aboutsummaryrefslogtreecommitdiff
path: root/docs/devel/writing-qmp-commands.rst
diff options
context:
space:
mode:
Diffstat (limited to 'docs/devel/writing-qmp-commands.rst')
-rw-r--r--docs/devel/writing-qmp-commands.rst622
1 files changed, 622 insertions, 0 deletions
diff --git a/docs/devel/writing-qmp-commands.rst b/docs/devel/writing-qmp-commands.rst
new file mode 100644
index 0000000..6a10a06
--- /dev/null
+++ b/docs/devel/writing-qmp-commands.rst
@@ -0,0 +1,622 @@
+How to write QMP commands using the QAPI framework
+==================================================
+
+This document is a step-by-step guide on how to write new QMP commands using
+the QAPI framework. It also shows how to implement new style HMP commands.
+
+This document doesn't discuss QMP protocol level details, nor does it dive
+into the QAPI framework implementation.
+
+For an in-depth introduction to the QAPI framework, please refer to
+docs/devel/qapi-code-gen.txt. For documentation about the QMP protocol,
+start with docs/interop/qmp-intro.txt.
+
+
+Overview
+--------
+
+Generally speaking, the following steps should be taken in order to write a
+new QMP command.
+
+1. Define the command and any types it needs in the appropriate QAPI
+ schema module.
+
+2. Write the QMP command itself, which is a regular C function. Preferably,
+ the command should be exported by some QEMU subsystem. But it can also be
+ added to the monitor/qmp-cmds.c file
+
+3. At this point the command can be tested under the QMP protocol
+
+4. Write the HMP command equivalent. This is not required and should only be
+ done if it does make sense to have the functionality in HMP. The HMP command
+ is implemented in terms of the QMP command
+
+The following sections will demonstrate each of the steps above. We will start
+very simple and get more complex as we progress.
+
+
+Testing
+-------
+
+For all the examples in the next sections, the test setup is the same and is
+shown here.
+
+First, QEMU should be started like this::
+
+ # qemu-system-TARGET [...] \
+ -chardev socket,id=qmp,port=4444,host=localhost,server=on \
+ -mon chardev=qmp,mode=control,pretty=on
+
+Then, in a different terminal::
+
+ $ telnet localhost 4444
+ Trying 127.0.0.1...
+ Connected to localhost.
+ Escape character is '^]'.
+ {
+ "QMP": {
+ "version": {
+ "qemu": {
+ "micro": 50,
+ "minor": 15,
+ "major": 0
+ },
+ "package": ""
+ },
+ "capabilities": [
+ ]
+ }
+ }
+
+The above output is the QMP server saying you're connected. The server is
+actually in capabilities negotiation mode. To enter in command mode type::
+
+ { "execute": "qmp_capabilities" }
+
+Then the server should respond::
+
+ {
+ "return": {
+ }
+ }
+
+Which is QMP's way of saying "the latest command executed OK and didn't return
+any data". Now you're ready to enter the QMP example commands as explained in
+the following sections.
+
+
+Writing a command that doesn't return data
+------------------------------------------
+
+That's the most simple QMP command that can be written. Usually, this kind of
+command carries some meaningful action in QEMU but here it will just print
+"Hello, world" to the standard output.
+
+Our command will be called "hello-world". It takes no arguments, nor does it
+return any data.
+
+The first step is defining the command in the appropriate QAPI schema
+module. We pick module qapi/misc.json, and add the following line at
+the bottom::
+
+ { 'command': 'hello-world' }
+
+The "command" keyword defines a new QMP command. It's an JSON object. All
+schema entries are JSON objects. The line above will instruct the QAPI to
+generate any prototypes and the necessary code to marshal and unmarshal
+protocol data.
