aboutsummaryrefslogtreecommitdiff
path: root/hw/arm/armsse.c
diff options
context:
space:
mode:
Diffstat (limited to 'hw/arm/armsse.c')
-rw-r--r--hw/arm/armsse.c1241
1 files changed, 1241 insertions, 0 deletions
diff --git a/hw/arm/armsse.c b/hw/arm/armsse.c
new file mode 100644
index 0000000..5d53071
--- /dev/null
+++ b/hw/arm/armsse.c
@@ -0,0 +1,1241 @@
+/*
+ * Arm SSE (Subsystems for Embedded): IoTKit
+ *
+ * Copyright (c) 2018 Linaro Limited
+ * Written by Peter Maydell
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 or
+ * (at your option) any later version.
+ */
+
+#include "qemu/osdep.h"
+#include "qemu/log.h"
+#include "qapi/error.h"
+#include "trace.h"
+#include "hw/sysbus.h"
+#include "hw/registerfields.h"
+#include "hw/arm/armsse.h"
+#include "hw/arm/arm.h"
+
+/* Format of the System Information block SYS_CONFIG register */
+typedef enum SysConfigFormat {
+ IoTKitFormat,
+ SSE200Format,
+} SysConfigFormat;
+
+struct ARMSSEInfo {
+ const char *name;
+ int sram_banks;
+ int num_cpus;
+ uint32_t sys_version;
+ SysConfigFormat sys_config_format;
+ bool has_mhus;
+ bool has_ppus;
+ bool has_cachectrl;
+ bool has_cpusecctrl;
+ bool has_cpuid;
+};
+
+static const ARMSSEInfo armsse_variants[] = {
+ {
+ .name = TYPE_IOTKIT,
+ .sram_banks = 1,
+ .num_cpus = 1,
+ .sys_version = 0x41743,
+ .sys_config_format = IoTKitFormat,
+ .has_mhus = false,
+ .has_ppus = false,
+ .has_cachectrl = false,
+ .has_cpusecctrl = false,
+ .has_cpuid = false,
+ },
+ {
+ .name = TYPE_SSE200,
+ .sram_banks = 4,
+ .num_cpus = 2,
+ .sys_version = 0x22041743,
+ .sys_config_format = SSE200Format,
+ .has_mhus = true,
+ .has_ppus = true,
+ .has_cachectrl = true,
+ .has_cpusecctrl = true,
+ .has_cpuid = true,
+ },
+};
+
+static uint32_t armsse_sys_config_value(ARMSSE *s, const ARMSSEInfo *info)
+{
+ /* Return the SYS_CONFIG value for this SSE */
+ uint32_t sys_config;
+
+ switch (info->sys_config_format) {
+ case IoTKitFormat:
+ sys_config = 0;
+ sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
+ sys_config = deposit32(sys_config, 4, 4, s->sram_addr_width - 12);
+ break;
+ case SSE200Format:
+ sys_config = 0;
+ sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
+ sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width);
+ sys_config = deposit32(sys_config, 24, 4, 2);
+ if (info->num_cpus > 1) {
+ sys_config = deposit32(sys_config, 10, 1, 1);
+ sys_config = deposit32(sys_config, 20, 4, info->sram_banks - 1);
+ sys_config = deposit32(sys_config, 28, 4, 2);
+ }
+ break;
+ default:
+ g_assert_not_reached();
+ }
+ return sys_config;
+}
+
+/* Clock frequency in HZ of the 32KHz "slow clock" */
+#define S32KCLK (32 * 1000)
+
+/* Is internal IRQ n shared between CPUs in a multi-core SSE ? */
+static bool irq_is_common[32] = {
+ [0 ... 5] = true,
+ /* 6, 7: per-CPU MHU interrupts */
+ [8 ... 12] = true,
+ /* 13: per-CPU icache interrupt */
+ /* 14: reserved */
+ [15 ... 20] = true,
+ /* 21: reserved */
+ [22 ... 26] = true,
+ /* 27: reserved */
+ /* 28, 29: per-CPU CTI interrupts */
+ /* 30, 31: reserved */
+};
+
+/* Create an alias region of @size bytes starting at @base
+ * which mirrors the memory starting at @orig.
+ */
+static void make_alias(ARMSSE *s, MemoryRegion *mr, const char *name,
+ hwaddr base, hwaddr size, hwaddr orig)
+{
+ memory_region_init_alias(mr, NULL, name, &s->container, orig, size);
+ /* The alias is even lower priority than unimplemented_device regions */
+ memory_region_add_subregion_overlap(&s->container, base, mr, -1500);
+}
+
+static void irq_status_forwarder(void *opaque, int n, int level)
+{
+ qemu_irq destirq = opaque;
+
+ qemu_set_irq(destirq, level);
+}
+
+static void nsccfg_handler(void *opaque, int n, int level)
+{
+ ARMSSE *s = ARMSSE(opaque);
+
+ s->nsccfg = level;
+}
+
+static void armsse_forward_ppc(ARMSSE *s, const char *ppcname, int ppcnum)
+{
+ /* Each of the 4 AHB and 4 APB PPCs that might be present in a
+ * system using the ARMSSE has a collection of control lines which
+ * are provided by the security controller and which we want to
+ * expose as control lines on the ARMSSE device itself, so the
+ * code using the ARMSSE can wire them up to the PPCs.
+ */
+ SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum];
+ DeviceState *armssedev = DEVICE(s);
+ DeviceState *dev_secctl = DEVICE(&s->secctl);
+ DeviceState *dev_splitter = DEVICE(splitter);
+ char *name;
+
+ name = g_strdup_printf("%s_nonsec", ppcname);
+ qdev_pass_gpios(dev_secctl, armssedev, name);
+ g_free(name);
+ name = g_strdup_printf("%s_ap", ppcname);
+ qdev_pass_gpios(dev_secctl, armssedev, name);
+ g_free(name);
+ name = g_strdup_printf("%s_irq_enable", ppcname);
+ qdev_pass_gpios(dev_secctl, armssedev, name);
+ g_free(name);
+ name = g_strdup_printf("%s_irq_clear", ppcname);
+ qdev_pass_gpios(dev_secctl, armssedev, name);
+ g_free(name);
+
+ /* irq_status is a little more tricky, because we need to
+ * split it so we can send it both to the security controller
+ * and to our OR gate for the NVIC interrupt line.
