/* * User emulator execution * * Copyright (c) 2003-2005 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "hw/core/tcg-cpu-ops.h" #include "disas/disas.h" #include "exec/exec-all.h" #include "tcg/tcg.h" #include "qemu/bitops.h" #include "qemu/rcu.h" #include "exec/cpu_ldst.h" #include "exec/translate-all.h" #include "exec/helper-proto.h" #include "qemu/atomic128.h" #include "trace/trace-root.h" #include "tcg/tcg-ldst.h" #include "internal.h" __thread uintptr_t helper_retaddr; //#define DEBUG_SIGNAL /* * Adjust the pc to pass to cpu_restore_state; return the memop type. */ MMUAccessType adjust_signal_pc(uintptr_t *pc, bool is_write) { switch (helper_retaddr) { default: /* * Fault during host memory operation within a helper function. * The helper's host return address, saved here, gives us a * pointer into the generated code that will unwind to the * correct guest pc. */ *pc = helper_retaddr; break; case 0: /* * Fault during host memory operation within generated code. * (Or, a unrelated bug within qemu, but we can't tell from here). * * We take the host pc from the signal frame. However, we cannot * use that value directly. Within cpu_restore_state_from_tb, we * assume PC comes from GETPC(), as used by the helper functions, * so we adjust the address by -GETPC_ADJ to form an address that * is within the call insn, so that the address does not accidentally * match the beginning of the next guest insn. However, when the * pc comes from the signal frame it points to the actual faulting * host memory insn and not the return from a call insn. * * Therefore, adjust to compensate for what will be done later * by cpu_restore_state_from_tb. */ *pc += GETPC_ADJ; break; case 1: /* * Fault during host read for translation, or loosely, "execution". * * The guest pc is already pointing to the start of the TB for which * code is being generated. If the guest translator manages the * page crossings correctly, this is exactly the correct address * (and if the translator doesn't handle page boundaries correctly * there's little we can do about that here). Therefore, do not * trigger the unwinder. */ *pc = 0; return MMU_INST_FETCH; } return is_write ? MMU_DATA_STORE : MMU_DATA_LOAD; } /** * handle_sigsegv_accerr_write: * @cpu: the cpu context * @old_set: the sigset_t from the signal ucontext_t * @host_pc: the host pc, adjusted for the signal * @guest_addr: the guest address of the fault * * Return true if the write fault has been handled, and should be re-tried. * * Note that it is important that we don't call page_unprotect() unless * this is really a "write to nonwritable page" fault, because * page_unprotect() assumes that if it is called for an access to * a page that's writable this means we had two threads racing and * another thread got there first and already made the page writable; * so we will retry the access. If we were to call page_unprotect() * for some other kind of fault that should really be passed to the * guest, we'd end up in an infinite loop of retrying the faulting access. */ bool handle_sigsegv_accerr_write(CPUState *cpu, sigset_t *old_set, uintptr_t host_pc, abi_ptr guest_addr) { switch (page_unprotect(guest_addr, host_pc)) { case 0: /* * Fault not caused by a page marked unwritable to protect * cached translations, must be the guest binary's problem. */ return false; case 1: /* * Fault caused by protection of cached translation; TBs * invalidated, so resume execution. */ return true; case 2: /* * Fault caused by protection of cached translation, and the * currently executing TB was modified and must be exited immediately. */ sigprocmask(SIG_SETMASK, old_set, NULL); cpu_loop_exit_noexc(cpu); /* NORETURN */ default: g_assert_not_reached(); } } typedef struct PageFlagsNode { struct rcu_head rcu; IntervalTreeNode itree; int flags; } PageFlagsNode; static IntervalTreeRoot pageflags_root; static PageFlagsNode *pageflags_find(target_ulong