diff options
Diffstat (limited to 'hw/arm/armsse.c')
-rw-r--r-- | hw/arm/armsse.c | 1241 |
1 files changed, 1241 insertions, 0 deletions
diff --git a/hw/arm/armsse.c b/hw/arm/armsse.c new file mode 100644 index 0000000..5d53071 --- /dev/null +++ b/hw/arm/armsse.c @@ -0,0 +1,1241 @@ +/* + * Arm SSE (Subsystems for Embedded): IoTKit + * + * Copyright (c) 2018 Linaro Limited + * Written by Peter Maydell + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 or + * (at your option) any later version. + */ + +#include "qemu/osdep.h" +#include "qemu/log.h" +#include "qapi/error.h" +#include "trace.h" +#include "hw/sysbus.h" +#include "hw/registerfields.h" +#include "hw/arm/armsse.h" +#include "hw/arm/arm.h" + +/* Format of the System Information block SYS_CONFIG register */ +typedef enum SysConfigFormat { + IoTKitFormat, + SSE200Format, +} SysConfigFormat; + +struct ARMSSEInfo { + const char *name; + int sram_banks; + int num_cpus; + uint32_t sys_version; + SysConfigFormat sys_config_format; + bool has_mhus; + bool has_ppus; + bool has_cachectrl; + bool has_cpusecctrl; + bool has_cpuid; +}; + +static const ARMSSEInfo armsse_variants[] = { + { + .name = TYPE_IOTKIT, + .sram_banks = 1, + .num_cpus = 1, + .sys_version = 0x41743, + .sys_config_format = IoTKitFormat, + .has_mhus = false, + .has_ppus = false, + .has_cachectrl = false, + .has_cpusecctrl = false, + .has_cpuid = false, + }, + { + .name = TYPE_SSE200, + .sram_banks = 4, + .num_cpus = 2, + .sys_version = 0x22041743, + .sys_config_format = SSE200Format, + .has_mhus = true, + .has_ppus = true, + .has_cachectrl = true, + .has_cpusecctrl = true, + .has_cpuid = true, + }, +}; + +static uint32_t armsse_sys_config_value(ARMSSE *s, const ARMSSEInfo *info) +{ + /* Return the SYS_CONFIG value for this SSE */ + uint32_t sys_config; + + switch (info->sys_config_format) { + case IoTKitFormat: + sys_config = 0; + sys_config = deposit32(sys_config, 0, 4, info->sram_banks); + sys_config = deposit32(sys_config, 4, 4, s->sram_addr_width - 12); + break; + case SSE200Format: + sys_config = 0; + sys_config = deposit32(sys_config, 0, 4, info->sram_banks); + sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width); + sys_config = deposit32(sys_config, 24, 4, 2); + if (info->num_cpus > 1) { + sys_config = deposit32(sys_config, 10, 1, 1); + sys_config = deposit32(sys_config, 20, 4, info->sram_banks - 1); + sys_config = deposit32(sys_config, 28, 4, 2); + } + break; + default: + g_assert_not_reached(); + } + return sys_config; +} + +/* Clock frequency in HZ of the 32KHz "slow clock" */ +#define S32KCLK (32 * 1000) + +/* Is internal IRQ n shared between CPUs in a multi-core SSE ? */ +static bool irq_is_common[32] = { + [0 ... 5] = true, + /* 6, 7: per-CPU MHU interrupts */ + [8 ... 12] = true, + /* 13: per-CPU icache interrupt */ + /* 14: reserved */ + [15 ... 20] = true, + /* 21: reserved */ + [22 ... 26] = true, + /* 27: reserved */ + /* 28, 29: per-CPU CTI interrupts */ + /* 30, 31: reserved */ +}; + +/* Create an alias region of @size bytes starting at @base + * which mirrors the memory starting at @orig. + */ +static void make_alias(ARMSSE *s, MemoryRegion *mr, const char *name, + hwaddr base, hwaddr size, hwaddr orig) +{ + memory_region_init_alias(mr, NULL, name, &s->container, orig, size); + /* The alias is even lower priority than unimplemented_device regions */ + memory_region_add_subregion_overlap(&s->container, base, mr, -1500); +} + +static void irq_status_forwarder(void *opaque, int n, int level) +{ + qemu_irq destirq = opaque; + + qemu_set_irq(destirq, level); +} + +static void nsccfg_handler(void *opaque, int n, int level) +{ + ARMSSE *s = ARMSSE(opaque); + + s->nsccfg = level; +} + +static void armsse_forward_ppc(ARMSSE *s, const char *ppcname, int ppcnum) +{ + /* Each of the 4 AHB and 4 APB PPCs that might be present in a + * system using the ARMSSE has a collection of control lines which + * are provided by the security controller and which we want to + * expose as control lines on the ARMSSE device itself, so the + * code using the ARMSSE can wire them up to the PPCs. + */ + SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum]; + DeviceState *armssedev = DEVICE(s); + DeviceState *dev_secctl = DEVICE(&s->secctl); + DeviceState *dev_splitter = DEVICE(splitter); + char *name; + + name = g_strdup_printf("%s_nonsec", ppcname); + qdev_pass_gpios(dev_secctl, armssedev, name); + g_free(name); + name = g_strdup_printf("%s_ap", ppcname); + qdev_pass_gpios(dev_secctl, armssedev, name); + g_free(name); + name = g_strdup_printf("%s_irq_enable", ppcname); + qdev_pass_gpios(dev_secctl, armssedev, name); + g_free(name); + name = g_strdup_printf("%s_irq_clear", ppcname); + qdev_pass_gpios(dev_secctl, armssedev, name); + g_free(name); + + /* irq_status is a little more tricky, because we need to + * split it so we can send it both to the security controller + * and to our OR gate for the NVIC interrupt line. + * Connect up the splitter's outputs, and