aboutsummaryrefslogtreecommitdiff
path: root/util
diff options
context:
space:
mode:
Diffstat (limited to 'util')
-rw-r--r--util/error.c20
-rw-r--r--util/event.c171
-rw-r--r--util/lockcnt.c9
-rw-r--r--util/meson.build3
-rw-r--r--util/qemu-thread-posix.c148
-rw-r--r--util/qemu-thread-win32.c129
6 files changed, 187 insertions, 293 deletions
diff --git a/util/error.c b/util/error.c
index 673011b..daea214 100644
--- a/util/error.c
+++ b/util/error.c
@@ -15,15 +15,7 @@
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "qemu/error-report.h"
-
-struct Error
-{
- char *msg;
- ErrorClass err_class;
- const char *src, *func;
- int line;
- GString *hint;
-};
+#include "qapi/error-internal.h"
Error *error_abort;
Error *error_fatal;
@@ -32,8 +24,13 @@ Error *error_warn;
static void error_handle(Error **errp, Error *err)
{
if (errp == &error_abort) {
- fprintf(stderr, "Unexpected error in %s() at %s:%d:\n",
- err->func, err->src, err->line);
+ if (err->func) {
+ fprintf(stderr, "Unexpected error in %s() at %.*s:%d:\n",
+ err->func, err->src_len, err->src, err->line);
+ } else {
+ fprintf(stderr, "Unexpected error at %.*s:%d:\n",
+ err->src_len, err->src, err->line);
+ }
error_report("%s", error_get_pretty(err));
if (err->hint) {
error_printf("%s", err->hint->str);
@@ -75,6 +72,7 @@ static void error_setv(Error **errp,
g_free(msg);
}
err->err_class = err_class;
+ err->src_len = -1;
err->src = src;
err->line = line;
err->func = func;
diff --git a/util/event.c b/util/event.c
new file mode 100644
index 0000000..5a8141c
--- /dev/null
+++ b/util/event.c
@@ -0,0 +1,171 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+
+#include "qemu/osdep.h"
+#include "qemu/thread.h"
+
+/*
+ * Valid transitions:
+ * - FREE -> SET (qemu_event_set)
+ * - BUSY -> SET (qemu_event_set)
+ * - SET -> FREE (qemu_event_reset)
+ * - FREE -> BUSY (qemu_event_wait)
+ *
+ * With futex, the waking and blocking operations follow
+ * BUSY -> SET and FREE -> BUSY, respectively.
+ *
+ * Without futex, BUSY -> SET and FREE -> BUSY never happen. Instead, the waking
+ * operation follows FREE -> SET and the blocking operation will happen in
+ * qemu_event_wait() if the event is not SET.
+ *
+ * SET->BUSY does not happen (it can be observed from the outside but
+ * it really is SET->FREE->BUSY).
+ *
+ * busy->free provably cannot happen; to enforce it, the set->free transition
+ * is done with an OR, which becomes a no-op if the event has concurrently
+ * transitioned to free or busy.
+ */
+
+#define EV_SET 0
+#define EV_FREE 1
+#define EV_BUSY -1
+
+void qemu_event_init(QemuEvent *ev, bool init)
+{
+#ifndef HAVE_FUTEX
+ pthread_mutex_init(&ev->lock, NULL);
+ pthread_cond_init(&ev->cond, NULL);
+#endif
+
+ ev->value = (init ? EV_SET : EV_FREE);
+ ev->initialized = true;
+}
+
+void qemu_event_destroy(QemuEvent *ev)
+{
+ assert(ev->initialized);
+ ev->initialized = false;
+#ifndef HAVE_FUTEX
+ pthread_mutex_destroy(&ev->lock);
+ pthread_cond_destroy(&ev->cond);
+#endif
+}
+
+void qemu_event_set(QemuEvent *ev)
+{
+ assert(ev->initialized);
+
+#ifdef HAVE_FUTEX
+ /*
+ * Pairs with both qemu_event_reset() and qemu_event_wait().
