aboutsummaryrefslogtreecommitdiff
path: root/fpu
diff options
context:
space:
mode:
Diffstat (limited to 'fpu')
-rw-r--r--fpu/softfloat.c935
1 files changed, 180 insertions, 755 deletions
diff --git a/fpu/softfloat.c b/fpu/softfloat.c
index 616c6ce..da0c43c 100644
--- a/fpu/softfloat.c
+++ b/fpu/softfloat.c
@@ -1320,6 +1320,186 @@ float64 float64_trunc_to_int(float64 a, float_status *s)
return float64_round_pack_canonical(pr, s);
}
+/*
+ * Returns the result of converting the floating-point value `a' to
+ * the two's complement integer format. The conversion is performed
+ * according to the IEC/IEEE Standard for Binary Floating-Point
+ * Arithmetic---which means in particular that the conversion is
+ * rounded according to the current rounding mode. If `a' is a NaN,
+ * the largest positive integer is returned. Otherwise, if the
+ * conversion overflows, the largest integer with the same sign as `a'
+ * is returned.
+*/
+
+static int64_t round_to_int_and_pack(FloatParts in, int rmode,
+ int64_t min, int64_t max,
+ float_status *s)
+{
+ uint64_t r;
+ int orig_flags = get_float_exception_flags(s);
+ FloatParts p = round_to_int(in, rmode, s);
+
+ switch (p.cls) {
+ case float_class_snan:
+ case float_class_qnan:
+ return max;
+ case float_class_inf:
+ return p.sign ? min : max;
+ case float_class_zero:
+ return 0;
+ case float_class_normal:
+ if (p.exp < DECOMPOSED_BINARY_POINT) {
+ r = p.frac >> (DECOMPOSED_BINARY_POINT - p.exp);
+ } else if (p.exp - DECOMPOSED_BINARY_POINT < 2) {
+ r = p.frac << (p.exp - DECOMPOSED_BINARY_POINT);
+ } else {
+ r = UINT64_MAX;
+ }
+ if (p.sign) {
+ if (r < -(uint64_t) min) {
+ return -r;
+ } else {
+ s->float_exception_flags = orig_flags | float_flag_invalid;
+ return min;
+ }
+ } else {
+ if (r < max) {
+ return r;
+ } else {
+ s->float_exception_flags = orig_flags | float_flag_invalid;
+ return max;
+ }
+ }
+ default:
+ g_assert_not_reached();
+ }
+}
+
+#define FLOAT_TO_INT(fsz, isz) \
+int ## isz ## _t float ## fsz ## _to_int ## isz(float ## fsz a, \
+ float_status *s) \
+{ \
+ FloatParts p = float ## fsz ## _unpack_canonical(a, s); \
+ return round_to_int_and_pack(p, s->float_rounding_mode, \
+ INT ## isz ## _MIN, INT ## isz ## _MAX,\
+ s); \
+} \
+ \
+int ## isz ## _t float ## fsz ## _to_int ## isz ## _round_to_zero \
+ (float ## fsz a, float_status *s) \
+{ \
+ FloatParts p = float ## fsz ## _unpack_canonical(a, s); \
+ return round_to_int_and_pack(p, float_round_to_zero, \
+ INT ## isz ## _MIN, INT ## isz ## _MAX,\
+ s); \
+}
+
+FLOAT_TO_INT(16, 16)
+FLOAT_TO_INT(16, 32)
+FLOAT_TO_INT(16, 64)
+
+FLOAT_TO_INT(32, 16)
+FLOAT_TO_INT(32, 32)
+FLOAT_TO_INT(32, 64)
+
+FLOAT_TO_INT(64, 16)
+FLOAT_TO_INT(64, 32)
+FLOAT_TO_INT(64, 64)
+
+#undef FLOAT_TO_INT
+
+/*
+ * Returns the result of converting the floating-point value `a' to
+ * the unsigned integer format. The conversion is performed according
+ * to the IEC/IEEE Standard for Binary Floating-Point
+ * Arithmetic---which means in particular that the conversion is
+ * rounded according to the current rounding mode. If `a' is a NaN,
+ * the largest unsigned integer is returned. Otherwise, if the
+ * conversion overflows, the largest unsigned integer is returned. If
+ * the 'a' is negative, the result is rounded and zero is returned;
+ * values that do not round to zero will raise the inexact exception
+ * flag.