create a GPIO input + * which will pass the line state to the input splitter. + */ + name = g_strdup_printf("%s_irq_status", ppcname); + qdev_connect_gpio_out(dev_splitter, 0, + qdev_get_gpio_in_named(dev_secctl, + name, 0)); + qdev_connect_gpio_out(dev_splitter, 1, + qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum)); + s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0); + qdev_init_gpio_in_named_with_opaque(armssedev, irq_status_forwarder, + s->irq_status_in[ppcnum], name, 1); + g_free(name); +} + +static void armsse_forward_sec_resp_cfg(ARMSSE *s) +{ + /* Forward the 3rd output from the splitter device as a + * named GPIO output of the armsse object. + */ + DeviceState *dev = DEVICE(s); + DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter); + + qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1); + s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder, + s->sec_resp_cfg, 1); + qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in); +} + +static void armsse_init(Object *obj) +{ + ARMSSE *s = ARMSSE(obj); + ARMSSEClass *asc = ARMSSE_GET_CLASS(obj); + const ARMSSEInfo *info = asc->info; + int i; + + assert(info->sram_banks <= MAX_SRAM_BANKS); + assert(info->num_cpus <= SSE_MAX_CPUS); + + memory_region_init(&s->container, obj, "armsse-container", UINT64_MAX); + + for (i = 0; i < info->num_cpus; i++) { + /* + * We put each CPU in its own cluster as they are logically + * distinct and may be configured differently. + */ + char *name; + + name = g_strdup_printf("cluster%d", i); + object_initialize_child(obj, name, &s->cluster[i], + sizeof(s->cluster[i]), TYPE_CPU_CLUSTER, + &error_abort, NULL); + qdev_prop_set_uint32(DEVICE(&s->cluster[i]), "cluster-id", i); + g_free(name); + + name = g_strdup_printf("armv7m%d", i); + sysbus_init_child_obj(OBJECT(&s->cluster[i]), name, + &s->armv7m[i], sizeof(s->armv7m), TYPE_ARMV7M); + qdev_prop_set_string(DEVICE(&s->armv7m[i]), "cpu-type", + ARM_CPU_TYPE_NAME("cortex-m33")); + g_free(name); + name = g_strdup_printf("arm-sse-cpu-container%d", i); + memory_region_init(&s->cpu_container[i], obj, name, UINT64_MAX); + g_free(name); + if (i > 0) { + name = g_strdup_printf("arm-sse-container-alias%d", i); + memory_region_init_alias(&s->container_alias[i - 1], obj, + name, &s->container, 0, UINT64_MAX); + g_free(name); + } + } + + sysbus_init_child_obj(obj, "secctl", &s->secctl, sizeof(s->secctl), + TYPE_IOTKIT_SECCTL); + sysbus_init_child_obj(obj, "apb-ppc0", &s->apb_ppc0, sizeof(s->apb_ppc0), + TYPE_TZ_PPC); + sysbus_init_child_obj(obj, "apb-ppc1", &s->apb_ppc1, sizeof(s->apb_ppc1), + TYPE_TZ_PPC); + for (i = 0; i < info->sram_banks; i++) { + char *name = g_strdup_printf("mpc%d", i); + sysbus_init_child_obj(obj, name, &s->mpc[i], + sizeof(s->mpc[i]), TYPE_TZ_MPC); + g_free(name); + } + object_initialize_child(obj, "mpc-irq-orgate", &s->mpc_irq_orgate, + sizeof(s->mpc_irq_orgate), TYPE_OR_IRQ, + &error_abort, NULL); + + for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) { + char *name = g_strdup_printf("mpc-irq-splitter-%d", i); + SplitIRQ *splitter = &s->mpc_irq_splitter[i]; + + object_initialize_child(obj, name, splitter, sizeof(*splitter), + TYPE_SPLIT_IRQ, &error_abort, NULL); + g_free(name); + } + sysbus_init_child_obj(obj, "timer0", &s->timer0, sizeof(s->timer0), + TYPE_CMSDK_APB_TIMER); + sysbus_init_child_obj(obj, "timer1", &s->timer1, sizeof(s->timer1), + TYPE_CMSDK_APB_TIMER); + sysbus_init_child_obj(obj, "s32ktimer", &s->s32ktimer, sizeof(s->s32ktimer), + TYPE_CMSDK_APB_TIMER); + sysbus_init_child_obj(obj, "dualtimer", &s->dualtimer, sizeof(s->dualtimer), + TYPE_CMSDK_APB_DUALTIMER); + sysbus_init_child_obj(obj, "s32kwatchdog", &s->s32kwatchdog, + sizeof(s->s32kwatchdog), TYPE_CMSDK_APB_WATCHDOG); + sysbus_init_child_obj(obj, "nswatchdog", &s->nswatchdog, + sizeof(s->nswatchdog), TYPE_CMSDK_APB_WATCHDOG); + sysbus_init_child_obj(obj, "swatchdog", &s->swatchdog, + sizeof(s->swatchdog), TYPE_CMSDK_APB_WATCHDOG); + sysbus_init_child_obj(obj, "armsse-sysctl", &s->sysctl, + sizeof(s->sysctl), TYPE_IOTKIT_SYSCTL); + sysbus_init_child_obj(obj, "armsse-sysinfo", &s->sysinfo, + sizeof(s->sysinfo), TYPE_IOTKIT_SYSINFO); + if (info->has_mhus) { + sysbus_init_child_obj(obj, "mhu0", &s->mhu[0], sizeof(s->mhu[0]), + TYPE_UNIMPLEMENTED_DEVICE); + sysbus_init_child_obj(obj, "mhu1", &s->mhu[1], sizeof(s->mhu[1]), + TYPE_UNIMPLEMENTED_DEVICE); + } + if (info->has_ppus) { + for (i = 0; i < info->num_cpus; i++) { + char *name = g_strdup_printf("CPU%dCORE_PPU", i); + int ppuidx = CPU0CORE_PPU + i; + + sysbus_init_child_obj(obj, name, &s->ppu[ppuidx], + sizeof(s->ppu[ppuidx]), + TYPE_UNIMPLEMENTED_DEVICE); + g_free(name); + } + sysbus_init_child_obj(obj, "DBG_PPU", &s->ppu[DBG_PPU], + sizeof(s->ppu[DBG_PPU]), + TYPE_UNIMPLEMENTED_DEVICE); + for (i = 0; i < info->sram_banks; i++) { + char *name = g_strdup_printf("RAM%d_PPU", i); + int ppuidx = RAM0_PPU + i; + + sysbus_init_child_obj(obj, name, &s->ppu[ppuidx], + sizeof(s->ppu[ppuidx]), + TYPE_UNIMPLEMENTED_DEVICE); + g_free(name); + } + } + if (info->has_cachectrl) { + for (i = 0; i < info->num_cpus; i++) { + char *name = g_strdup_printf("cachectrl%d", i); + + sysbus_init_child_obj(obj, name, &s->cachectrl[i], + sizeof(s->cachectrl[i]), + TYPE_UNIMPLEMENTED_DEVICE); + g_free(name); + } + } + if (info->has_cpusecctrl) { + for (i = 0; i < info->num_cpus; i++) { + char *name = g_strdup_printf("cpusecctrl%d", i); + + sysbus_init_child_obj(obj, name, &s->cpusecctrl[i], + sizeof(s->cpusecctrl[i]), + TYPE_UNIMPLEMENTED_DEVICE); + g_free(name); + } + } + if (info->has_cpuid) { + for (i = 0; i < info->num_cpus; i++) { + char *name = g_strdup_printf("cpuid%d", i); + + sysbus_init_child_obj(obj, name, &s->cpuid[i], + sizeof(s->cpuid[i]), + TYPE_ARMSSE_CPUID); + g_free(name); + } + } + object_initialize_child(obj, "nmi-orgate", &s->nmi_orgate, + sizeof(s->nmi_orgate), TYPE_OR_IRQ, + &error_abort, NULL); + object_initialize_child(obj, "ppc-irq-orgate", &s->ppc_irq_orgate, + sizeof(s->ppc_irq_orgate), TYPE_OR_IRQ, + &error_abort, NULL); + object_initialize_child(obj, "sec-resp-splitter", &s->sec_resp_splitter, + sizeof(s->sec_resp_splitter), TYPE_SPLIT_IRQ, + &error_abort, NULL); + for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) { + char *name = g_strdup_printf("ppc-irq-splitter-%d", i); + SplitIRQ *splitter = &s->ppc_irq_splitter[i]; + + object_initialize_child(obj, name, splitter, sizeof(*splitter), + TYPE_SPLIT_IRQ, &error_abort, NULL); + g_free(name); + } + if (info->num_cpus > 1) { + for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) { + if (irq_is_common[i]) { + char *name = g_strdup_printf("cpu-irq-splitter%d", i); + SplitIRQ *splitter = &s->cpu_irq_splitter[i]; + + object_initialize_child(obj, name, splitter, sizeof(*splitter), + TYPE_SPLIT_IRQ, &error_abort, NULL); + g_free(name); + } + } + } +} + +static void armsse_exp_irq(void *opaque, int n, int level) +{ + qemu_irq *irqarray = opaque; + + qemu_set_irq(irqarray[n], level); +} + +static void armsse_mpcexp_status(void *opaque, int n, int level) +{ + ARMSSE *s = ARMSSE(opaque); + qemu_set_irq(s->mpcexp_status_in[n], level); +} + +static qemu_irq armsse_get_common_irq_in(ARMSSE *s, int irqno) +{ + /* + * Return a qemu_irq which can be used to signal IRQ n to + * all CPUs in the SSE. + */ + ARMSSEClass *asc = ARMSSE_GET_CLASS(s); + const ARMSSEInfo *info = asc->info; + + assert(irq_is_common[irqno]); + + if (info->num_cpus == 1) { + /* Only one CPU -- just connect directly to it */ + return qdev_get_gpio_in(DEVICE(&s->armv7m[0]), irqno); + } else { + /* Connect to the splitter which feeds all CPUs */ + return qdev_get_gpio_in(DEVICE(&s->cpu_irq_splitter[irqno]), 0); + } +} + +static void map_ppu(ARMSSE *s, int ppuidx, const char *name, hwaddr addr) +{ + /* Map a PPU unimplemented device stub */ + DeviceState *dev = DEVICE(&s->ppu[ppuidx]); + + qdev_prop_set_string(dev, "name", name); + qdev_prop_set_uint64(dev, "size", 0x1000); + qdev_init_nofail(dev); + sysbus_mmio_map(SYS_BUS_DEVICE(&s->ppu[ppuidx]), 0, addr); +} + +static void armsse_realize(DeviceState *dev, Error **errp) +{ + ARMSSE *s = ARMSSE(dev); + ARMSSEClass *asc = ARMSSE_GET_CLASS(dev); + const ARMSSEInfo *info = asc->info; + int i; + MemoryRegion *mr; + Error *err = NULL; + SysBusDevice *sbd_apb_ppc0; + SysBusDevice *sbd_secctl; + DeviceState *dev_apb_ppc0; + DeviceState *dev_apb_ppc1; + DeviceState *dev_secctl; + DeviceState *dev_splitter; + uint32_t addr_width_max; + + if (!s->board_memory) { + error_setg(errp, "memory property was not set"); + return; + } + + if (!s->mainclk_frq) { + error_setg(errp, "MAINCLK property was not set"); + return; + } + + /* max SRAM_ADDR_WIDTH: 24 - log2(SRAM_NUM_BANK) */ + assert(is_power_of_2(info->sram_banks)); + addr_width_max = 24 - ctz32(info->sram_banks); + if (s->sram_addr_width < 1 || s->sram_addr_width > addr_width_max) { + error_setg(errp, "SRAM_ADDR_WIDTH must be between 1 and %d", + addr_width_max); + return; + } + + /* Handling of which devices should be available only to secure + * code is usually done differently for M profile than for A profile. + * Instead of putting some devices only into the secure address space, + * devices exist in both address spaces but with hard-wired security + * permissions that will cause the CPU to fault for non-secure accesses. + * + * The ARMSSE has an IDAU (Implementation Defined Access Unit), + * which specifies hard-wired security permissions for different + * areas of the physical address space. For the ARMSSE IDAU, the + * top 4 bits of the physical address are the IDAU region ID, and + * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS + * region, otherwise it is an S region. + * + * The various devices and RAMs are generally all mapped twice, + * once into a region that the IDAU defines as secure and once + * into a non-secure region. They sit behind either a Memory + * Protection Controller (for RAM) or a Peripheral Protection + * Controller (for