From 1e8a1fae7464ef79c9e50aa0f807d2c511be3c8e Mon Sep 17 00:00:00 2001 From: Thomas Huth Date: Mon, 9 Sep 2019 12:04:01 +0200 Subject: test: Move qtests to a separate directory The tests directory itself is pretty overcrowded, and it's hard to see which test belongs to which test subsystem (unit, qtest, ...). Let's move the qtests to a separate folder for more clarity. Message-Id: <20191218103059.11729-6-thuth@redhat.com> Reviewed-by: Paolo Bonzini Signed-off-by: Thomas Huth --- tests/rtc-test.c | 720 ------------------------------------------------------- 1 file changed, 720 deletions(-) delete mode 100644 tests/rtc-test.c (limited to 'tests/rtc-test.c') diff --git a/tests/rtc-test.c b/tests/rtc-test.c deleted file mode 100644 index c7af34f..0000000 --- a/tests/rtc-test.c +++ /dev/null @@ -1,720 +0,0 @@ -/* - * QTest testcase for the MC146818 real-time clock - * - * Copyright IBM, Corp. 2012 - * - * Authors: - * Anthony Liguori - * - * This work is licensed under the terms of the GNU GPL, version 2 or later. - * See the COPYING file in the top-level directory. - * - */ - -#include "qemu/osdep.h" - -#include "libqtest-single.h" -#include "qemu/timer.h" -#include "hw/rtc/mc146818rtc.h" -#include "hw/rtc/mc146818rtc_regs.h" - -#define UIP_HOLD_LENGTH (8 * NANOSECONDS_PER_SECOND / 32768) - -static uint8_t base = 0x70; - -static int bcd2dec(int value) -{ - return (((value >> 4) & 0x0F) * 10) + (value & 0x0F); -} - -static uint8_t cmos_read(uint8_t reg) -{ - outb(base + 0, reg); - return inb(base + 1); -} - -static void cmos_write(uint8_t reg, uint8_t val) -{ - outb(base + 0, reg); - outb(base + 1, val); -} - -static int tm_cmp(struct tm *lhs, struct tm *rhs) -{ - time_t a, b; - struct tm d1, d2; - - memcpy(&d1, lhs, sizeof(d1)); - memcpy(&d2, rhs, sizeof(d2)); - - a = mktime(&d1); - b = mktime(&d2); - - if (a < b) { - return -1; - } else if (a > b) { - return 1; - } - - return 0; -} - -#if 0 -static void print_tm(struct tm *tm) -{ - printf("%04d-%02d-%02d %02d:%02d:%02d\n", - tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday, - tm->tm_hour, tm->tm_min, tm->tm_sec, tm->tm_gmtoff); -} -#endif - -static void cmos_get_date_time(struct tm *date) -{ - int base_year = 2000, hour_offset; - int sec, min, hour, mday, mon, year; - time_t ts; - struct tm dummy; - - sec = cmos_read(RTC_SECONDS); - min = cmos_read(RTC_MINUTES); - hour = cmos_read(RTC_HOURS); - mday = cmos_read(RTC_DAY_OF_MONTH); - mon = cmos_read(RTC_MONTH); - year = cmos_read(RTC_YEAR); - - if ((cmos_read(RTC_REG_B) & REG_B_DM) == 0) { - sec = bcd2dec(sec); - min = bcd2dec(min); - hour = bcd2dec(hour); - mday = bcd2dec(mday); - mon = bcd2dec(mon); - year = bcd2dec(year); - hour_offset = 80; - } else { - hour_offset = 0x80; - } - - if ((cmos_read(0x0B) & REG_B_24H) == 0) { - if (hour >= hour_offset) { - hour -= hour_offset; - hour += 12; - } - } - - ts = time(NULL); - localtime_r(&ts, &dummy); - - date->tm_isdst = dummy.tm_isdst; - date->tm_sec = sec; - date->tm_min = min; - date->tm_hour = hour; - date->tm_mday = mday; - date->tm_mon = mon - 1; - date->tm_year = base_year + year - 1900; -#ifndef __sun__ - date->tm_gmtoff = 0; -#endif - - ts = mktime(date); -} - -static void check_time(int wiggle) -{ - struct tm start, date[4], end; - struct tm *datep; - time_t ts; - - /* - * This check assumes a few things. First, we cannot guarantee that we get - * a consistent reading from the wall clock because we may hit an edge of - * the clock while reading. To work around this, we read four clock readings - * such that at least two of them should match. We need to assume that one - * reading is corrupt so we need four readings to ensure that we have at - * least two consecutive identical readings - * - * It's also possible that we'll cross an edge reading the host clock so - * simply check to make sure that the clock reading is within the period of - * when we expect it to be. - */ - - ts = time(NULL); - gmtime_r(&ts, &start); - - cmos_get_date_time(&date[0]); - cmos_get_date_time(&date[1]); - cmos_get_date_time(&date[2]); - cmos_get_date_time(&date[3]); - - ts = time(NULL); - gmtime_r(&ts, &end); - - if (tm_cmp(&date[0], &date[1]) == 0) { - datep = &date[0]; - } else if (tm_cmp(&date[1], &date[2]) == 0) { - datep = &date[1]; - } else if (tm_cmp(&date[2], &date[3]) == 0) { - datep = &date[2]; - } else { - g_assert_not_reached(); - } - - if (!(tm_cmp(&start, datep) <= 0 && tm_cmp(datep, &end) <= 0)) { - long t, s; - - start.tm_isdst = datep->tm_isdst; - - t = (long)mktime(datep); - s = (long)mktime(&start); - if (t < s) { - g_test_message("RTC is %ld second(s) behind wall-clock", (s - t)); - } else { - g_test_message("RTC is %ld second(s) ahead of wall-clock", (t - s)); - } - - g_assert_cmpint(ABS(t - s), <=, wiggle); - } -} - -static int wiggle = 2; - -static void set_year_20xx(void) -{ - /* Set BCD mode */ - cmos_write(RTC_REG_B, REG_B_24H); - cmos_write(RTC_REG_A, 0x76); - cmos_write(RTC_YEAR, 0x11); - cmos_write(RTC_CENTURY, 0x20); - cmos_write(RTC_MONTH, 0x02); - cmos_write(RTC_DAY_OF_MONTH, 0x02); - cmos_write(RTC_HOURS, 0x02); - cmos_write(RTC_MINUTES, 0x04); - cmos_write(RTC_SECONDS, 0x58); - cmos_write(RTC_REG_A, 0x26); - - g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02); - g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04); - g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58); - g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02); - g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02); - g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11); - g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20); - - if (sizeof(time_t) == 4) { - return; - } - - /* Set a date in 2080 to ensure there is no year-2038 overflow. */ - cmos_write(RTC_REG_A, 0x76); - cmos_write(RTC_YEAR, 0x80); - cmos_write(RTC_REG_A, 0x26); - - g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02); - g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04); - g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58); - g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02); - g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02); - g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x80); - g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20); - - cmos_write(RTC_REG_A, 0x76); - cmos_write(RTC_YEAR, 0x11); - cmos_write(RTC_REG_A, 0x26); - - g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02); - g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04); - g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58); - g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02); - g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02); - g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11); - g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20); -} - -static void set_year_1980(void) -{ - /* Set BCD mode */ - cmos_write(RTC_REG_B, REG_B_24H); - cmos_write(RTC_REG_A, 