diff options
42 files changed, 9000 insertions, 112 deletions
@@ -4641,6 +4641,10 @@ for i in $ARCH $TARGET_BASE_ARCH ; do arm) echo "CONFIG_ARM_DIS=y" >> $config_target_mak echo "CONFIG_ARM_DIS=y" >> config-all-disas.mak + if test -n "${cxx}"; then + echo "CONFIG_ARM_A64_DIS=y" >> $config_target_mak + echo "CONFIG_ARM_A64_DIS=y" >> config-all-disas.mak + fi ;; cris) echo "CONFIG_CRIS_DIS=y" >> $config_target_mak diff --git a/default-configs/arm-softmmu.mak b/default-configs/arm-softmmu.mak index ce1d620..f3513fa 100644 --- a/default-configs/arm-softmmu.mak +++ b/default-configs/arm-softmmu.mak @@ -27,6 +27,7 @@ CONFIG_SSI_SD=y CONFIG_SSI_M25P80=y CONFIG_LAN9118=y CONFIG_SMC91C111=y +CONFIG_ALLWINNER_EMAC=y CONFIG_DS1338=y CONFIG_PFLASH_CFI01=y CONFIG_PFLASH_CFI02=y @@ -190,7 +190,7 @@ static int print_insn_od_target(bfd_vma pc, disassemble_info *info) /* Disassemble this for me please... (debugging). 'flags' has the following values: i386 - 1 means 16 bit code, 2 means 64 bit code - arm - bit 0 = thumb, bit 1 = reverse endian + arm - bit 0 = thumb, bit 1 = reverse endian, bit 2 = A64 ppc - nonzero means little endian other targets - unused */ @@ -225,7 +225,15 @@ void target_disas(FILE *out, CPUArchState *env, target_ulong code, } print_insn = print_insn_i386; #elif defined(TARGET_ARM) - if (flags & 1) { + if (flags & 4) { + /* We might not be compiled with the A64 disassembler + * because it needs a C++ compiler; in that case we will + * fall through to the default print_insn_od case. + */ +#if defined(CONFIG_ARM_A64_DIS) + print_insn = print_insn_arm_a64; +#endif + } else if (flags & 1) { print_insn = print_insn_thumb1; } else { print_insn = print_insn_arm; @@ -356,6 +364,8 @@ void disas(FILE *out, void *code, unsigned long size) #elif defined(_ARCH_PPC) s.info.disassembler_options = (char *)"any"; print_insn = print_insn_ppc; +#elif defined(__aarch64__) && defined(CONFIG_ARM_A64_DIS) + print_insn = print_insn_arm_a64; #elif defined(__alpha__) print_insn = print_insn_alpha; #elif defined(__sparc__) diff --git a/disas/Makefile.objs b/disas/Makefile.objs index 3b1e77a..41c2374 100644 --- a/disas/Makefile.objs +++ b/disas/Makefile.objs @@ -1,5 +1,10 @@ + common-obj-$(CONFIG_ALPHA_DIS) += alpha.o common-obj-$(CONFIG_ARM_DIS) += arm.o +common-obj-$(CONFIG_ARM_A64_DIS) += arm-a64.o +common-obj-$(CONFIG_ARM_A64_DIS) += libvixl/ +libvixldir = $(SRC_PATH)/disas/libvixl +$(obj)/arm-a64.o: QEMU_CFLAGS += -I$(libvixldir) common-obj-$(CONFIG_CRIS_DIS) += cris.o common-obj-$(CONFIG_HPPA_DIS) += hppa.o common-obj-$(CONFIG_I386_DIS) += i386.o diff --git a/disas/arm-a64.cc b/disas/arm-a64.cc new file mode 100644 index 0000000..162be0c --- /dev/null +++ b/disas/arm-a64.cc @@ -0,0 +1,87 @@ +/* + * ARM A64 disassembly output wrapper to libvixl + * Copyright (c) 2013 Linaro Limited + * Written by Claudio Fontana + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <http://www.gnu.org/licenses/>. + */ + +#include "a64/disasm-a64.h" + +extern "C" { +#include "disas/bfd.h" +} + +using namespace vixl; + +static Decoder *vixl_decoder = NULL; +static Disassembler *vixl_disasm = NULL; + +/* We don't use libvixl's PrintDisassembler because its output + * is a little unhelpful (trailing newlines, for example). + * Instead we use our own very similar variant so we have + * control over the format. + */ +class QEMUDisassembler : public Disassembler { +public: + explicit QEMUDisassembler(FILE *stream) : stream_(stream) { } + ~QEMUDisassembler() { } + +protected: + void ProcessOutput(Instruction *instr) { + fprintf(stream_, "%08" PRIx32 " %s", + instr->InstructionBits(), GetOutput()); + } + +private: + FILE *stream_; +}; + +static int vixl_is_initialized(void) +{ + return vixl_decoder != NULL; +} + +static void vixl_init(FILE *f) { + vixl_decoder = new Decoder(); + vixl_disasm = new QEMUDisassembler(f); + vixl_decoder->AppendVisitor(vixl_disasm); +} + +#define INSN_SIZE 4 + +/* Disassemble ARM A64 instruction. This is our only entry + * point from QEMU's C code. + */ +int print_insn_arm_a64(uint64_t addr, disassemble_info *info) +{ + uint8_t bytes[INSN_SIZE]; + uint32_t instr; + int status; + + status = info->read_memory_func(addr, bytes, INSN_SIZE, info); + if (status != 0) { + info->memory_error_func(status, addr, info); + return -1; + } + + if (!vixl_is_initialized()) { + vixl_init(info->stream); + } + + instr = bytes[0] | bytes[1] << 8 | bytes[2] << 16 | bytes[3] << 24; + vixl_decoder->Decode(reinterpret_cast<Instruction*>(&instr)); + + return INSN_SIZE; +} diff --git a/disas/libvixl/LICENCE b/disas/libvixl/LICENCE new file mode 100644 index 0000000..b7e160a --- /dev/null +++ b/disas/libvixl/LICENCE @@ -0,0 +1,30 @@ +LICENCE +======= + +The software in this repository is covered by the following licence. + +// Copyright 2013, ARM Limited +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are met: +// +// * Redistributions of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// * Neither the name of ARM Limited nor the names of its contributors may be +// used to endorse or promote products derived from this software without +// specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND +// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE +// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. diff --git a/disas/libvixl/Makefile.objs b/disas/libvixl/Makefile.objs new file mode 100644 index 0000000..0adb3ce --- /dev/null +++ b/disas/libvixl/Makefile.objs @@ -0,0 +1,8 @@ +libvixl_OBJS = utils.o \ + a64/instructions-a64.o \ + a64/decoder-a64.o \ + a64/disasm-a64.o + +$(addprefix $(obj)/,$(libvixl_OBJS)): QEMU_CFLAGS += -I$(SRC_PATH)/disas/libvixl + +common-obj-$(CONFIG_ARM_A64_DIS) += $(libvixl_OBJS) diff --git a/disas/libvixl/README b/disas/libvixl/README new file mode 100644 index 0000000..96814a5 --- /dev/null +++ b/disas/libvixl/README @@ -0,0 +1,12 @@ + +The code in this directory is a subset of libvixl: + https://github.com/armvixl/vixl +(specifically, it is the set of files needed for disassembly only, +taken from libvixl 1.1). +Bugfixes should preferably be sent upstream initially. + +The disassembler does not currently support the entire A64 instruction +set. Notably: + * No Advanced SIMD support. + * Limited support for system instructions. + * A few miscellaneous integer and floating point instructions are missing. diff --git a/disas/libvixl/a64/assembler-a64.h b/disas/libvixl/a64/assembler-a64.h new file mode 100644 index 0000000..93b3011 --- /dev/null +++ b/disas/libvixl/a64/assembler-a64.h @@ -0,0 +1,1784 @@ +// Copyright 2013, ARM Limited +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are met: +// +// * Redistributions of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// * Neither the name of ARM Limited nor the names of its contributors may be +// used to endorse or promote products derived from this software without +// specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND +// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE +// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#ifndef VIXL_A64_ASSEMBLER_A64_H_ +#define VIXL_A64_ASSEMBLER_A64_H_ + +#include <list> + +#include "globals.h" +#include "utils.h" +#include "a64/instructions-a64.h" + +namespace vixl { + +typedef uint64_t RegList; +static const int kRegListSizeInBits = sizeof(RegList) * 8; + +// Registers. + +// Some CPURegister methods can return Register