/* * Block layer I/O functions * * Copyright (c) 2003 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu/osdep.h" #include "trace.h" #include "sysemu/block-backend.h" #include "block/aio-wait.h" #include "block/blockjob.h" #include "block/blockjob_int.h" #include "block/block_int.h" #include "qemu/cutils.h" #include "qapi/error.h" #include "qemu/error-report.h" #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */ /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */ #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS) static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, int64_t offset, int bytes, BdrvRequestFlags flags); void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore) { BdrvChild *c, *next; QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { if (c == ignore) { continue; } if (c->role->drained_begin) { c->role->drained_begin(c); } } } void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore) { BdrvChild *c, *next; QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) { if (c == ignore) { continue; } if (c->role->drained_end) { c->role->drained_end(c); } } } static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src) { dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer); dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer); dst->opt_mem_alignment = MAX(dst->opt_mem_alignment, src->opt_mem_alignment); dst->min_mem_alignment = MAX(dst->min_mem_alignment, src->min_mem_alignment); dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov); } void bdrv_refresh_limits(BlockDriverState *bs, Error **errp) { BlockDriver *drv = bs->drv; Error *local_err = NULL; memset(&bs->bl, 0, sizeof(bs->bl)); if (!drv) { return; } /* Default alignment based on whether driver has byte interface */ bs->bl.request_alignment = (drv->bdrv_co_preadv || drv->bdrv_aio_preadv) ? 1 : 512; /* Take some limits from the children as a default */ if (bs->file) { bdrv_refresh_limits(bs->file->bs, &local_err); if (local_err) { error_propagate(errp, local_err); return; } bdrv_merge_limits(&bs->bl, &bs->file->bs->bl); } else { bs->bl.min_mem_alignment = 512; bs->bl.opt_mem_alignment = getpagesize(); /* Safe default since most protocols use readv()/writev()/etc */ bs->bl.max_iov = IOV_MAX; } if (bs->backing) { bdrv_refresh_limits(bs->backing->bs, &local_err); if (local_err) { error_propagate(errp, local_err); return; } bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl); } /* Then let the driver override it */ if (drv->bdrv_refresh_limits) { drv->bdrv_refresh_limits(bs, errp); } } /** * The copy-on-read flag is actually a reference count so multiple users may * use the feature without worrying about clobbering its previous state. * Copy-on-read stays enabled until all users have called to disable it. */ void bdrv_enable_copy_on_read(BlockDriverState *bs) { atomic_inc(&bs->copy_on_read); } void bdrv_disable_copy_on_read(BlockDriverState *bs) { int old = atomic_fetch_dec(&bs->copy_on_read); assert(old >= 1); } typedef struct { Coroutine *co; BlockDriverState *bs; bool done; bool begin; bool recursive; BdrvChild *parent; } BdrvCoDrainData; static void coroutine_fn bdrv_drain_invoke_entry(void *opaque) { BdrvCoDrainData *data = opaque; BlockDriverState *bs = data->bs; if (data->begin) { bs->drv->bdrv_co_drain_begin(bs); } else { bs->drv->bdrv_co_drain_end(bs); } /* Set data->done before reading bs->wakeup. */ atomic_mb_set(&data->done, true); bdrv_wakeup(bs); } /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */ static void bdrv_drain_invoke(BlockDriverState *bs, bool begin, bool recursive) { BdrvChild *child, *tmp; BdrvCoDrainData data = { .bs = bs, .done = false, .begin = begin}; if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) || (!begin && !bs->drv->bdrv_co_drain_end)) { return; } data.co = qemu_coroutine_create(bdrv_drain_invoke_entry, &data); bdrv_coroutine_enter(bs, data.co); BDRV_POLL_WHILE(bs, !data.done); if (recursive) { QLIST_FOREACH_SAFE(child, &bs->children, next, tmp) { bdrv_drain_invoke(child->bs, begin, true); } } } static bool bdrv_drain_recurse(BlockDriverState *bs) { BdrvChild *child, *tmp; bool waited; /* Wait for drained requests to finish */ waited = BDRV_POLL_WHILE(bs, atomic_read(&bs->in_flight) > 0); QLIST_FOREACH_SAFE(child, &bs->children, next, tmp) { BlockDriverState *bs = child->bs; bool in_main_loop = qemu_get_current_aio_context() == qemu_get_aio_context(); assert(bs->refcnt > 0); if (in_main_loop) { /* In case the recursive bdrv_drain_recurse processes a * block_job_defer_to_main_loop BH and modifies the graph, * let's hold a reference to bs until we are done. * * IOThread doesn't have such a BH, and it is not safe to call * bdrv_unref without BQL, so skip doing it there. */ bdrv_ref(bs); } waited |= bdrv_drain_recurse(bs); if (in_main_loop) { bdrv_unref(bs); } } return waited; } static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive, BdrvChild *parent); static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive, BdrvChild *parent); static void bdrv_co_drain_bh_cb(void *opaque) { BdrvCoDrainData *data = opaque; Coroutine *co = data->co; BlockDriverState *bs = data->bs; bdrv_dec_in_flight(bs); if (data->begin) { bdrv_do_drained_begin(bs, data->recursive, data->parent); } else { bdrv_do_drained_end(bs, data->recursive, data->parent); } data->done = true; aio_co_wake(co); } static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs, bool begin, bool recursive, BdrvChild *parent) { BdrvCoDrainData data; /* Calling bdrv_drain() from a BH ensures the current coroutine yields and * other coroutines run if they were queued by aio_co_enter(). */ assert(qemu_in_coroutine()); data = (BdrvCoDrainData) { .co = qemu_coroutine_self(), .bs = bs, .done = false, .begin = begin, .recursive = recursive, .parent = parent, }; bdrv_inc_in_flight(bs); aio_bh_schedule_oneshot(bdrv_get_aio_context(bs), bdrv_co_drain_bh_cb, &data); qemu_coroutine_yield(); /* If we are resumed from some other event (such as an aio completion or a * timer callback), it is a bug in the caller that should be fixed. */ assert(data.done); } void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive, BdrvChild *parent) { BdrvChild *child, *next; if (qemu_in_coroutine()) { bdrv_co_yield_to_drain(bs, true, recursive, parent); return; } /* Stop things in parent-to-child order */ if (atomic_fetch_inc(&bs->quiesce_counter) == 0) { aio_disable_external(bdrv_get_aio_context(bs)); } bdrv_parent_drained_begin(bs, parent); bdrv_drain_invoke(bs, true, false); bdrv_drain_recurse(bs); if (recursive) { bs->recursive_quiesce_counter++; QLIST_FOREACH_SAFE(child, &bs->children, next, next) { bdrv_do_drained_begin(child->bs, true, child); } } } void bdrv_drained_begin(BlockDriverState *bs) { bdrv_do_drained_begin(bs, false, NULL); } void bdrv_subtree_drained_begin(BlockDriverState *bs) { bdrv_do_drained_begin(bs, true, NULL); } void bdrv_do_drained_end(BlockDriverState *bs, bool recursive, BdrvChild *parent) { BdrvChild *child, *next; int old_quiesce_counter; if (qemu_in_coroutine()) { bdrv_co_yield_to_drain(bs, false, recursive, parent); return; } assert(bs->quiesce_counter > 0); old_quiesce_counter = atomic_fetch_dec(&bs->quiesce_counter); /* Re-enable things in child-to-parent order */ bdrv_drain_invoke(bs, false, false); bdrv_parent_drained_end(bs, parent); if (old_quiesce_counter == 1) { aio_enable_external(bdrv_get_aio_context(bs)); } if (recursive) { bs->recursive_quiesce_counter--; QLIST_FOREACH_SAFE(child, &bs->children, next, next) { bdrv_do_drained_end(child->bs, true, child); } } } void bdrv_drained_end(BlockDriverState *bs) { bdrv_do_drained_end(bs, false, NULL); } void bdrv_subtree_drained_end(BlockDriverState *bs) { bdrv_do_drained_end(bs, true, NULL); } void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent) { int i; for (i = 0; i < new_parent->recursive_quiesce_counter; i++) { bdrv_do_drained_begin(child->bs, true, child); } } void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent) { int i; for (i = 0; i < old_parent->recursive_quiesce_counter; i++) { bdrv_do_drained_end(child->bs, true, child); } } /* * Wait for pending requests to complete on a single BlockDriverState subtree, * and suspend block driver's internal I/O until next request arrives. * * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState * AioContext. * * Only this BlockDriverState's AioContext is