+ */
+
+static uint64_t round_to_uint_and_pack(FloatParts in, int rmode, uint64_t max,
+ float_status *s)
+{
+ int orig_flags = get_float_exception_flags(s);
+ FloatParts p = round_to_int(in, rmode, s);
+
+ switch (p.cls) {
+ case float_class_snan:
+ case float_class_qnan:
+ s->float_exception_flags = orig_flags | float_flag_invalid;
+ return max;
+ case float_class_inf:
+ return p.sign ? 0 : max;
+ case float_class_zero:
+ return 0;
+ case float_class_normal:
+ {
+ uint64_t r;
+ if (p.sign) {
+ s->float_exception_flags = orig_flags | float_flag_invalid;
+ return 0;
+ }
+
+ if (p.exp < DECOMPOSED_BINARY_POINT) {
+ r = p.frac >> (DECOMPOSED_BINARY_POINT - p.exp);
+ } else if (p.exp - DECOMPOSED_BINARY_POINT < 2) {
+ r = p.frac << (p.exp - DECOMPOSED_BINARY_POINT);
+ } else {
+ s->float_exception_flags = orig_flags | float_flag_invalid;
+ return max;
+ }
+
+ /* For uint64 this will never trip, but if p.exp is too large
+ * to shift a decomposed fraction we shall have exited via the
+ * 3rd leg above.
+ */
+ if (r > max) {
+ s->float_exception_flags = orig_flags | float_flag_invalid;
+ return max;
+ } else {
+ return r;
+ }
+ }
+ default:
+ g_assert_not_reached();
+ }
+}
+
+#define FLOAT_TO_UINT(fsz, isz) \
+uint ## isz ## _t float ## fsz ## _to_uint ## isz(float ## fsz a, \
+ float_status *s) \
+{ \
+ FloatParts p = float ## fsz ## _unpack_canonical(a, s); \
+ return round_to_uint_and_pack(p, s->float_rounding_mode, \
+ UINT ## isz ## _MAX, s); \
+} \
+ \
+uint ## isz ## _t float ## fsz ## _to_uint ## isz ## _round_to_zero \
+ (float ## fsz a, float_status *s) \
+{ \
+ FloatParts p = float ## fsz ## _unpack_canonical(a, s); \
+ return round_to_uint_and_pack(p, s->float_rounding_mode, \
+ UINT ## isz ## _MAX, s); \
+}
+
+FLOAT_TO_UINT(16, 16)
+FLOAT_TO_UINT(16, 32)
+FLOAT_TO_UINT(16, 64)
+
+FLOAT_TO_UINT(32, 16)
+FLOAT_TO_UINT(32, 32)
+FLOAT_TO_UINT(32, 64)
+
+FLOAT_TO_UINT(64, 16)
+FLOAT_TO_UINT(64, 32)
+FLOAT_TO_UINT(64, 64)
+
+#undef FLOAT_TO_UINT
+
/*----------------------------------------------------------------------------
| Takes a 64-bit fixed-point value `absZ' with binary point between bits 6
| and 7, and returns the properly rounded 32-bit integer corresponding to the
@@ -2671,288 +2851,8 @@ float128 uint64_to_float128(uint64_t a, float_status *status)
return normalizeRoundAndPackFloat128(0, 0x406E, a, 0, status);
}
-/*----------------------------------------------------------------------------
-| Returns the result of converting the single-precision floating-point value
-| `a' to the 32-bit two's complement integer format. The conversion is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic---which means in particular that the conversion is rounded
-| according to the current rounding mode. If `a' is a NaN, the largest
-| positive integer is returned. Otherwise, if the conversion overflows, the
-| largest integer with the same sign as `a' is returned.