devices), which allow a more fine grained + * configuration of whether non-secure accesses are permitted. + * + * (The other place that guest software can configure security + * permissions is in the architected SAU (Security Attribution + * Unit), which is entirely inside the CPU. The IDAU can upgrade + * the security attributes for a region to more restrictive than + * the SAU specifies, but cannot downgrade them.) + * + * 0x10000000..0x1fffffff alias of 0x00000000..0x0fffffff + * 0x20000000..0x2007ffff 32KB FPGA block RAM + * 0x30000000..0x3fffffff alias of 0x20000000..0x2fffffff + * 0x40000000..0x4000ffff base peripheral region 1 + * 0x40010000..0x4001ffff CPU peripherals (none for ARMSSE) + * 0x40020000..0x4002ffff system control element peripherals + * 0x40080000..0x400fffff base peripheral region 2 + * 0x50000000..0x5fffffff alias of 0x40000000..0x4fffffff + */ + + memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -2); + + for (i = 0; i < info->num_cpus; i++) { + DeviceState *cpudev = DEVICE(&s->armv7m[i]); + Object *cpuobj = OBJECT(&s->armv7m[i]); + int j; + char *gpioname; + + qdev_prop_set_uint32(cpudev, "num-irq", s->exp_numirq + 32); + /* + * In real hardware the initial Secure VTOR is set from the INITSVTOR0 + * register in the IoT Kit System Control Register block, and the + * initial value of that is in turn specifiable by the FPGA that + * instantiates the IoT Kit. In QEMU we don't implement this wrinkle, + * and simply set the CPU's init-svtor to the IoT Kit default value. + * In SSE-200 the situation is similar, except that the default value + * is a reset-time signal input. Typically a board using the SSE-200 + * will have a system control processor whose boot firmware initializes + * the INITSVTOR* registers before powering up the CPUs in any case, + * so the hardware's default value doesn't matter. QEMU doesn't emulate + * the control processor, so instead we behave in the way that the + * firmware does. All boards currently known about have firmware that + * sets the INITSVTOR0 and INITSVTOR1 registers to 0x10000000, like the + * IoTKit default. We can make this more configurable if necessary. + */ + qdev_prop_set_uint32(cpudev, "init-svtor", 0x10000000); + /* + * Start all CPUs except CPU0 powered down. In real hardware it is + * a configurable property of the SSE-200 which CPUs start powered up + * (via the CPUWAIT0_RST and CPUWAIT1_RST parameters), but since all + * the boards we care about start CPU0 and leave CPU1 powered off, + * we hard-code that for now. We can add QOM properties for this + * later if necessary. + */ + if (i > 0) { + object_property_set_bool(cpuobj, true, "start-powered-off", &err); + if (err) { + error_propagate(errp, err); + return; + } + } + + if (i > 0) { + memory_region_add_subregion_overlap(&s->cpu_container[i], 0, + &s->container_alias[i - 1], -1); + } else { + memory_region_add_subregion_overlap(&s->cpu_container[i], 0, + &s->container, -1); + } + object_property_set_link(cpuobj, OBJECT(&s->cpu_container[i]), + "memory", &err); + if (err) { + error_propagate(errp, err); + return; + } + object_property_set_link(cpuobj, OBJECT(s), "idau", &err); + if (err) { + error_propagate(errp, err); + return; + } + object_property_set_bool(cpuobj, true, "realized", &err); + if (err) { + error_propagate(errp, err); + return; + } + /* + * The cluster must be realized after the armv7m container, as + * the container's CPU object is only created on realize, and the + * CPU must exist and have been parented into the cluster before + * the cluster is realized. + */ + object_property_set_bool(OBJECT(&s->cluster[i]), + true, "realized", &err); + if (err) { + error_propagate(errp, err); + return; + } + + /* Connect EXP_IRQ/EXP_CPUn_IRQ GPIOs to the NVIC's lines 32 and up */ + s->exp_irqs[i] = g_new(qemu_irq, s->exp_numirq); + for (j = 0; j < s->exp_numirq; j++) { + s->exp_irqs[i][j] = qdev_get_gpio_in(cpudev, i + 32); + } + if (i == 0) { + gpioname = g_strdup("EXP_IRQ"); + } else { + gpioname = g_strdup_printf("EXP_CPU%d_IRQ", i); + } + qdev_init_gpio_in_named_with_opaque(dev, armsse_exp_irq, + s->exp_irqs[i], + gpioname, s->exp_numirq); + g_free(gpioname); + } + + /* Wire up the splitters that connect common IRQs to all CPUs */ + if (info->num_cpus > 1) { + for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) { + if (irq_is_common[i]) { + Object *splitter = OBJECT(&s->cpu_irq_splitter[i]); + DeviceState *devs = DEVICE(splitter); + int cpunum; + + object_property_set_int(splitter, info->num_cpus, + "num-lines", &err); + if (err) { + error_propagate(errp, err); + return; + } + object_property_set_bool(splitter, true, "realized", &err); + if (err) { + error_propagate(errp, err); + return; + } + for (cpunum = 0; cpunum < info->num_cpus; cpunum++) { + DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]); + + qdev_connect_gpio_out(devs, cpunum, + qdev_get_gpio_in(cpudev, i)); + } + } + } + } + + /* Set up the big aliases first */ + make_alias(s, &s->alias1, "alias 