+
+The next step is to write the "hello-world" implementation. As explained
+earlier, it's preferable for commands to live in QEMU subsystems. But
+"hello-world" doesn't pertain to any, so we put its implementation in
+monitor/qmp-cmds.c::
+
+ void qmp_hello_world(Error **errp)
+ {
+ printf("Hello, world!\n");
+ }
+
+There are a few things to be noticed:
+
+1. QMP command implementation functions must be prefixed with "qmp\_"
+2. qmp_hello_world() returns void, this is in accordance with the fact that the
+ command doesn't return any data
+3. It takes an "Error \*\*" argument. This is required. Later we will see how to
+ return errors and take additional arguments. The Error argument should not
+ be touched if the command doesn't return errors
+4. We won't add the function's prototype. That's automatically done by the QAPI
+5. Printing to the terminal is discouraged for QMP commands, we do it here
+ because it's the easiest way to demonstrate a QMP command
+
+You're done. Now build qemu, run it as suggested in the "Testing" section,
+and then type the following QMP command::
+
+ { "execute": "hello-world" }
+
+Then check the terminal running qemu and look for the "Hello, world" string. If
+you don't see it then something went wrong.
+
+
+Arguments
+~~~~~~~~~
+
+Let's add an argument called "message" to our "hello-world" command. The new
+argument will contain the string to be printed to stdout. It's an optional
+argument, if it's not present we print our default "Hello, World" string.
+
+The first change we have to do is to modify the command specification in the
+schema file to the following::
+
+ { 'command': 'hello-world', 'data': { '*message': 'str' } }
+
+Notice the new 'data' member in the schema. It's an JSON object whose each
+element is an argument to the command in question. Also notice the asterisk,
+it's used to mark the argument optional (that means that you shouldn't use it
+for mandatory arguments). Finally, 'str' is the argument's type, which
+stands for "string". The QAPI also supports integers, booleans, enumerations
+and user defined types.
+
+Now, let's update our C implementation in monitor/qmp-cmds.c::
+
+ void qmp_hello_world(bool has_message, const char *message, Error **errp)
+ {
+ if (has_message) {
+ printf("%s\n", message);
+ } else {
+ printf("Hello, world\n");
+ }
+ }
+
+There are two important details to be noticed:
+
+1. All optional arguments are accompanied by a 'has\_' boolean, which is set
+ if the optional argument is present or false otherwise
+2. The C implementation signature must follow the schema's argument ordering,
+ which is defined by the "data" member
+
+Time to test our new version of the "hello-world" command. Build qemu, run it as
+described in the "Testing" section and then send two commands::
+
+ { "execute": "hello-world" }
+ {
+ "return": {
+ }
+ }
+
+ { "execute": "hello-world", "arguments": { "message": "We love qemu" } }
+ {
+ "return": {
+ }
+ }
+
+You should see "Hello, world" and "We love qemu" in the terminal running qemu,
+if you don't see these strings, then something went wrong.
+
+
+Errors
+~~~~~~
+
+QMP commands should use the error interface exported by the error.h header
+file. Basically, most errors are set by calling the error_setg() function.
+
+Let's say we don't accept the string "message" to contain the word "love". If
+it does contain it, we want the "hello-world" command to return an error::
+
+ void qmp_hello_world(bool has_message, const char *message, Error **errp)
+ {
+ if (has_message) {
+ if (strstr(message, "love")) {
+ error_setg(errp, "the word 'love' is not allowed");
+ return;
+ }
+ printf("%s\n", message);
+ } else {
+ printf("Hello, world\n");
+ }
+ }
+
+The first argument to the error_setg() function is the Error pointer
+to pointer, which is passed to all QMP functions. The next argument is a human
+description of the error, this is a free-form printf-like string.
+
+Let's test the example above. Build qemu, run it as defined in the "Testing"
+section, and then issue the following command::
+
+ { "execute": "hello-world", "arguments": { "message": "all you need is love" } }
+
+The QMP server's response should be::
+
+ {
+ "error": {
+ "class": "GenericError",
+ "desc": "the word 'love' is not allowed"
+ }
+ }
+
+Note that error_setg() produces a "GenericError" class. In general,
+all QMP errors should have that error class. There are two exceptions
+to this rule:
+
+ 1. To support a management application's need to recognize a specific
+ error for special handling
+
+ 2. Backward compatibility
+
+If the failure you want to report falls into one of the two cases above,
+use error_set() with a second argument of an ErrorClass value.