-*----------------------------------------------------------------------------*/
-
-int32_t float32_to_int32(float32 a, float_status *status)
-{
- flag aSign;
- int aExp;
- int shiftCount;
- uint32_t aSig;
- uint64_t aSig64;
-
- a = float32_squash_input_denormal(a, status);
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- if ( ( aExp == 0xFF ) && aSig ) aSign = 0;
- if ( aExp ) aSig |= 0x00800000;
- shiftCount = 0xAF - aExp;
- aSig64 = aSig;
- aSig64 <<= 32;
- if ( 0 < shiftCount ) shift64RightJamming( aSig64, shiftCount, &aSig64 );
- return roundAndPackInt32(aSign, aSig64, status);
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the single-precision floating-point value
-| `a' to the 32-bit two's complement integer format. The conversion is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic, except that the conversion is always rounded toward zero.
-| If `a' is a NaN, the largest positive integer is returned. Otherwise, if
-| the conversion overflows, the largest integer with the same sign as `a' is
-| returned.
-*----------------------------------------------------------------------------*/
-int32_t float32_to_int32_round_to_zero(float32 a, float_status *status)
-{
- flag aSign;
- int aExp;
- int shiftCount;
- uint32_t aSig;
- int32_t z;
- a = float32_squash_input_denormal(a, status);
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- shiftCount = aExp - 0x9E;
- if ( 0 <= shiftCount ) {
- if ( float32_val(a) != 0xCF000000 ) {
- float_raise(float_flag_invalid, status);
- if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) return 0x7FFFFFFF;
- }
- return (int32_t) 0x80000000;
- }
- else if ( aExp <= 0x7E ) {
- if (aExp | aSig) {
- status->float_exception_flags |= float_flag_inexact;
- }
- return 0;
- }
- aSig = ( aSig | 0x00800000 )<<8;
- z = aSig>>( - shiftCount );
- if ( (uint32_t) ( aSig<<( shiftCount & 31 ) ) ) {
- status->float_exception_flags |= float_flag_inexact;
- }
- if ( aSign ) z = - z;
- return z;
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the single-precision floating-point value
-| `a' to the 16-bit two's complement integer format. The conversion is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic, except that the conversion is always rounded toward zero.
-| If `a' is a NaN, the largest positive integer is returned. Otherwise, if
-| the conversion overflows, the largest integer with the same sign as `a' is
-| returned.
-*----------------------------------------------------------------------------*/
-
-int16_t float32_to_int16_round_to_zero(float32 a, float_status *status)
-{
- flag aSign;
- int aExp;
- int shiftCount;
- uint32_t aSig;
- int32_t z;
-
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- shiftCount = aExp - 0x8E;
- if ( 0 <= shiftCount ) {
- if ( float32_val(a) != 0xC7000000 ) {
- float_raise(float_flag_invalid, status);
- if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {
- return 0x7FFF;
- }
- }
- return (int32_t) 0xffff8000;
- }
- else if ( aExp <= 0x7E ) {
- if ( aExp | aSig ) {
- status->float_exception_flags |= float_flag_inexact;
- }
- return 0;
- }
- shiftCount -= 0x10;
- aSig = ( aSig | 0x00800000 )<<8;
- z = aSig>>( - shiftCount );
- if ( (uint32_t) ( aSig<<( shiftCount & 31 ) ) ) {
- status->float_exception_flags |= float_flag_inexact;
- }
- if ( aSign ) {
- z = - z;
- }
- return z;
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the single-precision floating-point value
-| `a' to the 64-bit two's complement integer format. The conversion is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic---which means in particular that the conversion is rounded
-| according to the current rounding mode. If `a' is a NaN, the largest
-| positive integer is returned. Otherwise, if the conversion overflows, the
-| largest integer with the same sign as `a' is returned.
