/* * Software MMU support * * Generate helpers used by TCG for qemu_ld/st ops and code load * functions. * * Included from target op helpers and exec.c. * * Copyright (c) 2003 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #if DATA_SIZE == 8 #define SUFFIX q #define LSUFFIX q #define SDATA_TYPE int64_t #define DATA_TYPE uint64_t #elif DATA_SIZE == 4 #define SUFFIX l #define LSUFFIX l #define SDATA_TYPE int32_t #define DATA_TYPE uint32_t #elif DATA_SIZE == 2 #define SUFFIX w #define LSUFFIX uw #define SDATA_TYPE int16_t #define DATA_TYPE uint16_t #elif DATA_SIZE == 1 #define SUFFIX b #define LSUFFIX ub #define SDATA_TYPE int8_t #define DATA_TYPE uint8_t #else #error unsupported data size #endif /* For the benefit of TCG generated code, we want to avoid the complication of ABI-specific return type promotion and always return a value extended to the register size of the host. This is tcg_target_long, except in the case of a 32-bit host and 64-bit data, and for that we always have uint64_t. Don't bother with this widened value for SOFTMMU_CODE_ACCESS. */ #if defined(SOFTMMU_CODE_ACCESS) || DATA_SIZE == 8 # define WORD_TYPE DATA_TYPE # define USUFFIX SUFFIX #else # define WORD_TYPE tcg_target_ulong # define USUFFIX glue(u, SUFFIX) # define SSUFFIX glue(s, SUFFIX) #endif #ifdef SOFTMMU_CODE_ACCESS #define READ_ACCESS_TYPE MMU_INST_FETCH #define ADDR_READ addr_code #else #define READ_ACCESS_TYPE MMU_DATA_LOAD #define ADDR_READ addr_read #endif #if DATA_SIZE == 8 # define BSWAP(X) bswap64(X) #elif DATA_SIZE == 4 # define BSWAP(X) bswap32(X) #elif DATA_SIZE == 2 # define BSWAP(X) bswap16(X) #else # define BSWAP(X) (X) #endif #if DATA_SIZE == 1 # define helper_le_ld_name glue(glue(helper_ret_ld, USUFFIX), MMUSUFFIX) # define helper_be_ld_name helper_le_ld_name # define helper_le_lds_name glue(glue(helper_ret_ld, SSUFFIX), MMUSUFFIX) # define helper_be_lds_name helper_le_lds_name # define helper_le_st_name glue(glue(helper_ret_st, SUFFIX), MMUSUFFIX) # define helper_be_st_name helper_le_st_name #else # define helper_le_ld_name glue(glue(helper_le_ld, USUFFIX), MMUSUFFIX) # define helper_be_ld_name glue(glue(helper_be_ld, USUFFIX), MMUSUFFIX) # define helper_le_lds_name glue(glue(helper_le_ld, SSUFFIX), MMUSUFFIX) # define helper_be_lds_name glue(glue(helper_be_ld, SSUFFIX), MMUSUFFIX) # define helper_le_st_name glue(glue(helper_le_st, SUFFIX), MMUSUFFIX) # define helper_be_st_name glue(glue(helper_be_st, SUFFIX), MMUSUFFIX) #endif #ifndef SOFTMMU_CODE_ACCESS static inline DATA_TYPE glue(io_read, SUFFIX)(CPUArchState *env, size_t mmu_idx, size_t index, target_ulong addr, uintptr_t retaddr, bool recheck, MMUAccessType access_type) { CPUIOTLBEntry *iotlbentry = &env->iotlb[mmu_idx][index]; return io_readx(env, iotlbentry, mmu_idx, addr, retaddr, recheck, access_type, DATA_SIZE); } #endif WORD_TYPE helper_le_ld_name(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi, uintptr_t retaddr) { uintptr_t mmu_idx = get_mmuidx(oi); uintptr_t index = tlb_index(env, mmu_idx, addr); CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); target_ulong tlb_addr = entry->ADDR_READ; unsigned a_bits = get_alignment_bits(get_memop(oi)); uintptr_t haddr; DATA_TYPE res; if (addr & ((1 << a_bits) - 1)) { cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, mmu_idx, retaddr); } /* If the TLB entry is for a different page, reload and try again. */ if (!tlb_hit(tlb_addr, addr)) { if (!VICTIM_TLB_HIT(ADDR_READ, addr)) { tlb_fill(ENV_GET_CPU(env), addr, DATA_SIZE, READ_ACCESS_TYPE, mmu_idx, retaddr); } tlb_addr = entry->ADDR_READ; } /* Handle an IO access. */ if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { if ((addr & (DATA_SIZE - 1)) != 0) { goto do_unaligned_access; } /* ??? Note that the io helpers always read data in the target byte ordering. We should push the LE/BE request down into io. */ res = glue(io_read, SUFFIX)(env, mmu_idx, index, addr, retaddr, tlb_addr & TLB_RECHECK, READ_ACCESS_TYPE); res = TGT_LE(res); return res; } /* Handle slow unaligned access (it spans two pages or IO). */ if (DATA_SIZE > 1 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1 >= TARGET_PAGE_SIZE)) { target_ulong addr1, addr2; DATA_TYPE res1, res2; unsigned shift; do_unaligned_access: addr1 = addr & ~(DATA_SIZE - 1); addr2 = addr1 + DATA_SIZE; res1 = helper_le_ld_name(env, addr1, oi, retaddr); res2 = helper_le_ld_name(env, addr2, oi, retaddr); shift = (addr & (DATA_SIZE - 1)) * 8; /* Little-endian combine. */ res = (res1 >> shift) | (res2 << ((DATA_SIZE * 8) - shift)); return res; } haddr = addr + entry->addend; #if DATA_SIZE == 1 res = glue(glue(ld, LSUFFIX), _p)((uint8_t *)haddr); #else res = glue(glue(ld, LSUFFIX), _le_p)((uint8_t *)haddr); #endif return res; } #if DATA_SIZE > 1 WORD_TYPE helper_be_ld_name(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi, uintptr_t retaddr) { uintptr_t mmu_idx = get_mmuidx(oi); uintptr_t index = tlb_index(env, mmu_idx, addr); CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); target_ulong tlb_addr = entry->ADDR_READ; unsigned a_bits = get_alignment_bits(get_memop(oi)); uintptr_t haddr; DATA_TYPE res; if (addr & ((1 << a_bits) - 1)) { cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, mmu_idx, retaddr); } /* If the TLB entry is for a different page, reload and try again. */ if (!tlb_hit(tlb_addr, addr)) { if (!VICTIM_TLB_HIT(ADDR_READ, addr)) { tlb_fill(ENV_GET_CPU(env), addr, DATA_SIZE, READ_ACCESS_TYPE, mmu_idx, retaddr); } tlb_addr = entry->ADDR_READ; } /* Handle an IO access. */ if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { if ((addr & (DATA_SIZE - 1)) != 0) { goto do_unaligned_access; } /* ??? Note that the io helpers always read data in the target byte ordering. We should push the LE/BE request down into io. */ res = glue(io_read, SUFFIX)(env, mmu_idx, index, addr, retaddr, tlb_addr & TLB_RECHECK, READ_ACCESS_TYPE); res = TGT_BE(res); return res; } /* Handle slow unaligned access (it spans two pages or IO). */ if (DATA_SIZE > 1 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1 >= TARGET_PAGE_SIZE)) { target_ulong addr1, addr2; DATA_TYPE res1, res2; unsigned shift; do_unaligned_access: addr1 = addr & ~(DATA_SIZE - 1); addr2 = addr1 + DATA_SIZE; res1 = helper_be_ld_name(env, addr1, oi, retaddr); res2 = helper_be_ld_name(env, addr2, oi, retaddr); shift = (addr & (DATA_SIZE - 1)) * 8; /* Big-endian combine. */ res = (res1 << shift) | (res2 >> ((DATA_SIZE * 8) - shift)); return res; } haddr = addr + entry->addend; res = glue(glue(ld, LSUFFIX), _be_p)((uint8_t *)haddr); return res; } #endif /* DATA_SIZE > 1 */ #ifndef SOFTMMU_CODE_ACCESS /* Provide signed versions of the load routines as well. We can of course avoid this for 64-bit data, or for 32-bit data on 32-bit host. */ #if DATA_SIZE * 8 < TCG_TARGET_REG_BITS WORD_TYPE helper_le_lds_name(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi, uintptr_t retaddr) { return (SDATA_TYPE)helper_le_ld_name(env, addr, oi, retaddr); } # if DATA_SIZE > 1 WORD_TYPE helper_be_lds_name(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi, uintptr_t retaddr) { return (SDATA_TYPE)helper_be_ld_name(env, addr, oi, retaddr); } # endif #endif static inline void glue(io_write, SUFFIX)(CPUArchState *env, size_t mmu_idx, size_t index, DATA_TYPE val, target_ulong addr, uintptr_t retaddr, bool recheck) { CPUIOTLBEntry *iotlbentry = &env->iotlb[mmu_idx][index]; return io_writex(env, iotlbentry, mmu_idx, val, addr, retaddr, recheck, DATA_SIZE); } void helper_le_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val, TCGMemOpIdx oi, uintptr_t retaddr) { uintptr_t mmu_idx = get_mmuidx(oi); uintptr_t index = tlb_index(env, mmu_idx, addr); CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); target_ulong tlb_addr = tlb_addr_write(entry); unsigned a_bits = get_alignment_bits(get_memop(oi)); uintptr_t haddr; if (addr & ((1 << a_bits) - 1)) { cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr); } /* If the TLB entry is for a different page, reload and try again. */ if (!tlb_hit(tlb_addr, addr)) { if (!VICTIM_TLB_HIT(addr_write, addr)) { tlb_fill(ENV_GET_CPU(env), addr, DATA_SIZE, MMU_DATA_STORE, mmu_idx, retaddr); } tlb_addr = tlb_addr_write(entry) & ~TLB_INVALID_MASK; } /* Handle an IO access. */ if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { if ((addr & (DATA_SIZE - 1)) != 0) { goto do_unaligned_access; } /* ??? Note that the io helpers always read data in the target byte ordering. We should push the LE/BE request down into io. */ val = TGT_LE(val); glue(io_write, SUFFIX)(env, mmu_idx, index, val, addr, retaddr, tlb_addr & TLB_RECHECK); return; } /* Handle slow unaligned access (it spans two pages or IO). */ if (DATA_SIZE > 1 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1 >= TARGET_PAGE_SIZE)) { int i; target_ulong page2; CPUTLBEntry *entry2; do_unaligned_access: /* Ensure the second page is in the TLB. Note that the first page is already guaranteed to be filled, and that the second page cannot evict the first. */ page2 = (addr + DATA_SIZE) & TARGET_PAGE_MASK; entry2 = tlb_entry(env, mmu_idx, page2); if (!tlb_hit_page(tlb_addr_write(entry2), page2) && !VICTIM_TLB_HIT(addr_write, page2)) { tlb_fill(ENV_GET_CPU(env), page2, DATA_SIZE, MMU_DATA_STORE, mmu_idx, retaddr); } /* XXX: not efficient, but simple. */ /* This loop must go in the forward direction to avoid issues with self-modifying code in Windows 64-bit. */ for (i = 0; i < DATA_SIZE; ++i) { /* Little-endian extract. */ uint8_t val8 = val >> (i * 8); glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8, oi, retaddr); } return; } haddr = addr + entry->addend; #if DATA_SIZE == 1 glue(glue(st, SUFFIX), _p)((uint8_t *)haddr, val); #else glue(glue(st, SUFFIX), _le_p)((uint8_t *)haddr, val); #endif } #if DATA_SIZE > 1 void helper_be_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val, TCGMemOpIdx oi, uintptr_t retaddr) { uintptr_t mmu_idx = get_mmuidx(oi); uintptr_t index = tlb_index(env, mmu_idx, addr); CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); target_ulong tlb_addr = tlb_addr_write(entry); unsigned a_bits = get_alignment_bits(get_memop(oi)); uintptr_t haddr; if (addr & ((1 << a_bits) - 1)) { cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr); } /* If the TLB entry is for a different page, reload and try again. */ if (!tlb_hit(tlb_addr, addr)) { if (!VICTIM_TLB_HIT(addr_write, addr)) { tlb_fill(ENV_GET_CPU(env), addr, DATA_SIZE, MMU_DATA_STORE, mmu_idx, retaddr); } tlb_addr = tlb_addr_write(entry) & ~TLB_INVALID_MASK; } /* Handle an IO access. */ if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { if ((addr & (DATA_SIZE - 1)) != 0) { goto do_unaligned_access; } /* ??? Note that the io helpers always read data in the target byte ordering. We should push the LE/BE request down into io. */ val = TGT_BE(val); glue(io_write, SUFFIX)(env, mmu_idx, index, val, addr, retaddr, tlb_addr & TLB_RECHECK); return; } /* Handle slow unaligned access (it spans two pages or IO). */ if (DATA_SIZE > 1 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1 >= TARGET_PAGE_SIZE)) { int i; target_ulong page2; CPUTLBEntry *entry2; do_unaligned_access: /* Ensure the second page is in the TLB. Note that the first page is already guaranteed to be filled, and that the second page cannot evict the first. */ page2 = (addr + DATA_SIZE) & TARGET_PAGE_MASK; entry2 = tlb_entry(env, mmu_idx, page2); if (!tlb_hit_page(tlb_addr_write(entry2), page2) && !VICTIM_TLB_HIT(addr_write, page2)) { tlb_fill(ENV_GET_CPU(env), page2, DATA_SIZE, MMU_DATA_STORE, mmu_idx, retaddr); } /* XXX: not efficient, but simple */ /* This loop must go in the forward direction to avoid issues with self-modifying code. */ for (i = 0; i < DATA_SIZE; ++i) { /* Big-endian extract. */ uint8_t val8 = val >> (((DATA_SIZE - 1) * 8) - (i * 8)); glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8, oi, retaddr); } return; } haddr = addr + entry->addend; glue(glue(st, SUFFIX), _be_p)((uint8_t *)haddr, val); } #endif /* DATA_SIZE > 1 */ #endif /* !defined(SOFTMMU_CODE_ACCESS) */ #undef READ_ACCESS_TYPE #undef DATA_TYPE #undef SUFFIX #undef LSUFFIX #undef DATA_SIZE #undef ADDR_READ #undef WORD_TYPE #undef SDATA_TYPE #undef USUFFIX #undef SSUFFIX #undef BSWAP #undef helper_le_ld_name #undef helper_be_ld_name #undef helper_le_lds_name #undef helper_be_lds_name #undef helper_le_st_name #undef helper_be_st_name