+ *
+ * qemu_event_set has release semantics, but because it *loads*
+ * ev->value we need a full memory barrier here.
+ */
+ smp_mb();
+ if (qatomic_read(&ev->value) != EV_SET) {
+ int old = qatomic_xchg(&ev->value, EV_SET);
+
+ /* Pairs with memory barrier in kernel futex_wait system call. */
+ smp_mb__after_rmw();
+ if (old == EV_BUSY) {
+ /* There were waiters, wake them up. */
+ qemu_futex_wake_all(ev);
+ }
+ }
+#else
+ pthread_mutex_lock(&ev->lock);
+ /* Pairs with qemu_event_reset()'s load acquire. */
+ qatomic_store_release(&ev->value, EV_SET);
+ pthread_cond_broadcast(&ev->cond);
+ pthread_mutex_unlock(&ev->lock);
+#endif
+}
+
+void qemu_event_reset(QemuEvent *ev)
+{
+ assert(ev->initialized);
+
+#ifdef HAVE_FUTEX
+ /*
+ * If there was a concurrent reset (or even reset+wait),
+ * do nothing. Otherwise change EV_SET->EV_FREE.
+ */
+ qatomic_or(&ev->value, EV_FREE);
+
+ /*
+ * Order reset before checking the condition in the caller.
+ * Pairs with the first memory barrier in qemu_event_set().
+ */
+ smp_mb__after_rmw();
+#else
+ /*
+ * If futexes are not available, there are no EV_FREE->EV_BUSY
+ * transitions because wakeups are done entirely through the
+ * condition variable. Since qatomic_set() only writes EV_FREE,
+ * the load seems useless but in reality, the acquire synchronizes
+ * with qemu_event_set()'s store release: if qemu_event_reset()
+ * sees EV_SET here, then the caller will certainly see a
+ * successful condition and skip qemu_event_wait():
+ *
+ * done = 1; if (done == 0)
+ * qemu_event_set() { qemu_event_reset() {
+ * lock();
+ * ev->value = EV_SET -----> load ev->value
+ * ev->value = old value | EV_FREE
+ * cond_broadcast()
+ * unlock(); }
+ * } if (done == 0)
+ * // qemu_event_wait() not called
+ */
+ qatomic_set(&ev->value, qatomic_load_acquire(&ev->value) | EV_FREE);
+#endif
+}
+
+void qemu_event_wait(QemuEvent *ev)
+{
+ assert(ev->initialized);
+
+#ifdef HAVE_FUTEX
+ while (true) {
+ /*
+ * qemu_event_wait must synchronize with qemu_event_set even if it does
+ * not go down the slow path, so this load-acquire is needed that
+ * synchronizes with the first memory barrier in qemu_event_set().
+ */
+ unsigned value = qatomic_load_acquire(&ev->value);
+ if (value == EV_SET) {
+ break;
+ }
+
+ if (value == EV_FREE) {
+ /*
+ * Leave the event reset and tell qemu_event_set that there are
+ * waiters. No need to retry, because there cannot be a concurrent
+ * busy->free transition. After the CAS, the event will be either
+ * set or busy.
+ *
+ * This cmpxchg doesn't have particular ordering requirements if it
+ * succeeds (moving the store earlier can only cause
+ * qemu_event_set() to issue _more_ wakeups), the failing case needs
+ * acquire semantics like the load above.
+ */
+ if (qatomic_cmpxchg(&ev->value, EV_FREE, EV_BUSY) == EV_SET) {
+ break;
+ }
+ }
+
+ /*
+ * This is the final check for a concurrent set, so it does need
+ * a smp_mb() pairing with the second barrier of qemu_event_set().
+ * The barrier is inside the FUTEX_WAIT system call.