run, so in-flight requests must * not depend on events in other AioContexts. In that case, use * bdrv_drain_all() instead. */ void coroutine_fn bdrv_co_drain(BlockDriverState *bs) { assert(qemu_in_coroutine()); bdrv_drained_begin(bs); bdrv_drained_end(bs); } void bdrv_drain(BlockDriverState *bs) { bdrv_drained_begin(bs); bdrv_drained_end(bs); } /* * Wait for pending requests to complete across all BlockDriverStates * * This function does not flush data to disk, use bdrv_flush_all() for that * after calling this function. * * This pauses all block jobs and disables external clients. It must * be paired with bdrv_drain_all_end(). * * NOTE: no new block jobs or BlockDriverStates can be created between * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls. */ void bdrv_drain_all_begin(void) { /* Always run first iteration so any pending completion BHs run */ bool waited = true; BlockDriverState *bs; BdrvNextIterator it; GSList *aio_ctxs = NULL, *ctx; /* BDRV_POLL_WHILE() for a node can only be called from its own I/O thread * or the main loop AioContext. We potentially use BDRV_POLL_WHILE() on * nodes in several different AioContexts, so make sure we're in the main * context. */ assert(qemu_get_current_aio_context() == qemu_get_aio_context()); for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { AioContext *aio_context = bdrv_get_aio_context(bs); /* Stop things in parent-to-child order */ aio_context_acquire(aio_context); aio_disable_external(aio_context); bdrv_parent_drained_begin(bs, NULL); bdrv_drain_invoke(bs, true, true); aio_context_release(aio_context); if (!g_slist_find(aio_ctxs, aio_context)) { aio_ctxs = g_slist_prepend(aio_ctxs, aio_context); } } /* Note that completion of an asynchronous I/O operation can trigger any * number of other I/O operations on other devices---for example a * coroutine can submit an I/O request to another device in response to * request completion. Therefore we must keep looping until there was no * more activity rather than simply draining each device independently. */ while (waited) { waited = false; for (ctx = aio_ctxs; ctx != NULL; ctx = ctx->next) { AioContext *aio_context = ctx->data; aio_context_acquire(aio_context); for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { if (aio_context == bdrv_get_aio_context(bs)) { waited |= bdrv_drain_recurse(bs); } } aio_context_release(aio_context); } } g_slist_free(aio_ctxs); } void bdrv_drain_all_end(void) { BlockDriverState *bs; BdrvNextIterator it; for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { AioContext *aio_context = bdrv_get_aio_context(bs); /* Re-enable things in child-to-parent order */ aio_context_acquire(aio_context); bdrv_drain_invoke(bs, false, true); bdrv_parent_drained_end(bs, NULL); aio_enable_external(aio_context); aio_context_release(aio_context); } } void bdrv_drain_all(void) { bdrv_drain_all_begin(); bdrv_drain_all_end(); } /** * Remove an active request from the tracked requests list * * This function should be called when a tracked request is completing. */ static void tracked_request_end(BdrvTrackedRequest *req) { if (req->serialising) { atomic_dec(&req->bs->serialising_in_flight); } qemu_co_mutex_lock(&req->bs->reqs_lock); QLIST_REMOVE(req, list); qemu_co_queue_restart_all(&req->wait_queue); qemu_co_mutex_unlock(&req->bs->reqs_lock); } /** * Add an active request to the tracked requests list */ static void tracked_request_begin(BdrvTrackedRequest *req, BlockDriverState *bs, int64_t offset, unsigned int bytes, enum BdrvTrackedRequestType type) { *req = (BdrvTrackedRequest){ .bs = bs, .offset = offset, .bytes = bytes, .type = type, .co = qemu_coroutine_self(), .serialising = false, .overlap_offset = offset, .overlap_bytes = bytes, }; qemu_co_queue_init(&req->wait_queue); qemu_co_mutex_lock(&bs->reqs_lock); QLIST_INSERT_HEAD(&bs->tracked_requests, req, list); qemu_co_mutex_unlock(&bs->reqs_lock); } static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align) { int64_t overlap_offset = req->offset & ~(align - 1); unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align) - overlap_offset; if (!req->serialising) { atomic_inc(&req->bs->serialising_in_flight); req->serialising = true; } req->overlap_offset = MIN(req->overlap_offset, overlap_offset); req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes); } /** * Round a region to cluster boundaries */ void bdrv_round_to_clusters(BlockDriverState *bs, int64_t offset, int64_t bytes, int64_t *cluster_offset, int64_t *cluster_bytes) { BlockDriverInfo bdi; if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) { *cluster_offset = offset; *cluster_bytes = bytes; } else { int64_t c = bdi.cluster_size; *cluster_offset = QEMU_ALIGN_DOWN(offset, c); *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c); } } static int bdrv_get_cluster_size(BlockDriverState *bs) { BlockDriverInfo bdi; int ret; ret = bdrv_get_info(bs, &bdi); if (ret < 0 || bdi.cluster_size == 0) { return bs->bl.request_alignment; } else { return bdi.cluster_size; } } static bool tracked_request_overlaps(BdrvTrackedRequest *req, int64_t offset, unsigned int bytes) { /* aaaa bbbb */ if (offset >= req->overlap_offset + req->overlap_bytes) { return false; } /* bbbb aaaa */ if (req->overlap_offset >= offset + bytes) { return false; } return true; } void bdrv_inc_in_flight(BlockDriverState *bs) { atomic_inc(&bs->in_flight); } void bdrv_wakeup(BlockDriverState *bs) { aio_wait_kick(bdrv_get_aio_wait(bs)); } void bdrv_dec_in_flight(BlockDriverState *bs) { atomic_dec(&bs->in_flight); bdrv_wakeup(bs); } static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self) { BlockDriverState *bs = self->bs; BdrvTrackedRequest *req; bool retry; bool waited = false; if (!atomic_read(&bs->serialising_in_flight)) { return false; } do { retry = false; qemu_co_mutex_lock(&bs->reqs_lock); QLIST_FOREACH(req, &bs->tracked_requests, list) { if (req == self || (!req->serialising && !self->serialising)) { continue; } if (tracked_request_overlaps(req, self->overlap_offset, self->overlap_bytes)) { /* Hitting this means there was a reentrant request, for * example, a block driver issuing nested requests. This must * never happen since it means deadlock. */ assert(qemu_coroutine_self() != req->co); /* If the request is already (indirectly) waiting for us, or * will wait for us as soon as it wakes up, then just go on * (instead of producing a deadlock in the former case). */ if (!req->waiting_for) { self->waiting_for = req; qemu_co_queue_wait(&req->wait_queue, &bs->reqs_lock); self->waiting_for = NULL; retry = true; waited = true; break; } } } qemu_co_mutex_unlock(&bs->reqs_lock); } while (retry); return waited; } static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset, size_t size) { if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) { return -EIO; } if (!bdrv_is_inserted(bs)) { return -ENOMEDIUM; } if (offset < 0) { return -EIO; } return 0; } typedef struct RwCo { BdrvChild *child; int64_t offset; QEMUIOVector *qiov; bool is_write; int ret; BdrvRequestFlags flags; } RwCo; static void coroutine_fn bdrv_rw_co_entry(void *opaque) { RwCo *rwco = opaque; if (!rwco->is_write) { rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset, rwco->qiov->size, rwco->qiov, rwco->flags); } else { rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset, rwco->qiov->size, rwco->qiov, rwco->flags); } } /* * Process a vectored synchronous request using coroutines */ static int bdrv_prwv_co(BdrvChild *child, int64_t offset, QEMUIOVector *qiov, bool is_write, BdrvRequestFlags flags) { Coroutine *co; RwCo rwco = { .child = child, .offset = offset, .qiov = qiov, .is_write = is_write, .ret = NOT_DONE, .flags = flags, }; if (qemu_in_coroutine()) { /* Fast-path if already in coroutine context */ bdrv_rw_co_entry(&rwco); } else { co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco); bdrv_coroutine_enter(child->bs, co); BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE); } return rwco.ret; } /* * Process a synchronous request using coroutines */ static int bdrv_rw_co(BdrvChild *child, int64_t sector_num, uint8_t *buf, int nb_sectors, bool is_write, BdrvRequestFlags flags) { QEMUIOVector qiov; struct iovec iov = { .iov_base = (void *)buf, .iov_len = nb_sectors * BDRV_SECTOR_SIZE, }; if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) { return -EINVAL; } qemu_iovec_init_external(&qiov, &iov, 1); return