0x76); - cmos_write(RTC_YEAR, 0x80); - cmos_write(RTC_CENTURY, 0x19); - cmos_write(RTC_MONTH, 0x02); - cmos_write(RTC_DAY_OF_MONTH, 0x02); - cmos_write(RTC_HOURS, 0x02); - cmos_write(RTC_MINUTES, 0x04); - cmos_write(RTC_SECONDS, 0x58); - cmos_write(RTC_REG_A, 0x26); - - g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02); - g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04); - g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58); - g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02); - g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02); - g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x80); - g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x19); -} - -static void bcd_check_time(void) -{ - /* Set BCD mode */ - cmos_write(RTC_REG_B, REG_B_24H); - check_time(wiggle); -} - -static void dec_check_time(void) -{ - /* Set DEC mode */ - cmos_write(RTC_REG_B, REG_B_24H | REG_B_DM); - check_time(wiggle); -} - -static void alarm_time(void) -{ - struct tm now; - time_t ts; - int i; - - ts = time(NULL); - gmtime_r(&ts, &now); - - /* set DEC mode */ - cmos_write(RTC_REG_B, REG_B_24H | REG_B_DM); - - g_assert(!get_irq(RTC_ISA_IRQ)); - cmos_read(RTC_REG_C); - - now.tm_sec = (now.tm_sec + 2) % 60; - cmos_write(RTC_SECONDS_ALARM, now.tm_sec); - cmos_write(RTC_MINUTES_ALARM, RTC_ALARM_DONT_CARE); - cmos_write(RTC_HOURS_ALARM, RTC_ALARM_DONT_CARE); - cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) | REG_B_AIE); - - for (i = 0; i < 2 + wiggle; i++) { - if (get_irq(RTC_ISA_IRQ)) { - break; - } - - clock_step(1000000000); - } - - g_assert(get_irq(RTC_ISA_IRQ)); - g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0); - g_assert(cmos_read(RTC_REG_C) == 0); -} - -static void set_time_regs(int h, int m, int s) -{ - cmos_write(RTC_HOURS, h); - cmos_write(RTC_MINUTES, m); - cmos_write(RTC_SECONDS, s); -} - -static void set_time(int mode, int h, int m, int s) -{ - cmos_write(RTC_REG_B, mode); - cmos_write(RTC_REG_A, 0x76); - set_time_regs(h, m, s); - cmos_write(RTC_REG_A, 0x26); -} - -static void set_datetime_bcd(int h, int min, int s, int d, int m, int y) -{ - cmos_write(RTC_HOURS, h); - cmos_write(RTC_MINUTES, min); - cmos_write(RTC_SECONDS, s); - cmos_write(RTC_YEAR, y & 0xFF); - cmos_write(RTC_CENTURY, y >> 8); - cmos_write(RTC_MONTH, m); - cmos_write(RTC_DAY_OF_MONTH, d); -} - -static void set_datetime_dec(int h, int min, int s, int d, int m, int y) -{ - cmos_write(RTC_HOURS, h); - cmos_write(RTC_MINUTES, min); - cmos_write(RTC_SECONDS, s); - cmos_write(RTC_YEAR, y % 100); - cmos_write(RTC_CENTURY, y / 100); - cmos_write(RTC_MONTH, m); - cmos_write(RTC_DAY_OF_MONTH, d); -} - -static void set_datetime(int mode, int h, int min, int s, int d, int m, int y) -{ - cmos_write(RTC_REG_B, mode); - - cmos_write(RTC_REG_A, 0x76); - if (mode & REG_B_DM) { - set_datetime_dec(h, min, s, d, m, y); - } else { - set_datetime_bcd(h, min, s, d, m, y); - } - cmos_write(RTC_REG_A, 0x26); -} - -#define assert_time(h, m, s) \ - do { \ - g_assert_cmpint(cmos_read(RTC_HOURS), ==, h); \ - g_assert_cmpint(cmos_read(RTC_MINUTES), ==, m); \ - g_assert_cmpint(cmos_read(RTC_SECONDS), ==, s); \ - } while(0) - -#define assert_datetime_bcd(h, min, s, d, m, y) \ - do { \ - g_assert_cmpint(cmos_read(RTC_HOURS), ==, h); \ - g_assert_cmpint(cmos_read(RTC_MINUTES), ==, min); \ - g_assert_cmpint(cmos_read(RTC_SECONDS), ==, s); \ - g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, d); \ - g_assert_cmpint(cmos_read(RTC_MONTH), ==, m); \ - g_assert_cmpint(cmos_read(RTC_YEAR), ==, (y & 0xFF)); \ - g_assert_cmpint(cmos_read(RTC_CENTURY), ==, (y >> 8)); \ - } while(0) - -static void basic_12h_bcd(void) -{ - /* set BCD 12 hour mode */ - set_time(0, 0x81, 0x59, 0x00); - clock_step(1000000000LL); - assert_time(0x81, 0x59, 0x01); - clock_step(59000000000LL); - assert_time(0x82, 0x00, 0x00); - - /* test BCD wraparound */ - set_time(0, 0x09, 0x59, 0x59); - clock_step(60000000000LL); - assert_time(0x10, 0x00, 0x59); - - /* 12 AM -> 1 AM */ - set_time(0, 0x12, 0x59, 0x59); - clock_step(1000000000LL); - assert_time(0x01, 0x00, 0x00); - - /* 12 PM -> 1 PM */ - set_time(0, 0x92, 0x59, 0x59); - clock_step(1000000000LL); - assert_time(0x81, 0x00, 0x00); - - /* 11 AM -> 12 PM */ - set_time(0, 0x11, 0x59, 0x59); - clock_step(1000000000LL); - assert_time(0x92, 0x00, 0x00); - /* TODO: test day wraparound */ - - /* 11 PM -> 12 AM */ - set_time(0, 0x91, 0x59, 0x59); - clock_step(1000000000LL); - assert_time(0x12, 0x00, 0x00); - /* TODO: test day wraparound */ -} - -static void basic_12h_dec(void) -{ - /* set decimal 12 hour mode */ - set_time(REG_B_DM, 0x81, 59, 0); - clock_step(1000000000LL); - assert_time(0x81, 59, 1); - clock_step(59000000000LL); - assert_time(0x82, 0, 0); - - /* 12 PM -> 1 PM */ - set_time(REG_B_DM, 0x8c, 59, 59); - clock_step(1000000000LL); - assert_time(0x81, 0, 0); - - /* 12 AM -> 1 AM */ - set_time(REG_B_DM, 0x0c, 59, 59); - clock_step(1000000000LL); - assert_time(0x01, 0, 0); - - /* 11 AM -> 12 PM */ - set_time(REG_B_DM, 0x0b, 59, 59); - clock_step(1000000000LL); - assert_time(0x8c, 0, 0); - - /* 11 PM -> 12 AM */ - set_time(REG_B_DM, 0x8b, 59, 59); - clock_step(1000000000LL); - assert_time(0x0c, 0, 0); - /* TODO: test day wraparound */ -} - -static void basic_24h_bcd(void) -{ - /* set BCD 24 hour mode */ - set_time(REG_B_24H, 0x09, 0x59, 0x00); - clock_step(1000000000LL); - assert_time(0x09, 0x59, 0x01); - clock_step(59000000000LL); - assert_time(0x10, 0x00, 0x00); - - /* test BCD wraparound */ - set_time(REG_B_24H, 0x09, 0x59, 0x00); - clock_step(60000000000LL); - assert_time(0x10, 0x00, 0x00); - - /* TODO: test day wraparound */ - set_time(REG_B_24H, 0x23, 0x59, 0x00); - clock_step(60000000000LL); - assert_time(0x00, 0x00, 0x00); -} - -static void basic_24h_dec(void) -{ - /* set decimal 24 hour mode */ - set_time(REG_B_24H | REG_B_DM, 9, 59, 0); - clock_step(1000000000LL); - assert_time(9, 59, 1); - clock_step(59000000000LL); - assert_time(10, 0, 0); - - /* test BCD wraparound */ - set_time(REG_B_24H | REG_B_DM, 9, 59, 0); - clock_step(60000000000LL); - assert_time(10, 0, 0); - - /* TODO: test day wraparound */ - set_time(REG_B_24H | REG_B_DM, 23, 59, 0); - clock_step(60000000000LL); - assert_time(0, 0, 0); -} - -static void am_pm_alarm(void) -{ - cmos_write(RTC_MINUTES_ALARM, 0xC0); - cmos_write(RTC_SECONDS_ALARM, 0xC0); - - /* set BCD 12 hour mode */ - cmos_write(RTC_REG_B, 0); - - /* Set time and alarm hour. */ - cmos_write(RTC_REG_A, 0x76); - cmos_write(RTC_HOURS_ALARM, 0x82); - cmos_write(RTC_HOURS, 0x81); - cmos_write(RTC_MINUTES, 0x59); - cmos_write(RTC_SECONDS, 0x00); - cmos_read(RTC_REG_C); - cmos_write(RTC_REG_A, 0x26); - - /* Check that alarm triggers when AM/PM is set. */ - clock_step(60000000000LL); - g_assert(cmos_read(RTC_HOURS) == 0x82); - g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0); - - /* - * Each of the following