and FPRegister types, so we +// need to declare them in advance. +class Register; +class FPRegister; + + +class CPURegister { + public: + enum RegisterType { + // The kInvalid value is used to detect uninitialized static instances, + // which are always zero-initialized before any constructors are called. + kInvalid = 0, + kRegister, + kFPRegister, + kNoRegister + }; + + CPURegister() : code_(0), size_(0), type_(kNoRegister) { + ASSERT(!IsValid()); + ASSERT(IsNone()); + } + + CPURegister(unsigned code, unsigned size, RegisterType type) + : code_(code), size_(size), type_(type) { + ASSERT(IsValidOrNone()); + } + + unsigned code() const { + ASSERT(IsValid()); + return code_; + } + + RegisterType type() const { + ASSERT(IsValidOrNone()); + return type_; + } + + RegList Bit() const { + ASSERT(code_ < (sizeof(RegList) * 8)); + return IsValid() ? (static_cast<RegList>(1) << code_) : 0; + } + + unsigned size() const { + ASSERT(IsValid()); + return size_; + } + + int SizeInBytes() const { + ASSERT(IsValid()); + ASSERT(size() % 8 == 0); + return size_ / 8; + } + + int SizeInBits() const { + ASSERT(IsValid()); + return size_; + } + + bool Is32Bits() const { + ASSERT(IsValid()); + return size_ == 32; + } + + bool Is64Bits() const { + ASSERT(IsValid()); + return size_ == 64; + } + + bool IsValid() const { + if (IsValidRegister() || IsValidFPRegister()) { + ASSERT(!IsNone()); + return true; + } else { + ASSERT(IsNone()); + return false; + } + } + + bool IsValidRegister() const { + return IsRegister() && + ((size_ == kWRegSize) || (size_ == kXRegSize)) && + ((code_ < kNumberOfRegisters) || (code_ == kSPRegInternalCode)); + } + + bool IsValidFPRegister() const { + return IsFPRegister() && + ((size_ == kSRegSize) || (size_ == kDRegSize)) && + (code_ < kNumberOfFPRegisters); + } + + bool IsNone() const { + // kNoRegister types should always have size 0 and code 0. + ASSERT((type_ != kNoRegister) || (code_ == 0)); + ASSERT((type_ != kNoRegister) || (size_ == 0)); + + return type_ == kNoRegister; + } + + bool Is(const CPURegister& other) const { + ASSERT(IsValidOrNone() && other.IsValidOrNone()); + return (code_ == other.code_) && (size_ == other.size_) && + (type_ == other.type_); + } + + inline bool IsZero() const { + ASSERT(IsValid()); + return IsRegister() && (code_ == kZeroRegCode); + } + + inline bool IsSP() const { + ASSERT(IsValid()); + return IsRegister() && (code_ == kSPRegInternalCode); + } + + inline bool IsRegister() const { + return type_ == kRegister; + } + + inline bool IsFPRegister() const { + return type_ == kFPRegister; + } + + const Register& W() const; + const Register& X() const; + const FPRegister& S() const; + const FPRegister& D() const; + + inline bool IsSameSizeAndType(const CPURegister& other) const { + return (size_ == other.size_) && (type_ == other.type_); + } + + protected: + unsigned code_; + unsigned size_; + RegisterType type_; + + private: + bool IsValidOrNone() const { + return IsValid() || IsNone(); + } +}; + + +class Register : public CPURegister { + public: + explicit Register() : CPURegister() {} + inline explicit Register(const CPURegister& other) + : CPURegister(other.code(), other.size(), other.type()) { + ASSERT(IsValidRegister()); + } + explicit Register(unsigned code, unsigned size) + : CPURegister(code, size, kRegister) {} + + bool IsValid() const { + ASSERT(IsRegister() || IsNone()); + return IsValidRegister(); + } + + static const Register& WRegFromCode(unsigned code); + static const Register& XRegFromCode(unsigned code); + + // V8 compatibility. + static const int kNumRegisters = kNumberOfRegisters; + static const int kNumAllocatableRegisters = kNumberOfRegisters - 1; + + private: + static const Register wregisters[]; + static const Register xregisters[]; +}; + + +class FPRegister : public CPURegister { + public: + inline FPRegister() : CPURegister() {} + inline explicit FPRegister(const CPURegister& other) + : CPURegister(other.code(), other.size(), other.type()) { + ASSERT(IsValidFPRegister()); + } + inline FPRegister(unsigned code, unsigned size) + : CPURegister(code, size, kFPRegister) {} + + bool IsValid() const { + ASSERT(IsFPRegister() || IsNone()); + return IsValidFPRegister(); + } + + static const FPRegister& SRegFromCode(unsigned code); + static const FPRegister& DRegFromCode(unsigned code); + + // V8 compatibility. + static const int kNumRegisters = kNumberOfFPRegisters; + static const int kNumAllocatableRegisters = kNumberOfFPRegisters - 1; + + private: + static const FPRegister sregisters[]; + static const FPRegister dregisters[]; +}; + + +// No*Reg is used to indicate an unused argument, or an error case. Note that +// these all compare equal (using the Is() method). The Register and FPRegister +// variants are provided for convenience. +const Register NoReg; +const FPRegister NoFPReg; +const CPURegister NoCPUReg; + + +#define DEFINE_REGISTERS(N) \ +const Register w##N(N, kWRegSize); \ +const Register x##N(N, kXRegSize); +REGISTER_CODE_LIST(DEFINE_REGISTERS) +#undef DEFINE_REGISTERS +const Register wsp(kSPRegInternalCode, kWRegSize); +const Register sp(kSPRegInternalCode, kXRegSize); + + +#define DEFINE_FPREGISTERS(N) \ +const FPRegister s##N(N, kSRegSize); \ +const FPRegister d##N(N, kDRegSize); +REGISTER_CODE_LIST(DEFINE_FPREGISTERS) +#undef DEFINE_FPREGISTERS + + +// Registers aliases. +const Register ip0 = x16; +const Register ip1 = x17; +const Register lr = x30; +const Register xzr = x31; +const Register wzr = w31; + + +// AreAliased returns true if any of the named registers overlap. Arguments +// set to NoReg are ignored. The system stack pointer may be specified. +bool AreAliased(const CPURegister& reg1, + const CPURegister& reg2, + const CPURegister& reg3 = NoReg, + const CPURegister& reg4 = NoReg, + const CPURegister& reg5 = NoReg, + const CPURegister& reg6 = NoReg, + const CPURegister& reg7 = NoReg, + const CPURegister& reg8 = NoReg); + + +// AreSameSizeAndType returns true if all of the specified registers have the +// same size, and are of the same type. The system stack pointer may be +// specified. Arguments set to NoReg are ignored, as are any subsequent +// arguments. At least one argument (reg1) must be valid (not NoCPUReg). +bool AreSameSizeAndType(const CPURegister& reg1, + const CPURegister& reg2, + const CPURegister& reg3 = NoCPUReg, + const CPURegister& reg4 = NoCPUReg, + const CPURegister& reg5 = NoCPUReg, + const CPURegister& reg6 = NoCPUReg, + const CPURegister& reg7 = NoCPUReg, + const CPURegister& reg8 = NoCPUReg); + + +// Lists of registers. +class CPURegList { + public: + inline explicit CPURegList(CPURegister reg1, + CPURegister reg2 = NoCPUReg, + CPURegister reg3 = NoCPUReg, + CPURegister reg4 = NoCPUReg) + : list_(reg1.Bit() | reg2.Bit() | reg3.Bit() | reg4.Bit()), + size_(reg1.size()), type_(reg1.type()) { + ASSERT(AreSameSizeAndType(reg1, reg2, reg3, reg4)); + ASSERT(IsValid()); + } + + inline CPURegList(CPURegister::RegisterType type, unsigned size, RegList list) + : list_(list), size_(size), type_(type) { + ASSERT(IsValid()); + } + + inline CPURegList(CPURegister::RegisterType type, unsigned size, + unsigned first_reg, unsigned last_reg) + : size_(size), type_(type) { + ASSERT(((type == CPURegister::kRegister) && + (last_reg < kNumberOfRegisters)) || + ((type == CPURegister::kFPRegister) && + (last_reg < kNumberOfFPRegisters))); + ASSERT(last_reg >= first_reg); + list_ = (1UL << (last_reg + 1)) - 1; + list_ &= ~((1UL << first_reg) - 1); + ASSERT(IsValid()); + } + + inline CPURegister::RegisterType type() const { + ASSERT(IsValid()); + return type_; + } + + // Combine another CPURegList into this one. Registers that already exist in + // this list are left unchanged. The type and size of the registers in the + // 'other' list must match those in this list. + void Combine(const CPURegList& other) { + ASSERT(IsValid()); + ASSERT(other.type() == type_); + ASSERT(other.RegisterSizeInBits() == size_); + list_ |= other.list(); + } + + // Remove every register in the other CPURegList from this one. Registers that + // do not exist in this list are ignored. The type and size of the registers + // in the 'other' list must match those in this list. + void Remove(const CPURegList& other) { + ASSERT(IsValid()); + ASSERT(other.type() == type_); + ASSERT(other.RegisterSizeInBits() == size_); + list_ &= ~other.list(); + } + + // Variants of Combine and Remove which take a single register. + inline void Combine(const CPURegister& other) { + ASSERT(other.type() == type_); + ASSERT(other.size() == size_); + Combine(other.code()); + } + + inline void Remove(const CPURegister& other) { + ASSERT(other.type() == type_); + ASSERT(other.size() == size_); + Remove(other.code()); + } + + // Variants of Combine and Remove which take a single register by its code; + // the type and size of the register is inferred from this list. + inline void Combine(int code) { + ASSERT(IsValid()); + ASSERT(CPURegister(code, size_, type_).IsValid()); + list_ |= (1UL << code); + } + + inline void Remove(int code) { + ASSERT(IsValid()); + ASSERT(CPURegister(code, size_, type_).IsValid()); + list_ &= ~(1UL << code); + } + + inline RegList list() const { + ASSERT(IsValid()); + return list_; + } + + // Remove all callee-saved registers from the list. This can be useful when + // preparing registers for an AAPCS64 function call, for example. + void RemoveCalleeSaved(); + + CPURegister PopLowestIndex(); + CPURegister PopHighestIndex(); + + // AAPCS64 callee-saved registers. + static CPURegList GetCalleeSaved(unsigned size = kXRegSize); + static CPURegList GetCalleeSavedFP(unsigned size = kDRegSize); + + // AAPCS64 caller-saved registers. Note that this includes lr. + static CPURegList GetCallerSaved(unsigned size = kXRegSize); + static CPURegList GetCallerSavedFP(unsigned size = kDRegSize); + + inline bool IsEmpty() const { + ASSERT(IsValid()); + return list_ == 0; + } + + inline bool IncludesAliasOf(const CPURegister& other) const { + ASSERT(IsValid()); + return (type_ == other.type()) && (other.Bit() & list_); + } + + inline int Count() const { + ASSERT(IsValid()); + return CountSetBits(list_, kRegListSizeInBits); + } + + inline unsigned RegisterSizeInBits() const { + ASSERT(IsValid()); + return size_; + } + + inline unsigned RegisterSizeInBytes() const { + int size_in_bits = RegisterSizeInBits(); + ASSERT((size_in_bits % 8) == 0); + return size_in_bits / 8; + } + + private: + RegList list_; + unsigned size_; + CPURegister::RegisterType type_; + + bool IsValid() const; +}; + + +// AAPCS64 callee-saved registers. +extern const CPURegList kCalleeSaved; +extern const CPURegList kCalleeSavedFP; + + +// AAPCS64 caller-saved registers. Note that this includes lr. +extern const CPURegList kCallerSaved; +extern const CPURegList kCallerSavedFP; + + +// Operand. +class Operand { + public: + // #<immediate> + // where <immediate> is int64_t. + // This is allowed to be an implicit constructor because Operand is + // a wrapper class that doesn't normally perform any type conversion. + Operand(int64_t immediate); // NOLINT(runtime/explicit) + + // rm, {<shift> #<shift_amount>} + // where <shift> is one of {LSL, LSR, ASR, ROR}. + // <shift_amount> is uint6_t. + // This is allowed to be an implicit constructor because Operand is + // a wrapper class that doesn't normally perform any type conversion. + Operand(Register reg, + Shift shift = LSL, + unsigned shift_amount = 0); // NOLINT(runtime/explicit) + + // rm, {<extend> {#<shift_amount>}} + // where <extend> is one of {UXTB, UXTH, UXTW, UXTX, SXTB, SXTH, SXTW, SXTX}. + // <shift_amount> is uint2_t. + explicit Operand(Register reg, Extend extend, unsigned shift_amount = 0); + + bool IsImmediate() const; + bool IsShiftedRegister() const; + bool IsExtendedRegister() const; + + // This returns an LSL shift (<= 4) operand as an equivalent extend operand, + // which helps in the encoding of instructions that use the stack pointer. + Operand ToExtendedRegister() const; + + int64_t immediate() const { + ASSERT(IsImmediate()); + return immediate_; + } + + Register reg() const { + ASSERT(IsShiftedRegister() || IsExtendedRegister()); + return reg_; + } + + Shift shift() const { + ASSERT(IsShiftedRegister()); + return shift_; + } + + Extend extend() const { + ASSERT(IsExtendedRegister()); + return extend_; + } + + unsigned shift_amount() const { + ASSERT(IsShiftedRegister() || IsExtendedRegister()); + return shift_amount_; + } + + private: + int64_t immediate_; + Register reg_; + Shift shift_; + Extend extend_; + unsigned shift_amount_; +}; + + +// MemOperand represents the addressing mode of a load or store instruction. +class MemOperand { + public: + explicit MemOperand(Register base, + ptrdiff_t offset = 0, + AddrMode addrmode = Offset); + explicit MemOperand(Register base, + Register regoffset, + Shift shift = LSL, + unsigned shift_amount = 0); + explicit MemOperand(Register base, + Register regoffset, + Extend extend, + unsigned shift_amount = 0); + explicit MemOperand(Register base, + const Operand& offset, + AddrMode addrmode = Offset); + + const Register& base() const { return base_; } + const Register& regoffset() const { return regoffset_; } + ptrdiff_t offset() const { return offset_; } + AddrMode addrmode() const { return addrmode_; } + Shift shift() const { return shift_; } + Extend extend() const { return extend_; } + unsigned shift_amount() const { return shift_amount_; } + bool IsImmediateOffset() const; + bool IsRegisterOffset() const; + bool IsPreIndex() const; + bool IsPostIndex() const; + + private: + Register base_; + Register regoffset_; + ptrdiff_t offset_; + AddrMode addrmode_; + Shift shift_; + Extend extend_; + unsigned shift_amount_; +}; + + +class Label { + public: + Label() : is_bound_(false), link_(NULL), target_(NULL) {} + ~Label() { + // If the label has been linked to, it needs to be bound to a target. + ASSERT(!IsLinked() || IsBound()); + } + + inline Instruction* link() const { return link_; } + inline Instruction* target() const { return target_; } + + inline bool IsBound() const { return is_bound_; } + inline bool IsLinked() const { return link_ != NULL; } + + inline void set_link(Instruction* new_link) { link_ = new_link; } + + static const int kEndOfChain = 0; + + private: + // Indicates if the label has been bound, ie its location is fixed. + bool is_bound_; + // Branches instructions branching to this label form a chained list, with + // their offset indicating where the next instruction is located. + // link_ points to the latest branch instruction generated branching to this + // branch. + // If link_ is not NULL, the label has been linked to. + Instruction* link_; + // The label location. + Instruction* target_; + + friend class Assembler; +}; + + +// TODO: Obtain better