bdrv_prwv_co(child, sector_num << BDRV_SECTOR_BITS, &qiov, is_write, flags); } /* return < 0 if error. See bdrv_write() for the return codes */ int bdrv_read(BdrvChild *child, int64_t sector_num, uint8_t *buf, int nb_sectors) { return bdrv_rw_co(child, sector_num, buf, nb_sectors, false, 0); } /* Return < 0 if error. Important errors are: -EIO generic I/O error (may happen for all errors) -ENOMEDIUM No media inserted. -EINVAL Invalid sector number or nb_sectors -EACCES Trying to write a read-only device */ int bdrv_write(BdrvChild *child, int64_t sector_num, const uint8_t *buf, int nb_sectors) { return bdrv_rw_co(child, sector_num, (uint8_t *)buf, nb_sectors, true, 0); } int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset, int bytes, BdrvRequestFlags flags) { QEMUIOVector qiov; struct iovec iov = { .iov_base = NULL, .iov_len = bytes, }; qemu_iovec_init_external(&qiov, &iov, 1); return bdrv_prwv_co(child, offset, &qiov, true, BDRV_REQ_ZERO_WRITE | flags); } /* * Completely zero out a block device with the help of bdrv_pwrite_zeroes. * The operation is sped up by checking the block status and only writing * zeroes to the device if they currently do not return zeroes. Optional * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP, * BDRV_REQ_FUA). * * Returns < 0 on error, 0 on success. For error codes see bdrv_write(). */ int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags) { int ret; int64_t target_size, bytes, offset = 0; BlockDriverState *bs = child->bs; target_size = bdrv_getlength(bs); if (target_size < 0) { return target_size; } for (;;) { bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES); if (bytes <= 0) { return 0; } ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL); if (ret < 0) { error_report("error getting block status at offset %" PRId64 ": %s", offset, strerror(-ret)); return ret; } if (ret & BDRV_BLOCK_ZERO) { offset += bytes; continue; } ret = bdrv_pwrite_zeroes(child, offset, bytes, flags); if (ret < 0) { error_report("error writing zeroes at offset %" PRId64 ": %s", offset, strerror(-ret)); return ret; } offset += bytes; } } int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov) { int ret; ret = bdrv_prwv_co(child, offset, qiov, false, 0); if (ret < 0) { return ret; } return qiov->size; } int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes) { QEMUIOVector qiov; struct iovec iov = { .iov_base = (void *)buf, .iov_len = bytes, }; if (bytes < 0) { return -EINVAL; } qemu_iovec_init_external(&qiov, &iov, 1); return bdrv_preadv(child, offset, &qiov); } int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov) { int ret; ret = bdrv_prwv_co(child, offset, qiov, true, 0); if (ret < 0) { return ret; } return qiov->size; } int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes) { QEMUIOVector qiov; struct iovec iov = { .iov_base = (void *) buf, .iov_len = bytes, }; if (bytes < 0) { return -EINVAL; } qemu_iovec_init_external(&qiov, &iov, 1); return bdrv_pwritev(child, offset, &qiov); } /* * Writes to the file and ensures that no writes are reordered across this * request (acts as a barrier) * * Returns 0 on success, -errno in error cases. */ int bdrv_pwrite_sync(BdrvChild *child, int64_t offset, const void *buf, int count) { int ret; ret = bdrv_pwrite(child, offset, buf, count); if (ret < 0) { return ret; } ret = bdrv_flush(child->bs); if (ret < 0) { return ret; } return 0; } typedef struct CoroutineIOCompletion { Coroutine *coroutine; int ret; } CoroutineIOCompletion; static void bdrv_co_io_em_complete(void *opaque, int ret) { CoroutineIOCompletion *co = opaque; co->ret = ret; aio_co_wake(co->coroutine); } static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs, uint64_t offset, uint64_t bytes, QEMUIOVector *qiov, int flags) { BlockDriver *drv = bs->drv; int64_t sector_num; unsigned int nb_sectors; assert(!(flags & ~BDRV_REQ_MASK)); if (!drv) { return -ENOMEDIUM; } if (drv->bdrv_co_preadv) { return drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags); } /* FIXME - no need to calculate these if .bdrv_aio_preadv exists */ sector_num = offset >> BDRV_SECTOR_BITS; nb_sectors = bytes >> BDRV_SECTOR_BITS; if (!drv->bdrv_aio_preadv) { assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0); assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0); assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS); } if (drv->bdrv_co_readv) { return drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov); } else { BlockAIOCB *acb; CoroutineIOCompletion co = { .coroutine = qemu_coroutine_self(), }; if (drv->bdrv_aio_preadv) { acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags, bdrv_co_io_em_complete, &co); } else { acb = drv->bdrv_aio_readv(bs, sector_num, qiov, nb_sectors, bdrv_co_io_em_complete, &co); } if (acb == NULL) { return -EIO; } else { qemu_coroutine_yield(); return co.ret; } } } static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs, uint64_t offset, uint64_t bytes, QEMUIOVector *qiov, int flags) { BlockDriver *drv = bs->drv; int64_t sector_num; unsigned int nb_sectors; int ret; assert(!(flags & ~BDRV_REQ_MASK)); if (!drv) { return -ENOMEDIUM; } if (drv->bdrv_co_pwritev) { ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, flags & bs->supported_write_flags); flags &= ~bs->supported_write_flags; goto emulate_flags; } /* FIXME - no need to calculate these if .bdrv_aio_pwritev exists */ sector_num = offset >> BDRV_SECTOR_BITS; nb_sectors = bytes >> BDRV_SECTOR_BITS; if (!drv->bdrv_aio_pwritev) { assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0); assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0); assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS); } if (drv->bdrv_co_writev_flags) { ret = drv->bdrv_co_writev_flags(bs, sector_num, nb_sectors, qiov, flags & bs->supported_write_flags); flags &= ~bs->supported_write_flags; } else if (drv->bdrv_co_writev) { assert(!bs->supported_write_flags); ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov); } else { BlockAIOCB *acb; CoroutineIOCompletion co = { .coroutine = qemu_coroutine_self(), }; if (drv->bdrv_aio_pwritev) { acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, flags & bs->supported_write_flags, bdrv_co_io_em_complete, &co); flags &= ~bs->supported_write_flags; } else { assert(!bs->supported_write_flags); acb = drv->bdrv_aio_writev(bs, sector_num, qiov, nb_sectors, bdrv_co_io_em_complete, &co); } if (acb == NULL) { ret = -EIO; } else { qemu_coroutine_yield(); ret = co.ret; } } emulate_flags: if (ret == 0 && (flags & BDRV_REQ_FUA)) { ret = bdrv_co_flush(bs); } return ret; } static int coroutine_fn bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset, uint64_t bytes, QEMUIOVector *qiov) { BlockDriver *drv = bs->drv; if (!drv) { return -ENOMEDIUM; } if (!drv->bdrv_co_pwritev_compressed) { return -ENOTSUP; } return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov); } static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child, int64_t offset, unsigned int bytes, QEMUIOVector *qiov) { BlockDriverState *bs = child->bs; /* Perform I/O through a temporary buffer so that users who scribble over * their read buffer while the operation is in progress do not end up * modifying the image file. This is critical for zero-copy guest I/O * where anything might happen inside guest memory. */ void *bounce_buffer; BlockDriver *drv = bs->drv; struct iovec iov; QEMUIOVector local_qiov; int64_t cluster_offset; int64_t cluster_bytes; size_t skip_bytes; int ret; int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, BDRV_REQUEST_MAX_BYTES); unsigned int progress = 0; if (!drv) { return -ENOMEDIUM; } /* FIXME We cannot require callers to have write permissions when all they * are doing is a read request. If we did things right, write permissions * would be obtained anyway, but internally by the copy-on-read code. As * long as it is implemented here rather than in a separate filter driver, * the copy-on-read code doesn't have its own BdrvChild, however, for which * it could request permissions. Therefore we have to bypass the permission * system for the moment. */ // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE)); /* Cover entire cluster so no additional backing file I/O is required when * allocating cluster in the image file. Note that this value may exceed * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which * is one reason we loop rather