+ * Connect up the splitter's outputs, and create a GPIO input
+ * which will pass the line state to the input splitter.
+ */
+ name = g_strdup_printf("%s_irq_status", ppcname);
+ qdev_connect_gpio_out(dev_splitter, 0,
+ qdev_get_gpio_in_named(dev_secctl,
+ name, 0));
+ qdev_connect_gpio_out(dev_splitter, 1,
+ qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum));
+ s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0);
+ qdev_init_gpio_in_named_with_opaque(armssedev, irq_status_forwarder,
+ s->irq_status_in[ppcnum], name, 1);
+ g_free(name);
+}
+
+static void armsse_forward_sec_resp_cfg(ARMSSE *s)
+{
+ /* Forward the 3rd output from the splitter device as a
+ * named GPIO output of the armsse object.
+ */
+ DeviceState *dev = DEVICE(s);
+ DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter);
+
+ qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1);
+ s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder,
+ s->sec_resp_cfg, 1);
+ qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in);
+}
+
+static void armsse_init(Object *obj)
+{
+ ARMSSE *s = ARMSSE(obj);
+ ARMSSEClass *asc = ARMSSE_GET_CLASS(obj);
+ const ARMSSEInfo *info = asc->info;
+ int i;
+
+ assert(info->sram_banks <= MAX_SRAM_BANKS);
+ assert(info->num_cpus <= SSE_MAX_CPUS);
+
+ memory_region_init(&s->container, obj, "armsse-container", UINT64_MAX);
+
+ for (i = 0; i < info->num_cpus; i++) {
+ /*
+ * We put each CPU in its own cluster as they are logically
+ * distinct and may be configured differently.
+ */
+ char *name;
+
+ name = g_strdup_printf("cluster%d", i);
+ object_initialize_child(obj, name, &s->cluster[i],
+ sizeof(s->cluster[i]), TYPE_CPU_CLUSTER,
+ &error_abort, NULL);
+ qdev_prop_set_uint32(DEVICE(&s->cluster[i]), "cluster-id", i);
+ g_free(name);
+
+ name = g_strdup_printf("armv7m%d", i);
+ sysbus_init_child_obj(OBJECT(&s->cluster[i]), name,
+ &s->armv7m[i], sizeof(s->armv7m), TYPE_ARMV7M);
+ qdev_prop_set_string(DEVICE(&s->armv7m[i]), "cpu-type",
+ ARM_CPU_TYPE_NAME("cortex-m33"));
+ g_free(name);
+ name = g_strdup_printf("arm-sse-cpu-container%d", i);
+ memory_region_init(&s->cpu_container[i], obj, name, UINT64_MAX);
+ g_free(name);
+ if (i > 0) {
+ name = g_strdup_printf("arm-sse-container-alias%d", i);
+ memory_region_init_alias(&s->container_alias[i - 1], obj,
+ name, &s->container, 0, UINT64_MAX);
+ g_free(name);
+ }
+ }
+
+ sysbus_init_child_obj(obj, "secctl", &s->secctl, sizeof(s->secctl),
+ TYPE_IOTKIT_SECCTL);
+ sysbus_init_child_obj(obj, "apb-ppc0", &s->apb_ppc0, sizeof(s->apb_ppc0),
+ TYPE_TZ_PPC);
+ sysbus_init_child_obj(obj, "apb-ppc1", &s->apb_ppc1, sizeof(s->apb_ppc1),
+ TYPE_TZ_PPC);
+ for (i = 0; i < info->sram_banks; i++) {
+ char *name = g_strdup_printf("mpc%d", i);
+ sysbus_init_child_obj(obj, name, &s->mpc[i],
+ sizeof(s->mpc[i]), TYPE_TZ_MPC);
+ g_free(name);
+ }
+ object_initialize_child(obj, "mpc-irq-orgate", &s->mpc_irq_orgate,
+ sizeof(s->mpc_irq_orgate), TYPE_OR_IRQ,
+ &error_abort, NULL);
+
+ for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
+ char *name = g_strdup_printf("mpc-irq-splitter-%d", i);
+ SplitIRQ *splitter = &s->mpc_irq_splitter[i];
+
+ object_initialize_child(obj, name, splitter, sizeof(*splitter),
+ TYPE_SPLIT_IRQ, &error_abort, NULL);
+ g_free(name);
+ }
+ sysbus_init_child_obj(obj, "timer0", &s->timer0, sizeof(s->timer0),
+ TYPE_CMSDK_APB_TIMER);
+ sysbus_init_child_obj(obj, "timer1", &s->timer1, sizeof(s->timer1),
+ TYPE_CMSDK_APB_TIMER);
+ sysbus_init_child_obj(obj, "s32ktimer", &s->s32ktimer, sizeof(s->s32ktimer),
+ TYPE_CMSDK_APB_TIMER);
+ sysbus_init_child_obj(obj, "dualtimer", &s->dualtimer, sizeof(s->dualtimer),
+ TYPE_CMSDK_APB_DUALTIMER);