1", 0x10000000, 0x10000000, 0x00000000); + make_alias(s, &s->alias2, "alias 2", 0x30000000, 0x10000000, 0x20000000); + /* The 0x50000000..0x5fffffff region is not a pure alias: it has + * a few extra devices that only appear there (generally the + * control interfaces for the protection controllers). + * We implement this by mapping those devices over the top of this + * alias MR at a higher priority. + */ + make_alias(s, &s->alias3, "alias 3", 0x50000000, 0x10000000, 0x40000000); + + + /* Security controller */ + object_property_set_bool(OBJECT(&s->secctl), true, "realized", &err); + if (err) { + error_propagate(errp, err); + return; + } + sbd_secctl = SYS_BUS_DEVICE(&s->secctl); + dev_secctl = DEVICE(&s->secctl); + sysbus_mmio_map(sbd_secctl, 0, 0x50080000); + sysbus_mmio_map(sbd_secctl, 1, 0x40080000); + + s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1); + qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in); + + /* The sec_resp_cfg output from the security controller must be split into + * multiple lines, one for each of the PPCs within the ARMSSE and one + * that will be an output from the ARMSSE to the system. + */ + object_property_set_int(OBJECT(&s->sec_resp_splitter), 3, + "num-lines", &err); + if (err) { + error_propagate(errp, err); + return; + } + object_property_set_bool(OBJECT(&s->sec_resp_splitter), true, + "realized", &err); + if (err) { + error_propagate(errp, err); + return; + } + dev_splitter = DEVICE(&s->sec_resp_splitter); + qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0, + qdev_get_gpio_in(dev_splitter, 0)); + + /* Each SRAM bank lives behind its own Memory Protection Controller */ + for (i = 0; i < info->sram_banks; i++) { + char *ramname = g_strdup_printf("armsse.sram%d", i); + SysBusDevice *sbd_mpc; + uint32_t sram_bank_size = 1 << s->sram_addr_width; + + memory_region_init_ram(&s->sram[i], NULL, ramname, + sram_bank_size, &err); + g_free(ramname); + if (err) { + error_propagate(errp, err); + return; + } + object_property_set_link(OBJECT(&s->mpc[i]), OBJECT(&s->sram[i]), + "downstream", &err); + if (err) { + error_propagate(errp, err); + return; + } + object_property_set_bool(OBJECT(&s->mpc[i]), true, "realized", &err); + if (err) { + error_propagate(errp, err); + return; + } + /* Map the upstream end of the MPC into the right place... */ + sbd_mpc = SYS_BUS_DEVICE(&s->mpc[i]); + memory_region_add_subregion(&s->container, + 0x20000000 + i * sram_bank_size, + sysbus_mmio_get_region(sbd_mpc, 1)); + /* ...and its register interface */ + memory_region_add_subregion(&s->container, 0x50083000 + i * 0x1000, + sysbus_mmio_get_region(sbd_mpc, 0)); + } + + /* We must OR together lines from the MPC splitters to go to the NVIC */ + object_property_set_int(OBJECT(&s->mpc_irq_orgate), + IOTS_NUM_EXP_MPC + info->sram_banks, + "num-lines", &err); + if (err) { + error_propagate(errp, err); + return; + } + object_property_set_bool(OBJECT(&s->mpc_irq_orgate), true, + "realized", &err); + if (err) { + error_propagate(errp, err); + return; + } + qdev_connect_gpio_out(DEVICE(&s->mpc_irq_orgate), 0, + armsse_get_common_irq_in(s, 9)); + + /* Devices behind APB PPC0: + * 0x40000000: timer0 + * 0x40001000: timer1 + * 0x40002000: dual timer + * 0x40003000: MHU0 (SSE-200 only) + * 0x40004000: MHU1 (SSE-200 only) + * We must configure and realize each downstream device and connect + * it to the appropriate PPC port; then we can realize the PPC and + * map its upstream ends to the right place in the container. + */ + qdev_prop_set_uint32(DEVICE(&s->timer0), "pclk-frq", s->mainclk_frq); + object_property_set_bool(OBJECT(&s->timer0), true, "realized", &err); + if (err) { + error_propagate(errp, err); + return; + } + sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer0), 0, + armsse_get_common_irq_in(s, 3)); + mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer0), 0); + object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[0]", &err); + if (err) { + error_propagate(errp, err); + return; + } + + qdev_prop_set_uint32(DEVICE(&s->timer1), "pclk-frq", s->mainclk_frq); + object_property_set_bool(OBJECT(&s->timer1), true, "realized", &err); + if (err) { + error_propagate(errp, err); + return; + } + sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer1), 0, + armsse_get_common_irq_in(s, 4)); + mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer1), 0); + object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[1]", &err); + if (err) { + error_propagate(errp, err); + return; + } + + + qdev_prop_set_uint32(DEVICE(&s->dualtimer), "pclk-frq", s->mainclk_frq); + object_property_set_bool(OBJECT(&s->dualtimer), true, "realized", &err); + if (err) { + error_propagate(errp, err); + return; + } + sysbus_connect_irq(SYS_BUS_DEVICE(&s->dualtimer), 0, + armsse_get_common_irq_in(s, 5)); + mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->dualtimer), 0); + object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[2]", &err); + if (err) { + error_propagate(errp, err); + return; + } + + if (info->has_mhus) { + for (i = 0; i < ARRAY_SIZE(s->mhu); i++) { + char *name = g_strdup_printf("MHU%d", i); + char *port = g_strdup_printf("port[%d]", i + 3); + + qdev_prop_set_string(DEVICE(&s->mhu[i]), "name", name); + qdev_prop_set_uint64(DEVICE(&s->mhu[i]), "size", 0x1000); + object_property_set_bool(OBJECT(&s->mhu[i]), true, + "realized", &err); + if (err) { + error_propagate(errp, err); + return; + } + mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->mhu[i]), 0); + object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), + port, &err); + if (err) { + error_propagate(errp, err); + return; + } + g_free(name); + g_free(port); + } + } + + object_property_set_bool(OBJECT(&s->apb_ppc0), true, "realized", &err); + if (err) { + error_propagate(errp, err); + return; + } + + sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc0); + dev_apb_ppc0 = DEVICE(&s->apb_ppc0); + + mr = sysbus_mmio_get_region(sbd_apb_ppc0, 0); + memory_region_add_subregion(&s->container, 0x40000000, mr); + mr = sysbus_mmio_get_region(sbd_apb_ppc0, 1); + memory_region_add_subregion(&s->container, 0x40001000, mr); + mr = sysbus_mmio_get_region(sbd_apb_ppc0, 2); + memory_region_add_subregion(&s->container, 0x40002000, mr); + if (info->has_mhus) { + mr = sysbus_mmio_get_region(sbd_apb_ppc0, 3); + memory_region_add_subregion(&s->container, 0x40003000, mr); + mr = sysbus_mmio_get_region(sbd_apb_ppc0, 4); + memory_region_add_subregion(&s->container, 0x40004000, mr); + } + for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) { + qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i, + qdev_get_gpio_in_named(dev_apb_ppc0, + "cfg_nonsec", i)); + qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i, + qdev_get_gpio_in_named(dev_apb_ppc0, + "cfg_ap", i)); + } + qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0, + qdev_get_gpio_in_named(dev_apb_ppc0, + "irq_enable", 0)); + qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0, + qdev_get_gpio_in_named(dev_apb_ppc0, + "irq_clear", 0)); + qdev_connect_gpio_out(dev_splitter, 0, + qdev_get_gpio_in_named(dev_apb_ppc0, + "cfg_sec_resp", 0)); + + /* All the PPC irq lines (from the 2 internal PPCs and the 8 external + * ones) are sent individually to the security controller, and also + * ORed together to give a single combined PPC interrupt to the NVIC. + */ + object_property_set_int(OBJECT(&s->ppc_irq_orgate), + NUM_PPCS, "num-lines", &err); + if (err) { + error_propagate(errp, err); + return; + } + object_property_set_bool(OBJECT(&s->ppc_irq_orgate), true, + "realized", &err); + if (err) { + error_propagate(errp, err); + return; + } + qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0, + armsse_get_common_irq_in(s, 10)); + + /* + * 0x40010000 .. 0x4001ffff (and the 0x5001000... secure-only alias): + * private per-CPU region (all these devices are SSE-200 only): + * 0x50010000: L1 icache control registers + * 0x50011000: CPUSECCTRL (CPU local security control registers) + * 0x4001f000 and 0x5001f000: CPU_IDENTITY register block + */ + if (info->has_cachectrl) { + for (i = 0; i < info->num_cpus; i++) { + char *name = g_strdup_printf("cachectrl%d", i); + MemoryRegion *mr; + + qdev_prop_set_string(DEVICE(&s->cachectrl[i]), "name", name); + g_free(name); + qdev_prop_set_uint64(DEVICE(&s->cachectrl[i]), "size", 0x1000); + object_property_set_bool(OBJECT(&s->cachectrl[i]), true, + "realized", &err); + if (err) { + error_propagate(errp, err); + return; + } + + mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cachectrl[i]), 0); + memory_region_add_subregion(&s->cpu_container[i], 0x50010000, mr); + } + } + if (info->has_cpusecctrl) { + for (i = 0; i < info->num_cpus; i++) { + char *name = g_strdup_printf("CPUSECCTRL%d", i); + MemoryRegion *mr; + + qdev_prop_set_string(DEVICE(&s->cpusecctrl[i]), "name", name); + g_free(name); + qdev_prop_set_uint64(DEVICE(&s->cpusecctrl[i]), "size", 0x1000); + object_property_set_bool(OBJECT(&s->cpusecctrl[i]), true, + "realized", &err); + if (err) { + error_propagate(errp, err); + return; + } + + mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpusecctrl[i]), 0); + memory_region_add_subregion(&s->cpu_container[i], 0x50011000, mr); + } + } + if (info->has_cpuid) { + for (i = 0; i < info->num_cpus; i++) { + MemoryRegion *mr; + + qdev_prop_set_uint32(DEVICE(&s->cpuid[i]), "CPUID", i); + object_property_set_bool(OBJECT(&s->cpuid[i]), true, + "realized", &err); + if (err) { + error_propagate(errp, err); + return; + } + + mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpuid[i]), 0); + memory_region_add_subregion(&s->cpu_container[i], 0x4001F000, mr); + } + } + + /* 0x40020000 .. 