than doing it all at once. */ bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes); skip_bytes = offset - cluster_offset; trace_bdrv_co_do_copy_on_readv(bs, offset, bytes, cluster_offset, cluster_bytes); bounce_buffer = qemu_try_blockalign(bs, MIN(MIN(max_transfer, cluster_bytes), MAX_BOUNCE_BUFFER)); if (bounce_buffer == NULL) { ret = -ENOMEM; goto err; } while (cluster_bytes) { int64_t pnum; ret = bdrv_is_allocated(bs, cluster_offset, MIN(cluster_bytes, max_transfer), &pnum); if (ret < 0) { /* Safe to treat errors in querying allocation as if * unallocated; we'll probably fail again soon on the * read, but at least that will set a decent errno. */ pnum = MIN(cluster_bytes, max_transfer); } assert(skip_bytes < pnum); if (ret <= 0) { /* Must copy-on-read; use the bounce buffer */ iov.iov_base = bounce_buffer; iov.iov_len = pnum = MIN(pnum, MAX_BOUNCE_BUFFER); qemu_iovec_init_external(&local_qiov, &iov, 1); ret = bdrv_driver_preadv(bs, cluster_offset, pnum, &local_qiov, 0); if (ret < 0) { goto err; } bdrv_debug_event(bs, BLKDBG_COR_WRITE); if (drv->bdrv_co_pwrite_zeroes && buffer_is_zero(bounce_buffer, pnum)) { /* FIXME: Should we (perhaps conditionally) be setting * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy * that still correctly reads as zero? */ ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum, 0); } else { /* This does not change the data on the disk, it is not * necessary to flush even in cache=writethrough mode. */ ret = bdrv_driver_pwritev(bs, cluster_offset, pnum, &local_qiov, 0); } if (ret < 0) { /* It might be okay to ignore write errors for guest * requests. If this is a deliberate copy-on-read * then we don't want to ignore the error. Simply * report it in all cases. */ goto err; } qemu_iovec_from_buf(qiov, progress, bounce_buffer + skip_bytes, pnum - skip_bytes); } else { /* Read directly into the destination */ qemu_iovec_init(&local_qiov, qiov->niov); qemu_iovec_concat(&local_qiov, qiov, progress, pnum - skip_bytes); ret = bdrv_driver_preadv(bs, offset + progress, local_qiov.size, &local_qiov, 0); qemu_iovec_destroy(&local_qiov); if (ret < 0) { goto err; } } cluster_offset += pnum; cluster_bytes -= pnum; progress += pnum - skip_bytes; skip_bytes = 0; } ret = 0; err: qemu_vfree(bounce_buffer); return ret; } /* * Forwards an already correctly aligned request to the BlockDriver. This * handles copy on read, zeroing after EOF, and fragmentation of large * reads; any other features must be implemented by the caller. */ static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child, BdrvTrackedRequest *req, int64_t offset, unsigned int bytes, int64_t align, QEMUIOVector *qiov, int flags) { BlockDriverState *bs = child->bs; int64_t total_bytes, max_bytes; int ret = 0; uint64_t bytes_remaining = bytes; int max_transfer; assert(is_power_of_2(align)); assert((offset & (align - 1)) == 0); assert((bytes & (align - 1)) == 0); assert(!qiov || bytes == qiov->size); assert((bs->open_flags & BDRV_O_NO_IO) == 0); max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), align); /* TODO: We would need a per-BDS .supported_read_flags and * potential fallback support, if we ever implement any read flags * to pass through to drivers. For now, there aren't any * passthrough flags. */ assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ))); /* Handle Copy on Read and associated serialisation */ if (flags & BDRV_REQ_COPY_ON_READ) { /* If we touch the same cluster it counts as an overlap. This * guarantees that allocating writes will be serialized and not race * with each other for the same cluster. For example, in copy-on-read * it ensures that the CoR read and write operations are atomic and * guest writes cannot interleave between them. */ mark_request_serialising(req, bdrv_get_cluster_size(bs)); } if (!(flags & BDRV_REQ_NO_SERIALISING)) { wait_serialising_requests(req); } if (flags & BDRV_REQ_COPY_ON_READ) { int64_t pnum; ret = bdrv_is_allocated(bs, offset, bytes, &pnum); if (ret < 0) { goto out; } if (!ret || pnum != bytes) { ret = bdrv_co_do_copy_on_readv(child, offset, bytes, qiov); goto out; } } /* Forward the request to the BlockDriver, possibly fragmenting it */ total_bytes = bdrv_getlength(bs); if (total_bytes < 0) { ret = total_bytes; goto out; } max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align); if (bytes <= max_bytes && bytes <= max_transfer) { ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0); goto out; } while (bytes_remaining) { int num; if (max_bytes) { QEMUIOVector local_qiov; num = MIN(bytes_remaining, MIN(max_bytes, max_transfer)); assert(num); qemu_iovec_init(&local_qiov, qiov->niov); qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num); ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining, num, &local_qiov, 0); max_bytes -= num; qemu_iovec_destroy(&local_qiov); } else { num = bytes_remaining; ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0, bytes_remaining); } if (ret < 0) { goto out; } bytes_remaining -= num; } out: return ret < 0 ? ret : 0; } /* * Handle a read request in coroutine context */ int coroutine_fn bdrv_co_preadv(BdrvChild *child, int64_t offset, unsigned int bytes, QEMUIOVector *qiov, BdrvRequestFlags flags) { BlockDriverState *bs = child->bs; BlockDriver *drv = bs->drv; BdrvTrackedRequest req; uint64_t align = bs->bl.request_alignment; uint8_t *head_buf = NULL; uint8_t *tail_buf = NULL; QEMUIOVector local_qiov; bool use_local_qiov = false; int ret; trace_bdrv_co_preadv(child->bs, offset, bytes, flags); if (!drv) { return -ENOMEDIUM; } ret = bdrv_check_byte_request(bs, offset, bytes); if (ret < 0) { return ret; } bdrv_inc_in_flight(bs); /* Don't do copy-on-read if we read data before write operation */ if (atomic_read(&bs->copy_on_read) && !(flags & BDRV_REQ_NO_SERIALISING)) { flags |= BDRV_REQ_COPY_ON_READ; } /* Align read if necessary by padding qiov */ if (offset & (align - 1)) { head_buf = qemu_blockalign(bs, align); qemu_iovec_init(&local_qiov, qiov->niov + 2); qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1)); qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); use_local_qiov = true; bytes += offset & (align - 1); offset = offset & ~(align - 1); } if ((offset + bytes) & (align - 1)) { if (!use_local_qiov) { qemu_iovec_init(&local_qiov, qiov->niov + 1); qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); use_local_qiov = true; } tail_buf = qemu_blockalign(bs, align); qemu_iovec_add(&local_qiov, tail_buf, align - ((offset + bytes) & (align - 1))); bytes = ROUND_UP(bytes, align); } tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ); ret = bdrv_aligned_preadv(child, &req, offset, bytes, align, use_local_qiov ? &local_qiov : qiov, flags); tracked_request_end(&req); bdrv_dec_in_flight(bs); if (use_local_qiov) { qemu_iovec_destroy(&local_qiov); qemu_vfree(head_buf); qemu_vfree(tail_buf); } return ret; } static int coroutine_fn bdrv_co_do_readv(BdrvChild *child, int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, BdrvRequestFlags flags) { if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) { return -EINVAL; } return bdrv_co_preadv(child, sector_num << BDRV_SECTOR_BITS, nb_sectors << BDRV_SECTOR_BITS, qiov, flags); } int coroutine_fn bdrv_co_readv(BdrvChild *child, int64_t sector_num, int nb_sectors, QEMUIOVector *qiov) { return bdrv_co_do_readv(child, sector_num, nb_sectors, qiov, 0); } static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, int64_t offset, int bytes, BdrvRequestFlags flags) { BlockDriver *drv = bs->drv; QEMUIOVector qiov; struct iovec iov = {0}; int ret = 0; bool need_flush = false; int head = 0; int tail = 0; int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX); int alignment = MAX(bs->bl.pwrite_zeroes_alignment, bs->bl.request_alignment); int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER); if (!drv) { return -ENOMEDIUM; } assert(alignment % bs->bl.request_alignment == 0); head = offset % alignment; tail = (offset + bytes) % alignment; max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment); assert(max_write_zeroes >= bs->bl.request_alignment); while (bytes > 0 && !ret) { int num = bytes; /* Align request. Block drivers can expect the "bulk" of the request * to be aligned, and that unaligned requests do not cross cluster * boundaries. */ if (head) { /* Make a small request up to the first aligned sector. For * convenience, limit this request to max_transfer even if * we don't need to fall back to writes. */ num = MIN(MIN(bytes, max_transfer), alignment - head); head = (head + num) % alignment; assert(num < max_write_zeroes); } else if (tail && num > alignment) { /* Shorten the request to the last aligned sector. */ num -= tail; } /* limit request size */ if (num > max_write_zeroes) { num = max_write_zeroes; } ret = -ENOTSUP; /* First try the efficient write zeroes operation */ if (drv->bdrv_co_pwrite_zeroes) { ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num, flags & bs->supported_zero_flags); if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) && !