-*----------------------------------------------------------------------------*/
-
-int64_t float32_to_int64(float32 a, float_status *status)
-{
- flag aSign;
- int aExp;
- int shiftCount;
- uint32_t aSig;
- uint64_t aSig64, aSigExtra;
- a = float32_squash_input_denormal(a, status);
-
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- shiftCount = 0xBE - aExp;
- if ( shiftCount < 0 ) {
- float_raise(float_flag_invalid, status);
- if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {
- return LIT64( 0x7FFFFFFFFFFFFFFF );
- }
- return (int64_t) LIT64( 0x8000000000000000 );
- }
- if ( aExp ) aSig |= 0x00800000;
- aSig64 = aSig;
- aSig64 <<= 40;
- shift64ExtraRightJamming( aSig64, 0, shiftCount, &aSig64, &aSigExtra );
- return roundAndPackInt64(aSign, aSig64, aSigExtra, status);
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the single-precision floating-point value
-| `a' to the 64-bit unsigned integer format. The conversion is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic---which means in particular that the conversion is rounded
-| according to the current rounding mode. If `a' is a NaN, the largest
-| unsigned integer is returned. Otherwise, if the conversion overflows, the
-| largest unsigned integer is returned. If the 'a' is negative, the result
-| is rounded and zero is returned; values that do not round to zero will
-| raise the inexact exception flag.
-*----------------------------------------------------------------------------*/
-
-uint64_t float32_to_uint64(float32 a, float_status *status)
-{
- flag aSign;
- int aExp;
- int shiftCount;
- uint32_t aSig;
- uint64_t aSig64, aSigExtra;
- a = float32_squash_input_denormal(a, status);
-
- aSig = extractFloat32Frac(a);
- aExp = extractFloat32Exp(a);
- aSign = extractFloat32Sign(a);
- if ((aSign) && (aExp > 126)) {
- float_raise(float_flag_invalid, status);
- if (float32_is_any_nan(a)) {
- return LIT64(0xFFFFFFFFFFFFFFFF);
- } else {
- return 0;
- }
- }
- shiftCount = 0xBE - aExp;
- if (aExp) {
- aSig |= 0x00800000;
- }
- if (shiftCount < 0) {
- float_raise(float_flag_invalid, status);
- return LIT64(0xFFFFFFFFFFFFFFFF);
- }
-
- aSig64 = aSig;
- aSig64 <<= 40;
- shift64ExtraRightJamming(aSig64, 0, shiftCount, &aSig64, &aSigExtra);
- return roundAndPackUint64(aSign, aSig64, aSigExtra, status);
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the single-precision floating-point value
-| `a' to the 64-bit unsigned integer format. The conversion is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic, except that the conversion is always rounded toward zero. If
-| `a' is a NaN, the largest unsigned integer is returned. Otherwise, if the
-| conversion overflows, the largest unsigned integer is returned. If the
-| 'a' is negative, the result is rounded and zero is returned; values that do
-| not round to zero will raise the inexact flag.
-*----------------------------------------------------------------------------*/
-
-uint64_t float32_to_uint64_round_to_zero(float32 a, float_status *status)
-{
- signed char current_rounding_mode = status->float_rounding_mode;
- set_float_rounding_mode(float_round_to_zero, status);
- int64_t v = float32_to_uint64(a, status);
- set_float_rounding_mode(current_rounding_mode, status);
- return v;
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the single-precision floating-point value
-| `a' to the 64-bit two's complement integer format. The conversion is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic, except that the conversion is always rounded toward zero. If
-| `a' is a NaN, the largest positive integer is returned. Otherwise, if the
-| conversion overflows, the largest integer with the same sign as `a' is
-| returned.