+ sysbus_init_child_obj(obj, "s32kwatchdog", &s->s32kwatchdog,
+ sizeof(s->s32kwatchdog), TYPE_CMSDK_APB_WATCHDOG);
+ sysbus_init_child_obj(obj, "nswatchdog", &s->nswatchdog,
+ sizeof(s->nswatchdog), TYPE_CMSDK_APB_WATCHDOG);
+ sysbus_init_child_obj(obj, "swatchdog", &s->swatchdog,
+ sizeof(s->swatchdog), TYPE_CMSDK_APB_WATCHDOG);
+ sysbus_init_child_obj(obj, "armsse-sysctl", &s->sysctl,
+ sizeof(s->sysctl), TYPE_IOTKIT_SYSCTL);
+ sysbus_init_child_obj(obj, "armsse-sysinfo", &s->sysinfo,
+ sizeof(s->sysinfo), TYPE_IOTKIT_SYSINFO);
+ if (info->has_mhus) {
+ sysbus_init_child_obj(obj, "mhu0", &s->mhu[0], sizeof(s->mhu[0]),
+ TYPE_UNIMPLEMENTED_DEVICE);
+ sysbus_init_child_obj(obj, "mhu1", &s->mhu[1], sizeof(s->mhu[1]),
+ TYPE_UNIMPLEMENTED_DEVICE);
+ }
+ if (info->has_ppus) {
+ for (i = 0; i < info->num_cpus; i++) {
+ char *name = g_strdup_printf("CPU%dCORE_PPU", i);
+ int ppuidx = CPU0CORE_PPU + i;
+
+ sysbus_init_child_obj(obj, name, &s->ppu[ppuidx],
+ sizeof(s->ppu[ppuidx]),
+ TYPE_UNIMPLEMENTED_DEVICE);
+ g_free(name);
+ }
+ sysbus_init_child_obj(obj, "DBG_PPU", &s->ppu[DBG_PPU],
+ sizeof(s->ppu[DBG_PPU]),
+ TYPE_UNIMPLEMENTED_DEVICE);
+ for (i = 0; i < info->sram_banks; i++) {
+ char *name = g_strdup_printf("RAM%d_PPU", i);
+ int ppuidx = RAM0_PPU + i;
+
+ sysbus_init_child_obj(obj, name, &s->ppu[ppuidx],
+ sizeof(s->ppu[ppuidx]),
+ TYPE_UNIMPLEMENTED_DEVICE);
+ g_free(name);
+ }
+ }
+ if (info->has_cachectrl) {
+ for (i = 0; i < info->num_cpus; i++) {
+ char *name = g_strdup_printf("cachectrl%d", i);
+
+ sysbus_init_child_obj(obj, name, &s->cachectrl[i],
+ sizeof(s->cachectrl[i]),
+ TYPE_UNIMPLEMENTED_DEVICE);
+ g_free(name);
+ }
+ }
+ if (info->has_cpusecctrl) {
+ for (i = 0; i < info->num_cpus; i++) {
+ char *name = g_strdup_printf("cpusecctrl%d", i);
+
+ sysbus_init_child_obj(obj, name, &s->cpusecctrl[i],
+ sizeof(s->cpusecctrl[i]),
+ TYPE_UNIMPLEMENTED_DEVICE);
+ g_free(name);
+ }
+ }
+ if (info->has_cpuid) {
+ for (i = 0; i < info->num_cpus; i++) {
+ char *name = g_strdup_printf("cpuid%d", i);
+
+ sysbus_init_child_obj(obj, name, &s->cpuid[i],
+ sizeof(s->cpuid[i]),
+ TYPE_ARMSSE_CPUID);
+ g_free(name);
+ }
+ }
+ object_initialize_child(obj, "nmi-orgate", &s->nmi_orgate,
+ sizeof(s->nmi_orgate), TYPE_OR_IRQ,
+ &error_abort, NULL);
+ object_initialize_child(obj, "ppc-irq-orgate", &s->ppc_irq_orgate,
+ sizeof(s->ppc_irq_orgate), TYPE_OR_IRQ,
+ &error_abort, NULL);
+ object_initialize_child(obj, "sec-resp-splitter", &s->sec_resp_splitter,
+ sizeof(s->sec_resp_splitter), TYPE_SPLIT_IRQ,
+ &error_abort, NULL);
+ for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
+ char *name = g_strdup_printf("ppc-irq-splitter-%d", i);
+ SplitIRQ *splitter = &s->ppc_irq_splitter[i];
+
+ object_initialize_child(obj, name, splitter, sizeof(*splitter),
+ TYPE_SPLIT_IRQ, &error_abort, NULL);
+ g_free(name);
+ }
+ if (info->num_cpus > 1) {
+ for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
+ if (irq_is_common[i]) {
+ char *name = g_strdup_printf("cpu-irq-splitter%d", i);
+ SplitIRQ *splitter = &s->cpu_irq_splitter[i];
+
+ object_initialize_child(obj, name, splitter, sizeof(*splitter),
+ TYPE_SPLIT_IRQ, &error_abort, NULL);
+ g_free(name);
+ }
+ }
+ }
+}
+
+static void armsse_exp_irq(void *opaque, int n, int level)
+{
+ qemu_irq *irqarray = opaque;
+
+ qemu_set_irq(irqarray[n], level);
+}
+
+static void armsse_mpcexp_status(void *opaque, int n, int level)
+{
+ ARMSSE *s = ARMSSE(opaque);
+ qemu_set_irq(s->mpcexp_status_in[n], level);
+}
+
+static qemu_irq armsse_get_common_irq_in(ARMSSE *s, int irqno)
+{
+ /*
+ * Return a qemu_irq which can be used to signal IRQ n to
+ * all CPUs in the SSE.