+ */
+ qemu_futex_wait(ev, EV_BUSY);
+ }
+#else
+ pthread_mutex_lock(&ev->lock);
+ while (qatomic_read(&ev->value) != EV_SET) {
+ pthread_cond_wait(&ev->cond, &ev->lock);
+ }
+ pthread_mutex_unlock(&ev->lock);
+#endif
+}
diff --git a/util/lockcnt.c b/util/lockcnt.c
index d07c6cc..92c9f8c 100644
--- a/util/lockcnt.c
+++ b/util/lockcnt.c
@@ -12,10 +12,11 @@
#include "qemu/atomic.h"
#include "trace.h"
-#ifdef CONFIG_LINUX
-#include "qemu/futex.h"
+#ifdef HAVE_FUTEX
-/* On Linux, bits 0-1 are a futex-based lock, bits 2-31 are the counter.
+/*
+ * When futex is available, bits 0-1 are a futex-based lock, bits 2-31 are the
+ * counter.
* For the mutex algorithm see Ulrich Drepper's "Futexes Are Tricky" (ok,
* this is not the most relaxing citation I could make...). It is similar
* to mutex2 in the paper.
@@ -106,7 +107,7 @@ static bool qemu_lockcnt_cmpxchg_or_wait(QemuLockCnt *lockcnt, int *val,
static void lockcnt_wake(QemuLockCnt *lockcnt)
{
trace_lockcnt_futex_wake(lockcnt);
- qemu_futex_wake(&lockcnt->count, 1);
+ qemu_futex_wake_single(&lockcnt->count);
}
void qemu_lockcnt_inc(QemuLockCnt *lockcnt)
diff --git a/util/meson.build b/util/meson.build
index 1adff96..3502938 100644
--- a/util/meson.build
+++ b/util/meson.build
@@ -27,7 +27,7 @@ else
util_ss.add(files('event_notifier-win32.c'))
util_ss.add(files('oslib-win32.c'))
util_ss.add(files('qemu-thread-win32.c'))
- util_ss.add(winmm, pathcch)
+ util_ss.add(winmm, pathcch, synchronization)
endif
util_ss.add(when: linux_io_uring, if_true: files('fdmon-io_uring.c'))
if glib_has_gslice
@@ -35,6 +35,7 @@ if glib_has_gslice
endif
util_ss.add(files('defer-call.c'))
util_ss.add(files('envlist.c', 'path.c', 'module.c'))
+util_ss.add(files('event.c'))
util_ss.add(files('host-utils.c'))
util_ss.add(files('bitmap.c', 'bitops.c'))
util_ss.add(files('fifo8.c'))
diff --git a/util/qemu-thread-posix.c b/util/qemu-thread-posix.c
index b2e26e2..ba72544 100644
--- a/util/qemu-thread-posix.c
+++ b/util/qemu-thread-posix.c
@@ -317,154 +317,6 @@ void qemu_sem_wait(QemuSemaphore *sem)
qemu_mutex_unlock(&sem->mutex);
}
-#ifdef __linux__
-#include "qemu/futex.h"
-#else
-static inline void qemu_futex_wake(QemuEvent *ev, int n)
-{
- assert(ev->initialized);
- pthread_mutex_lock(&ev->lock);
- if (n == 1) {
- pthread_cond_signal(&ev->cond);
- } else {
- pthread_cond_broadcast(&ev->cond);
- }
- pthread_mutex_unlock(&ev->lock);
-}
-
-static inline void qemu_futex_wait(QemuEvent *ev, unsigned val)
-{
- assert(ev->initialized);
- pthread_mutex_lock(&ev->lock);
- if (ev->value == val) {
- pthread_cond_wait(&ev->cond, &ev->lock);
- }
- pthread_mutex_unlock(&ev->lock);
-}
-#endif
-
-/* Valid transitions:
- * - free->set, when setting the event
- * - busy->set, when setting the event, followed by qemu_futex_wake
- * - set->free, when resetting the event
- * - free->busy, when waiting
- *
- * set->busy does not happen (it can be observed from the outside but
- * it really is set->free->busy).
- *
- * busy->free provably cannot happen; to enforce it, the set->free transition
- * is done with an OR, which becomes a no-op if the event has concurrently
- * transitioned to free or busy.
