aboutsummaryrefslogtreecommitdiff
path: root/target/arm/kvm64.c
diff options
context:
space:
mode:
Diffstat (limited to 'target/arm/kvm64.c')
-rw-r--r--target/arm/kvm64.c100
1 files changed, 99 insertions, 1 deletions
diff --git a/target/arm/kvm64.c b/target/arm/kvm64.c
index c7ecefb..c93bbee 100644
--- a/target/arm/kvm64.c
+++ b/target/arm/kvm64.c
@@ -613,6 +613,100 @@ bool kvm_arm_sve_supported(CPUState *cpu)
return kvm_check_extension(s, KVM_CAP_ARM_SVE);
}
+QEMU_BUILD_BUG_ON(KVM_ARM64_SVE_VQ_MIN != 1);
+
+void kvm_arm_sve_get_vls(CPUState *cs, unsigned long *map)
+{
+ /* Only call this function if kvm_arm_sve_supported() returns true. */
+ static uint64_t vls[KVM_ARM64_SVE_VLS_WORDS];
+ static bool probed;
+ uint32_t vq = 0;
+ int i, j;
+
+ bitmap_clear(map, 0, ARM_MAX_VQ);
+
+ /*
+ * KVM ensures all host CPUs support the same set of vector lengths.
+ * So we only need to create the scratch VCPUs once and then cache
+ * the results.
+ */
+ if (!probed) {
+ struct kvm_vcpu_init init = {
+ .target = -1,
+ .features[0] = (1 << KVM_ARM_VCPU_SVE),
+ };
+ struct kvm_one_reg reg = {
+ .id = KVM_REG_ARM64_SVE_VLS,
+ .addr = (uint64_t)&vls[0],
+ };
+ int fdarray[3], ret;
+
+ probed = true;
+
+ if (!kvm_arm_create_scratch_host_vcpu(NULL, fdarray, &init)) {
+ error_report("failed to create scratch VCPU with SVE enabled");
+ abort();
+ }
+ ret = ioctl(fdarray[2], KVM_GET_ONE_REG, &reg);
+ kvm_arm_destroy_scratch_host_vcpu(fdarray);
+ if (ret) {
+ error_report("failed to get KVM_REG_ARM64_SVE_VLS: %s",
+ strerror(errno));
+ abort();
+ }
+
+ for (i = KVM_ARM64_SVE_VLS_WORDS - 1; i >= 0; --i) {
+ if (vls[i]) {
+ vq = 64 - clz64(vls[i]) + i * 64;
+ break;
+ }
+ }
+ if (vq > ARM_MAX_VQ) {
+ warn_report("KVM supports vector lengths larger than "
+ "QEMU can enable");
+ }
+ }
+
+ for (i = 0; i < KVM_ARM64_SVE_VLS_WORDS; ++i) {
+ if (!vls[i]) {
+ continue;
+ }
+ for (j = 1; j <= 64; ++j) {
+ vq = j + i * 64;
+ if (vq > ARM_MAX_VQ) {
+ return;
+ }
+ if (vls[i] & (1UL << (j - 1))) {
+ set_bit(vq - 1, map);
+ }
+ }
+ }
+}
+
+static int kvm_arm_sve_set_vls(CPUState *cs)
+{
+ uint64_t vls[KVM_ARM64_SVE_VLS_WORDS] = {0};
+ struct kvm_one_reg reg = {
+ .id = KVM_REG_ARM64_SVE_VLS,
+ .addr = (uint64_t)&vls[0],
+ };
+ ARMCPU *cpu = ARM_CPU(cs);
+ uint32_t vq;
+ int i, j;
+
+ assert(cpu->sve_max_vq <= KVM_ARM64_SVE_VQ_MAX);
+
+ for (vq = 1; vq <= cpu->sve_max_vq; ++vq) {
+ if (test_bit(vq - 1, cpu->sve_vq_map)) {
+ i = (vq - 1) / 64;
+ j = (vq - 1) % 64;
+ vls[i] |= 1UL << j;
+ }
+ }
+
+ return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
+}
+
#define ARM_CPU_ID_MPIDR 3, 0, 0, 0, 5
int kvm_arch_init_vcpu(CPUState *cs)
@@ -624,7 +718,7 @@ int kvm_arch_init_vcpu(CPUState *cs)
if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
!object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) {
- fprintf(stderr, "KVM is not supported for this guest CPU type\n");
+ error_report("KVM is not supported for this guest CPU type");
return -EINVAL;
}
@@ -660,6 +754,10 @@ int kvm_arch_init_vcpu(CPUState *cs)
}
if (cpu_isar_feature(aa64_sve, cpu)) {
+ ret = kvm_arm_sve_set_vls(cs);
+ if (ret) {
+ return ret;
+ }
ret = kvm_arm_vcpu_finalize(cs, KVM_ARM_VCPU_SVE);
if (ret) {
return ret;