+
+
+Command Documentation
+~~~~~~~~~~~~~~~~~~~~~
+
+There's only one step missing to make "hello-world"'s implementation complete,
+and that's its documentation in the schema file.
+
+There are many examples of such documentation in the schema file already, but
+here goes "hello-world"'s new entry for qapi/misc.json::
+
+ ##
+ # @hello-world:
+ #
+ # Print a client provided string to the standard output stream.
+ #
+ # @message: string to be printed
+ #
+ # Returns: Nothing on success.
+ #
+ # Notes: if @message is not provided, the "Hello, world" string will
+ # be printed instead
+ #
+ # Since: <next qemu stable release, eg. 1.0>
+ ##
+ { 'command': 'hello-world', 'data': { '*message': 'str' } }
+
+Please, note that the "Returns" clause is optional if a command doesn't return
+any data nor any errors.
+
+
+Implementing the HMP command
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Now that the QMP command is in place, we can also make it available in the human
+monitor (HMP).
+
+With the introduction of the QAPI, HMP commands make QMP calls. Most of the
+time HMP commands are simple wrappers. All HMP commands implementation exist in
+the monitor/hmp-cmds.c file.
+
+Here's the implementation of the "hello-world" HMP command::
+
+ void hmp_hello_world(Monitor *mon, const QDict *qdict)
+ {
+ const char *message = qdict_get_try_str(qdict, "message");
+ Error *err = NULL;
+
+ qmp_hello_world(!!message, message, &err);
+ if (err) {
+ monitor_printf(mon, "%s\n", error_get_pretty(err));
+ error_free(err);
+ return;
+ }
+ }
+
+Also, you have to add the function's prototype to the hmp.h file.
+
+There are three important points to be noticed:
+
+1. The "mon" and "qdict" arguments are mandatory for all HMP functions. The
+ former is the monitor object. The latter is how the monitor passes
+ arguments entered by the user to the command implementation
+2. hmp_hello_world() performs error checking. In this example we just print
+ the error description to the user, but we could do more, like taking
+ different actions depending on the error qmp_hello_world() returns
+3. The "err" variable must be initialized to NULL before performing the
+ QMP call
+
+There's one last step to actually make the command available to monitor users,
+we should add it to the hmp-commands.hx file::
+
+ {
+ .name = "hello-world",
+ .args_type = "message:s?",
+ .params = "hello-world [message]",
+ .help = "Print message to the standard output",
+ .cmd = hmp_hello_world,
+ },
+
+::
+
+ STEXI
+ @item hello_world @var{message}
+ @findex hello_world
+ Print message to the standard output
+ ETEXI
+
+To test this you have to open a user monitor and issue the "hello-world"
+command. It might be instructive to check the command's documentation with
+HMP's "help" command.
+
+Please, check the "-monitor" command-line option to know how to open a user
+monitor.
+
+
+Writing a command that returns data
+-----------------------------------
+
+A QMP command is capable of returning any data the QAPI supports like integers,
+strings, booleans, enumerations and user defined types.
+
+In this section we will focus on user defined types. Please, check the QAPI
+documentation for information about the other types.
+
+
+User Defined Types
+~~~~~~~~~~~~~~~~~~
+
+FIXME This example needs to be redone after commit 6d32717
+
+For this example we will write the query-alarm-clock command, which returns
+information about QEMU's timer alarm. For more information about it, please
+check the "-clock" command-line option.
+
+We want to return two pieces of information. The first one is the alarm clock's
+name. The second one is when the next alarm will fire. The former information is
+returned as a string, the latter is an integer in nanoseconds (which is not
+very useful in practice, as the timer has probably already fired when the
+information reaches the client).
+
+The best way to return that data is to create a new QAPI type, as shown below::
+
+ ##
+ # @QemuAlarmClock
+ #
+ # QEMU alarm clock information.
+ #
+ # @clock-name: The alarm clock method's name.
+ #
+ # @next-deadline: The time (in nanoseconds) the next alarm will fire.