+ */
+ ARMSSEClass *asc = ARMSSE_GET_CLASS(s);
+ const ARMSSEInfo *info = asc->info;
+
+ assert(irq_is_common[irqno]);
+
+ if (info->num_cpus == 1) {
+ /* Only one CPU -- just connect directly to it */
+ return qdev_get_gpio_in(DEVICE(&s->armv7m[0]), irqno);
+ } else {
+ /* Connect to the splitter which feeds all CPUs */
+ return qdev_get_gpio_in(DEVICE(&s->cpu_irq_splitter[irqno]), 0);
+ }
+}
+
+static void map_ppu(ARMSSE *s, int ppuidx, const char *name, hwaddr addr)
+{
+ /* Map a PPU unimplemented device stub */
+ DeviceState *dev = DEVICE(&s->ppu[ppuidx]);
+
+ qdev_prop_set_string(dev, "name", name);
+ qdev_prop_set_uint64(dev, "size", 0x1000);
+ qdev_init_nofail(dev);
+ sysbus_mmio_map(SYS_BUS_DEVICE(&s->ppu[ppuidx]), 0, addr);
+}
+
+static void armsse_realize(DeviceState *dev, Error **errp)
+{
+ ARMSSE *s = ARMSSE(dev);
+ ARMSSEClass *asc = ARMSSE_GET_CLASS(dev);
+ const ARMSSEInfo *info = asc->info;
+ int i;
+ MemoryRegion *mr;
+ Error *err = NULL;
+ SysBusDevice *sbd_apb_ppc0;
+ SysBusDevice *sbd_secctl;
+ DeviceState *dev_apb_ppc0;
+ DeviceState *dev_apb_ppc1;
+ DeviceState *dev_secctl;
+ DeviceState *dev_splitter;
+ uint32_t addr_width_max;
+
+ if (!s->board_memory) {
+ error_setg(errp, "memory property was not set");
+ return;
+ }
+
+ if (!s->mainclk_frq) {
+ error_setg(errp, "MAINCLK property was not set");
+ return;
+ }
+
+ /* max SRAM_ADDR_WIDTH: 24 - log2(SRAM_NUM_BANK) */
+ assert(is_power_of_2(info->sram_banks));
+ addr_width_max = 24 - ctz32(info->sram_banks);
+ if (s->sram_addr_width < 1 || s->sram_addr_width > addr_width_max) {
+ error_setg(errp, "SRAM_ADDR_WIDTH must be between 1 and %d",
+ addr_width_max);
+ return;
+ }
+
+ /* Handling of which devices should be available only to secure
+ * code is usually done differently for M profile than for A profile.
+ * Instead of putting some devices only into the secure address space,
+ * devices exist in both address spaces but with hard-wired security
+ * permissions that will cause the CPU to fault for non-secure accesses.
+ *
+ * The ARMSSE has an IDAU (Implementation Defined Access Unit),
+ * which specifies hard-wired security permissions for different
+ * areas of the physical address space. For the ARMSSE IDAU, the
+ * top 4 bits of the physical address are the IDAU region ID, and
+ * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS
+ * region, otherwise it is an S region.
+ *
+ * The various devices and RAMs are generally all mapped twice,
+ * once into a region that the IDAU defines as secure and once
+ * into a non-secure region. They sit behind either a Memory
+ * Protection Controller (for RAM) or a Peripheral Protection
+ * Controller (for devices), which allow a more fine grained
+ * configuration of whether non-secure accesses are permitted.
+ *
+ * (The other place that guest software can configure security
+ * permissions is in the architected SAU (Security Attribution
+ * Unit), which is entirely inside the CPU. The IDAU can upgrade
+ * the security attributes for a region to more restrictive than
+ * the SAU specifies, but cannot downgrade them.)
+ *
+ * 0x10000000..0x1fffffff alias of 0x00000000..0x0fffffff
+ * 0x20000000..0x2007ffff 32KB FPGA block RAM
+ * 0x30000000..0x3fffffff alias of 0x20000000..0x2fffffff
+ * 0x40000000..0x4000ffff base peripheral region 1
+ * 0x40010000..0x4001ffff CPU peripherals (none for ARMSSE)
+ * 0x40020000..0x4002ffff system control element peripherals
+ * 0x40080000..0x400fffff base peripheral region 2
+ * 0x50000000..0x5fffffff alias of 0x40000000..0x4fffffff
+ */
+
+ memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -2);
+
+ for (i = 0; i < info->num_cpus; i++) {
+ DeviceState *cpudev = DEVICE(&s->armv7m[i]);
+ Object *cpuobj = OBJECT(&s->armv7m[i]);
+ int j;
+ char *gpioname;
+
+ qdev_prop_set_uint32(cpudev, "num-irq", s->exp_numirq + 32);
+ /*
+ * In real hardware the initial Secure VTOR is set from the INITSVTOR0
+ * register in the IoT Kit System Control Register block, and the
+ * initial value of that is in turn specifiable by the FPGA that
+ * instantiates the IoT Kit. In QEMU we don't implement this wrinkle,
+ * and simply set the CPU's init-svtor to the IoT Kit default value.
+ * In SSE-200 the situation is similar, except that the default value
+ * is a reset-time signal input. Typically a board using the SSE-200
+ * will have a system control processor whose boot firmware initializes
+ * the INITSVTOR* registers before powering up the CPUs in any case,
+ * so the hardware's default value doesn't matter. QEMU doesn't emulate
+ * the control processor, so instead we behave in the way that the
+ * firmware does. All boards currently known about have firmware that
+ * sets the INITSVTOR0 and INITSVTOR1 registers to 0x10000000, like the
+ * IoTKit default. We can make this more configurable if necessary.
+ */
+ qdev_prop_set_uint32(cpudev, "init-svtor", 0x10000000);
+ /*
+ * Start all CPUs except CPU0 powered down. In real hardware it is
+ * a configurable property of the SSE-200 which CPUs start powered up
+ * (via the CPUWAIT0_RST and CPUWAIT1_RST parameters), but since all
+ * the boards we care about start CPU0 and leave CPU1 powered off,
+ * we hard-code that for now. We can add QOM properties for this
+ * later if necessary.
