - sizeof(s->inode.data_vdi_id); s->inode.vdi_size = offset; ret = write_object(fd, (char *)&s->inode, vid_to_vdi_oid(s->inode.vdi_id), s->inode.nr_copies, datalen, 0, 0, s->cache_enabled); close(fd); if (ret < 0) { error_report("failed to update an inode."); } return ret; } /* * This function is called after writing data objects. If we need to * update metadata, this sends a write request to the vdi object. * Otherwise, this switches back to sd_co_readv/writev. */ static void coroutine_fn sd_write_done(SheepdogAIOCB *acb) { int ret; BDRVSheepdogState *s = acb->common.bs->opaque; struct iovec iov; AIOReq *aio_req; uint32_t offset, data_len, mn, mx; mn = s->min_dirty_data_idx; mx = s->max_dirty_data_idx; if (mn <= mx) { /* we need to update the vdi object. */ offset = sizeof(s->inode) - sizeof(s->inode.data_vdi_id) + mn * sizeof(s->inode.data_vdi_id[0]); data_len = (mx - mn + 1) * sizeof(s->inode.data_vdi_id[0]); s->min_dirty_data_idx = UINT32_MAX; s->max_dirty_data_idx = 0; iov.iov_base = &s->inode; iov.iov_len = sizeof(s->inode); aio_req = alloc_aio_req(s, acb, vid_to_vdi_oid(s->inode.vdi_id), data_len, offset, 0, 0, offset); ret = add_aio_request(s, aio_req, &iov, 1, 0, AIOCB_WRITE_UDATA); if (ret) { free_aio_req(s, aio_req); acb->ret = -EIO; goto out; } acb->aio_done_func = sd_finish_aiocb; acb->aiocb_type = AIOCB_WRITE_UDATA; return; } out: sd_finish_aiocb(acb); } /* * Create a writable VDI from a snapshot */ static int sd_create_branch(BDRVSheepdogState *s) { int ret, fd; uint32_t vid; char *buf; dprintf("%" PRIx32 " is snapshot.\n", s->inode.vdi_id); buf = g_malloc(SD_INODE_SIZE); ret = do_sd_create(s->name, s->inode.vdi_size, s->inode.vdi_id, &vid, 1, s->addr, s->port); if (ret) { goto out; } dprintf("%" PRIx32 " is created.\n", vid); fd = connect_to_sdog(s->addr, s->port); if (fd < 0) { error_report("failed to connect"); ret = fd; goto out; } ret = read_object(fd, buf, vid_to_vdi_oid(vid), s->inode.nr_copies, SD_INODE_SIZE, 0, s->cache_enabled); closesocket(fd); if (ret < 0) { goto out; } memcpy(&s->inode, buf, sizeof(s->inode)); s->is_snapshot = 0; ret = 0; dprintf("%" PRIx32 " was newly created.\n", s->inode.vdi_id); out: g_free(buf); return ret; } /* * Send I/O requests to the server. * * This function sends requests to the server, links the requests to * the outstanding_list in BDRVSheepdogState, and exits without * waiting the response. The responses are received in the * `aio_read_response' function which is called from the main loop as * a fd handler. * * Returns 1 when we need to wait a response, 0 when there is no sent * request and -errno in error cases. */ static int coroutine_fn sd_co_rw_vector(void *p) { SheepdogAIOCB *acb = p; int ret = 0; unsigned long len, done = 0, total = acb->nb_sectors * SECTOR_SIZE; unsigned long idx = acb->sector_num * SECTOR_SIZE / SD_DATA_OBJ_SIZE; uint64_t oid; uint64_t offset = (acb->sector_num * SECTOR_SIZE) % SD_DATA_OBJ_SIZE; BDRVSheepdogState *s = acb->common.bs->opaque; SheepdogInode *inode = &s->inode; AIOReq *aio_req; if (acb->aiocb_type == AIOCB_WRITE_UDATA && s->is_snapshot) { /* * In the case we open the snapshot VDI, Sheepdog creates the * writable VDI when we do a write operation first. */ ret = sd_create_branch(s); if (ret) { acb->ret = -EIO; goto out; } } while (done != total) { uint8_t flags = 0; uint64_t old_oid = 0; int create = 0; oid = vid_to_data_oid(inode->data_vdi_id[idx], idx); len = MIN(total - done, SD_DATA_OBJ_SIZE - offset); if (!inode->data_vdi_id[idx]) { if (acb->aiocb_type == AIOCB_READ_UDATA) { goto done; } create = 1; } else if (acb->aiocb_type == AIOCB_WRITE_UDATA && !is_data_obj_writable(inode, idx)) { /* Copy-On-Write */ create = 1; old_oid = oid; flags = SD_FLAG_CMD_COW; } if (create) { dprintf("update ino (%" PRIu32 ") %" PRIu64 " %" PRIu64 " %ld\n", inode->vdi_id, oid, vid_to_data_oid(inode->data_vdi_id[idx], idx), idx); oid = vid_to_data_oid(inode->vdi_id, idx); dprintf("new oid %" PRIx64 "\n", oid); } aio_req = alloc_aio_req(s, acb, oid, len, offset, flags, old_oid, done); if (create) { AIOReq *areq; QLIST_FOREACH(areq, &s->outstanding_aio_head, outstanding_aio_siblings) { if (areq == aio_req) { continue; } if (areq->oid == oid) { /* * Sheepdog cannot handle simultaneous create * requests to the same object. So we cannot send * the request until the previous request * finishes. */ aio_req->flags = 0; aio_req->base_oid = 0; goto done; } } } ret = add_aio_request(s, aio_req, acb->qiov->iov, acb->qiov->niov, create, acb->aiocb_type); if (ret < 0) { error_report("add_aio_request is failed"); free_aio_req(s, aio_req); acb->ret = -EIO; goto out; } done: offset = 0; idx++; done += len; } out: if (QLIST_EMPTY(&acb->aioreq_head)) { return acb->ret; } return 1; } static coroutine_fn int sd_co_writev(BlockDriverState *bs, int64_t sector_num, int nb_sectors, QEMUIOVector *qiov) { SheepdogAIOCB *acb; int ret; if (bs->growable && sector_num + nb_sectors > bs->total_sectors) { /* TODO: shouldn't block here */ ret = sd_truncate(bs, (sector_num + nb_sectors) * SECTOR_SIZE); if (ret < 0) { return ret; } bs->total_sectors = sector_num + nb_sectors; } acb = sd_aio_setup(bs, qiov, sector_num, nb_sectors, NULL, NULL); acb->aio_done_func = sd_write_done; acb->aiocb_type = AIOCB_WRITE_UDATA; ret = sd_co_rw_vector(acb); if (ret <= 0) { qemu_aio_release(acb); return ret; } qemu_coroutine_yield(); return acb->ret; } static coroutine_fn int sd_co_readv(BlockDriverState *bs, int64_t sector_num, int nb_sectors, QEMUIOVector *qiov) { SheepdogAIOCB *acb; int i, ret; acb = sd_aio_setup(bs, qiov, sector_num, nb_sectors, NULL, NULL); acb->aiocb_type = AIOCB_READ_UDATA; acb->aio_done_func = sd_finish_aiocb; /* * TODO: we can do better; we don't need to initialize * blindly. */ for (i = 0; i < qiov->niov; i++) { memset(qiov->iov[i].iov_base, 0, qiov->iov[i].iov_len); } ret = sd_co_rw_vector(acb); if (ret <= 0) { qemu_aio_release(acb); return ret; } qemu_coroutine_yield(); return acb->ret; } static int coroutine_fn sd_co_flush_to_disk(BlockDriverState *bs) { BDRVSheepdogState *s = bs->opaque; SheepdogObjReq hdr = { 0 }; SheepdogObjRsp *rsp = (SheepdogObjRsp *)&hdr; SheepdogInode *inode = &s->inode; int ret; unsigned int wlen = 0, rlen = 0; if (!s->cache_enabled) { return 0; } hdr.opcode = SD_OP_FLUSH_VDI; hdr.oid = vid_to_vdi_oid(inode->vdi_id); ret = do_co_req(s->flush_fd, (SheepdogReq *)&hdr, NULL, &wlen, &rlen); if (ret) { error_report("failed to send a request to the sheep"); return ret; } if (rsp->result == SD_RES_INVALID_PARMS) { dprintf("disable write cache since the server doesn't support it\n"); s->cache_enabled = 0; closesocket(s->flush_fd); return 0; } if (rsp->result != SD_RES_SUCCESS) { error_report("%s", sd_strerror(rsp->result)); return -EIO; } return 0; } static int sd_snapshot_create(BlockDriverState *bs, QEMUSnapshotInfo *sn_info) { BDRVSheepdogState *s = bs->opaque; int ret, fd; uint32_t new_vid; SheepdogInode *inode; unsigned int datalen; dprintf("sn_info: name %s id_str %s s: name %s vm_state_size %" PRId64 " " "is_snapshot %d\n", sn_info->name, sn_info->id_str, s->name, sn_info->vm_state_size, s->is_snapshot); if (s->is_snapshot) { error_report("You can't create a snapshot of a snapshot VDI, " "%s (%" PRIu32 ").", s->name, s->inode.vdi_id); return -EINVAL; } dprintf("%s %s\n", sn_info->name, sn_info->id_str); s->inode.vm_state_size = sn_info->vm_state_size; s->inode.vm_clock_nsec = sn_info->vm_clock_nsec; strncpy(s->inode.tag, sn_info->name, sizeof(s->inode.tag)); /* we don't need to update entire object */ datalen = SD_INODE_SIZE - sizeof(s->inode.data_vdi_id); /* refresh inode. */ fd = connect_to_sdog(s->addr, s->port); if (fd < 0) { ret = fd; goto cleanup; } ret = write_object(fd, (char *)&s->inode, vid_to_vdi_oid(s->inode.vdi_id), s->inode.nr_copies, datalen, 0, 0, s->cache_enabled); if (ret < 0) { error_report("failed to write snapshot's inode."); goto cleanup; } ret = do_sd_create(s->name, s->inode.vdi_size, s->inode.vdi_id, &new_vid, 1, s->addr, s->port); if (ret < 0) { error_report("failed to create inode for snapshot. %s", strerror(errno)); goto cleanup; } inode = (SheepdogInode *)g_malloc(datalen); ret = read_object(fd, (char *)inode, vid_to_vdi_oid(new_vid), s->inode.nr_copies, datalen, 0, s->cache_enabled); if (ret < 0) { error_report("failed to read new inode info. %s", strerror(errno)); goto cleanup; } memcpy(&s->inode, inode, datalen); dprintf("s->inode: name %s snap_id %x oid %x\n", s->inode.name, s->inode.snap_id, s->inode.vdi_id); cleanup: closesocket(fd); return ret; } static int sd_snapshot_goto(BlockDriverState *bs, const char *snapshot_id) { BDRVSheepdogState *s = bs->opaque; BDRVSheepdogState *old_s; char vdi[SD_MAX_VDI_LEN], tag[SD_MAX_VDI_TAG_LEN]; char *buf = NULL; uint32_t vid; uint32_t snapid = 0; int ret = 0, fd; old_s = g_malloc(sizeof(BDRVSheepdogState)); memcpy(old_s, s, sizeof(BDRVSheepdogState)); memset(vdi, 0, sizeof(vdi)); strncpy(vdi, s->name, sizeof(vdi)); memset(tag, 0, sizeof(tag)); snapid = strtoul(snapshot_id, NULL, 10); if (!snapid) { strncpy(tag, s->name, sizeof(tag)); } ret = find_vdi_name(s, vdi, snapid, tag, &vid, 1); if (ret) { error_report("Failed to find_vdi_name"); goto out; } fd = connect_to_sdog(s->addr, s->port); if (fd < 0) { error_report("failed to connect"); ret = fd; goto out; } buf = g_malloc(SD_INODE_SIZE); ret = read_object(fd, buf, vid_to_vdi_oid(vid), s->inode.nr_copies, SD_INODE_SIZE, 0, s->cache_enabled); closesocket(fd); if (ret) { goto out; } memcpy(&s->inode, buf, sizeof(s->inode)); if (!s->inode.vm_state_size) { error_report("Invalid snapshot"); ret = -ENOENT; goto out; } s->is_snapshot = 1; g_free(buf); g_free(old_s); return 0; out: /* recover bdrv_sd_state */ memcpy(s, old_s, sizeof(BDRVSheepdogState)); g_free(buf); g_free(old_s); error_report("failed to open. recover old bdrv_sd_state."); return ret; } static int sd_snapshot_delete(BlockDriverState *bs, const char *snapshot_id) { /* FIXME: Delete specified snapshot id. */ return 0; } static int sd_snapshot_list(BlockDriverState *bs, QEMUSnapshotInfo **psn_tab) { BDRVSheepdogState *s = bs->opaque; SheepdogReq req; int fd, nr = 1024, ret, max = BITS_TO_LONGS(SD_NR_VDIS) * sizeof(long); QEMUSnapshotInfo *sn_tab = NULL; unsigned wlen, rlen; int found = 0; static SheepdogInode inode; unsigned long *vdi_inuse; unsigned int start_nr; uint64_t hval; uint32_t vid; vdi_inuse = g_malloc(max); fd = connect_to_sdog(s->addr, s->port); if (fd < 0) { ret = fd; goto out; } rlen = max; wlen = 0; memset(&req, 0, sizeof(req)); req.opcode = SD_OP_READ_VDIS; req.data_length = max; ret = do_req(fd, (SheepdogReq *)&req, vdi_inuse, &wlen, &rlen); closesocket(fd); if (ret) { goto out; } sn_tab = g_malloc0(nr * sizeof(*sn_tab)); /* calculate a vdi id with hash function */ hval = fnv_64a_buf(s->name, strlen(s->name), FNV1A_64_INIT); start_nr = hval & (SD_NR_VDIS - 1); fd = connect_to_sdog(s->addr, s->port); if (fd < 0) { error_report("failed to connect"); ret = fd; goto out; } for (vid = start_nr; found < nr; vid = (vid + 1) % SD_NR_VDIS) { if (!test_bit(vid, vdi_inuse)) { break; } /* we don't need to read entire object */ ret = read_object(fd, (char *)&inode, vid_to_vdi_oid(vid), 0, SD_INODE_SIZE - sizeof(inode.data_vdi_id), 0, s->cache_enabled); if (ret) { continue; } if (!strcmp(inode.name, s->name) && is_snapshot(&inode)) { sn_tab[found].date_sec = inode.snap_ctime >> 32; sn_tab[found].date_nsec = inode.snap_ctime & 0xffffffff; sn_tab[found].vm_state_size = inode.vm_state_size; sn_tab[found].vm_clock_nsec = inode.vm_clock_nsec; snprintf(sn_tab[found].id_str, sizeof(sn_tab[found].id_str), "%u", inode.snap_id); strncpy(sn_tab[found].name, inode.tag, MIN(sizeof(sn_tab[found].name), sizeof(inode.tag))); found++; } } closesocket(fd); out: *psn_tab = sn_tab; g_free(vdi_inuse); if (ret < 0) { return ret; } return found; } static int do_load_save_vmstate(BDRVSheepdogState *s, uint8_t *data, int64_t pos, int size, int load) { int fd, create; int ret = 0, remaining = size; unsigned int data_len; uint64_t vmstate_oid; uint32_t vdi_index; uint64_t offset; fd = connect_to_sdog(s->addr, s->port); if (fd < 0) { return fd; } while (remaining) { vdi_index = pos / SD_DATA_OBJ_SIZE; offset = pos % SD_DATA_OBJ_SIZE; data_len = MIN(remaining, SD_DATA_OBJ_SIZE); vmstate_oid = vid_to_vmstate_oid(s->inode.vdi_id, vdi_index); create = (offset == 0); if (load) { ret = read_object(fd, (char *)data, vmstate_oid, s->inode.nr_copies, data_len, offset, s->cache_enabled); } else { ret = write_object(fd, (char *)data, vmstate_oid, s->inode.nr_copies, data_len, offset, create, s->cache_enabled); } if (ret < 0) { error_report("failed to save vmstate %s", strerror(errno)); goto cleanup; } pos += data_len; remaining -= data_len; } ret = size; cleanup: closesocket(fd); return ret; } static int sd_save_vmstate(BlockDriverState *bs, const uint8_t *data, int64_t pos, int size) { BDRVSheepdogState *s = bs->opaque; return do_load_save_vmstate(s, (uint8_t *)data, pos, size, 0); } static int sd_load_vmstate(BlockDriverState *bs, uint8_t *data, int64_t pos, int size) { BDRVSheepdogState *s = bs->opaque; return do_load_save_vmstate(s, data, pos, size, 1); } static QEMUOptionParameter sd_create_options[] = { { .name = BLOCK_OPT_SIZE, .type = OPT_SIZE, .help = "Virtual disk size" }, { .name = BLOCK_OPT_BACKING_FILE, .type = OPT_STRING, .help = "File name of a base image" }, { .name = BLOCK_OPT_PREALLOC, .type = OPT_STRING, .help = "Preallocation mode (allowed values: off, full)" }, { NULL } }; BlockDriver bdrv_sheepdog = { .format_name = "sheepdog", .protocol_name = "sheepdog", .instance_size = sizeof(BDRVSheepdogState), .bdrv_file_open = sd_open, .bdrv_close = sd_close, .bdrv_create = sd_create, .bdrv_getlength = sd_getlength, .bdrv_truncate = sd_truncate, .bdrv_co_readv = sd_co_readv, .bdrv_co_writev = sd_co_writev, .bdrv_co_flush_to_disk = sd_co_flush_to_disk, .bdrv_snapshot_create = sd_snapshot_create, .bdrv_snapshot_goto = sd_snapshot_goto, .bdrv_snapshot_delete = sd_snapshot_delete, .bdrv_snapshot_list = sd_snapshot_list, .bdrv_save_vmstate = sd_save_vmstate, .bdrv_load_vmstate = sd_load_vmstate, .create_options = sd_create_options, }; static void bdrv_sheepdog_init(void) { bdrv_register(&bdrv_sheepdog); } block_init(bdrv_sheepdog_init);