0x4002ffff : ARMSSE system control peripheral region */ + /* Devices behind APB PPC1: + * 0x4002f000: S32K timer + */ + qdev_prop_set_uint32(DEVICE(&s->s32ktimer), "pclk-frq", S32KCLK); + object_property_set_bool(OBJECT(&s->s32ktimer), true, "realized", &err); + if (err) { + error_propagate(errp, err); + return; + } + sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32ktimer), 0, + armsse_get_common_irq_in(s, 2)); + mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->s32ktimer), 0); + object_property_set_link(OBJECT(&s->apb_ppc1), OBJECT(mr), "port[0]", &err); + if (err) { + error_propagate(errp, err); + return; + } + + object_property_set_bool(OBJECT(&s->apb_ppc1), true, "realized", &err); + if (err) { + error_propagate(errp, err); + return; + } + mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->apb_ppc1), 0); + memory_region_add_subregion(&s->container, 0x4002f000, mr); + + dev_apb_ppc1 = DEVICE(&s->apb_ppc1); + qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0, + qdev_get_gpio_in_named(dev_apb_ppc1, + "cfg_nonsec", 0)); + qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0, + qdev_get_gpio_in_named(dev_apb_ppc1, + "cfg_ap", 0)); + qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0, + qdev_get_gpio_in_named(dev_apb_ppc1, + "irq_enable", 0)); + qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0, + qdev_get_gpio_in_named(dev_apb_ppc1, + "irq_clear", 0)); + qdev_connect_gpio_out(dev_splitter, 1, + qdev_get_gpio_in_named(dev_apb_ppc1, + "cfg_sec_resp", 0)); + + object_property_set_int(OBJECT(&s->sysinfo), info->sys_version, + "SYS_VERSION", &err); + if (err) { + error_propagate(errp, err); + return; + } + object_property_set_int(OBJECT(&s->sysinfo), + armsse_sys_config_value(s, info), + "SYS_CONFIG", &err); + if (err) { + error_propagate(errp, err); + return; + } + object_property_set_bool(OBJECT(&s->sysinfo), true, "realized", &err); + if (err) { + error_propagate(errp, err); + return; + } + /* System information registers */ + sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysinfo), 0, 0x40020000); + /* System control registers */ + object_property_set_bool(OBJECT(&s->sysctl), true, "realized", &err); + if (err) { + error_propagate(errp, err); + return; + } + sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysctl), 0, 0x50021000); + + if (info->has_ppus) { + /* CPUnCORE_PPU for each CPU */ + for (i = 0; i < info->num_cpus; i++) { + char *name = g_strdup_printf("CPU%dCORE_PPU", i); + + map_ppu(s, CPU0CORE_PPU + i, name, 0x50023000 + i * 0x2000); + /* + * We don't support CPU debug so don't create the + * CPU0DEBUG_PPU at 0x50024000 and 0x50026000. + */ + g_free(name); + } + map_ppu(s, DBG_PPU, "DBG_PPU", 0x50029000); + + for (i = 0; i < info->sram_banks; i++) { + char *name = g_strdup_printf("RAM%d_PPU", i); + + map_ppu(s, RAM0_PPU + i, name, 0x5002a000 + i * 0x1000); + g_free(name); + } + } + + /* This OR gate wires together outputs from the secure watchdogs to NMI */ + object_property_set_int(OBJECT(&s->nmi_orgate), 2, "num-lines", &err); + if (err) { + error_propagate(errp, err); + return; + } + object_property_set_bool(OBJECT(&s->nmi_orgate), true, "realized", &err); + if (err) { + error_propagate(errp, err); + return; + } + qdev_connect_gpio_out(DEVICE(&s->nmi_orgate), 0, + qdev_get_gpio_in_named(DEVICE(&s->armv7m), "NMI", 0)); + + qdev_prop_set_uint32(DEVICE(&s->s32kwatchdog), "wdogclk-frq", S32KCLK); + object_property_set_bool(OBJECT(&s->s32kwatchdog), true, "realized", &err); + if (err) { + error_propagate(errp, err); + return; + } + sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32kwatchdog), 0, + qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 0)); + sysbus_mmio_map(SYS_BUS_DEVICE(&s->s32kwatchdog), 0, 0x5002e000); + + /* 0x40080000 .. 0x4008ffff : ARMSSE second Base peripheral region */ + + qdev_prop_set_uint32(DEVICE(&s->nswatchdog), "wdogclk-frq", s->mainclk_frq); + object_property_set_bool(OBJECT(&s->nswatchdog), true, "realized", &err); + if (err) { + error_propagate(errp, err); + return; + } + sysbus_connect_irq(SYS_BUS_DEVICE(&s->nswatchdog), 0, + armsse_get_common_irq_in(s, 1)); + sysbus_mmio_map(SYS_BUS_DEVICE(&s->nswatchdog), 0, 0x40081000); + + qdev_prop_set_uint32(DEVICE(&s->swatchdog), "wdogclk-frq", s->mainclk_frq); + object_property_set_bool(OBJECT(&s->swatchdog), true, "realized", &err); + if (err) { + error_propagate(errp, err); + return; + } + sysbus_connect_irq(SYS_BUS_DEVICE(&s->swatchdog), 0, + qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 1)); + sysbus_mmio_map(SYS_BUS_DEVICE(&s->swatchdog), 0, 0x50081000); + + for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) { + Object *splitter = OBJECT(&s->ppc_irq_splitter[i]); + + object_property_set_int(splitter, 2, "num-lines", &err); + if (err) { + error_propagate(errp, err); + return; + } + object_property_set_bool(splitter, true, "realized", &err); + if (err) { + error_propagate(errp, err); + return; + } + } + + for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) { + char *ppcname = g_strdup_printf("ahb_ppcexp%d", i); + + armsse_forward_ppc(s, ppcname, i); + g_free(ppcname); + } + + for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) { + char *ppcname = g_strdup_printf("apb_ppcexp%d", i); + + armsse_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC); + g_free(ppcname); + } + + for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) { + /* Wire up IRQ splitter for internal PPCs */ + DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]); + char *gpioname = g_strdup_printf("apb_ppc%d_irq_status", + i - NUM_EXTERNAL_PPCS); + TZPPC *ppc = (i == NUM_EXTERNAL_PPCS) ? &s->apb_ppc0 : &s->apb_ppc1; + + qdev_connect_gpio_out(devs, 0, + qdev_get_gpio_in_named(dev_secctl, gpioname, 0)); + qdev_connect_gpio_out(devs, 1, + qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i)); + qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0, + qdev_get_gpio_in(devs, 0)); + g_free(gpioname); + } + + /* Wire up the splitters for the MPC IRQs */ + for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) { + SplitIRQ *splitter = &s->mpc_irq_splitter[i]; + DeviceState *dev_splitter = DEVICE(splitter); + + object_property_set_int(OBJECT(splitter), 2, "num-lines", &err); + if (err) { + error_propagate(errp, err); + return; + } + object_property_set_bool(OBJECT(splitter), true, "realized", &err); + if (err) { + error_propagate(errp, err); + return; + } + + if (i < IOTS_NUM_EXP_MPC) { + /* Splitter input is from GPIO input line */ + s->mpcexp_status_in[i] = qdev_get_gpio_in(dev_splitter, 0); + qdev_connect_gpio_out(dev_splitter, 0, + qdev_get_gpio_in_named(dev_secctl, + "mpcexp_status", i)); + } else { + /* Splitter input is from our own MPC */ + qdev_connect_gpio_out_named(DEVICE(&s->mpc[i - IOTS_NUM_EXP_MPC]), + "irq", 0, + qdev_get_gpio_in(dev_splitter, 0)); + qdev_connect_gpio_out(dev_splitter, 0, + qdev_get_gpio_in_named(dev_secctl, + "mpc_status", 0)); + } + + qdev_connect_gpio_out(dev_splitter, 1, + qdev_get_gpio_in(DEVICE(&s->mpc_irq_orgate), i)); + } + /* Create GPIO inputs which will pass the line state for our + * mpcexp_irq inputs to the correct splitter devices. + */ + qdev_init_gpio_in_named(dev, armsse_mpcexp_status, "mpcexp_status", + IOTS_NUM_EXP_MPC); + + armsse_forward_sec_resp_cfg(s); + + /* Forward the MSC related signals */ + qdev_pass_gpios(dev_secctl, dev, "mscexp_status"); + qdev_pass_gpios(dev_secctl, dev, "mscexp_clear"); + qdev_pass_gpios(dev_secctl, dev, "mscexp_ns"); + qdev_connect_gpio_out_named(dev_secctl, "msc_irq", 0, + armsse_get_common_irq_in(s, 11)); + + /* + * Expose our container region to the board model; this corresponds + * to the AHB Slave Expansion ports which allow bus master devices + * (eg DMA controllers) in the board model to make transactions into + * devices in the ARMSSE. + */ + sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->container); + + system_clock_scale = NANOSECONDS_PER_SECOND / s->mainclk_frq; +} + +static void armsse_idau_check(IDAUInterface *ii, uint32_t address, + int *iregion, bool *exempt, bool *ns, bool *nsc) +{ + /* + * For ARMSSE systems the IDAU responses are simple logical functions + * of the address bits. The NSC attribute is guest-adjustable via the + * NSCCFG register in the security controller. + */ + ARMSSE *s = ARMSSE(ii); + int region = extract32(address, 28, 4); + + *ns = !(region & 1); + *nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2)); + /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */ + *exempt = (address & 0xeff00000) == 0xe0000000; + *iregion = region; +} + +static const VMStateDescription armsse_vmstate = { + .name = "iotkit", + .version_id = 1, + .minimum_version_id = 1, + .fields = (VMStateField[]) { + VMSTATE_UINT32(nsccfg, ARMSSE), + VMSTATE_END_OF_LIST() + } +}; + +static Property armsse_properties[] = { + DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION, + MemoryRegion *), + DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64), + DEFINE_PROP_UINT32("MAINCLK", ARMSSE, mainclk_frq, 0), + DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15), + DEFINE_PROP_END_OF_LIST() +}; + +static void armsse_reset(DeviceState *dev) +{ + ARMSSE *s = ARMSSE(dev); + + s->nsccfg = 0; +} + +static void armsse_class_init(ObjectClass *klass, void *data) +{ + DeviceClass *dc = DEVICE_CLASS(klass); + IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass); + ARMSSEClass *asc = ARMSSE_CLASS(klass); + + dc->realize = armsse_realize; + dc->vmsd = &armsse_vmstate; + dc->props = armsse_properties; + dc->reset = armsse_reset; + iic->check = armsse_idau_check; + asc->info = data; +} + +static const TypeInfo armsse_info = { + .name = TYPE_ARMSSE, + .parent = TYPE_SYS_BUS_DEVICE, + .instance_size = sizeof(ARMSSE), + .instance_init = armsse_init, + .abstract = true, + .interfaces = (InterfaceInfo[]) { + { TYPE_IDAU_INTERFACE }, + { } + } +}; + +static void armsse_register_types(void) +{ + int i; + + type_register_static(&armsse_info); + + for (i = 0; i < ARRAY_SIZE(armsse_variants); i++) { + TypeInfo ti = { + .name = armsse_variants[i].name, + .parent = TYPE_ARMSSE, + .class_init = armsse_class_init, + .class_data = (void *)&armsse_variants[i], + }; + type_register(&ti); + } +} + +type_init(armsse_register_types); |