+ */
+ if (i > 0) {
+ object_property_set_bool(cpuobj, true, "start-powered-off", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ }
+
+ if (i > 0) {
+ memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
+ &s->container_alias[i - 1], -1);
+ } else {
+ memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
+ &s->container, -1);
+ }
+ object_property_set_link(cpuobj, OBJECT(&s->cpu_container[i]),
+ "memory", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ object_property_set_link(cpuobj, OBJECT(s), "idau", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ object_property_set_bool(cpuobj, true, "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ /*
+ * The cluster must be realized after the armv7m container, as
+ * the container's CPU object is only created on realize, and the
+ * CPU must exist and have been parented into the cluster before
+ * the cluster is realized.
+ */
+ object_property_set_bool(OBJECT(&s->cluster[i]),
+ true, "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+
+ /* Connect EXP_IRQ/EXP_CPUn_IRQ GPIOs to the NVIC's lines 32 and up */
+ s->exp_irqs[i] = g_new(qemu_irq, s->exp_numirq);
+ for (j = 0; j < s->exp_numirq; j++) {
+ s->exp_irqs[i][j] = qdev_get_gpio_in(cpudev, i + 32);
+ }
+ if (i == 0) {
+ gpioname = g_strdup("EXP_IRQ");
+ } else {
+ gpioname = g_strdup_printf("EXP_CPU%d_IRQ", i);
+ }
+ qdev_init_gpio_in_named_with_opaque(dev, armsse_exp_irq,
+ s->exp_irqs[i],
+ gpioname, s->exp_numirq);
+ g_free(gpioname);
+ }
+
+ /* Wire up the splitters that connect common IRQs to all CPUs */
+ if (info->num_cpus > 1) {
+ for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
+ if (irq_is_common[i]) {
+ Object *splitter = OBJECT(&s->cpu_irq_splitter[i]);
+ DeviceState *devs = DEVICE(splitter);
+ int cpunum;
+
+ object_property_set_int(splitter, info->num_cpus,
+ "num-lines", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ object_property_set_bool(splitter, true, "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
+ DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
+
+ qdev_connect_gpio_out(devs, cpunum,
+ qdev_get_gpio_in(cpudev, i));
+ }
+ }
+ }
+ }
+
+ /* Set up the big aliases first */
+ make_alias(s, &s->alias1, "alias 1", 0x10000000, 0x10000000, 0x00000000);
+ make_alias(s, &s->alias2, "alias 2", 0x30000000, 0x10000000, 0x20000000);
+ /* The 0x50000000..0x5fffffff region is not a pure alias: it has
+ * a few extra devices that only appear there (generally the
+ * control interfaces for the protection controllers).
+ * We implement this by mapping those devices over the top of this
+ * alias MR at a higher priority.
+ */
+ make_alias(s, &s->alias3, "alias 3", 0x50000000, 0x10000000, 0x40000000);
+
+
+ /* Security controller */
+ object_property_set_bool(OBJECT(&s->secctl), true, "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ sbd_secctl = SYS_BUS_DEVICE(&s->secctl);
+ dev_secctl = DEVICE(&s->secctl);
+ sysbus_mmio_map(sbd_secctl, 0, 0x50080000);
+ sysbus_mmio_map(sbd_secctl, 1, 0x40080000);
+
+ s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1);
+ qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in);
+
+ /* The sec_resp_cfg output from the security controller must be split into
+ * multiple lines, one for each of the PPCs within the ARMSSE and one
+ * that will be an output from the ARMSSE to the system.
+ */
+ object_property_set_int(OBJECT(&s->sec_resp_splitter), 3,
+ "num-lines", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ object_property_set_bool(OBJECT(&s->sec_resp_splitter), true,
+ "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ dev_splitter = DEVICE(&s->sec_resp_splitter);
+ qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0,
+ qdev_get_gpio_in(dev_splitter, 0));
+
+ /* Each SRAM bank lives behind its own Memory Protection Controller */
+ for (i = 0; i < info->sram_banks; i++) {
+ char *ramname = g_strdup_printf("armsse.sram%d", i);
+ SysBusDevice *sbd_mpc;
+ uint32_t sram_bank_size = 1 << s->sram_addr_width;
+
+ memory_region_init_ram(&s->sram[i], NULL, ramname,
+ sram_bank_size, &err);
+ g_free(ramname);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ object_property_set_link(OBJECT(&s->mpc[i]), OBJECT(&s->sram[i]),
+ "downstream", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ object_property_set_bool(OBJECT(&s->mpc[i]), true, "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ /* Map the upstream end of the MPC into the right place... */
+ sbd_mpc = SYS_BUS_DEVICE(&s->mpc[i]);
+ memory_region_add_subregion(&s->container,
+ 0x20000000 + i * sram_bank_size,
+ sysbus_mmio_get_region(sbd_mpc, 1));
+ /* ...and its register interface */
+ memory_region_add_subregion(&s->container, 0x50083000 + i * 0x1000,
+ sysbus_mmio_get_region(sbd_mpc, 0));
+ }
+
+ /* We must OR together lines from the MPC splitters to go to the NVIC */
+ object_property_set_int(OBJECT(&s->mpc_irq_orgate),
+ IOTS_NUM_EXP_MPC + info->sram_banks,
+ "num-lines", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ object_property_set_bool(OBJECT(&s->mpc_irq_orgate), true,
+ "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ qdev_connect_gpio_out(DEVICE(&s->mpc_irq_orgate), 0,
+ armsse_get_common_irq_in(s, 9));
+
+ /* Devices behind APB PPC0:
+ * 0x40000000: timer0
+ * 0x40001000: timer1
+ * 0x40002000: dual timer
+ * 0x40003000: MHU0 (SSE-200 only)
+ * 0x40004000: MHU1 (SSE-200 only)
+ * We must configure and realize each downstream device and connect
+ * it to the appropriate PPC port; then we can realize the PPC and
+ * map its upstream ends to the right place in the container.