values for these, based on real-world data. +const int kLiteralPoolCheckInterval = 4 * KBytes; +const int kRecommendedLiteralPoolRange = 2 * kLiteralPoolCheckInterval; + + +// Control whether a branch over the literal pool should also be emitted. This +// is needed if the literal pool has to be emitted in the middle of the JITted +// code. +enum LiteralPoolEmitOption { + JumpRequired, + NoJumpRequired +}; + + +// Literal pool entry. +class Literal { + public: + Literal(Instruction* pc, uint64_t imm, unsigned size) + : pc_(pc), value_(imm), size_(size) {} + + private: + Instruction* pc_; + int64_t value_; + unsigned size_; + + friend class Assembler; +}; + + +// Assembler. +class Assembler { + public: + Assembler(byte* buffer, unsigned buffer_size); + + // The destructor asserts that one of the following is true: + // * The Assembler object has not been used. + // * Nothing has been emitted since the last Reset() call. + // * Nothing has been emitted since the last FinalizeCode() call. + ~Assembler(); + + // System functions. + + // Start generating code from the beginning of the buffer, discarding any code + // and data that has already been emitted into the buffer. + // + // In order to avoid any accidental transfer of state, Reset ASSERTs that the + // constant pool is not blocked. + void Reset(); + + // Finalize a code buffer of generated instructions. This function must be + // called before executing or copying code from the buffer. + void FinalizeCode(); + + // Label. + // Bind a label to the current PC. + void bind(Label* label); + int UpdateAndGetByteOffsetTo(Label* label); + inline int UpdateAndGetInstructionOffsetTo(Label* label) { + ASSERT(Label::kEndOfChain == 0); + return UpdateAndGetByteOffsetTo(label) >> kInstructionSizeLog2; + } + + + // Instruction set functions. + + // Branch / Jump instructions. + // Branch to register. + void br(const Register& xn); + + // Branch with link to register. + void blr(const Register& xn); + + // Branch to register with return hint. + void ret(const Register& xn = lr); + + // Unconditional branch to label. + void b(Label* label); + + // Conditional branch to label. + void b(Label* label, Condition cond); + + // Unconditional branch to PC offset. + void b(int imm26); + + // Conditional branch to PC offset. + void b(int imm19, Condition cond); + + // Branch with link to label. + void bl(Label* label); + + // Branch with link to PC offset. + void bl(int imm26); + + // Compare and branch to label if zero. + void cbz(const Register& rt, Label* label); + + // Compare and branch to PC offset if zero. + void cbz(const Register& rt, int imm19); + + // Compare and branch to label if not zero. + void cbnz(const Register& rt, Label* label); + + // Compare and branch to PC offset if not zero. + void cbnz(const Register& rt, int imm19); + + // Test bit and branch to label if zero. + void tbz(const Register& rt, unsigned bit_pos, Label* label); + + // Test bit and branch to PC offset if zero. + void tbz(const Register& rt, unsigned bit_pos, int imm14); + + // Test bit and branch to label if not zero. + void tbnz(const Register& rt, unsigned bit_pos, Label* label); + + // Test bit and branch to PC offset if not zero. + void tbnz(const Register& rt, unsigned bit_pos, int imm14); + + // Address calculation instructions. + // Calculate a PC-relative address. Unlike for branches the offset in adr is + // unscaled (i.e. the result can be unaligned). + + // Calculate the address of a label. + void adr(const Register& rd, Label* label); + + // Calculate the address of a PC offset. + void adr(const Register& rd, int imm21); + + // Data Processing instructions. + // Add. + void add(const Register& rd, + const Register& rn, + const Operand& operand, + FlagsUpdate S = LeaveFlags); + + // Compare negative. + void cmn(const Register& rn, const Operand& operand); + + // Subtract. + void sub(const Register& rd, + const Register& rn, + const Operand& operand, + FlagsUpdate S = LeaveFlags); + + // Compare. + void cmp(const Register& rn, const Operand& operand); + + // Negate. + void neg(const Register& rd, + const Operand& operand, + FlagsUpdate S = LeaveFlags); + + // Add with carry bit. + void adc(const Register& rd, + const Register& rn, + const Operand& operand, + FlagsUpdate S = LeaveFlags); + + // Subtract with carry bit. + void sbc(const Register& rd, + const Register& rn, + const Operand& operand, + FlagsUpdate S = LeaveFlags); + + // Negate with carry bit. + void ngc(const Register& rd, + const Operand& operand, + FlagsUpdate S = LeaveFlags); + + // Logical instructions. + // Bitwise and (A & B). + void and_(const Register& rd, + const Register& rn, + const Operand& operand, + FlagsUpdate S = LeaveFlags); + + // Bit test and set flags. + void tst(const Register& rn, const Operand& operand); + + // Bit clear (A & ~B). + void bic(const Register& rd, + const Register& rn, + const Operand& operand, + FlagsUpdate S = LeaveFlags); + + // Bitwise or (A | B). + void orr(const Register& rd, const Register& rn, const Operand& operand); + + // Bitwise nor (A | ~B). + void orn(const Register& rd, const Register& rn, const Operand& operand); + + // Bitwise eor/xor (A ^ B). + void eor(const Register& rd, const Register& rn, const Operand& operand); + + // Bitwise enor/xnor (A ^ ~B). + void eon(const Register& rd, const Register& rn, const Operand& operand); + + // Logical shift left by variable. + void lslv(const Register& rd, const Register& rn, const Register& rm); + + // Logical shift right by variable. + void lsrv(const Register& rd, const Register& rn, const Register& rm); + + // Arithmetic shift right by variable. + void asrv(const Register& rd, const Register& rn, const Register& rm); + + // Rotate right by variable. + void rorv(const Register& rd, const Register& rn, const Register& rm); + + // Bitfield instructions. + // Bitfield move. + void bfm(const Register& rd, + const Register& rn, + unsigned immr, + unsigned imms); + + // Signed bitfield move. + void sbfm(const Register& rd, + const Register& rn, + unsigned immr, + unsigned imms); + + // Unsigned bitfield move. + void ubfm(const Register& rd, + const Register& rn, + unsigned immr, + unsigned imms); + + // Bfm aliases. + // Bitfield insert. + inline void bfi(const Register& rd, + const Register& rn, + unsigned lsb, + unsigned width) { + ASSERT(width >= 1); + ASSERT(lsb + width <= rn.size()); + bfm(rd, rn, (rd.size() - lsb) & (rd.size() - 1), width - 1); + } + + // Bitfield extract and insert low. + inline void bfxil(const Register& rd, + const Register& rn, + unsigned lsb, + unsigned width) { + ASSERT(width >= 1); + ASSERT(lsb + width <= rn.size()); + bfm(rd, rn, lsb, lsb + width - 1); + } + + // Sbfm aliases. + // Arithmetic shift right. + inline void asr(const Register& rd, const Register& rn, unsigned shift) { + ASSERT(shift < rd.size()); + sbfm(rd, rn, shift, rd.size() - 1); + } + + // Signed bitfield insert with zero at right. + inline void sbfiz(const Register& rd, + const Register& rn, + unsigned lsb, + unsigned width) { + ASSERT(width >= 1); + ASSERT(lsb + width <= rn.size()); + sbfm(rd, rn, (rd.size() - lsb) & (rd.size() - 1), width - 1); + } + + // Signed bitfield extract. + inline void sbfx(const Register& rd, + const Register& rn, + unsigned lsb, + unsigned width) { + ASSERT(width >= 1); + ASSERT(lsb + width <= rn.size()); + sbfm(rd, rn, lsb, lsb + width - 1); + } + + // Signed extend byte. + inline void sxtb(const Register& rd, const Register& rn) { + sbfm(rd, rn, 0, 7); + } + + // Signed extend halfword. + inline void sxth(const Register& rd, const Register& rn) { + sbfm(rd, rn, 0, 15); + } + + // Signed extend word. + inline void sxtw(const Register& rd, const Register& rn) { + sbfm(rd, rn, 0, 31); + } + + // Ubfm aliases. + // Logical shift left. + inline void lsl(const Register& rd, const Register& rn, unsigned shift) { + unsigned reg_size = rd.size(); + ASSERT(shift < reg_size); + ubfm(rd, rn, (reg_size - shift) % reg_size, reg_size - shift - 1); + } + + // Logical shift right. + inline void lsr(const Register& rd, const Register& rn, unsigned shift) { + ASSERT(shift < rd.size()); + ubfm(rd, rn, shift, rd.size() - 1); + } + + // Unsigned bitfield insert with zero at right. + inline void ubfiz(const Register& rd, + const Register& rn, + unsigned lsb, + unsigned width) { + ASSERT(width >= 1); + ASSERT(lsb + width <= rn.size()); + ubfm(rd, rn, (rd.size() - lsb) & (rd.size() - 1), width - 1); + } + + // Unsigned bitfield extract. + inline void ubfx(const Register& rd, + const Register& rn, + unsigned lsb, + unsigned width) { + ASSERT(width >= 1); + ASSERT(lsb + width <= rn.size()); + ubfm(rd, rn, lsb, lsb + width - 1); + } + + // Unsigned extend byte. + inline void uxtb(const Register& rd, const Register& rn) { + ubfm(rd, rn, 0, 7); + } + + // Unsigned extend halfword. + inline void uxth(const Register& rd, const Register& rn) { + ubfm(rd, rn, 0, 15); + } + + // Unsigned extend word. + inline void uxtw(const Register& rd, const Register& rn) { + ubfm(rd, rn, 0, 31); + } + + // Extract. + void extr(const Register& rd, + const Register& rn, + const Register& rm, + unsigned lsb); + + // Conditional select: rd = cond ? rn : rm. + void csel(const Register& rd, + const Register& rn, + const Register& rm, + Condition cond); + + // Conditional select increment: rd = cond ? rn : rm + 1. + void csinc(const Register& rd, + const Register& rn, + const Register& rm, + Condition cond); + + // Conditional select inversion: rd = cond ? rn : ~rm. + void csinv(const Register& rd, + const Register& rn, + const Register& rm, + Condition cond); + + // Conditional select negation: rd = cond ? rn : -rm. + void csneg(const Register& rd, + const Register& rn, + const Register& rm, + Condition cond); + + // Conditional set: rd = cond ? 1 : 0. + void cset(const Register& rd, Condition cond); + + // Conditional set mask: rd = cond ? -1 : 0. + void csetm(const Register& rd, Condition cond); + + // Conditional increment: rd = cond ? rn + 1 : rn. + void cinc(const Register& rd, const Register& rn, Condition cond); + + // Conditional invert: rd = cond ? ~rn : rn. + void cinv(const Register& rd, const Register& rn, Condition cond); + + // Conditional negate: rd = cond ? -rn : rn. + void cneg(const Register& rd, const Register& rn, Condition cond); + + // Rotate right. + inline void ror(const Register& rd, const Register& rs, unsigned shift) { + extr(rd, rs, rs, shift); + } + + // Conditional comparison. + // Conditional compare negative. + void ccmn(const Register& rn, + const Operand& operand, + StatusFlags nzcv, + Condition cond); + + // Conditional compare. + void ccmp(const Register& rn, + const Operand& operand, + StatusFlags nzcv, + Condition cond); + + // Multiply. + void mul(const Register& rd, const Register& rn, const Register& rm); + + // Negated multiply. + void mneg(const Register& rd, const Register& rn, const Register& rm); + + // Signed long multiply: 32 x 32 -> 64-bit. + void smull(const Register& rd, const Register& rn, const Register& rm); + + // Signed multiply high: 64 x 64 -> 64-bit <127:64>. + void smulh(const Register& xd, const Register& xn, const Register& xm); + + // Multiply and accumulate. + void madd(const Register& rd, + const Register& rn, + const Register& rm, + const Register& ra); + + // Multiply and subtract. + void msub(const Register& rd, + const Register& rn, + const Register& rm, + const Register& ra); + + // Signed long multiply and accumulate: 32 x 32 + 64 -> 64-bit. + void smaddl(const Register& rd, + const Register& rn, + const Register& rm, + const Register& ra); + + // Unsigned long multiply and accumulate: 32 x 32 + 64 -> 64-bit. + void umaddl(const Register& rd, + const Register& rn, + const Register& rm, + const Register& ra); + + // Signed long multiply and subtract: 64 - (32 x 32) -> 64-bit. + void smsubl(const Register& rd, + const Register& rn, + const Register& rm, + const Register& ra); + + // Unsigned long multiply and subtract: 64 - (32 x 32) -> 64-bit. + void umsubl(const Register& rd, + const Register& rn, + const Register& rm, + const Register& ra); + + // Signed integer divide. + void sdiv(const Register& rd, const Register& rn, const Register& rm); + + // Unsigned integer divide. + void udiv(const Register& rd, const Register& rn, const Register& rm); + + // Bit reverse. + void rbit(const Register& rd, const Register& rn); + + // Reverse bytes in 16-bit half words. + void rev16(const Register& rd, const Register& rn); + + // Reverse bytes in 32-bit words. + void rev32(const Register& rd, const Register& rn); + + // Reverse bytes. + void rev(const Register& rd, const Register& rn); + + // Count leading zeroes. + void clz(const Register& rd, const Register& rn); + + // Count leading sign bits. + void cls(const Register& rd, const Register& rn); + + // Memory instructions. + // Load integer or FP register. + void ldr(const CPURegister& rt, const MemOperand& src); + + // Store integer or FP register. + void str(const CPURegister& rt, const MemOperand& dst); + + // Load word with sign extension. + void ldrsw(const Register& rt, const MemOperand& src); + + // Load byte. + void ldrb(const Register& rt, const MemOperand& src); + + // Store byte. + void strb(const Register& rt, const MemOperand& dst); + + // Load byte with sign extension. + void ldrsb(const Register& rt, const MemOperand& src); + + // Load half-word. + void ldrh(const Register& rt, const MemOperand& src); + + // Store half-word. + void strh(const Register& rt, const MemOperand& dst); + + // Load half-word with sign extension. + void ldrsh(const Register& rt, const MemOperand& src); + + // Load integer or FP register pair. + void ldp(const CPURegister& rt, const CPURegister& rt2, + const MemOperand& src); + + // Store integer or FP register pair. + void stp(const CPURegister& rt, const CPURegister& rt2, + const MemOperand& dst); + + // Load word pair with sign extension. + void ldpsw(const Register& rt, const Register& rt2, const MemOperand& src); + + // Load integer or FP register pair, non-temporal. + void ldnp(const CPURegister& rt, const CPURegister& rt2, + const MemOperand& src); + + // Store integer or FP register pair, non-temporal. + void stnp(const CPURegister& rt, const CPURegister& rt2, + const MemOperand& dst); + + // Load literal to register. + void ldr(const Register& rt, uint64_t imm); + + // Load literal to FP register. + void ldr(const FPRegister& ft, double imm); + + // Move instructions. The default shift of -1 indicates that the move + // instruction will calculate an appropriate 16-bit immediate and left shift + // that is equal to the 64-bit immediate argument. If an explicit left shift + // is specified (0, 16, 32 or 48), the immediate must be a 16-bit value. + // + // For movk, an