(bs->supported_zero_flags & BDRV_REQ_FUA)) { need_flush = true; } } else { assert(!bs->supported_zero_flags); } if (ret == -ENOTSUP) { /* Fall back to bounce buffer if write zeroes is unsupported */ BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE; if ((flags & BDRV_REQ_FUA) && !(bs->supported_write_flags & BDRV_REQ_FUA)) { /* No need for bdrv_driver_pwrite() to do a fallback * flush on each chunk; use just one at the end */ write_flags &= ~BDRV_REQ_FUA; need_flush = true; } num = MIN(num, max_transfer); iov.iov_len = num; if (iov.iov_base == NULL) { iov.iov_base = qemu_try_blockalign(bs, num); if (iov.iov_base == NULL) { ret = -ENOMEM; goto fail; } memset(iov.iov_base, 0, num); } qemu_iovec_init_external(&qiov, &iov, 1); ret = bdrv_driver_pwritev(bs, offset, num, &qiov, write_flags); /* Keep bounce buffer around if it is big enough for all * all future requests. */ if (num < max_transfer) { qemu_vfree(iov.iov_base); iov.iov_base = NULL; } } offset += num; bytes -= num; } fail: if (ret == 0 && need_flush) { ret = bdrv_co_flush(bs); } qemu_vfree(iov.iov_base); return ret; } /* * Forwards an already correctly aligned write request to the BlockDriver, * after possibly fragmenting it. */ static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child, BdrvTrackedRequest *req, int64_t offset, unsigned int bytes, int64_t align, QEMUIOVector *qiov, int flags) { BlockDriverState *bs = child->bs; BlockDriver *drv = bs->drv; bool waited; int ret; int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE); uint64_t bytes_remaining = bytes; int max_transfer; if (!drv) { return -ENOMEDIUM; } if (bdrv_has_readonly_bitmaps(bs)) { return -EPERM; } assert(is_power_of_2(align)); assert((offset & (align - 1)) == 0); assert((bytes & (align - 1)) == 0); assert(!qiov || bytes == qiov->size); assert((bs->open_flags & BDRV_O_NO_IO) == 0); assert(!(flags & ~BDRV_REQ_MASK)); max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX), align); waited = wait_serialising_requests(req); assert(!waited || !req->serialising); assert(req->overlap_offset <= offset); assert(offset + bytes <= req->overlap_offset + req->overlap_bytes); assert(child->perm & BLK_PERM_WRITE); assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE); ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req); if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF && !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes && qemu_iovec_is_zero(qiov)) { flags |= BDRV_REQ_ZERO_WRITE; if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) { flags |= BDRV_REQ_MAY_UNMAP; } } if (ret < 0) { /* Do nothing, write notifier decided to fail this request */ } else if (flags & BDRV_REQ_ZERO_WRITE) { bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO); ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags); } else if (flags & BDRV_REQ_WRITE_COMPRESSED) { ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, qiov); } else if (bytes <= max_transfer) { bdrv_debug_event(bs, BLKDBG_PWRITEV); ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, flags); } else { bdrv_debug_event(bs, BLKDBG_PWRITEV); while (bytes_remaining) { int num = MIN(bytes_remaining, max_transfer); QEMUIOVector local_qiov; int local_flags = flags; assert(num); if (num < bytes_remaining && (flags & BDRV_REQ_FUA) && !(bs->supported_write_flags & BDRV_REQ_FUA)) { /* If FUA is going to be emulated by flush, we only * need to flush on the last iteration */ local_flags &= ~BDRV_REQ_FUA; } qemu_iovec_init(&local_qiov, qiov->niov); qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num); ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining, num, &local_qiov, local_flags); qemu_iovec_destroy(&local_qiov); if (ret < 0) { break; } bytes_remaining -= num; } } bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE); atomic_inc(&bs->write_gen); bdrv_set_dirty(bs, offset, bytes); stat64_max(&bs->wr_highest_offset, offset + bytes); if (ret >= 0) { bs->total_sectors = MAX(bs->total_sectors, end_sector); ret = 0; } return ret; } static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child, int64_t offset, unsigned int bytes, BdrvRequestFlags flags, BdrvTrackedRequest *req) { BlockDriverState *bs = child->bs; uint8_t *buf = NULL; QEMUIOVector local_qiov; struct iovec iov; uint64_t align = bs->bl.request_alignment; unsigned int head_padding_bytes, tail_padding_bytes; int ret = 0; head_padding_bytes = offset & (align - 1); tail_padding_bytes = (align - (offset + bytes)) & (align - 1); assert(flags & BDRV_REQ_ZERO_WRITE); if (head_padding_bytes || tail_padding_bytes) { buf = qemu_blockalign(bs, align); iov = (struct iovec) { .iov_base = buf, .iov_len = align, }; qemu_iovec_init_external(&local_qiov, &iov, 1); } if (head_padding_bytes) { uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes); /* RMW the unaligned part before head. */ mark_request_serialising(req, align); wait_serialising_requests(req); bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); ret = bdrv_aligned_preadv(child, req, offset & ~(align - 1), align, align, &local_qiov, 0); if (ret < 0) { goto fail; } bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); memset(buf + head_padding_bytes, 0, zero_bytes); ret = bdrv_aligned_pwritev(child, req, offset & ~(align - 1), align, align, &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE); if (ret < 0) { goto fail; } offset += zero_bytes; bytes -= zero_bytes; } assert(!bytes || (offset & (align - 1)) == 0); if (bytes >= align) { /* Write the aligned part in the middle. */ uint64_t aligned_bytes = bytes & ~(align - 1); ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align, NULL, flags); if (ret < 0) { goto fail; } bytes -= aligned_bytes; offset += aligned_bytes; } assert(!bytes || (offset & (align - 1)) == 0); if (bytes) { assert(align == tail_padding_bytes + bytes); /* RMW the unaligned part after tail. */ mark_request_serialising(req, align); wait_serialising_requests(req); bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); ret = bdrv_aligned_preadv(child, req, offset, align, align, &local_qiov, 0); if (ret < 0) { goto fail; } bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); memset(buf, 0, bytes); ret = bdrv_aligned_pwritev(child, req, offset, align, align, &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE); } fail: qemu_vfree(buf); return ret; } /* * Handle a write request in coroutine context */ int coroutine_fn bdrv_co_pwritev(BdrvChild *child, int64_t offset, unsigned int bytes, QEMUIOVector *qiov, BdrvRequestFlags flags) { BlockDriverState *bs = child->bs; BdrvTrackedRequest req; uint64_t align = bs->bl.request_alignment; uint8_t *head_buf = NULL; uint8_t *tail_buf = NULL; QEMUIOVector local_qiov; bool use_local_qiov = false; int ret; trace_bdrv_co_pwritev(child->bs, offset, bytes, flags); if (!bs->drv) { return -ENOMEDIUM; } if (bs->read_only) { return -EPERM; } assert(!