+ */
+ qdev_prop_set_uint32(DEVICE(&s->timer0), "pclk-frq", s->mainclk_frq);
+ object_property_set_bool(OBJECT(&s->timer0), true, "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer0), 0,
+ armsse_get_common_irq_in(s, 3));
+ mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer0), 0);
+ object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[0]", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+
+ qdev_prop_set_uint32(DEVICE(&s->timer1), "pclk-frq", s->mainclk_frq);
+ object_property_set_bool(OBJECT(&s->timer1), true, "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer1), 0,
+ armsse_get_common_irq_in(s, 4));
+ mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer1), 0);
+ object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[1]", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+
+
+ qdev_prop_set_uint32(DEVICE(&s->dualtimer), "pclk-frq", s->mainclk_frq);
+ object_property_set_bool(OBJECT(&s->dualtimer), true, "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ sysbus_connect_irq(SYS_BUS_DEVICE(&s->dualtimer), 0,
+ armsse_get_common_irq_in(s, 5));
+ mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->dualtimer), 0);
+ object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[2]", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+
+ if (info->has_mhus) {
+ for (i = 0; i < ARRAY_SIZE(s->mhu); i++) {
+ char *name = g_strdup_printf("MHU%d", i);
+ char *port = g_strdup_printf("port[%d]", i + 3);
+
+ qdev_prop_set_string(DEVICE(&s->mhu[i]), "name", name);
+ qdev_prop_set_uint64(DEVICE(&s->mhu[i]), "size", 0x1000);
+ object_property_set_bool(OBJECT(&s->mhu[i]), true,
+ "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->mhu[i]), 0);
+ object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr),
+ port, &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ g_free(name);
+ g_free(port);
+ }
+ }
+
+ object_property_set_bool(OBJECT(&s->apb_ppc0), true, "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+
+ sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc0);
+ dev_apb_ppc0 = DEVICE(&s->apb_ppc0);
+
+ mr = sysbus_mmio_get_region(sbd_apb_ppc0, 0);
+ memory_region_add_subregion(&s->container, 0x40000000, mr);
+ mr = sysbus_mmio_get_region(sbd_apb_ppc0, 1);
+ memory_region_add_subregion(&s->container, 0x40001000, mr);
+ mr = sysbus_mmio_get_region(sbd_apb_ppc0, 2);
+ memory_region_add_subregion(&s->container, 0x40002000, mr);
+ if (info->has_mhus) {
+ mr = sysbus_mmio_get_region(sbd_apb_ppc0, 3);
+ memory_region_add_subregion(&s->container, 0x40003000, mr);
+ mr = sysbus_mmio_get_region(sbd_apb_ppc0, 4);
+ memory_region_add_subregion(&s->container, 0x40004000, mr);
+ }
+ for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) {
+ qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i,
+ qdev_get_gpio_in_named(dev_apb_ppc0,
+ "cfg_nonsec", i));
+ qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i,
+ qdev_get_gpio_in_named(dev_apb_ppc0,
+ "cfg_ap", i));
+ }
+ qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0,
+ qdev_get_gpio_in_named(dev_apb_ppc0,
+ "irq_enable", 0));
+ qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0,
+ qdev_get_gpio_in_named(dev_apb_ppc0,
+ "irq_clear", 0));
+ qdev_connect_gpio_out(dev_splitter, 0,
+ qdev_get_gpio_in_named(dev_apb_ppc0,
+ "cfg_sec_resp", 0));
+
+ /* All the PPC irq lines (from the 2 internal PPCs and the 8 external
+ * ones) are sent individually to the security controller, and also
+ * ORed together to give a single combined PPC interrupt to the NVIC.
+ */
+ object_property_set_int(OBJECT(&s->ppc_irq_orgate),
+ NUM_PPCS, "num-lines", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ object_property_set_bool(OBJECT(&s->ppc_irq_orgate), true,
+ "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0,
+ armsse_get_common_irq_in(s, 10));
+
+ /*
+ * 0x40010000 .. 0x4001ffff (and the 0x5001000... secure-only alias):
+ * private per-CPU region (all these devices are SSE-200 only):
+ * 0x50010000: L1 icache control registers
+ * 0x50011000: CPUSECCTRL (CPU local security control registers)
+ * 0x4001f000 and 0x5001f000: CPU_IDENTITY register block
+ */
+ if (info->has_cachectrl) {
+ for (i = 0; i < info->num_cpus; i++) {
+ char *name = g_strdup_printf("cachectrl%d", i);
+ MemoryRegion *mr;
+
+ qdev_prop_set_string(DEVICE(&s->cachectrl[i]), "name", name);
+ g_free(name);
+ qdev_prop_set_uint64(DEVICE(&s->cachectrl[i]), "size", 0x1000);
+ object_property_set_bool(OBJECT(&s->cachectrl[i]), true,
+ "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+
+ mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cachectrl[i]), 0);
+ memory_region_add_subregion(&s->cpu_container[i], 0x50010000, mr);
+ }
+ }
+ if (info->has_cpusecctrl) {
+ for (i = 0; i < info->num_cpus; i++) {
+ char *name = g_strdup_printf("CPUSECCTRL%d", i);
+ MemoryRegion *mr;
+
+ qdev_prop_set_string(DEVICE(&s->cpusecctrl[i]), "name", name);
+ g_free(name);
+ qdev_prop_set_uint64(DEVICE(&s->cpusecctrl[i]), "size", 0x1000);
+ object_property_set_bool(OBJECT(&s->cpusecctrl[i]), true,
+ "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+
+ mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpusecctrl[i]), 0);