explicit shift can be used to indicate which half word should + // be overwritten, eg. movk(x0, 0, 0) will overwrite the least-significant + // half word with zero, whereas movk(x0, 0, 48) will overwrite the + // most-significant. + + // Move immediate and keep. + void movk(const Register& rd, uint64_t imm, int shift = -1) { + MoveWide(rd, imm, shift, MOVK); + } + + // Move inverted immediate. + void movn(const Register& rd, uint64_t imm, int shift = -1) { + MoveWide(rd, imm, shift, MOVN); + } + + // Move immediate. + void movz(const Register& rd, uint64_t imm, int shift = -1) { + MoveWide(rd, imm, shift, MOVZ); + } + + // Misc instructions. + // Monitor debug-mode breakpoint. + void brk(int code); + + // Halting debug-mode breakpoint. + void hlt(int code); + + // Move register to register. + void mov(const Register& rd, const Register& rn); + + // Move inverted operand to register. + void mvn(const Register& rd, const Operand& operand); + + // System instructions. + // Move to register from system register. + void mrs(const Register& rt, SystemRegister sysreg); + + // Move from register to system register. + void msr(SystemRegister sysreg, const Register& rt); + + // System hint. + void hint(SystemHint code); + + // Alias for system instructions. + // No-op. + void nop() { + hint(NOP); + } + + // FP instructions. + // Move immediate to FP register. + void fmov(FPRegister fd, double imm); + + // Move FP register to register. + void fmov(Register rd, FPRegister fn); + + // Move register to FP register. + void fmov(FPRegister fd, Register rn); + + // Move FP register to FP register. + void fmov(FPRegister fd, FPRegister fn); + + // FP add. + void fadd(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm); + + // FP subtract. + void fsub(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm); + + // FP multiply. + void fmul(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm); + + // FP multiply and subtract. + void fmsub(const FPRegister& fd, + const FPRegister& fn, + const FPRegister& fm, + const FPRegister& fa); + + // FP divide. + void fdiv(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm); + + // FP maximum. + void fmax(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm); + + // FP minimum. + void fmin(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm); + + // FP absolute. + void fabs(const FPRegister& fd, const FPRegister& fn); + + // FP negate. + void fneg(const FPRegister& fd, const FPRegister& fn); + + // FP square root. + void fsqrt(const FPRegister& fd, const FPRegister& fn); + + // FP round to integer (nearest with ties to even). + void frintn(const FPRegister& fd, const FPRegister& fn); + + // FP round to integer (towards zero). + void frintz(const FPRegister& fd, const FPRegister& fn); + + // FP compare registers. + void fcmp(const FPRegister& fn, const FPRegister& fm); + + // FP compare immediate. + void fcmp(const FPRegister& fn, double value); + + // FP conditional compare. + void fccmp(const FPRegister& fn, + const FPRegister& fm, + StatusFlags nzcv, + Condition cond); + + // FP conditional select. + void fcsel(const FPRegister& fd, + const FPRegister& fn, + const FPRegister& fm, + Condition cond); + + // Common FP Convert function. + void FPConvertToInt(const Register& rd, + const FPRegister& fn, + FPIntegerConvertOp op); + + // FP convert between single and double precision. + void fcvt(const FPRegister& fd, const FPRegister& fn); + + // Convert FP to unsigned integer (round towards -infinity). + void fcvtmu(const Register& rd, const FPRegister& fn); + + // Convert FP to signed integer (round towards -infinity). + void fcvtms(const Register& rd, const FPRegister& fn); + + // Convert FP to unsigned integer (nearest with ties to even). + void fcvtnu(const Register& rd, const FPRegister& fn); + + // Convert FP to signed integer (nearest with ties to even). + void fcvtns(const Register& rd, const FPRegister& fn); + + // Convert FP to unsigned integer (round towards zero). + void fcvtzu(const Register& rd, const FPRegister& fn); + + // Convert FP to signed integer (round towards zero). + void fcvtzs(const Register& rd, const FPRegister& fn); + + // Convert signed integer or fixed point to FP. + void scvtf(const FPRegister& fd, const Register& rn, unsigned fbits = 0); + + // Convert unsigned integer or fixed point to FP. + void ucvtf(const FPRegister& fd, const Register& rn, unsigned fbits = 0); + + // Emit generic instructions. + // Emit raw instructions into the instruction stream. + inline void dci(Instr raw_inst) { Emit(raw_inst); } + + // Emit 32 bits of data into the instruction stream. + inline void dc32(uint32_t data) { EmitData(&data, sizeof(data)); } + + // Emit 64 bits of data into the instruction stream. + inline void dc64(uint64_t data) { EmitData(&data, sizeof(data)); } + + // Copy a string into the instruction stream, including the terminating NULL + // character. The instruction pointer (pc_) is then aligned correctly for + // subsequent instructions. + void EmitStringData(const char * string) { + ASSERT(string != NULL); + + size_t len = strlen(string) + 1; + EmitData(string, len); + + // Pad with NULL characters until pc_ is aligned. + const char pad[] = {'\0', '\0', '\0', '\0'}; + ASSERT(sizeof(pad) == kInstructionSize); + Instruction* next_pc = AlignUp(pc_, kInstructionSize); + EmitData(&pad, next_pc - pc_); + } + + // Code generation helpers. + + // Register encoding. + static Instr Rd(CPURegister rd) { + ASSERT(rd.code() != kSPRegInternalCode); + return rd.code() << Rd_offset; + } + + static Instr Rn(CPURegister rn) { + ASSERT(rn.code() != kSPRegInternalCode); + return rn.code() << Rn_offset; + } + + static Instr Rm(CPURegister rm) { + ASSERT(rm.code() != kSPRegInternalCode); + return rm.code() << Rm_offset; + } + + static Instr Ra(CPURegister ra) { + ASSERT(ra.code() != kSPRegInternalCode); + return ra.code() << Ra_offset; + } + + static Instr Rt(CPURegister rt) { + ASSERT(rt.code() != kSPRegInternalCode); + return rt.code() << Rt_offset; + } + + static Instr Rt2(CPURegister rt2) { + ASSERT(rt2.code() != kSPRegInternalCode); + return rt2.code() << Rt2_offset; + } + + // These encoding functions allow the stack pointer to be encoded, and + // disallow the zero register. + static Instr RdSP(Register rd) { + ASSERT(!rd.IsZero()); + return (rd.code() & kRegCodeMask) << Rd_offset; + } + + static Instr RnSP(Register rn) { + ASSERT(!rn.IsZero()); + return (rn.code() & kRegCodeMask) << Rn_offset; + } + + // Flags encoding. + static Instr Flags(FlagsUpdate S) { + if (S == SetFlags) { + return 1 << FlagsUpdate_offset; + } else if (S == LeaveFlags) { + return 0 << FlagsUpdate_offset; + } + UNREACHABLE(); + return 0; + } + + static Instr Cond(Condition cond) { + return cond << Condition_offset; + } + + // PC-relative address encoding. + static Instr ImmPCRelAddress(int imm21) { + ASSERT(is_int21(imm21)); + Instr imm = static_cast<Instr>(truncate_to_int21(imm21)); + Instr immhi = (imm >> ImmPCRelLo_width) << ImmPCRelHi_offset; + Instr immlo = imm << ImmPCRelLo_offset; + return (immhi & ImmPCRelHi_mask) | (immlo & ImmPCRelLo_mask); + } + + // Branch encoding. + static Instr ImmUncondBranch(int imm26) { + ASSERT(is_int26(imm26)); + return truncate_to_int26(imm26) << ImmUncondBranch_offset; + } + + static Instr ImmCondBranch(int imm19) { + ASSERT(is_int19(imm19)); + return