-*----------------------------------------------------------------------------*/
-
-int64_t float32_to_int64_round_to_zero(float32 a, float_status *status)
-{
- flag aSign;
- int aExp;
- int shiftCount;
- uint32_t aSig;
- uint64_t aSig64;
- int64_t z;
- a = float32_squash_input_denormal(a, status);
-
- aSig = extractFloat32Frac( a );
- aExp = extractFloat32Exp( a );
- aSign = extractFloat32Sign( a );
- shiftCount = aExp - 0xBE;
- if ( 0 <= shiftCount ) {
- if ( float32_val(a) != 0xDF000000 ) {
- float_raise(float_flag_invalid, status);
- if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {
- return LIT64( 0x7FFFFFFFFFFFFFFF );
- }
- }
- return (int64_t) LIT64( 0x8000000000000000 );
- }
- else if ( aExp <= 0x7E ) {
- if (aExp | aSig) {
- status->float_exception_flags |= float_flag_inexact;
- }
- return 0;
- }
- aSig64 = aSig | 0x00800000;
- aSig64 <<= 40;
- z = aSig64>>( - shiftCount );
- if ( (uint64_t) ( aSig64<<( shiftCount & 63 ) ) ) {
- status->float_exception_flags |= float_flag_inexact;
- }
- if ( aSign ) z = - z;
- return z;
-
-}
/*----------------------------------------------------------------------------
| Returns the result of converting the single-precision floating-point value
@@ -3558,236 +3458,6 @@ int float32_unordered_quiet(float32 a, float32 b, float_status *status)
return 0;
}
-/*----------------------------------------------------------------------------
-| Returns the result of converting the double-precision floating-point value
-| `a' to the 32-bit two's complement integer format. The conversion is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic---which means in particular that the conversion is rounded
-| according to the current rounding mode. If `a' is a NaN, the largest
-| positive integer is returned. Otherwise, if the conversion overflows, the
-| largest integer with the same sign as `a' is returned.
-*----------------------------------------------------------------------------*/
-
-int32_t float64_to_int32(float64 a, float_status *status)
-{
- flag aSign;
- int aExp;
- int shiftCount;
- uint64_t aSig;
- a = float64_squash_input_denormal(a, status);
-
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
- if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
- shiftCount = 0x42C - aExp;
- if ( 0 < shiftCount ) shift64RightJamming( aSig, shiftCount, &aSig );
- return roundAndPackInt32(aSign, aSig, status);
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the double-precision floating-point value
-| `a' to the 32-bit two's complement integer format. The conversion is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic, except that the conversion is always rounded toward zero.
-| If `a' is a NaN, the largest positive integer is returned. Otherwise, if
-| the conversion overflows, the largest integer with the same sign as `a' is
-| returned.
-*----------------------------------------------------------------------------*/
-
-int32_t float64_to_int32_round_to_zero(float64 a, float_status *status)
-{
- flag aSign;
- int aExp;
- int shiftCount;
- uint64_t aSig, savedASig;
- int32_t z;
- a = float64_squash_input_denormal(a, status);
-
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- if ( 0x41E < aExp ) {
- if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
- goto invalid;
- }
- else if ( aExp < 0x3FF ) {
- if (aExp || aSig) {
- status->float_exception_flags |= float_flag_inexact;
- }
- return 0;
- }
- aSig |= LIT64( 0x0010000000000000 );
- shiftCount = 0x433 - aExp;
- savedASig = aSig;
- aSig >>= shiftCount;
- z = aSig;
- if ( aSign ) z = - z;
- if ( ( z < 0 ) ^ aSign ) {
- invalid:
- float_raise(float_flag_invalid, status);
- return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
- }
- if ( ( aSig<<shiftCount ) != savedASig ) {
- status->float_exception_flags |= float_flag_inexact;
- }
- return z;
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the double-precision floating-point value
-| `a' to the 16-bit two's complement integer format. The conversion is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic, except that the conversion is always rounded toward zero.
-| If `a' is a NaN, the largest positive integer is returned. Otherwise, if
-| the conversion overflows, the largest integer with the same sign as `a' is
-| returned.