+ memory_region_add_subregion(&s->cpu_container[i], 0x50011000, mr);
+ }
+ }
+ if (info->has_cpuid) {
+ for (i = 0; i < info->num_cpus; i++) {
+ MemoryRegion *mr;
+
+ qdev_prop_set_uint32(DEVICE(&s->cpuid[i]), "CPUID", i);
+ object_property_set_bool(OBJECT(&s->cpuid[i]), true,
+ "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+
+ mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpuid[i]), 0);
+ memory_region_add_subregion(&s->cpu_container[i], 0x4001F000, mr);
+ }
+ }
+
+ /* 0x40020000 .. 0x4002ffff : ARMSSE system control peripheral region */
+ /* Devices behind APB PPC1:
+ * 0x4002f000: S32K timer
+ */
+ qdev_prop_set_uint32(DEVICE(&s->s32ktimer), "pclk-frq", S32KCLK);
+ object_property_set_bool(OBJECT(&s->s32ktimer), true, "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32ktimer), 0,
+ armsse_get_common_irq_in(s, 2));
+ mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->s32ktimer), 0);
+ object_property_set_link(OBJECT(&s->apb_ppc1), OBJECT(mr), "port[0]", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+
+ object_property_set_bool(OBJECT(&s->apb_ppc1), true, "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->apb_ppc1), 0);
+ memory_region_add_subregion(&s->container, 0x4002f000, mr);
+
+ dev_apb_ppc1 = DEVICE(&s->apb_ppc1);
+ qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0,
+ qdev_get_gpio_in_named(dev_apb_ppc1,
+ "cfg_nonsec", 0));
+ qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0,
+ qdev_get_gpio_in_named(dev_apb_ppc1,
+ "cfg_ap", 0));
+ qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0,
+ qdev_get_gpio_in_named(dev_apb_ppc1,
+ "irq_enable", 0));
+ qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0,
+ qdev_get_gpio_in_named(dev_apb_ppc1,
+ "irq_clear", 0));
+ qdev_connect_gpio_out(dev_splitter, 1,
+ qdev_get_gpio_in_named(dev_apb_ppc1,
+ "cfg_sec_resp", 0));
+
+ object_property_set_int(OBJECT(&s->sysinfo), info->sys_version,
+ "SYS_VERSION", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ object_property_set_int(OBJECT(&s->sysinfo),
+ armsse_sys_config_value(s, info),
+ "SYS_CONFIG", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ object_property_set_bool(OBJECT(&s->sysinfo), true, "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ /* System information registers */
+ sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysinfo), 0, 0x40020000);
+ /* System control registers */
+ object_property_set_bool(OBJECT(&s->sysctl), true, "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysctl), 0, 0x50021000);
+
+ if (info->has_ppus) {
+ /* CPUnCORE_PPU for each CPU */
+ for (i = 0; i < info->num_cpus; i++) {
+ char *name = g_strdup_printf("CPU%dCORE_PPU", i);
+
+ map_ppu(s, CPU0CORE_PPU + i, name, 0x50023000 + i * 0x2000);
+ /*
+ * We don't support CPU debug so don't create the
+ * CPU0DEBUG_PPU at 0x50024000 and 0x50026000.
+ */
+ g_free(name);
+ }
+ map_ppu(s, DBG_PPU, "DBG_PPU", 0x50029000);
+
+ for (i = 0; i < info->sram_banks; i++) {
+ char *name = g_strdup_printf("RAM%d_PPU", i);
+
+ map_ppu(s, RAM0_PPU + i, name, 0x5002a000 + i * 0x1000);
+ g_free(name);
+ }
+ }
+
+ /* This OR gate wires together outputs from the secure watchdogs to NMI */
+ object_property_set_int(OBJECT(&s->nmi_orgate), 2, "num-lines", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ object_property_set_bool(OBJECT(&s->nmi_orgate), true, "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ qdev_connect_gpio_out(DEVICE(&s->nmi_orgate), 0,
+ qdev_get_gpio_in_named(DEVICE(&s->armv7m), "NMI", 0));
+
+ qdev_prop_set_uint32(DEVICE(&s->s32kwatchdog), "wdogclk-frq", S32KCLK);
+ object_property_set_bool(OBJECT(&s->s32kwatchdog), true, "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32kwatchdog), 0,
+ qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 0));
+ sysbus_mmio_map(SYS_BUS_DEVICE(&s->s32kwatchdog), 0, 0x5002e000);
+
+ /* 0x40080000 .. 0x4008ffff : ARMSSE second Base peripheral region */
+
+ qdev_prop_set_uint32(DEVICE(&s->nswatchdog), "wdogclk-frq", s->mainclk_frq);
+ object_property_set_bool(OBJECT(&s->nswatchdog), true, "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ sysbus_connect_irq(SYS_BUS_DEVICE(&s->nswatchdog), 0,
+ armsse_get_common_irq_in(s, 1));
+ sysbus_mmio_map(SYS_BUS_DEVICE(&s->nswatchdog), 0, 0x40081000);
+
+ qdev_prop_set_uint32(DEVICE(&s->swatchdog), "wdogclk-frq", s->mainclk_frq);
+ object_property_set_bool(OBJECT(&s->swatchdog), true, "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ sysbus_connect_irq(SYS_BUS_DEVICE(&s->swatchdog), 0,
+ qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 1));
+ sysbus_mmio_map(SYS_BUS_DEVICE(&s->swatchdog), 0, 0x50081000);
+
+ for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
+ Object *splitter = OBJECT(&s->ppc_irq_splitter[i]);
+
+ object_property_set_int(splitter, 2, "num-lines", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ object_property_set_bool(splitter, true, "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ }
+
+ for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) {
+ char *ppcname = g_strdup_printf("ahb_ppcexp%d", i);
+
+ armsse_forward_ppc(s, ppcname, i);