truncate_to_int19(imm19) << ImmCondBranch_offset; + } + + static Instr ImmCmpBranch(int imm19) { + ASSERT(is_int19(imm19)); + return truncate_to_int19(imm19) << ImmCmpBranch_offset; + } + + static Instr ImmTestBranch(int imm14) { + ASSERT(is_int14(imm14)); + return truncate_to_int14(imm14) << ImmTestBranch_offset; + } + + static Instr ImmTestBranchBit(unsigned bit_pos) { + ASSERT(is_uint6(bit_pos)); + // Subtract five from the shift offset, as we need bit 5 from bit_pos. + unsigned b5 = bit_pos << (ImmTestBranchBit5_offset - 5); + unsigned b40 = bit_pos << ImmTestBranchBit40_offset; + b5 &= ImmTestBranchBit5_mask; + b40 &= ImmTestBranchBit40_mask; + return b5 | b40; + } + + // Data Processing encoding. + static Instr SF(Register rd) { + return rd.Is64Bits() ? SixtyFourBits : ThirtyTwoBits; + } + + static Instr ImmAddSub(int64_t imm) { + ASSERT(IsImmAddSub(imm)); + if (is_uint12(imm)) { // No shift required. + return imm << ImmAddSub_offset; + } else { + return ((imm >> 12) << ImmAddSub_offset) | (1 << ShiftAddSub_offset); + } + } + + static inline Instr ImmS(unsigned imms, unsigned reg_size) { + ASSERT(((reg_size == kXRegSize) && is_uint6(imms)) || + ((reg_size == kWRegSize) && is_uint5(imms))); + USE(reg_size); + return imms << ImmS_offset; + } + + static inline Instr ImmR(unsigned immr, unsigned reg_size) { + ASSERT(((reg_size == kXRegSize) && is_uint6(immr)) || + ((reg_size == kWRegSize) && is_uint5(immr))); + USE(reg_size); + ASSERT(is_uint6(immr)); + return immr << ImmR_offset; + } + + static inline Instr ImmSetBits(unsigned imms, unsigned reg_size) { + ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize)); + ASSERT(is_uint6(imms)); + ASSERT((reg_size == kXRegSize) || is_uint6(imms + 3)); + USE(reg_size); + return imms << ImmSetBits_offset; + } + + static inline Instr ImmRotate(unsigned immr, unsigned reg_size) { + ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize)); + ASSERT(((reg_size == kXRegSize) && is_uint6(immr)) || + ((reg_size == kWRegSize) && is_uint5(immr))); + USE(reg_size); + return immr << ImmRotate_offset; + } + + static inline Instr ImmLLiteral(int imm19) { + ASSERT(is_int19(imm19)); + return truncate_to_int19(imm19) << ImmLLiteral_offset; + } + + static inline Instr BitN(unsigned bitn, unsigned reg_size) { + ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize)); + ASSERT((reg_size == kXRegSize) || (bitn == 0)); + USE(reg_size); + return bitn << BitN_offset; + } + + static Instr ShiftDP(Shift shift) { + ASSERT(shift == LSL || shift == LSR || shift == ASR || shift == ROR); + return shift << ShiftDP_offset; + } + + static Instr ImmDPShift(unsigned amount) { + ASSERT(is_uint6(amount)); + return amount << ImmDPShift_offset; + } + + static Instr ExtendMode(Extend extend) { + return extend << ExtendMode_offset; + } + + static Instr ImmExtendShift(unsigned left_shift) { + ASSERT(left_shift <= 4); + return left_shift << ImmExtendShift_offset; + } + + static Instr ImmCondCmp(unsigned imm) { + ASSERT(is_uint5(imm)); + return imm << ImmCondCmp_offset; + } + + static Instr Nzcv(StatusFlags nzcv) { + return ((nzcv >> Flags_offset) & 0xf) << Nzcv_offset; + } + + // MemOperand offset encoding. + static Instr ImmLSUnsigned(int imm12) { + ASSERT(is_uint12(imm12)); + return imm12 << ImmLSUnsigned_offset; + } + + static Instr ImmLS(int imm9) { + ASSERT(is_int9(imm9)); + return truncate_to_int9(imm9) << ImmLS_offset; + } + + static Instr ImmLSPair(int imm7, LSDataSize size) { + ASSERT(((imm7 >> size) << size) == imm7); + int scaled_imm7 = imm7 >> size; + ASSERT(is_int7(scaled_imm7)); + return truncate_to_int7(scaled_imm7) << ImmLSPair_offset; + } + + static Instr ImmShiftLS(unsigned shift_amount) { + ASSERT(is_uint1(shift_amount)); + return shift_amount << ImmShiftLS_offset; + } + + static Instr ImmException(int imm16) { + ASSERT(is_uint16(imm16)); + return imm16 << ImmException_offset; + } + + static Instr ImmSystemRegister(int imm15) { + ASSERT(is_uint15(imm15)); + return imm15 << ImmSystemRegister_offset; + } + + static Instr ImmHint(int imm7) { + ASSERT(is_uint7(imm7)); + return imm7 << ImmHint_offset; + } + + static LSDataSize CalcLSDataSize(LoadStoreOp op) { + ASSERT((SizeLS_offset + SizeLS_width) == (kInstructionSize * 8)); + return static_cast<LSDataSize>(op >> SizeLS_offset); + } + + // Move immediates encoding. + static Instr ImmMoveWide(uint64_t imm) { + ASSERT(is_uint16(imm)); + return imm << ImmMoveWide_offset; + } + + static Instr ShiftMoveWide(int64_t shift) { + ASSERT(is_uint2(shift)); + return shift << ShiftMoveWide_offset; + } + + // FP Immediates. + static Instr ImmFP32(float imm); + static Instr ImmFP64(double imm); + + // FP register type. + static Instr FPType(FPRegister fd) { + return fd.Is64Bits() ? FP64 : FP32; + } + + static Instr FPScale(unsigned scale) { + ASSERT(is_uint6(scale)); + return scale << FPScale_offset; + } + + // Size of the code generated in bytes + uint64_t SizeOfCodeGenerated() const { + ASSERT((pc_ >= buffer_) && (pc_ < (buffer_ + buffer_size_))); + return pc_ - buffer_; + } + + // Size of the code generated since label to the current position. + uint64_t SizeOfCodeGeneratedSince(Label* label) const { + ASSERT(label->IsBound()); + ASSERT((pc_ >= label->target()) && (pc_ < (buffer_ + buffer_size_))); + return pc_ - label->target(); + } + + + inline void BlockLiteralPool() { + literal_pool_monitor_++; + } + + inline void ReleaseLiteralPool() { + if (--literal_pool_monitor_ == 0) { + // Has the literal pool been blocked for too long? + ASSERT(literals_.empty() || + (pc_ < (literals_.back()->pc_ + kMaxLoadLiteralRange))); + } + } + + inline bool IsLiteralPoolBlocked() { + return literal_pool_monitor_ != 0; + } + + void CheckLiteralPool(LiteralPoolEmitOption option = JumpRequired); + void EmitLiteralPool(LiteralPoolEmitOption option = NoJumpRequired); + size_t LiteralPoolSize(); + + protected: + inline const Register& AppropriateZeroRegFor(const CPURegister& reg) const { + return reg.Is64Bits() ? xzr : wzr; + } + + + void LoadStore(const CPURegister& rt, + const MemOperand& addr, + LoadStoreOp op); + static bool IsImmLSUnscaled(ptrdiff_t offset); + static bool IsImmLSScaled(ptrdiff_t offset, LSDataSize size); + + void Logical(const Register& rd, + const Register& rn, + const Operand& operand, + LogicalOp op); + void LogicalImmediate(const Register& rd, + const Register& rn, + unsigned n, + unsigned imm_s, + unsigned imm_r, + LogicalOp op); + static bool IsImmLogical(uint64_t value, + unsigned width, + unsigned* n, + unsigned* imm_s, + unsigned* imm_r); + + void ConditionalCompare(const Register& rn, + const Operand& operand, + StatusFlags nzcv, + Condition cond, + ConditionalCompareOp op); + static bool IsImmConditionalCompare(int64_t immediate); + + void AddSubWithCarry(const Register& rd, + const Register& rn, + const Operand& operand, + FlagsUpdate S, + AddSubWithCarryOp op); + + // Functions for emulating operands not directly supported by the instruction + // set. + void EmitShift(const Register& rd, + const Register& rn, + Shift shift, + unsigned amount); + void EmitExtendShift(const Register& rd, + const Register& rn, + Extend extend, + unsigned left_shift); + + void AddSub(const Register& rd, + const Register& rn, + const Operand& operand, + FlagsUpdate S, + AddSubOp op); + static bool IsImmAddSub(int64_t immediate); + + // Find an appropriate LoadStoreOp or LoadStorePairOp for the specified + // registers. Only