two tests takes over 60 seconds due to the time - * needed to report the PIT interrupts. Unfortunately, our PIT device - * model keeps counting even when GATE=0, so we cannot simply disable - * it in main(). - */ - if (g_test_quick()) { - return; - } - - /* set DEC 12 hour mode */ - cmos_write(RTC_REG_B, REG_B_DM); - - /* Set time and alarm hour. */ - cmos_write(RTC_REG_A, 0x76); - cmos_write(RTC_HOURS_ALARM, 0x82); - cmos_write(RTC_HOURS, 3); - cmos_write(RTC_MINUTES, 0); - cmos_write(RTC_SECONDS, 0); - cmos_read(RTC_REG_C); - cmos_write(RTC_REG_A, 0x26); - - /* Check that alarm triggers. */ - clock_step(3600 * 11 * 1000000000LL); - g_assert(cmos_read(RTC_HOURS) == 0x82); - g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0); - - /* Same as above, with inverted HOURS and HOURS_ALARM. */ - cmos_write(RTC_REG_A, 0x76); - cmos_write(RTC_HOURS_ALARM, 2); - cmos_write(RTC_HOURS, 3); - cmos_write(RTC_MINUTES, 0); - cmos_write(RTC_SECONDS, 0); - cmos_read(RTC_REG_C); - cmos_write(RTC_REG_A, 0x26); - - /* Check that alarm does not trigger if hours differ only by AM/PM. */ - clock_step(3600 * 11 * 1000000000LL); - g_assert(cmos_read(RTC_HOURS) == 0x82); - g_assert((cmos_read(RTC_REG_C) & REG_C_AF) == 0); -} - -/* success if no crash or abort */ -static void fuzz_registers(void) -{ - unsigned int i; - - for (i = 0; i < 1000; i++) { - uint8_t reg, val; - - reg = (uint8_t)g_test_rand_int_range(0, 16); - val = (uint8_t)g_test_rand_int_range(0, 256); - - cmos_write(reg, val); - cmos_read(reg); - } -} - -static void register_b_set_flag(void) -{ - if (cmos_read(RTC_REG_A) & REG_A_UIP) { - clock_step(UIP_HOLD_LENGTH + NANOSECONDS_PER_SECOND / 5); - } - g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0); - - /* Enable binary-coded decimal (BCD) mode and SET flag in Register B*/ - cmos_write(RTC_REG_B, REG_B_24H | REG_B_SET); - - set_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011); - - assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011); - - /* Since SET flag is still enabled, time does not advance. */ - clock_step(1000000000LL); - assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011); - - /* Disable SET flag in Register B */ - cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) & ~REG_B_SET); - - assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011); - - /* Since SET flag is disabled, the clock now advances. */ - clock_step(1000000000LL); - assert_datetime_bcd(0x02, 0x04, 0x59, 0x02, 0x02, 0x2011); -} - -static void divider_reset(void) -{ - /* Enable binary-coded decimal (BCD) mode in Register B*/ - cmos_write(RTC_REG_B, REG_B_24H); - - /* Enter divider reset */ - cmos_write(RTC_REG_A, 0x76); - set_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011); - - assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011); - - /* Since divider reset flag is still enabled, these are equality checks. */ - clock_step(1000000000LL); - assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011); - - /* The first update ends 500 ms after divider reset */ - cmos_write(RTC_REG_A, 0x26); - clock_step(500000000LL - UIP_HOLD_LENGTH - 1); - g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0); - assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011); - - clock_step(1); - g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, !