start, target_long last) { IntervalTreeNode *n; n = interval_tree_iter_first(&pageflags_root, start, last); return n ? container_of(n, PageFlagsNode, itree) : NULL; } static PageFlagsNode *pageflags_next(PageFlagsNode *p, target_ulong start, target_long last) { IntervalTreeNode *n; n = interval_tree_iter_next(&p->itree, start, last); return n ? container_of(n, PageFlagsNode, itree) : NULL; } int walk_memory_regions(void *priv, walk_memory_regions_fn fn) { IntervalTreeNode *n; int rc = 0; mmap_lock(); for (n = interval_tree_iter_first(&pageflags_root, 0, -1); n != NULL; n = interval_tree_iter_next(n, 0, -1)) { PageFlagsNode *p = container_of(n, PageFlagsNode, itree); rc = fn(priv, n->start, n->last + 1, p->flags); if (rc != 0) { break; } } mmap_unlock(); return rc; } static int dump_region(void *priv, target_ulong start, target_ulong end, unsigned long prot) { FILE *f = (FILE *)priv; fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx" "TARGET_FMT_lx" %c%c%c\n", start, end, end - start, ((prot & PAGE_READ) ? 'r' : '-'), ((prot & PAGE_WRITE) ? 'w' : '-'), ((prot & PAGE_EXEC) ? 'x' : '-')); return 0; } /* dump memory mappings */ void page_dump(FILE *f) { const int length = sizeof(target_ulong) * 2; fprintf(f, "%-*s %-*s %-*s %s\n", length, "start", length, "end", length, "size", "prot"); walk_memory_regions(f, dump_region); } int page_get_flags(target_ulong address) { PageFlagsNode *p = pageflags_find(address, address); /* * See util/interval-tree.c re lockless lookups: no false positives but * there are false negatives. If we find nothing, retry with the mmap * lock acquired. */ if (p) { return p->flags; } if (have_mmap_lock()) { return 0; } mmap_lock(); p = pageflags_find(address, address); mmap_unlock(); return p ? p->flags : 0; } /* A subroutine of page_set_flags: insert a new node for [start,last]. */ static void pageflags_create(target_ulong start, target_ulong last, int flags) { PageFlagsNode *p = g_new(PageFlagsNode, 1); p->itree.start = start; p->itree.last = last; p->flags = flags; interval_tree_insert(&p->itree, &pageflags_root); } /* A subroutine of page_set_flags: remove everything in [start,last]. */ static bool pageflags_unset(target_ulong start, target_ulong last) { bool inval_tb = false; while (true) { PageFlagsNode *p = pageflags_find(start, last); target_ulong p_last; if (!p) { break; } if (p->flags & PAGE_EXEC) { inval_tb = true; } interval_tree_remove(&p->itree, &pageflags_root); p_last = p->itree.last; if (p->itree.start < start) { /* Truncate the node from the end, or split out the middle. */ p->itree.last = start - 1; interval_tree_insert(&p->itree, &pageflags_root); if (last < p_last) { pageflags_create(last + 1, p_last, p->flags); break; } } else if (p_last <= last) { /* Range completely covers node -- remove it. */ g_free_rcu(p, rcu); } else { /* Truncate the node from the start. */ p->itree.start = last + 1; interval_tree_insert(&p->itree, &pageflags_root); break; } } return inval_tb; } /* * A subroutine of page_set_flags: nothing overlaps [start,last], * but check adjacent mappings and maybe merge into a single range. */ static void pageflags_create_merge(target_ulong start, target_ulong last, int flags) { PageFlagsNode *next = NULL, *prev = NULL; if (start > 0) { prev = pageflags_find(start - 1, start - 1); if (prev) { if (prev->flags == flags) { interval_tree_remove(&prev->itree, &pageflags_root); } else { prev = NULL; } } } if (last + 1 != 0) { next = pageflags_find(last + 1, last + 1); if (next) { if (next->flags == flags) { interval_tree_remove(&next->itree, &pageflags_root); } else { next = NULL; } } } if (prev) { if (next) { prev->itree.last = next->itree.last; g_free_rcu(next, rcu); } else { prev->itree.last = last; } interval_tree_insert(&prev->itree, &pageflags_root); } else if (next) { next->itree.start = start; interval_tree_insert(&next->itree, &pageflags_root); } else { pageflags_create(start, last, flags); } } /* * Allow the target to decide if PAGE_TARGET_[12] may be reset. * By default, they are not kept. */ #ifndef PAGE_TARGET_STICKY #define PAGE_TARGET_STICKY 0 #endif #define PAGE_STICKY (PAGE_ANON | PAGE_PASSTHROUGH | PAGE_TARGET_STICKY) /* A subroutine of page_set_flags: add flags to [start,last]. */ static bool pageflags_set_clear(target_ulong start, target_ulong last, int set_flags, int clear_flags) { PageFlagsNode *p; target_ulong p_start, p_last; int p_flags, merge_flags; bool inval_tb = false; restart: p = pageflags_find(start, last); if (!p) { if (set_flags) { pageflags_create_merge(start, last, set_flags); } goto done; } p_start = p->itree.start; p_last = p->itree.last; p_flags = p->flags; /* Using mprotect on a page does not change sticky bits. */ merge_flags = (p_flags & ~clear_flags) | set_flags; /* * Need to flush if an overlapping executable region * removes exec, or adds write. */ if ((p_flags & PAGE_EXEC) && (!(merge_flags & PAGE_EXEC) || (merge_flags & ~p_flags & PAGE_WRITE))) { inval_tb = true; } /* * If there is an exact range match, update and return without * attempting to merge with adjacent regions. */ if (start == p_start && last == p_last) { if (merge_flags) { p->flags = merge_flags; } else { interval_tree_remove(&p->itree, &pageflags_root); g_free_rcu(p, rcu); } goto done; } /* * If sticky bits affect the original mapping, then we must be more * careful about the existing intervals and the separate flags. */ if (set_flags != merge_flags) { if (p_start < start) { interval_tree_remove(&p->itree, &pageflags_root); p->itree.last = start - 1; interval_tree_insert(&p->itree, &pageflags_root); if (last < p_last) { if (merge_flags) { pageflags_create(start, last, merge_flags); } pageflags_create(last + 1, p_last, p_flags); } else { if (merge_flags) { pageflags_create(start, p_last, merge_flags); } if (p_last < last) { start = p_last + 1; goto restart; } } } else { if (start < p_start && set_flags) { pageflags_create(start, p_start - 1, set_flags); } if (last < p_last) { interval_tree_remove(&p->itree, &pageflags_root); p->itree.start = last + 1; interval_tree_insert(&p->itree, &pageflags_root); if (merge_flags) { pageflags_create(start, last, merge_flags); } } else { if (merge_flags) { p->flags = merge_flags; } else { interval_tree_remove(&p->itree, &pageflags_root); g_free_rcu(p, rcu); } if (p_last < last) { start = p_last + 1; goto restart; } } } goto done; } /* If flags are not changing for this range, incorporate it. */ if (set_flags == p_flags) { if (start < p_start) { interval_tree_remove(&p->itree, &pageflags_root); p->itree.start = start; interval_tree_insert(&p->itree, &pageflags_root); } if (p_last < last) { start = p_last + 1; goto restart; } goto done; } /* Maybe split out head and/or tail ranges with the original flags. */ interval_tree_remove(&p->itree, &pageflags_root); if (p_start < start) { p->itree.last = start - 1; interval_tree_insert(&p->itree, &pageflags_root); if (p_last < last) { goto restart; } if (last < p_last) { pageflags_create(last + 1, p_last, p_flags); } } else if (last < p_last) { p->itree.start = last + 1; interval_tree_insert(&p->itree, &pageflags_root); } else { g_free_rcu(p, rcu); goto restart; } if (set_flags) { pageflags_create(start, last, set_flags); } done: return inval_tb; } /* * Modify the flags of a page and invalidate the code if necessary. * The flag PAGE_WRITE_ORG is positioned automatically depending * on PAGE_WRITE. The mmap_lock should already be held. */ void page_set_flags(target_ulong start, target_ulong last, int flags) { bool reset = false; bool inval_tb = false; /* This function should never be called with addresses outside the guest address space. If this assert fires, it probably indicates a missing call to h2g_valid. */ assert(start <= last); assert(last <= GUEST_ADDR_MAX); /* Only set PAGE_ANON with new mappings. */ assert(!