(bs->open_flags & BDRV_O_INACTIVE)); ret = bdrv_check_byte_request(bs, offset, bytes); if (ret < 0) { return ret; } bdrv_inc_in_flight(bs); /* * Align write if necessary by performing a read-modify-write cycle. * Pad qiov with the read parts and be sure to have a tracked request not * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle. */ tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE); if (flags & BDRV_REQ_ZERO_WRITE) { ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req); goto out; } if (offset & (align - 1)) { QEMUIOVector head_qiov; struct iovec head_iov; mark_request_serialising(&req, align); wait_serialising_requests(&req); head_buf = qemu_blockalign(bs, align); head_iov = (struct iovec) { .iov_base = head_buf, .iov_len = align, }; qemu_iovec_init_external(&head_qiov, &head_iov, 1); bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD); ret = bdrv_aligned_preadv(child, &req, offset & ~(align - 1), align, align, &head_qiov, 0); if (ret < 0) { goto fail; } bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD); qemu_iovec_init(&local_qiov, qiov->niov + 2); qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1)); qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); use_local_qiov = true; bytes += offset & (align - 1); offset = offset & ~(align - 1); /* We have read the tail already if the request is smaller * than one aligned block. */ if (bytes < align) { qemu_iovec_add(&local_qiov, head_buf + bytes, align - bytes); bytes = align; } } if ((offset + bytes) & (align - 1)) { QEMUIOVector tail_qiov; struct iovec tail_iov; size_t tail_bytes; bool waited; mark_request_serialising(&req, align); waited = wait_serialising_requests(&req); assert(!waited || !use_local_qiov); tail_buf = qemu_blockalign(bs, align); tail_iov = (struct iovec) { .iov_base = tail_buf, .iov_len = align, }; qemu_iovec_init_external(&tail_qiov, &tail_iov, 1); bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL); ret = bdrv_aligned_preadv(child, &req, (offset + bytes) & ~(align - 1), align, align, &tail_qiov, 0); if (ret < 0) { goto fail; } bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL); if (!use_local_qiov) { qemu_iovec_init(&local_qiov, qiov->niov + 1); qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size); use_local_qiov = true; } tail_bytes = (offset + bytes) & (align - 1); qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes); bytes = ROUND_UP(bytes, align); } ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align, use_local_qiov ? &local_qiov : qiov, flags); fail: if (use_local_qiov) { qemu_iovec_destroy(&local_qiov); } qemu_vfree(head_buf); qemu_vfree(tail_buf); out: tracked_request_end(&req); bdrv_dec_in_flight(bs); return ret; } static int coroutine_fn bdrv_co_do_writev(BdrvChild *child, int64_t sector_num, int nb_sectors, QEMUIOVector *qiov, BdrvRequestFlags flags) { if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) { return -EINVAL; } return bdrv_co_pwritev(child, sector_num << BDRV_SECTOR_BITS, nb_sectors << BDRV_SECTOR_BITS, qiov, flags); } int coroutine_fn bdrv_co_writev(BdrvChild *child, int64_t sector_num, int nb_sectors, QEMUIOVector *qiov) { return bdrv_co_do_writev(child, sector_num, nb_sectors, qiov, 0); } int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset, int bytes, BdrvRequestFlags flags) { trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags); if (!(child->bs->open_flags & BDRV_O_UNMAP)) { flags &= ~BDRV_REQ_MAY_UNMAP; } return bdrv_co_pwritev(child, offset, bytes, NULL, BDRV_REQ_ZERO_WRITE | flags); } /* * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not. */ int bdrv_flush_all(void) { BdrvNextIterator it; BlockDriverState *bs = NULL; int result = 0; for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { AioContext *aio_context = bdrv_get_aio_context(bs); int ret; aio_context_acquire(aio_context); ret = bdrv_flush(bs); if (ret < 0 && !result) { result = ret; } aio_context_release(aio_context); } return result; } typedef struct BdrvCoBlockStatusData { BlockDriverState *bs; BlockDriverState *base; bool want_zero; int64_t offset; int64_t bytes; int64_t *pnum; int64_t *map; BlockDriverState **file; int ret; bool done; } BdrvCoBlockStatusData; int coroutine_fn bdrv_co_block_status_from_file(BlockDriverState *bs, bool want_zero, int64_t offset, int64_t bytes, int64_t *pnum, int64_t *map, BlockDriverState **file) { assert(bs->file && bs->file->bs); *pnum = bytes; *map = offset; *file = bs->file->bs; return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID; } int coroutine_fn bdrv_co_block_status_from_backing(BlockDriverState *bs, bool want_zero, int64_t offset, int64_t bytes, int64_t *pnum, int64_t *map, BlockDriverState **file) { assert(bs->backing && bs->backing->bs); *pnum = bytes; *map = offset; *file = bs->backing->bs; return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID; } /* * Returns the allocation status of the specified sectors. * Drivers not implementing the functionality are assumed to not support * backing files, hence all their sectors are reported as allocated. * * If 'want_zero' is true, the caller is querying for mapping * purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and * _ZERO where possible; otherwise, the result favors larger 'pnum', * with a focus on accurate BDRV_BLOCK_ALLOCATED. * * If 'offset' is beyond the end of the disk image the return value is * BDRV_BLOCK_EOF and 'pnum' is set to 0. * * 'bytes' is the max value 'pnum' should be set to. If bytes goes * beyond the end of the disk image it will be clamped; if 'pnum' is set to * the end of the image, then the returned value will include BDRV_BLOCK_EOF. * * 'pnum' is set to the number of bytes (including and immediately * following the specified offset) that are easily known to be in the * same allocated/unallocated state. Note that a second call starting * at the original offset plus returned pnum may have the same status. * The returned value is non-zero on success except at end-of-file. * * Returns negative errno on failure. Otherwise, if the * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are * set to the host mapping and BDS corresponding to the guest offset. */ static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs, bool want_zero, int64_t offset, int64_t bytes, int64_t *pnum, int64_t *map, BlockDriverState **file) { int64_t total_size; int64_t n; /* bytes */ int ret; int64_t local_map = 0; BlockDriverState *local_file = NULL; int64_t aligned_offset, aligned_bytes; uint32_t align; assert(pnum); *pnum = 0; total_size = bdrv_getlength(bs); if (total_size < 0) { ret = total_size; goto early_out; } if (offset >= total_size) { ret = BDRV_BLOCK_EOF; goto early_out; } if (!bytes) { ret = 0; goto early_out; } n = total_size - offset; if (n < bytes) { bytes = n; } /* Must be non-NULL or bdrv_getlength() would have failed */ assert(bs->drv); if (!bs->drv->bdrv_co_block_status) { *pnum = bytes; ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED; if (offset + bytes == total_size) { ret |= BDRV_BLOCK_EOF; } if (bs->drv->protocol_name) { ret |= BDRV_BLOCK_OFFSET_VALID; local_map = offset; local_file = bs; } goto early_out; } bdrv_inc_in_flight(bs); /* Round out to request_alignment boundaries */ align = bs->bl.request_alignment; aligned_offset = QEMU_ALIGN_DOWN(offset, align); aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset; ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset, aligned_bytes, pnum, &local_map, &local_file); if (ret < 0) { *pnum = 0; goto out; } /* * The driver's result must be a non-zero multiple of request_alignment. * Clamp pnum and adjust map to original request. */ assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) && align > offset - aligned_offset); *pnum -= offset - aligned_offset; if (*pnum > bytes) { *pnum = bytes; } if (ret & BDRV_BLOCK_OFFSET_VALID) { local_map += offset - aligned_offset; } if (ret & BDRV_BLOCK_RAW) { assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file); ret = bdrv_co_block_status(local_file, want_zero, local_map, *pnum, pnum, &local_map, &local_file); goto out; } if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) { ret |= BDRV_BLOCK_ALLOCATED; } else if (want_zero) { if (bdrv_unallocated_blocks_are_zero(bs)) { ret |= BDRV_BLOCK_ZERO; } else if (bs->backing) { BlockDriverState *bs2 = bs->backing->bs; int64_t size2 = bdrv_getlength(bs2); if (size2 >= 0 && offset >= size2) { ret |= BDRV_BLOCK_ZERO; } } } if (want_zero && local_file && local_file != bs && (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) && (ret & BDRV_BLOCK_OFFSET_VALID)) { int64_t file_pnum; int ret2; ret2 = bdrv_co_block_status(local_file, want_zero, local_map, *pnum, &file_pnum, NULL, NULL); if (ret2 >= 0) { /* Ignore errors. This is just providing extra information, it * is useful but not necessary. */ if (ret2 & BDRV_BLOCK_EOF && (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) { /* * It is valid for the format block driver to read * beyond the end of the underlying file's current * size; such areas read as zero. */ ret |= BDRV_BLOCK_ZERO; } else { /* Limit request to the range reported by the protocol driver */ *pnum = file_pnum; ret |= (ret2 & BDRV_BLOCK_ZERO); } } } out: bdrv_dec_in_flight(bs); if (ret >= 0 && offset + *pnum == total_size) { ret |= BDRV_BLOCK_EOF; } early_out: if (file) { *file = local_file; } if (map) { *map = local_map; } return ret; } static int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs, BlockDriverState *base, bool want_zero, int64_t offset, int64_t bytes, int64_t *pnum, int64_t *map, BlockDriverState **file) { BlockDriverState *p; int ret = 0; bool first = true; assert(bs != base); for (p = bs; p != base; p = backing_bs(p)) { ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map, file); if (ret < 0) { break; } if (ret & BDRV_BLOCK_ZERO && ret & BDRV_BLOCK_EOF && !first) { /* * Reading beyond the end of the file continues to read * zeroes, but we can only widen the result to the * unallocated length we learned from an earlier * iteration. */ *pnum = bytes; } if (ret & (BDRV_BLOCK_ZERO | BDRV_BLOCK_DATA)) { break; } /* [offset, pnum] unallocated on this layer, which could be only * the first part of [offset, bytes]. */ bytes = MIN(bytes, *pnum); first = false; } return ret; } /* Coroutine wrapper for bdrv_block_status_above() */ static void coroutine_fn bdrv_block_status_above_co_entry(void *opaque) { BdrvCoBlockStatusData *data = opaque; data->ret = bdrv_co_block_status_above(data->bs, data->base, data->want_zero, data->offset, data->bytes, data->pnum, data->map, data->file); data->done = true; } /* * Synchronous wrapper around bdrv_co_block_status_above(). * * See bdrv_co_block_status_above() for details. */ static int bdrv_common_block_status_above(BlockDriverState *bs, BlockDriverState *base, bool want_zero, int64_t offset, int64_t bytes, int64_t *pnum, int64_t *map, BlockDriverState **file) { Coroutine *co; BdrvCoBlockStatusData data = { .bs = bs, .base = base, .want_zero = want_zero, .offset = offset, .bytes = bytes, .pnum = pnum, .map = map, .file = file, .done = false, }; if (qemu_in_coroutine()) { /* Fast-path if already in coroutine context */ bdrv_block_status_above_co_entry(&data); } else { co = qemu_coroutine_create(bdrv_block_status_above_co_entry, &data); bdrv_coroutine_enter(bs, co); BDRV_POLL_WHILE(bs, !data.done); } return data.ret; } int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base, int64_t offset, int64_t bytes, int64_t *pnum, int64_t *map, BlockDriverState **file) { return bdrv_common_block_status_above(bs, base, true, offset, bytes, pnum, map, file); } int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes, int64_t *pnum, int64_t *map, BlockDriverState **file) { return bdrv_block_status_above(bs, backing_bs(bs), offset, bytes, pnum, map, file); } int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset, int64_t bytes, int64_t *pnum) { int ret; int64_t dummy; ret = bdrv_common_block_status_above(bs, backing_bs(bs), false, offset, bytes, pnum ? pnum : &dummy, NULL, NULL); if (ret < 0) { return ret; } return !!(ret & BDRV_BLOCK_ALLOCATED); } /* * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP] * * Return true if (a prefix of) the given range is allocated in any image * between BASE and TOP (inclusive). BASE can be NULL to check if the given * offset is allocated in any image of the chain. Return false otherwise, * or negative errno on failure. * * 'pnum' is set to the number of bytes (including and immediately * following the specified offset) that are known to be in the same * allocated/unallocated state. Note that a subsequent call starting * at 'offset + *pnum' may return the same allocation status (in other * words, the result is not necessarily the maximum possible range); * but 'pnum' will only be 0 when end of file is reached. * */ int bdrv_is_allocated_above(BlockDriverState *top, BlockDriverState *base, int64_t offset, int64_t bytes, int64_t *pnum) { BlockDriverState *intermediate; int ret; int64_t n = bytes; intermediate = top; while (intermediate && intermediate != base) { int64_t pnum_inter; int64_t size_inter; ret = bdrv_is_allocated(intermediate, offset, bytes, &pnum_inter); if (ret < 0) { return ret; } if (ret) { *pnum = pnum_inter; return 1; } size_inter = bdrv_getlength(intermediate); if (size_inter < 0) { return size_inter; } if (n > pnum_inter && (intermediate == top || offset + pnum_inter < size_inter)) { n = pnum_inter; } intermediate = backing_bs(intermediate); } *pnum = n; return 0; } typedef struct BdrvVmstateCo { BlockDriverState *bs; QEMUIOVector *qiov; int64_t pos; bool is_read; int ret; } BdrvVmstateCo; static int coroutine_fn bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos, bool is_read) { BlockDriver *drv = bs->drv; int ret = -ENOTSUP; bdrv_inc_in_flight(bs); if (!drv) { ret = -ENOMEDIUM; } else if (drv->bdrv_load_vmstate) { if (is_read) { ret = drv->bdrv_load_vmstate(bs, qiov, pos); } else { ret = drv->bdrv_save_vmstate(bs, qiov, pos); } } else if (bs->file) { ret = bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read); } bdrv_dec_in_flight(bs); return ret; } static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque) { BdrvVmstateCo *co = opaque; co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read); } static inline int bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos, bool is_read) { if (qemu_in_coroutine()) { return bdrv_co_rw_vmstate(bs, qiov, pos, is_read); } else { BdrvVmstateCo data = { .bs = bs, .qiov = qiov, .pos = pos, .is_read = is_read, .ret = -EINPROGRESS, }; Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data); bdrv_coroutine_enter(bs, co); BDRV_POLL_WHILE(bs, data.ret == -EINPROGRESS); return data.ret; } } int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf, int64_t pos, int size) { QEMUIOVector qiov; struct iovec iov = { .iov_base = (void *) buf, .iov_len = size, }; int ret; qemu_iovec_init_external(&qiov, &iov, 1); ret = bdrv_writev_vmstate(bs, &qiov, pos); if (ret < 0) { return ret; } return size; } int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) { return bdrv_rw_vmstate(bs, qiov, pos, false); } int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf, int64_t pos, int size) { QEMUIOVector qiov; struct iovec iov = { .iov_base = buf, .iov_len = size, }; int ret; qemu_iovec_init_external(&qiov, &iov, 1); ret = bdrv_readv_vmstate(bs, &qiov, pos); if (ret < 0) { return ret; } return size; } int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos) { return bdrv_rw_vmstate(bs, qiov, pos, true); } /**************************************************************/ /* async I/Os */ void bdrv_aio_cancel(BlockAIOCB *acb) { qemu_aio_ref(acb); bdrv_aio_cancel_async(acb); while (acb->refcnt > 1) { if (acb->aiocb_info->get_aio_context) { aio_poll(acb->aiocb_info->get_aio_context(acb), true); } else if (acb->bs) { /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so * assert that we're not using an I/O thread. Thread-safe * code should use bdrv_aio_cancel_async exclusively. */ assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context()); aio_poll(bdrv_get_aio_context(acb->bs), true); } else { abort(); } } qemu_aio_unref(acb); } /* Async version of aio cancel. The caller is not blocked if the acb implements * cancel_async, otherwise we do nothing and let the request normally complete. * In either case the completion callback must be called. */ void bdrv_aio_cancel_async(BlockAIOCB *acb) { if (acb->aiocb_info->cancel_async) { acb->aiocb_info->cancel_async(acb); } } /**************************************************************/ /* Coroutine block device emulation */ typedef struct FlushCo { BlockDriverState *bs; int ret; } FlushCo; static void coroutine_fn bdrv_flush_co_entry(void *opaque) { FlushCo *rwco = opaque; rwco->ret = bdrv_co_flush(rwco->bs); } int coroutine_fn bdrv_co_flush(BlockDriverState *bs) { int current_gen; int ret = 0; bdrv_inc_in_flight(bs); if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) || bdrv_is_sg(bs)) { goto early_exit; } qemu_co_mutex_lock(&bs->reqs_lock); current_gen = atomic_read(&bs->write_gen); /* Wait until any previous flushes are completed */ while (bs->active_flush_req) { qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock); } /* Flushes reach this point in nondecreasing current_gen order. */ bs->active_flush_req = true; qemu_co_mutex_unlock(&bs->reqs_lock); /* Write back all layers by calling one driver function */ if (bs->drv->bdrv_co_flush) { ret = bs->drv->bdrv_co_flush(bs); goto out; } /* Write back cached data to the OS even with cache=unsafe */ BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS); if (bs->drv->bdrv_co_flush_to_os) { ret = bs->drv->bdrv_co_flush_to_os(bs); if (ret < 0) { goto out; } } /* But don't actually force it to the disk with cache=unsafe */ if (bs->open_flags & BDRV_O_NO_FLUSH) { goto flush_parent; } /* Check if we really need to flush anything */ if (bs->flushed_gen == current_gen) { goto flush_parent; } BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK); if (!bs->drv) { /* bs->drv->bdrv_co_flush() might have ejected the BDS * (even in case of apparent success) */ ret = -ENOMEDIUM; goto out; } if (bs->drv->bdrv_co_flush_to_disk) { ret = bs->drv->bdrv_co_flush_to_disk(bs); } else if (bs->drv->bdrv_aio_flush) { BlockAIOCB *acb; CoroutineIOCompletion co = { .coroutine = qemu_coroutine_self(), }; acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co); if (acb == NULL) { ret = -EIO; } else { qemu_coroutine_yield(); ret = co.ret; } } else { /* * Some block drivers always operate in either writethrough or unsafe * mode and don't support bdrv_flush therefore. Usually qemu doesn't * know how the server works (because the behaviour is hardcoded or * depends on server-side configuration), so we can't ensure that * everything is safe on disk. Returning an error doesn't work because * that would break guests even if the server operates in writethrough * mode. * * Let's hope the user knows what he's doing. */ ret = 0; } if (ret < 0) { goto out; } /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH * in the case of cache=unsafe, so there are no useless flushes. */ flush_parent: ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0; out: /* Notify any pending flushes that we have completed */ if (ret == 0) { bs->flushed_gen = current_gen; } qemu_co_mutex_lock(&bs->reqs_lock); bs->active_flush_req = false; /* Return value is ignored - it's ok if wait queue is empty */ qemu_co_queue_next(&bs->flush_queue); qemu_co_mutex_unlock(&bs->reqs_lock); early_exit: bdrv_dec_in_flight(bs); return ret; } int bdrv_flush(BlockDriverState *bs) { Coroutine *co; FlushCo flush_co = { .bs = bs, .ret = NOT_DONE, }; if (qemu_in_coroutine()) { /* Fast-path if already in coroutine context */ bdrv_flush_co_entry(&flush_co); } else { co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co); bdrv_coroutine_enter(bs, co); BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE); } return flush_co.ret; } typedef struct DiscardCo { BlockDriverState *bs; int64_t offset; int bytes; int ret; } DiscardCo; static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque) { DiscardCo *rwco = opaque; rwco->ret = bdrv_co_pdiscard(rwco->bs, rwco->offset, rwco->bytes); } int coroutine_fn bdrv_co_pdiscard(BlockDriverState *bs, int64_t offset, int bytes) { BdrvTrackedRequest req; int max_pdiscard, ret; int head, tail, align; if (!bs->drv) { return -ENOMEDIUM; } if (bdrv_has_readonly_bitmaps(bs)) { return -EPERM; } ret = bdrv_check_byte_request(bs, offset, bytes); if (ret < 0) { return ret; } else if (bs->read_only) { return -EPERM; } assert(!(bs->open_flags & BDRV_O_INACTIVE)); /* Do nothing if disabled. */ if (!(bs->open_flags & BDRV_O_UNMAP)) { return 0; } if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) { return 0; } /* Discard is advisory, but some devices track and coalesce * unaligned requests, so we must pass everything down rather than * round here. Still, most devices will just silently ignore * unaligned requests (by returning -ENOTSUP), so we must fragment * the request accordingly. */ align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment); assert(align % bs->bl.request_alignment == 0); head = offset % align; tail = (offset + bytes) % align; bdrv_inc_in_flight(bs); tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD); ret = notifier_with_return_list_notify(&bs->before_write_notifiers, &req); if (ret < 0) { goto out; } max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX), align); assert(max_pdiscard >= bs->bl.request_alignment); while (bytes > 0) { int num = bytes; if (head) { /* Make small requests to get to alignment boundaries. */ num = MIN(bytes, align - head); if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) { num %= bs->bl.request_alignment; } head = (head + num) % align; assert(num < max_pdiscard); } else if (tail) { if (num > align) { /* Shorten the request to the last aligned cluster. */ num -= tail; } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) && tail > bs->bl.request_alignment) { tail %= bs->bl.request_alignment; num -= tail; } } /* limit request size */ if (num > max_pdiscard) { num = max_pdiscard; } if (!bs->drv) { ret = -ENOMEDIUM; goto out; } if (bs->drv->bdrv_co_pdiscard) { ret = bs->drv->bdrv_co_pdiscard(bs, offset, num); } else { BlockAIOCB *acb; CoroutineIOCompletion co = { .coroutine = qemu_coroutine_self(), }; acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num, bdrv_co_io_em_complete, &co); if (acb == NULL) { ret = -EIO; goto out; } else { qemu_coroutine_yield(); ret = co.ret; } } if (ret && ret != -ENOTSUP) { goto out; } offset += num; bytes -= num; } ret = 0; out: atomic_inc(&bs->write_gen); bdrv_set_dirty(bs, req.offset, req.bytes); tracked_request_end(&req); bdrv_dec_in_flight(bs); return ret; } int bdrv_pdiscard(BlockDriverState *bs, int64_t offset, int bytes) { Coroutine *co; DiscardCo rwco = { .bs = bs, .offset = offset, .bytes = bytes, .ret = NOT_DONE, }; if (qemu_in_coroutine()) { /* Fast-path if already in coroutine context */ bdrv_pdiscard_co_entry(&rwco); } else { co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco); bdrv_coroutine_enter(bs, co); BDRV_POLL_WHILE(bs, rwco.ret == NOT_DONE); } return rwco.ret; } int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf) { BlockDriver *drv = bs->drv; CoroutineIOCompletion co = { .coroutine = qemu_coroutine_self(), }; BlockAIOCB *acb; bdrv_inc_in_flight(bs); if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) { co.ret = -ENOTSUP; goto out; } if (drv->bdrv_co_ioctl) { co.ret = drv->bdrv_co_ioctl(bs, req, buf); } else { acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co); if (!acb) { co.ret = -ENOTSUP; goto out; } qemu_coroutine_yield(); } out: bdrv_dec_in_flight(bs); return co.ret; } void *qemu_blockalign(BlockDriverState *bs, size_t size) { return qemu_memalign(bdrv_opt_mem_align(bs), size); } void *qemu_blockalign0(BlockDriverState *bs, size_t size) { return memset(qemu_blockalign(bs, size), 0, size); } void *qemu_try_blockalign(BlockDriverState *bs, size_t size) { size_t align = bdrv_opt_mem_align(bs); /* Ensure that NULL is never returned on success */ assert(align > 0); if (size == 0) { size = align; } return qemu_try_memalign(align, size); } void *qemu_try_blockalign0(BlockDriverState *bs, size_t size) { void *mem = qemu_try_blockalign(bs, size); if (mem) { memset(mem, 0, size); } return mem; } /* * Check if all memory in this vector is sector aligned. */ bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov) { int i; size_t alignment = bdrv_min_mem_align(bs); for (i = 0; i < qiov->niov; i++) { if ((uintptr_t) qiov->iov[i].iov_base % alignment) { return false; } if (qiov->iov[i].iov_len % alignment) { return false; } } return true; } void bdrv_add_before_write_notifier(BlockDriverState *bs, NotifierWithReturn *notifier) { notifier_with_return_list_add(&bs->before_write_notifiers, notifier); } void bdrv_io_plug(BlockDriverState *bs) { BdrvChild *child; QLIST_FOREACH(child, &bs->children, next) { bdrv_io_plug(child->bs); } if (atomic_fetch_inc(&bs->io_plugged) == 0) { BlockDriver *drv = bs->drv; if (drv && drv->bdrv_io_plug) { drv->bdrv_io_plug(bs); } } } void bdrv_io_unplug(BlockDriverState *bs) { BdrvChild *child; assert(bs->io_plugged); if (atomic_fetch_dec(&bs->io_plugged) == 1) { BlockDriver *drv = bs->drv; if (drv && drv->bdrv_io_unplug) { drv->bdrv_io_unplug(bs); } } QLIST_FOREACH(child, &bs->children, next) { bdrv_io_unplug(child->bs); } } void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size) { BdrvChild *child; if (bs->drv && bs->drv->bdrv_register_buf) { bs->drv->bdrv_register_buf(bs, host, size); } QLIST_FOREACH(child, &bs->children, next) { bdrv_register_buf(child->bs, host, size); } } void bdrv_unregister_buf(BlockDriverState *bs, void *host) { BdrvChild *child; if (bs->drv && bs->drv->bdrv_unregister_buf) { bs->drv->bdrv_unregister_buf(bs, host); } QLIST_FOREACH(child, &bs->children, next) { bdrv_unregister_buf(child->bs, host); } }