+ #
+ # Since: 1.0
+ ##
+ { 'type': 'QemuAlarmClock',
+ 'data': { 'clock-name': 'str', '*next-deadline': 'int' } }
+
+The "type" keyword defines a new QAPI type. Its "data" member contains the
+type's members. In this example our members are the "clock-name" and the
+"next-deadline" one, which is optional.
+
+Now let's define the query-alarm-clock command::
+
+ ##
+ # @query-alarm-clock
+ #
+ # Return information about QEMU's alarm clock.
+ #
+ # Returns a @QemuAlarmClock instance describing the alarm clock method
+ # being currently used by QEMU (this is usually set by the '-clock'
+ # command-line option).
+ #
+ # Since: 1.0
+ ##
+ { 'command': 'query-alarm-clock', 'returns': 'QemuAlarmClock' }
+
+Notice the "returns" keyword. As its name suggests, it's used to define the
+data returned by a command.
+
+It's time to implement the qmp_query_alarm_clock() function, you can put it
+in the qemu-timer.c file::
+
+ QemuAlarmClock *qmp_query_alarm_clock(Error **errp)
+ {
+ QemuAlarmClock *clock;
+ int64_t deadline;
+
+ clock = g_malloc0(sizeof(*clock));
+
+ deadline = qemu_next_alarm_deadline();
+ if (deadline > 0) {
+ clock->has_next_deadline = true;
+ clock->next_deadline = deadline;
+ }
+ clock->clock_name = g_strdup(alarm_timer->name);
+
+ return clock;
+ }
+
+There are a number of things to be noticed:
+
+1. The QemuAlarmClock type is automatically generated by the QAPI framework,
+ its members correspond to the type's specification in the schema file
+2. As specified in the schema file, the function returns a QemuAlarmClock
+ instance and takes no arguments (besides the "errp" one, which is mandatory
+ for all QMP functions)
+3. The "clock" variable (which will point to our QAPI type instance) is
+ allocated by the regular g_malloc0() function. Note that we chose to
+ initialize the memory to zero. This is recommended for all QAPI types, as
+ it helps avoiding bad surprises (specially with booleans)
+4. Remember that "next_deadline" is optional? All optional members have a
+ 'has_TYPE_NAME' member that should be properly set by the implementation,
+ as shown above
+5. Even static strings, such as "alarm_timer->name", should be dynamically
+ allocated by the implementation. This is so because the QAPI also generates
+ a function to free its types and it cannot distinguish between dynamically
+ or statically allocated strings
+6. You have to include "qapi/qapi-commands-misc.h" in qemu-timer.c
+
+Time to test the new command. Build qemu, run it as described in the "Testing"
+section and try this::
+
+ { "execute": "query-alarm-clock" }
+ {
+ "return": {
+ "next-deadline": 2368219,
+ "clock-name": "dynticks"
+ }
+ }
+
+
+The HMP command
+~~~~~~~~~~~~~~~
+
+Here's the HMP counterpart of the query-alarm-clock command::
+
+ void hmp_info_alarm_clock(Monitor *mon)
+ {
+ QemuAlarmClock *clock;
+ Error *err = NULL;
+
+ clock = qmp_query_alarm_clock(&err);
+ if (err) {
+ monitor_printf(mon, "Could not query alarm clock information\n");
+ error_free(err);
+ return;
+ }
+
+ monitor_printf(mon, "Alarm clock method in use: '%s'\n", clock->clock_name);
+ if (clock->has_next_deadline) {
+ monitor_printf(mon, "Next alarm will fire in %" PRId64 " nanoseconds\n",
+ clock->next_deadline);
+ }
+
+ qapi_free_QemuAlarmClock(clock);
+ }
+
+It's important to notice that hmp_info_alarm_clock() calls
+qapi_free_QemuAlarmClock() to free the data returned by qmp_query_alarm_clock().
+For user defined types, the QAPI will generate a qapi_free_QAPI_TYPE_NAME()
+function and that's what you have to use to free the types you define and
+qapi_free_QAPI_TYPE_NAMEList() for list types (explained in the next section).
+If the QMP call returns a string, then you should g_free() to free it.
+
+Also note that hmp_info_alarm_clock() performs error handling. That's not
+strictly required if you're sure the QMP function doesn't return errors, but
+it's good practice to always check for errors.