(flags & PAGE_ANON) || (flags & PAGE_RESET)); assert_memory_lock(); start &= TARGET_PAGE_MASK; last |= ~TARGET_PAGE_MASK; if (!(flags & PAGE_VALID)) { flags = 0; } else { reset = flags & PAGE_RESET; flags &= ~PAGE_RESET; if (flags & PAGE_WRITE) { flags |= PAGE_WRITE_ORG; } } if (!flags || reset) { page_reset_target_data(start, last); inval_tb |= pageflags_unset(start, last); } if (flags) { inval_tb |= pageflags_set_clear(start, last, flags, ~(reset ? 0 : PAGE_STICKY)); } if (inval_tb) { tb_invalidate_phys_range(start, last); } } int page_check_range(target_ulong start, target_ulong len, int flags) { target_ulong last; int locked; /* tri-state: =0: unlocked, +1: global, -1: local */ int ret; if (len == 0) { return 0; /* trivial length */ } last = start + len - 1; if (last < start) { return -1; /* wrap around */ } locked = have_mmap_lock(); while (true) { PageFlagsNode *p = pageflags_find(start, last); int missing; if (!p) { if (!locked) { /* * Lockless lookups have false negatives. * Retry with the lock held. */ mmap_lock(); locked = -1; p = pageflags_find(start, last); } if (!p) { ret = -1; /* entire region invalid */ break; } } if (start < p->itree.start) { ret = -1; /* initial bytes invalid */ break; } missing = flags & ~p->flags; if (missing & PAGE_READ) { ret = -1; /* page not readable */ break; } if (missing & PAGE_WRITE) { if (!(p->flags & PAGE_WRITE_ORG)) { ret = -1; /* page not writable */ break; } /* Asking about writable, but has been protected: undo. */ if (!page_unprotect(start, 0)) { ret = -1; break; } /* TODO: page_unprotect should take a range, not a single page. */ if (last - start < TARGET_PAGE_SIZE) { ret = 0; /* ok */ break; } start += TARGET_PAGE_SIZE; continue; } if (last <= p->itree.last) { ret = 0; /* ok */ break; } start = p->itree.last + 1; } /* Release the lock if acquired locally. */ if (locked < 0) { mmap_unlock(); } return ret; } void page_protect(tb_page_addr_t address) { PageFlagsNode *p; target_ulong start, last; int prot; assert_memory_lock(); if (qemu_host_page_size <= TARGET_PAGE_SIZE) { start = address & TARGET_PAGE_MASK; last = start + TARGET_PAGE_SIZE - 1; } else { start = address & qemu_host_page_mask; last = start + qemu_host_page_size - 1; } p = pageflags_find(start, last); if (!p) { return; } prot = p->flags; if (unlikely(p->itree.last < last)) { /* More than one protection region covers the one host page. */ assert(TARGET_PAGE_SIZE < qemu_host_page_size); while ((p = pageflags_next(p, start, last)) != NULL) { prot |= p->flags; } } if (prot & PAGE_WRITE) { pageflags_set_clear(start, last, 0, PAGE_WRITE); mprotect(g2h_untagged(start), qemu_host_page_size, prot & (PAGE_READ | PAGE_EXEC) ? PROT_READ : PROT_NONE); } } /* * Called from signal handler: invalidate the code and unprotect the * page. Return 0 if the fault was not handled, 1 if it was handled, * and 2 if it was handled but the caller must cause the TB to be * immediately exited. (We can only return 2 if the 'pc' argument is * non-zero.) */ int page_unprotect(target_ulong address, uintptr_t pc) { PageFlagsNode *p; bool current_tb_invalidated; /* * Technically this isn't safe inside a signal handler. However we * know this only ever happens in a synchronous SEGV handler, so in * practice it seems to be ok. */ mmap_lock(); p = pageflags_find(address, address); /* If this address was not really writable, nothing to do. */ if (!p || !