+ g_free(ppcname);
+ }
+
+ for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) {
+ char *ppcname = g_strdup_printf("apb_ppcexp%d", i);
+
+ armsse_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC);
+ g_free(ppcname);
+ }
+
+ for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) {
+ /* Wire up IRQ splitter for internal PPCs */
+ DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]);
+ char *gpioname = g_strdup_printf("apb_ppc%d_irq_status",
+ i - NUM_EXTERNAL_PPCS);
+ TZPPC *ppc = (i == NUM_EXTERNAL_PPCS) ? &s->apb_ppc0 : &s->apb_ppc1;
+
+ qdev_connect_gpio_out(devs, 0,
+ qdev_get_gpio_in_named(dev_secctl, gpioname, 0));
+ qdev_connect_gpio_out(devs, 1,
+ qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i));
+ qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0,
+ qdev_get_gpio_in(devs, 0));
+ g_free(gpioname);
+ }
+
+ /* Wire up the splitters for the MPC IRQs */
+ for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
+ SplitIRQ *splitter = &s->mpc_irq_splitter[i];
+ DeviceState *dev_splitter = DEVICE(splitter);
+
+ object_property_set_int(OBJECT(splitter), 2, "num-lines", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+ object_property_set_bool(OBJECT(splitter), true, "realized", &err);
+ if (err) {
+ error_propagate(errp, err);
+ return;
+ }
+
+ if (i < IOTS_NUM_EXP_MPC) {
+ /* Splitter input is from GPIO input line */
+ s->mpcexp_status_in[i] = qdev_get_gpio_in(dev_splitter, 0);
+ qdev_connect_gpio_out(dev_splitter, 0,
+ qdev_get_gpio_in_named(dev_secctl,
+ "mpcexp_status", i));
+ } else {
+ /* Splitter input is from our own MPC */
+ qdev_connect_gpio_out_named(DEVICE(&s->mpc[i - IOTS_NUM_EXP_MPC]),
+ "irq", 0,
+ qdev_get_gpio_in(dev_splitter, 0));
+ qdev_connect_gpio_out(dev_splitter, 0,
+ qdev_get_gpio_in_named(dev_secctl,
+ "mpc_status", 0));
+ }
+
+ qdev_connect_gpio_out(dev_splitter, 1,
+ qdev_get_gpio_in(DEVICE(&s->mpc_irq_orgate), i));
+ }
+ /* Create GPIO inputs which will pass the line state for our
+ * mpcexp_irq inputs to the correct splitter devices.
+ */
+ qdev_init_gpio_in_named(dev, armsse_mpcexp_status, "mpcexp_status",
+ IOTS_NUM_EXP_MPC);
+
+ armsse_forward_sec_resp_cfg(s);
+
+ /* Forward the MSC related signals */
+ qdev_pass_gpios(dev_secctl, dev, "mscexp_status");
+ qdev_pass_gpios(dev_secctl, dev, "mscexp_clear");
+ qdev_pass_gpios(dev_secctl, dev, "mscexp_ns");
+ qdev_connect_gpio_out_named(dev_secctl, "msc_irq", 0,
+ armsse_get_common_irq_in(s, 11));
+
+ /*
+ * Expose our container region to the board model; this corresponds
+ * to the AHB Slave Expansion ports which allow bus master devices
+ * (eg DMA controllers) in the board model to make transactions into
+ * devices in the ARMSSE.
+ */
+ sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->container);
+
+ system_clock_scale = NANOSECONDS_PER_SECOND / s->mainclk_frq;
+}
+
+static void armsse_idau_check(IDAUInterface *ii, uint32_t address,
+ int *iregion, bool *exempt, bool *ns, bool *nsc)
+{
+ /*
+ * For ARMSSE systems the IDAU responses are simple logical functions
+ * of the address bits. The NSC attribute is guest-adjustable via the
+ * NSCCFG register in the security controller.
+ */
+ ARMSSE *s = ARMSSE(ii);
+ int region = extract32(address, 28, 4);
+
+ *ns = !(region & 1);
+ *nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2));
+ /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
+ *exempt = (address & 0xeff00000) == 0xe0000000;
+ *iregion = region;
+}
+
+static const VMStateDescription armsse_vmstate = {
+ .name = "iotkit",
+ .version_id = 1,
+ .minimum_version_id = 1,
+ .fields = (VMStateField[]) {
+ VMSTATE_UINT32(nsccfg, ARMSSE),
+ VMSTATE_END_OF_LIST()
+ }
+};
+
+static Property armsse_properties[] = {
+ DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
+ MemoryRegion *),
+ DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
+ DEFINE_PROP_UINT32("MAINCLK", ARMSSE, mainclk_frq, 0),
+ DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
+ DEFINE_PROP_END_OF_LIST()
+};
+
+static void armsse_reset(DeviceState *dev)
+{
+ ARMSSE *s = ARMSSE(dev);
+
+ s->nsccfg = 0;
+}
+
+static void armsse_class_init(ObjectClass *klass, void *data)
+{
+ DeviceClass *dc = DEVICE_CLASS(klass);
+ IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass);
+ ARMSSEClass *asc = ARMSSE_CLASS(klass);
+
+ dc->realize = armsse_realize;
+ dc->vmsd = &armsse_vmstate;
+ dc->props = armsse_properties;
+ dc->reset = armsse_reset;
+ iic->check = armsse_idau_check;
+ asc->info = data;
+}
+
+static const TypeInfo armsse_info = {
+ .name = TYPE_ARMSSE,
+ .parent = TYPE_SYS_BUS_DEVICE,
+ .instance_size = sizeof(ARMSSE),
+ .instance_init = armsse_init,
+ .abstract = true,
+ .interfaces = (InterfaceInfo[]) {
+ { TYPE_IDAU_INTERFACE },
+ { }
+ }
+};
+
+static void armsse_register_types(void)
+{
+ int i;
+
+ type_register_static(&armsse_info);
+
+ for (i = 0; i < ARRAY_SIZE(armsse_variants); i++) {
+ TypeInfo ti = {
+ .name = armsse_variants[i].name,
+ .parent = TYPE_ARMSSE,
+ .class_init = armsse_class_init,
+ .class_data = (void *)&armsse_variants[i],
+ };
+ type_register(&ti);
+ }
+}
+
+type_init(armsse_register_types);