-*----------------------------------------------------------------------------*/
-
-int16_t float64_to_int16_round_to_zero(float64 a, float_status *status)
-{
- flag aSign;
- int aExp;
- int shiftCount;
- uint64_t aSig, savedASig;
- int32_t z;
-
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- if ( 0x40E < aExp ) {
- if ( ( aExp == 0x7FF ) && aSig ) {
- aSign = 0;
- }
- goto invalid;
- }
- else if ( aExp < 0x3FF ) {
- if ( aExp || aSig ) {
- status->float_exception_flags |= float_flag_inexact;
- }
- return 0;
- }
- aSig |= LIT64( 0x0010000000000000 );
- shiftCount = 0x433 - aExp;
- savedASig = aSig;
- aSig >>= shiftCount;
- z = aSig;
- if ( aSign ) {
- z = - z;
- }
- if ( ( (int16_t)z < 0 ) ^ aSign ) {
- invalid:
- float_raise(float_flag_invalid, status);
- return aSign ? (int32_t) 0xffff8000 : 0x7FFF;
- }
- if ( ( aSig<<shiftCount ) != savedASig ) {
- status->float_exception_flags |= float_flag_inexact;
- }
- return z;
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the double-precision floating-point value
-| `a' to the 64-bit two's complement integer format. The conversion is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic---which means in particular that the conversion is rounded
-| according to the current rounding mode. If `a' is a NaN, the largest
-| positive integer is returned. Otherwise, if the conversion overflows, the
-| largest integer with the same sign as `a' is returned.
-*----------------------------------------------------------------------------*/
-
-int64_t float64_to_int64(float64 a, float_status *status)
-{
- flag aSign;
- int aExp;
- int shiftCount;
- uint64_t aSig, aSigExtra;
- a = float64_squash_input_denormal(a, status);
-
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
- shiftCount = 0x433 - aExp;
- if ( shiftCount <= 0 ) {
- if ( 0x43E < aExp ) {
- float_raise(float_flag_invalid, status);
- if ( ! aSign
- || ( ( aExp == 0x7FF )
- && ( aSig != LIT64( 0x0010000000000000 ) ) )
- ) {
- return LIT64( 0x7FFFFFFFFFFFFFFF );
- }
- return (int64_t) LIT64( 0x8000000000000000 );
- }
- aSigExtra = 0;
- aSig <<= - shiftCount;
- }
- else {
- shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra );
- }
- return roundAndPackInt64(aSign, aSig, aSigExtra, status);
-
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the double-precision floating-point value
-| `a' to the 64-bit two's complement integer format. The conversion is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic, except that the conversion is always rounded toward zero.
-| If `a' is a NaN, the largest positive integer is returned. Otherwise, if
-| the conversion overflows, the largest integer with the same sign as `a' is
-| returned.