(p->flags & PAGE_WRITE_ORG)) { mmap_unlock(); return 0; } current_tb_invalidated = false; if (p->flags & PAGE_WRITE) { /* * If the page is actually marked WRITE then assume this is because * this thread raced with another one which got here first and * set the page to PAGE_WRITE and did the TB invalidate for us. */ #ifdef TARGET_HAS_PRECISE_SMC TranslationBlock *current_tb = tcg_tb_lookup(pc); if (current_tb) { current_tb_invalidated = tb_cflags(current_tb) & CF_INVALID; } #endif } else { target_ulong start, len, i; int prot; if (qemu_host_page_size <= TARGET_PAGE_SIZE) { start = address & TARGET_PAGE_MASK; len = TARGET_PAGE_SIZE; prot = p->flags | PAGE_WRITE; pageflags_set_clear(start, start + len - 1, PAGE_WRITE, 0); current_tb_invalidated = tb_invalidate_phys_page_unwind(start, pc); } else { start = address & qemu_host_page_mask; len = qemu_host_page_size; prot = 0; for (i = 0; i < len; i += TARGET_PAGE_SIZE) { target_ulong addr = start + i; p = pageflags_find(addr, addr); if (p) { prot |= p->flags; if (p->flags & PAGE_WRITE_ORG) { prot |= PAGE_WRITE; pageflags_set_clear(addr, addr + TARGET_PAGE_SIZE - 1, PAGE_WRITE, 0); } } /* * Since the content will be modified, we must invalidate * the corresponding translated code. */ current_tb_invalidated |= tb_invalidate_phys_page_unwind(addr, pc); } } if (prot & PAGE_EXEC) { prot = (prot & ~PAGE_EXEC) | PAGE_READ; } mprotect((void *)g2h_untagged(start), len, prot & PAGE_BITS); } mmap_unlock(); /* If current TB was invalidated return to main loop */ return current_tb_invalidated ? 2 : 1; } static int probe_access_internal(CPUArchState *env, target_ulong addr, int fault_size, MMUAccessType access_type, bool nonfault, uintptr_t ra) { int acc_flag; bool maperr; switch (access_type) { case MMU_DATA_STORE: acc_flag = PAGE_WRITE_ORG; break; case MMU_DATA_LOAD: acc_flag = PAGE_READ; break; case MMU_INST_FETCH: acc_flag = PAGE_EXEC; break; default: g_assert_not_reached(); } if (guest_addr_valid_untagged(addr)) { int page_flags = page_get_flags(addr); if (page_flags & acc_flag) { return 0; /* success */ } maperr = !(page_flags & PAGE_VALID); } else { maperr = true; } if (nonfault) { return TLB_INVALID_MASK; } cpu_loop_exit_sigsegv(env_cpu(env), addr, access_type, maperr, ra); } int probe_access_flags(CPUArchState *env, target_ulong addr, int size, MMUAccessType access_type, int mmu_idx, bool nonfault, void **phost, uintptr_t ra) { int flags; g_assert(-(addr | TARGET_PAGE_MASK) >= size); flags = probe_access_internal(env, addr, size, access_type, nonfault, ra); *phost = flags ? NULL : g2h(env_cpu(env), addr); return flags; } void *probe_access(CPUArchState *env, target_ulong addr, int size, MMUAccessType access_type, int mmu_idx, uintptr_t ra) { int flags; g_assert(-(addr | TARGET_PAGE_MASK) >= size); flags = probe_access_internal(env, addr, size, access_type, false, ra); g_assert(flags == 0); return size ? g2h(env_cpu(env), addr) : NULL; } tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, target_ulong addr, void **hostp) { int flags; flags = probe_access_internal(env, addr, 1, MMU_INST_FETCH, false, 0); g_assert(flags == 0); if (hostp) { *hostp = g2h_untagged(addr); } return addr; } #ifdef TARGET_PAGE_DATA_SIZE /* * Allocate chunks of target data together. For the only current user, * if we allocate one hunk per page, we have overhead of 40/128 or 40%. * Therefore, allocate memory for 64 pages at a time for overhead < 1%. */ #define TPD_PAGES 64 #define TBD_MASK (TARGET_PAGE_MASK * TPD_PAGES) typedef struct TargetPageDataNode { struct rcu_head rcu; IntervalTreeNode itree; char data[TPD_PAGES][TARGET_PAGE_DATA_SIZE] __attribute__((aligned)); } TargetPageDataNode; static IntervalTreeRoot targetdata_root; void page_reset_target_data(target_ulong start, target_ulong last) { IntervalTreeNode *n, *next; assert_memory_lock(); start &= TARGET_PAGE_MASK; last |= ~TARGET_PAGE_MASK; for (n = interval_tree_iter_first(&targetdata_root, start, last), next = n ? interval_tree_iter_next(n, start, last) : NULL; n != NULL; n = next, next = next ? interval_tree_iter_next(n, start, last) : NULL) { target_ulong n_start, n_last, p_ofs, p_len; TargetPageDataNode *t = container_of(n, TargetPageDataNode, itree); if (n->start >= start && n->last <= last) { interval_tree_remove(n, &targetdata_root); g_free_rcu(t, rcu); continue; } if (n->start < start) { n_start = start; p_ofs = (start - n->start) >> TARGET_PAGE_BITS; } else { n_start = n->start; p_ofs = 0; } n_last = MIN(last, n->last); p_len = (n_last + 1 - n_start) >> TARGET_PAGE_BITS; memset(t->data[p_ofs], 0, p_len * TARGET_PAGE_DATA_SIZE); } } void *page_get_target_data(target_ulong address) { IntervalTreeNode *n; TargetPageDataNode *t; target_ulong page, region; page = address & TARGET_PAGE_MASK; region = address & TBD_MASK; n = interval_tree_iter_first(&targetdata_root, page, page); if (!n) { /* * See util/interval-tree.c re lockless lookups: no false positives * but there are false negatives. If we find nothing, retry with * the mmap lock acquired. We also need the lock for the * allocation + insert. */ mmap_lock(); n = interval_tree_iter_first(&targetdata_root, page, page); if (!n) { t = g_new0(TargetPageDataNode, 1); n = &t->itree; n->start = region; n->last = region | ~TBD_MASK; interval_tree_insert(n, &targetdata_root); } mmap_unlock(); } t = container_of(n, TargetPageDataNode, itree); return t->data[(page - region) >> TARGET_PAGE_BITS]; } #else void page_reset_target_data(target_ulong start, target_ulong last) { } #endif /* TARGET_PAGE_DATA_SIZE */ /* The softmmu versions of these helpers are in cputlb.c. */ /* * Verify that we have passed the correct MemOp to the correct function. * * We could present one function to target code, and dispatch based on * the MemOp, but so far we have worked hard to avoid an indirect function * call along the memory path. */ static void validate_memop(MemOpIdx oi, MemOp expected) { #ifdef CONFIG_DEBUG_TCG MemOp have = get_memop(oi) & (MO_SIZE | MO_BSWAP); assert(have == expected); #endif } void helper_unaligned_ld(CPUArchState *env, target_ulong addr) { cpu_loop_exit_sigbus(env_cpu(env), addr, MMU_DATA_LOAD, GETPC()); } void helper_unaligned_st(CPUArchState *env, target_ulong addr) { cpu_loop_exit_sigbus(env_cpu(env), addr, MMU_DATA_STORE, GETPC()); } static void *cpu_mmu_lookup(CPUArchState *env, target_ulong addr, MemOpIdx oi, uintptr_t ra, MMUAccessType type) { MemOp mop = get_memop(oi); int a_bits = get_alignment_bits(mop); void *ret; /* Enforce guest required alignment. */ if (unlikely(addr & ((1 << a_bits) - 1))) { cpu_loop_exit_sigbus(env_cpu(env), addr, type, ra); } ret = g2h(env_cpu(env), addr); set_helper_retaddr(ra); return ret; } #include "ldst_atomicity.c.inc" uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra) { void *haddr; uint8_t ret; validate_memop(oi, MO_UB); haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD); ret = ldub_p(haddr); clear_helper_retaddr(); qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R); return ret; } uint16_t cpu_ldw_be_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra) { void *haddr; uint16_t ret; validate_memop(oi, MO_BEUW); haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD); ret = load_atom_2(env, ra, haddr, get_memop(oi)); clear_helper_retaddr(); qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R); return cpu_to_be16(ret); } uint32_t cpu_ldl_be_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra) { void *haddr; uint32_t ret; validate_memop(oi, MO_BEUL); haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD); ret = load_atom_4(env, ra, haddr, get_memop(oi)); clear_helper_retaddr(); qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R); return cpu_to_be32(ret); } uint64_t cpu_ldq_be_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra) { void *haddr; uint64_t ret; validate_memop(oi, MO_BEUQ); haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD); ret = load_atom_8(env, ra, haddr, get_memop(oi)); clear_helper_retaddr(); qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R); return cpu_to_be64(ret); } uint16_t cpu_ldw_le_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra) { void *haddr; uint16_t ret; validate_memop(oi, MO_LEUW); haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD); ret = load_atom_2(env, ra, haddr, get_memop(oi)); clear_helper_retaddr(); qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R); return cpu_to_le16(ret); } uint32_t cpu_ldl_le_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra) { void *haddr; uint32_t ret; validate_memop(oi, MO_LEUL); haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD); ret = load_atom_4(env, ra, haddr, get_memop(oi)); clear_helper_retaddr(); qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R); return cpu_to_le32(ret); } uint64_t cpu_ldq_le_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra) { void *haddr; uint64_t ret; validate_memop(oi, MO_LEUQ); haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD); ret = load_atom_8(env, ra, haddr, get_memop(oi)); clear_helper_retaddr(); qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R); return cpu_to_le64(ret); } Int128 cpu_ld16_be_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra) { void *haddr; Int128 ret; validate_memop(oi, MO_128 | MO_BE); haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD); memcpy(&ret, haddr, 16); clear_helper_retaddr(); qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R); if (!HOST_BIG_ENDIAN) { ret = bswap128(ret); } return ret; } Int128 cpu_ld16_le_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra) { void *haddr; Int128 ret; validate_memop(oi, MO_128 | MO_LE); haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD); memcpy(&ret, haddr, 16); clear_helper_retaddr(); qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R); if (HOST_BIG_ENDIAN) { ret = bswap128(ret); } return ret; } void cpu_stb_mmu(CPUArchState *env, abi_ptr addr, uint8_t val, MemOpIdx oi, uintptr_t ra) { void *haddr; validate_memop(oi, MO_UB); haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE); stb_p(haddr, val); clear_helper_retaddr(); qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W); } void cpu_stw_be_mmu(CPUArchState *env, abi_ptr addr, uint16_t val, MemOpIdx oi, uintptr_t ra) { void *haddr; validate_memop(oi, MO_BEUW); haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE); store_atom_2(env, ra, haddr, get_memop(oi), be16_to_cpu(val)); clear_helper_retaddr(); qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W); } void cpu_stl_be_mmu(CPUArchState *env, abi_ptr addr, uint32_t val, MemOpIdx oi, uintptr_t ra) { void *haddr; validate_memop(oi, MO_BEUL); haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE); store_atom_4(env, ra, haddr, get_memop(oi), be32_to_cpu(val)); clear_helper_retaddr(); qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W); } void cpu_stq_be_mmu(CPUArchState *env, abi_ptr addr, uint64_t val, MemOpIdx oi, uintptr_t ra) { void *haddr; validate_memop(oi, MO_BEUQ); haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE); store_atom_8(env, ra, haddr, get_memop(oi), be64_to_cpu(val)); clear_helper_retaddr(); qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W); } void cpu_stw_le_mmu(CPUArchState *env, abi_ptr addr, uint16_t val, MemOpIdx oi, uintptr_t ra) { void *haddr; validate_memop(oi, MO_LEUW); haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE); store_atom_2(env, ra, haddr, get_memop(oi), le16_to_cpu(val)); clear_helper_retaddr(); qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W); } void cpu_stl_le_mmu(CPUArchState *env, abi_ptr addr, uint32_t val, MemOpIdx oi, uintptr_t ra) { void *haddr; validate_memop(oi, MO_LEUL); haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE); store_atom_4(env, ra, haddr, get_memop(oi), le32_to_cpu(val)); clear_helper_retaddr(); qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W); } void cpu_stq_le_mmu(CPUArchState *env, abi_ptr addr, uint64_t val, MemOpIdx oi, uintptr_t ra) { void *haddr; validate_memop(oi, MO_LEUQ); haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE); store_atom_8(env, ra, haddr, get_memop(oi), le64_to_cpu(val)); clear_helper_retaddr(); qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W); } void