=, 0); - clock_step(UIP_HOLD_LENGTH); - g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0); - - assert_datetime_bcd(0x02, 0x04, 0x59, 0x02, 0x02, 0x2011); -} - -static void uip_stuck(void) -{ - set_datetime(REG_B_24H, 0x02, 0x04, 0x58, 0x02, 0x02, 0x2011); - - /* The first update ends 500 ms after divider reset */ - (void)cmos_read(RTC_REG_C); - clock_step(500000000LL); - g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0); - assert_datetime_bcd(0x02, 0x04, 0x59, 0x02, 0x02, 0x2011); - - /* UF is now set. */ - cmos_write(RTC_HOURS_ALARM, 0x02); - cmos_write(RTC_MINUTES_ALARM, 0xC0); - cmos_write(RTC_SECONDS_ALARM, 0xC0); - - /* Because the alarm will fire soon, reading register A will latch UIP. */ - clock_step(1000000000LL - UIP_HOLD_LENGTH / 2); - g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, !=, 0); - - /* Move the alarm far away. This must not cause UIP to remain stuck! */ - cmos_write(RTC_HOURS_ALARM, 0x03); - clock_step(UIP_HOLD_LENGTH); - g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0); -} - -#define RTC_PERIOD_CODE1 13 /* 8 Hz */ -#define RTC_PERIOD_CODE2 15 /* 2 Hz */ - -#define RTC_PERIOD_TEST_NR 50 - -static uint64_t wait_periodic_interrupt(uint64_t real_time) -{ - while (!get_irq(RTC_ISA_IRQ)) { - real_time = clock_step_next(); - } - - g_assert((cmos_read(RTC_REG_C) & REG_C_PF) != 0); - return real_time; -} - -static void periodic_timer(void) -{ - int i; - uint64_t period_clocks, period_time, start_time, real_time; - - /* disable all interrupts. */ - cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) & - ~(REG_B_PIE | REG_B_AIE | REG_B_UIE)); - cmos_write(RTC_REG_A, RTC_PERIOD_CODE1); - /* enable periodic interrupt after properly configure the period. */ - cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) | REG_B_PIE); - - start_time = real_time = clock_step_next(); - - for (i = 0; i < RTC_PERIOD_TEST_NR; i++) { - cmos_write(RTC_REG_A, RTC_PERIOD_CODE1); - real_time = wait_periodic_interrupt(real_time); - cmos_write(RTC_REG_A, RTC_PERIOD_CODE2); - real_time = wait_periodic_interrupt(real_time); - } - - period_clocks = periodic_period_to_clock(RTC_PERIOD_CODE1) + - periodic_period_to_clock(RTC_PERIOD_CODE2); - period_clocks *= RTC_PERIOD_TEST_NR; - period_time = periodic_clock_to_ns(period_clocks); - - real_time -= start_time; - g_assert_cmpint(ABS((int64_t)(real_time - period_time)), <=, - NANOSECONDS_PER_SECOND * 0.5); -} - -int main(int argc, char **argv) -{ - QTestState *s = NULL; - int ret; - - g_test_init(&argc, &argv, NULL); - - s = qtest_start("-rtc clock=vm"); - qtest_irq_intercept_in(s, "ioapic"); - - qtest_add_func("/rtc/check-time/bcd", bcd_check_time); - qtest_add_func("/rtc/check-time/dec", dec_check_time); - qtest_add_func("/rtc/alarm/interrupt", alarm_time); - qtest_add_func("/rtc/alarm/am-pm", am_pm_alarm); - qtest_add_func("/rtc/basic/dec-24h", basic_24h_dec); - qtest_add_func("/rtc/basic/bcd-24h", basic_24h_bcd); - qtest_add_func("/rtc/basic/dec-12h", basic_12h_dec); - qtest_add_func("/rtc/basic/bcd-12h", basic_12h_bcd); - qtest_add_func("/rtc/set-year/20xx", set_year_20xx); - qtest_add_func("/rtc/set-year/1980", set_year_1980); - qtest_add_func("/rtc/update/register_b_set_flag", register_b_set_flag); - qtest_add_func("/rtc/update/divider-reset", divider_reset); - qtest_add_func("/rtc/update/uip-stuck", uip_stuck); - qtest_add_func("/rtc/misc/fuzz-registers", fuzz_registers); - qtest_add_func("/rtc/periodic/interrupt", periodic_timer); - - ret = g_test_run(); - - if (s) { - qtest_quit(s); - } - - return ret; -} -- cgit v1.1