- */
-
-#define EV_SET 0
-#define EV_FREE 1
-#define EV_BUSY -1
-
-void qemu_event_init(QemuEvent *ev, bool init)
-{
-#ifndef __linux__
- pthread_mutex_init(&ev->lock, NULL);
- pthread_cond_init(&ev->cond, NULL);
-#endif
-
- ev->value = (init ? EV_SET : EV_FREE);
- ev->initialized = true;
-}
-
-void qemu_event_destroy(QemuEvent *ev)
-{
- assert(ev->initialized);
- ev->initialized = false;
-#ifndef __linux__
- pthread_mutex_destroy(&ev->lock);
- pthread_cond_destroy(&ev->cond);
-#endif
-}
-
-void qemu_event_set(QemuEvent *ev)
-{
- assert(ev->initialized);
-
- /*
- * Pairs with both qemu_event_reset() and qemu_event_wait().
- *
- * qemu_event_set has release semantics, but because it *loads*
- * ev->value we need a full memory barrier here.
- */
- smp_mb();
- if (qatomic_read(&ev->value) != EV_SET) {
- int old = qatomic_xchg(&ev->value, EV_SET);
-
- /* Pairs with memory barrier in kernel futex_wait system call. */
- smp_mb__after_rmw();
- if (old == EV_BUSY) {
- /* There were waiters, wake them up. */
- qemu_futex_wake(ev, INT_MAX);
- }
- }
-}
-
-void qemu_event_reset(QemuEvent *ev)
-{
- assert(ev->initialized);
-
- /*
- * If there was a concurrent reset (or even reset+wait),
- * do nothing. Otherwise change EV_SET->EV_FREE.
- */
- qatomic_or(&ev->value, EV_FREE);
-
- /*
- * Order reset before checking the condition in the caller.
- * Pairs with the first memory barrier in qemu_event_set().
- */
- smp_mb__after_rmw();
-}
-
-void qemu_event_wait(QemuEvent *ev)
-{
- unsigned value;
-
- assert(ev->initialized);
-
- /*
- * qemu_event_wait must synchronize with qemu_event_set even if it does
- * not go down the slow path, so this load-acquire is needed that
- * synchronizes with the first memory barrier in qemu_event_set().
- *
- * If we do go down the slow path, there is no requirement at all: we
- * might miss a qemu_event_set() here but ultimately the memory barrier in
- * qemu_futex_wait() will ensure the check is done correctly.
- */
- value = qatomic_load_acquire(&ev->value);
- if (value != EV_SET) {
- if (value == EV_FREE) {
- /*
- * Leave the event reset and tell qemu_event_set that there are
- * waiters. No need to retry, because there cannot be a concurrent
- * busy->free transition. After the CAS, the event will be either
- * set or busy.
- *
- * This cmpxchg doesn't have particular ordering requirements if it
- * succeeds (moving the store earlier can only cause qemu_event_set()
- * to issue _more_ wakeups), the failing case needs acquire semantics
- * like the load above.
- */
- if (qatomic_cmpxchg(&ev->value, EV_FREE, EV_BUSY) == EV_SET) {
- return;
- }
- }
-
- /*
- * This is the final check for a concurrent set, so it does need
- * a smp_mb() pairing with the second barrier of qemu_event_set().
- * The barrier is inside the FUTEX_WAIT system call.
- */
- qemu_futex_wait(ev, EV_BUSY);
- }
-}
-
static __thread NotifierList thread_exit;
/*
diff --git a/util/qemu-thread-win32.c b/util/qemu-thread-win32.c
index a7fe3cc..ca2e0b5 100644
--- a/util/qemu-thread-win32.c
+++ b/util/qemu-thread-win32.c
@@ -231,135 +231,6 @@ void qemu_sem_wait(QemuSemaphore *sem)
}
}
-/* Wrap a Win32 manual-reset event with a fast userspace path. The idea
- * is to reset the Win32 event lazily, as part of a test-reset-test-wait
- * sequence. Such a sequence is, indeed, how QemuEvents are used by
- * RCU and other subsystems!