cpu_st16_be_mmu(CPUArchState *env, abi_ptr addr, Int128 val, MemOpIdx oi, uintptr_t ra) { void *haddr; validate_memop(oi, MO_128 | MO_BE); haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE); if (!HOST_BIG_ENDIAN) { val = bswap128(val); } memcpy(haddr, &val, 16); clear_helper_retaddr(); qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W); } void cpu_st16_le_mmu(CPUArchState *env, abi_ptr addr, Int128 val, MemOpIdx oi, uintptr_t ra) { void *haddr; validate_memop(oi, MO_128 | MO_LE); haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE); if (HOST_BIG_ENDIAN) { val = bswap128(val); } memcpy(haddr, &val, 16); clear_helper_retaddr(); qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W); } uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr ptr) { uint32_t ret; set_helper_retaddr(1); ret = ldub_p(g2h_untagged(ptr)); clear_helper_retaddr(); return ret; } uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr ptr) { uint32_t ret; set_helper_retaddr(1); ret = lduw_p(g2h_untagged(ptr)); clear_helper_retaddr(); return ret; } uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr ptr) { uint32_t ret; set_helper_retaddr(1); ret = ldl_p(g2h_untagged(ptr)); clear_helper_retaddr(); return ret; } uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr ptr) { uint64_t ret; set_helper_retaddr(1); ret = ldq_p(g2h_untagged(ptr)); clear_helper_retaddr(); return ret; } uint8_t cpu_ldb_code_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra) { void *haddr; uint8_t ret; haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_INST_FETCH); ret = ldub_p(haddr); clear_helper_retaddr(); return ret; } uint16_t cpu_ldw_code_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra) { void *haddr; uint16_t ret; haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_INST_FETCH); ret = lduw_p(haddr); clear_helper_retaddr(); if (get_memop(oi) & MO_BSWAP) { ret = bswap16(ret); } return ret; } uint32_t cpu_ldl_code_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra) { void *haddr; uint32_t ret; haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_INST_FETCH); ret = ldl_p(haddr); clear_helper_retaddr(); if (get_memop(oi) & MO_BSWAP) { ret = bswap32(ret); } return ret; } uint64_t cpu_ldq_code_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra) { void *haddr; uint64_t ret; validate_memop(oi, MO_BEUQ); haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD); ret = ldq_p(haddr); clear_helper_retaddr(); if (get_memop(oi) & MO_BSWAP) { ret = bswap64(ret); } return ret; } #include "ldst_common.c.inc" /* * Do not allow unaligned operations to proceed. Return the host address. * * @prot may be PAGE_READ, PAGE_WRITE, or PAGE_READ|PAGE_WRITE. */ static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr, MemOpIdx oi, int size, int prot, uintptr_t retaddr) { MemOp mop = get_memop(oi); int a_bits = get_alignment_bits(mop); void *ret; /* Enforce guest required alignment. */ if (unlikely(addr & ((1 << a_bits) - 1))) { MMUAccessType t = prot == PAGE_READ ? MMU_DATA_LOAD : MMU_DATA_STORE; cpu_loop_exit_sigbus(env_cpu(env), addr, t, retaddr); } /* Enforce qemu required alignment. */ if (unlikely(addr & (size - 1))) { cpu_loop_exit_atomic(env_cpu(env), retaddr); } ret = g2h(env_cpu(env), addr); set_helper_retaddr(retaddr); return ret; } #include "atomic_common.c.inc" /* * First set of functions passes in OI and RETADDR. * This makes them callable from other helpers. */ #define ATOMIC_NAME(X) \ glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu) #define ATOMIC_MMU_CLEANUP do { clear_helper_retaddr(); } while (0) #define DATA_SIZE 1 #include "atomic_template.h" #define DATA_SIZE 2 #include "atomic_template.h" #define DATA_SIZE 4 #include "atomic_template.h" #ifdef CONFIG_ATOMIC64 #define DATA_SIZE 8 #include "atomic_template.h" #endif #if HAVE_ATOMIC128 || HAVE_CMPXCHG128 #define DATA_SIZE 16 #include "atomic_template.h" #endif