+
+Another important detail is that HMP's "info" commands don't go into the
+hmp-commands.hx. Instead, they go into the info_cmds[] table, which is defined
+in the monitor/misc.c file. The entry for the "info alarmclock" follows::
+
+ {
+ .name = "alarmclock",
+ .args_type = "",
+ .params = "",
+ .help = "show information about the alarm clock",
+ .cmd = hmp_info_alarm_clock,
+ },
+
+To test this, run qemu and type "info alarmclock" in the user monitor.
+
+
+Returning Lists
+~~~~~~~~~~~~~~~
+
+For this example, we're going to return all available methods for the timer
+alarm, which is pretty much what the command-line option "-clock ?" does,
+except that we're also going to inform which method is in use.
+
+This first step is to define a new type::
+
+ ##
+ # @TimerAlarmMethod
+ #
+ # Timer alarm method information.
+ #
+ # @method-name: The method's name.
+ #
+ # @current: true if this alarm method is currently in use, false otherwise
+ #
+ # Since: 1.0
+ ##
+ { 'type': 'TimerAlarmMethod',
+ 'data': { 'method-name': 'str', 'current': 'bool' } }
+
+The command will be called "query-alarm-methods", here is its schema
+specification::
+
+ ##
+ # @query-alarm-methods
+ #
+ # Returns information about available alarm methods.
+ #
+ # Returns: a list of @TimerAlarmMethod for each method
+ #
+ # Since: 1.0
+ ##
+ { 'command': 'query-alarm-methods', 'returns': ['TimerAlarmMethod'] }
+
+Notice the syntax for returning lists "'returns': ['TimerAlarmMethod']", this
+should be read as "returns a list of TimerAlarmMethod instances".
+
+The C implementation follows::
+
+ TimerAlarmMethodList *qmp_query_alarm_methods(Error **errp)
+ {
+ TimerAlarmMethodList *method_list = NULL;
+ const struct qemu_alarm_timer *p;
+ bool current = true;
+
+ for (p = alarm_timers; p->name; p++) {
+ TimerAlarmMethod *value = g_malloc0(*value);
+ value->method_name = g_strdup(p->name);
+ value->current = current;
+ QAPI_LIST_PREPEND(method_list, value);
+ current = false;
+ }
+
+ return method_list;
+ }
+
+The most important difference from the previous examples is the
+TimerAlarmMethodList type, which is automatically generated by the QAPI from
+the TimerAlarmMethod type.
+
+Each list node is represented by a TimerAlarmMethodList instance. We have to
+allocate it, and that's done inside the for loop: the "info" pointer points to
+an allocated node. We also have to allocate the node's contents, which is
+stored in its "value" member. In our example, the "value" member is a pointer
+to an TimerAlarmMethod instance.
+
+Notice that the "current" variable is used as "true" only in the first
+iteration of the loop. That's because the alarm timer method in use is the
+first element of the alarm_timers array. Also notice that QAPI lists are handled
+by hand and we return the head of the list.
+
+Now Build qemu, run it as explained in the "Testing" section and try our new
+command::
+
+ { "execute": "query-alarm-methods" }
+ {
+ "return": [
+ {
+ "current": false,
+ "method-name": "unix"
+ },
+ {
+ "current": true,
+ "method-name": "dynticks"
+ }
+ ]
+ }
+
+The HMP counterpart is a bit more complex than previous examples because it
+has to traverse the list, it's shown below for reference::
+
+ void hmp_info_alarm_methods(Monitor *mon)
+ {
+ TimerAlarmMethodList *method_list, *method;
+ Error *err = NULL;
+
+ method_list = qmp_query_alarm_methods(&err);
+ if (err) {
+ monitor_printf(mon, "Could not query alarm methods\n");
+ error_free(err);
+ return;
+ }
+
+ for (method = method_list; method; method = method->next) {
+ monitor_printf(mon, "%c %s\n", method->value->current ? '*' : ' ',
+ method->value->method_name);
+ }
+
+ qapi_free_TimerAlarmMethodList(method_list);
+ }