- *
- * Valid transitions:
- * - free->set, when setting the event
- * - busy->set, when setting the event, followed by SetEvent
- * - set->free, when resetting the event
- * - free->busy, when waiting
- *
- * set->busy does not happen (it can be observed from the outside but
- * it really is set->free->busy).
- *
- * busy->free provably cannot happen; to enforce it, the set->free transition
- * is done with an OR, which becomes a no-op if the event has concurrently
- * transitioned to free or busy (and is faster than cmpxchg).
- */
-
-#define EV_SET 0
-#define EV_FREE 1
-#define EV_BUSY -1
-
-void qemu_event_init(QemuEvent *ev, bool init)
-{
- /* Manual reset. */
- ev->event = CreateEvent(NULL, TRUE, TRUE, NULL);
- ev->value = (init ? EV_SET : EV_FREE);
- ev->initialized = true;
-}
-
-void qemu_event_destroy(QemuEvent *ev)
-{
- assert(ev->initialized);
- ev->initialized = false;
- CloseHandle(ev->event);
-}
-
-void qemu_event_set(QemuEvent *ev)
-{
- assert(ev->initialized);
-
- /*
- * Pairs with both qemu_event_reset() and qemu_event_wait().
- *
- * qemu_event_set has release semantics, but because it *loads*
- * ev->value we need a full memory barrier here.
- */
- smp_mb();
- if (qatomic_read(&ev->value) != EV_SET) {
- int old = qatomic_xchg(&ev->value, EV_SET);
-
- /* Pairs with memory barrier after ResetEvent. */
- smp_mb__after_rmw();
- if (old == EV_BUSY) {
- /* There were waiters, wake them up. */
- SetEvent(ev->event);
- }
- }
-}
-
-void qemu_event_reset(QemuEvent *ev)
-{
- assert(ev->initialized);
-
- /*
- * If there was a concurrent reset (or even reset+wait),
- * do nothing. Otherwise change EV_SET->EV_FREE.
- */
- qatomic_or(&ev->value, EV_FREE);
-
- /*
- * Order reset before checking the condition in the caller.
- * Pairs with the first memory barrier in qemu_event_set().
- */
- smp_mb__after_rmw();
-}
-
-void qemu_event_wait(QemuEvent *ev)
-{
- unsigned value;
-
- assert(ev->initialized);
-
- /*
- * qemu_event_wait must synchronize with qemu_event_set even if it does
- * not go down the slow path, so this load-acquire is needed that
- * synchronizes with the first memory barrier in qemu_event_set().
- *
- * If we do go down the slow path, there is no requirement at all: we
- * might miss a qemu_event_set() here but ultimately the memory barrier in
- * qemu_futex_wait() will ensure the check is done correctly.
- */
- value = qatomic_load_acquire(&ev->value);
- if (value != EV_SET) {
- if (value == EV_FREE) {
- /*
- * Here the underlying kernel event is reset, but qemu_event_set is
- * not yet going to call SetEvent. However, there will be another
- * check for EV_SET below when setting EV_BUSY. At that point it
- * is safe to call WaitForSingleObject.
- */
- ResetEvent(ev->event);
-
- /*
- * It is not clear whether ResetEvent provides this barrier; kernel
- * APIs (KeResetEvent/KeClearEvent) do not. Better safe than sorry!
- */
- smp_mb();
-
- /*
- * Leave the event reset and tell qemu_event_set that there are
- * waiters. No need to retry, because there cannot be a concurrent
- * busy->free transition. After the CAS, the event will be either
- * set or busy.
- */
- if (qatomic_cmpxchg(&ev->value, EV_FREE, EV_BUSY) == EV_SET) {
- return;
- }
- }
-
- /*
- * ev->value is now EV_BUSY. Since we didn't observe EV_SET,
- * qemu_event_set() must observe EV_BUSY and call SetEvent().
- */
- WaitForSingleObject(ev->event, INFINITE);
- }
-}
-
struct QemuThreadData {
/* Passed to win32_start_routine. */
void *(*start_routine)(void *);