-*----------------------------------------------------------------------------*/
-
-int64_t float64_to_int64_round_to_zero(float64 a, float_status *status)
-{
- flag aSign;
- int aExp;
- int shiftCount;
- uint64_t aSig;
- int64_t z;
- a = float64_squash_input_denormal(a, status);
-
- aSig = extractFloat64Frac( a );
- aExp = extractFloat64Exp( a );
- aSign = extractFloat64Sign( a );
- if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
- shiftCount = aExp - 0x433;
- if ( 0 <= shiftCount ) {
- if ( 0x43E <= aExp ) {
- if ( float64_val(a) != LIT64( 0xC3E0000000000000 ) ) {
- float_raise(float_flag_invalid, status);
- if ( ! aSign
- || ( ( aExp == 0x7FF )
- && ( aSig != LIT64( 0x0010000000000000 ) ) )
- ) {
- return LIT64( 0x7FFFFFFFFFFFFFFF );
- }
- }
- return (int64_t) LIT64( 0x8000000000000000 );
- }
- z = aSig<<shiftCount;
- }
- else {
- if ( aExp < 0x3FE ) {
- if (aExp | aSig) {
- status->float_exception_flags |= float_flag_inexact;
- }
- return 0;
- }
- z = aSig>>( - shiftCount );
- if ( (uint64_t) ( aSig<<( shiftCount & 63 ) ) ) {
- status->float_exception_flags |= float_flag_inexact;
- }
- }
- if ( aSign ) z = - z;
- return z;
-
-}
/*----------------------------------------------------------------------------
| Returns the result of converting the double-precision floating-point value
@@ -7055,252 +6725,7 @@ float64 uint32_to_float64(uint32_t a, float_status *status)
return int64_to_float64(a, status);
}
-uint32_t float32_to_uint32(float32 a, float_status *status)
-{
- int64_t v;
- uint32_t res;
- int old_exc_flags = get_float_exception_flags(status);
- v = float32_to_int64(a, status);
- if (v < 0) {
- res = 0;
- } else if (v > 0xffffffff) {
- res = 0xffffffff;
- } else {
- return v;
- }
- set_float_exception_flags(old_exc_flags, status);
- float_raise(float_flag_invalid, status);
- return res;
-}
-
-uint32_t float32_to_uint32_round_to_zero(float32 a, float_status *status)
-{
- int64_t v;
- uint32_t res;
- int old_exc_flags = get_float_exception_flags(status);
-
- v = float32_to_int64_round_to_zero(a, status);
- if (v < 0) {
- res = 0;
- } else if (v > 0xffffffff) {
- res = 0xffffffff;
- } else {
- return v;
- }
- set_float_exception_flags(old_exc_flags, status);
- float_raise(float_flag_invalid, status);
- return res;
-}
-
-int16_t float32_to_int16(float32 a, float_status *status)
-{
- int32_t v;
- int16_t res;
- int old_exc_flags = get_float_exception_flags(status);
-
- v = float32_to_int32(a, status);
- if (v < -0x8000) {
- res = -0x8000;
- } else if (v > 0x7fff) {
- res = 0x7fff;
- } else {
- return v;
- }
-
- set_float_exception_flags(old_exc_flags, status);
- float_raise(float_flag_invalid, status);
- return res;
-}
-
-uint16_t float32_to_uint16(float32 a, float_status *status)
-{
- int32_t v;
- uint16_t res;
- int old_exc_flags = get_float_exception_flags(status);
-
- v = float32_to_int32(a, status);
- if (v < 0) {
- res = 0;
- } else if (v > 0xffff) {
- res = 0xffff;
- } else {
- return v;
- }
-
- set_float_exception_flags(old_exc_flags, status);
- float_raise(float_flag_invalid, status);
- return res;
-}
-
-uint16_t float32_to_uint16_round_to_zero(float32 a, float_status *status)
-{
- int64_t v;
- uint16_t res;
- int old_exc_flags = get_float_exception_flags(status);
-
- v = float32_to_int64_round_to_zero(a, status);
- if (v < 0) {
- res = 0;
- } else if (v > 0xffff) {
- res = 0xffff;
- } else {
- return v;
- }
- set_float_exception_flags(old_exc_flags, status);
- float_raise(float_flag_invalid, status);
- return res;
-}
-
-uint32_t float64_to_uint32(float64 a, float_status *status)
-{
- uint64_t v;
- uint32_t res;
- int old_exc_flags = get_float_exception_flags(status);
-
- v = float64_to_uint64(a, status);
- if (v > 0xffffffff) {
- res = 0xffffffff;
- } else {
- return v;
- }
- set_float_exception_flags(old_exc_flags, status);
- float_raise(float_flag_invalid, status);
- return res;
-}
-
-uint32_t float64_to_uint32_round_to_zero(float64 a, float_status *status)
-{
- uint64_t v;
- uint32_t res;
- int old_exc_flags = get_float_exception_flags(status);
-
- v = float64_to_uint64_round_to_zero(a, status);
- if (v > 0xffffffff) {
- res = 0xffffffff;
- } else {
- return v;
- }
- set_float_exception_flags(old_exc_flags, status);
- float_raise(float_flag_invalid, status);
- return res;
-}
-
-int16_t float64_to_int16(float64 a, float_status *status)
-{
- int64_t v;
- int16_t res;
- int old_exc_flags = get_float_exception_flags(status);
-
- v = float64_to_int32(a, status);
- if (v < -0x8000) {
- res = -0x8000;
- } else if (v > 0x7fff) {
- res = 0x7fff;
- } else {
- return v;
- }
-
- set_float_exception_flags(old_exc_flags, status);
- float_raise(float_flag_invalid, status);
- return res;
-}
-
-uint16_t float64_to_uint16(float64 a, float_status *status)
-{
- int64_t v;
- uint16_t res;
- int old_exc_flags = get_float_exception_flags(status);
-
- v = float64_to_int32(a, status);
- if (v < 0) {
- res = 0;
- } else if (v > 0xffff) {
- res = 0xffff;
- } else {
- return v;
- }
-
- set_float_exception_flags(old_exc_flags, status);
- float_raise(float_flag_invalid, status);
- return res;
-}
-
-uint16_t float64_to_uint16_round_to_zero(float64 a, float_status *status)
-{
- int64_t v;
- uint16_t res;
- int old_exc_flags = get_float_exception_flags(status);
-
- v = float64_to_int64_round_to_zero(a, status);
- if (v < 0) {
- res = 0;
- } else if (v > 0xffff) {
- res = 0xffff;
- } else {
- return v;
- }
- set_float_exception_flags(old_exc_flags, status);
- float_raise(float_flag_invalid, status);
- return res;
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the double-precision floating-point value
-| `a' to the 64-bit unsigned integer format. The conversion is
-| performed according to the IEC/IEEE Standard for Binary Floating-Point
-| Arithmetic---which means in particular that the conversion is rounded
-| according to the current rounding mode. If `a' is a NaN, the largest
-| positive integer is returned. If the conversion overflows, the
-| largest unsigned integer is returned. If 'a' is negative, the value is
-| rounded and zero is returned; negative values that do not round to zero
-| will raise the inexact exception.
-*----------------------------------------------------------------------------*/
-
-uint64_t float64_to_uint64(float64 a, float_status *status)
-{
- flag aSign;
- int aExp;
- int shiftCount;
- uint64_t aSig, aSigExtra;
- a = float64_squash_input_denormal(a, status);
-
- aSig = extractFloat64Frac(a);
- aExp = extractFloat64Exp(a);
- aSign = extractFloat64Sign(a);
- if (aSign && (aExp > 1022)) {
- float_raise(float_flag_invalid, status);
- if (float64_is_any_nan(a)) {
- return LIT64(0xFFFFFFFFFFFFFFFF);
- } else {
- return 0;
- }
- }
- if (aExp) {
- aSig |= LIT64(0x0010000000000000);
- }
- shiftCount = 0x433 - aExp;
- if (shiftCount <= 0) {
- if (0x43E < aExp) {
- float_raise(float_flag_invalid, status);
- return LIT64(0xFFFFFFFFFFFFFFFF);
- }
- aSigExtra = 0;
- aSig <<= -shiftCount;
- } else {
- shift64ExtraRightJamming(aSig, 0, shiftCount, &aSig, &aSigExtra);
- }
- return roundAndPackUint64(aSign, aSig, aSigExtra, status);
-}
-
-uint64_t float64_to_uint64_round_to_zero(float64 a, float_status *status)
-{
- signed char current_rounding_mode = status->float_rounding_mode;
- set_float_rounding_mode(float_round_to_zero, status);
- uint64_t v = float64_to_uint64(a, status);
- set_float_rounding_mode(current_rounding_mode, status);
- return v;
-}
#define COMPARE(s, nan_exp) \
static inline int float ## s ## _compare_internal(float ## s a, float ## s b,\