simple loads are supported; sign- and zero-extension (such + // as in LDPSW_x or LDRB_w) are not supported. + static LoadStoreOp LoadOpFor(const CPURegister& rt); + static LoadStorePairOp LoadPairOpFor(const CPURegister& rt, + const CPURegister& rt2); + static LoadStoreOp StoreOpFor(const CPURegister& rt); + static LoadStorePairOp StorePairOpFor(const CPURegister& rt, + const CPURegister& rt2); + static LoadStorePairNonTemporalOp LoadPairNonTemporalOpFor( + const CPURegister& rt, const CPURegister& rt2); + static LoadStorePairNonTemporalOp StorePairNonTemporalOpFor( + const CPURegister& rt, const CPURegister& rt2); + + + private: + // Instruction helpers. + void MoveWide(const Register& rd, + uint64_t imm, + int shift, + MoveWideImmediateOp mov_op); + void DataProcShiftedRegister(const Register& rd, + const Register& rn, + const Operand& operand, + FlagsUpdate S, + Instr op); + void DataProcExtendedRegister(const Register& rd, + const Register& rn, + const Operand& operand, + FlagsUpdate S, + Instr op); + void LoadStorePair(const CPURegister& rt, + const CPURegister& rt2, + const MemOperand& addr, + LoadStorePairOp op); + void LoadStorePairNonTemporal(const CPURegister& rt, + const CPURegister& rt2, + const MemOperand& addr, + LoadStorePairNonTemporalOp op); + void LoadLiteral(const CPURegister& rt, uint64_t imm, LoadLiteralOp op); + void ConditionalSelect(const Register& rd, + const Register& rn, + const Register& rm, + Condition cond, + ConditionalSelectOp op); + void DataProcessing1Source(const Register& rd, + const Register& rn, + DataProcessing1SourceOp op); + void DataProcessing3Source(const Register& rd, + const Register& rn, + const Register& rm, + const Register& ra, + DataProcessing3SourceOp op); + void FPDataProcessing1Source(const FPRegister& fd, + const FPRegister& fn, + FPDataProcessing1SourceOp op); + void FPDataProcessing2Source(const FPRegister& fd, + const FPRegister& fn, + const FPRegister& fm, + FPDataProcessing2SourceOp op); + void FPDataProcessing3Source(const FPRegister& fd, + const FPRegister& fn, + const FPRegister& fm, + const FPRegister& fa, + FPDataProcessing3SourceOp op); + + // Encoding helpers. + static bool IsImmFP32(float imm); + static bool IsImmFP64(double imm); + + void RecordLiteral(int64_t imm, unsigned size); + + // Emit the instruction at pc_. + void Emit(Instr instruction) { + ASSERT(sizeof(*pc_) == 1); + ASSERT(sizeof(instruction) == kInstructionSize); + ASSERT((pc_ + sizeof(instruction)) <= (buffer_ + buffer_size_)); + +#ifdef DEBUG + finalized_ = false; +#endif + + memcpy(pc_, &instruction, sizeof(instruction)); + pc_ += sizeof(instruction); + CheckBufferSpace(); + } + + // Emit data inline in the instruction stream. + void EmitData(void const * data, unsigned size) { + ASSERT(sizeof(*pc_) == 1); + ASSERT((pc_ + size) <= (buffer_ + buffer_size_)); + +#ifdef DEBUG + finalized_ = false; +#endif + + // TODO: Record this 'instruction' as data, so that it can be disassembled + // correctly. + memcpy(pc_, data, size); + pc_ += size; + CheckBufferSpace(); + } + + inline void CheckBufferSpace() { + ASSERT(pc_ < (buffer_ + buffer_size_)); + if (pc_ > next_literal_pool_check_) { + CheckLiteralPool(); + } + } + + // The buffer into which code and relocation info are generated. + Instruction* buffer_; + // Buffer size, in bytes. + unsigned buffer_size_; + Instruction* pc_; + std::list<Literal*> literals_; + Instruction* next_literal_pool_check_; + unsigned literal_pool_monitor_; + + friend class BlockLiteralPoolScope; + +#ifdef DEBUG + bool finalized_; +#endif +}; + +class BlockLiteralPoolScope { + public: + explicit BlockLiteralPoolScope(Assembler* assm) : assm_(assm) { + assm_->BlockLiteralPool(); + } + + ~BlockLiteralPoolScope() { + assm_->ReleaseLiteralPool(); + } + + private: + Assembler* assm_; +}; +} // namespace vixl + +#endif // VIXL_A64_ASSEMBLER_A64_H_ diff --git a/disas/libvixl/a64/constants-a64.h b/disas/libvixl/a64/constants-a64.h new file mode 100644 index 0000000..2e0336d --- /dev/null +++ b/disas/libvixl/a64/constants-a64.h @@ -0,0 +1,1104 @@ +// Copyright 2013, ARM Limited +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are met: +// +// * Redistributions of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// * Neither the name of ARM Limited nor the names of its contributors may be +// used to endorse or promote products derived from this software without +// specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND +// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE +// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#ifndef VIXL_A64_CONSTANTS_A64_H_ +#define VIXL_A64_CONSTANTS_A64_H_ + +namespace vixl { + +const unsigned kNumberOfRegisters = 32; +const unsigned kNumberOfFPRegisters = 32; +// Callee saved registers are x21-x30(lr). +const int kNumberOfCalleeSavedRegisters = 10; +const int kFirstCalleeSavedRegisterIndex = 21; +// Callee saved FP registers are d8-d15. +const int kNumberOfCalleeSavedFPRegisters = 8; +const int kFirstCalleeSavedFPRegisterIndex = 8; + +#define REGISTER_CODE_LIST(R) \ +R(0) R(1) R(2) R(3) R(4) R(5) R(6) R(7) \ +R(8) R(9) R(10) R(11) R(12) R(13) R(14) R(15) \ +R(16) R(17) R(18) R(19) R(20) R(21) R(22) R(23) \ +R(24) R(25) R(26) R(27) R(28) R(29) R(30) R(31) + +#define INSTRUCTION_FIELDS_LIST(V_) \ +/* Register fields */ \ +V_(Rd, 4, 0, Bits) /* Destination register. */ \ +V_(Rn, 9, 5, Bits) /* First source register. */ \ +V_(Rm, 20, 16, Bits) /* Second source register. */ \ +V_(Ra, 14, 10, Bits) /* Third source register. */ \ +V_(Rt, 4, 0, Bits) /* Load dest / store source. */ \ +V_(Rt2, 14, 10, Bits) /* Load second dest / */ \ + /* store second source. */ \ +V_(PrefetchMode, 4, 0, Bits) \ + \ +/* Common bits */ \ +V_(SixtyFourBits, 31, 31, Bits) \ +V_(FlagsUpdate, 29, 29, Bits) \ + \ +/* PC relative addressing */ \ +V_(ImmPCRelHi, 23, 5, SignedBits) \ +V_(ImmPCRelLo, 30, 29, Bits) \ + \ +/* Add/subtract/logical shift register */ \ +V_(ShiftDP, 23, 22, Bits) \ +V_(ImmDPShift, 15, 10, Bits) \ + \ +/* Add/subtract immediate */ \ +V_(ImmAddSub, 21, 10, Bits) \ +V_(ShiftAddSub, 23, 22, Bits) \ + \ +/* Add/substract extend */ \ +V_(ImmExtendShift, 12, 10, Bits) \ +V_(ExtendMode, 15, 13, Bits) \ + \ +/* Move wide */ \ +V_(ImmMoveWide, 20, 5, Bits) \ +V_(ShiftMoveWide, 22, 21, Bits) \ + \ +/* Logical immediate, bitfield and extract */ \ +V_(BitN, 22, 22, Bits) \ +V_(ImmRotate, 21, 16, Bits) \ +V_(ImmSetBits, 15, 10, Bits) \ +V_(ImmR, 21, 16, Bits) \ +V_(ImmS, 15, 10, Bits) \ + \ +/* Test and branch immediate */ \ +V_(ImmTestBranch, 18, 5, SignedBits) \ +V_(ImmTestBranchBit40, 23, 19, Bits) \ +V_(ImmTestBranchBit5, 31, 31, Bits) \ + \ +/* Conditionals */ \ +V_(Condition, 15, 12, Bits) \ +V_(ConditionBranch, 3, 0, Bits) \ +V_(Nzcv, 3, 0, Bits) \ +V_(ImmCondCmp, 20, 16, Bits) \ +V_(ImmCondBranch, 23, 5, SignedBits) \ + \ +/* Floating point */ \ +V_(FPType, 23, 22, Bits) \ +V_(ImmFP, 20, 13, Bits) \ +V_(FPScale, 15, 10, Bits) \ + \ +/* Load Store */ \ +V_(ImmLS, 20, 12, SignedBits) \ +V_(ImmLSUnsigned, 21, 10, Bits) \ +V_(ImmLSPair, 21, 15, SignedBits) \ +V_(SizeLS, 31, 30, Bits) \ +V_(ImmShiftLS, 12, 12, Bits) \ + \ +/* Other immediates */ \ +V_(ImmUncondBranch, 25, 0, SignedBits) \ +V_(ImmCmpBranch, 23, 5, SignedBits) \ +V_(ImmLLiteral, 23, 5, SignedBits) \ +V_(ImmException, 20, 5, Bits) \ +V_(ImmHint, 11, 5, Bits) \ + \ +/* System (MRS, MSR) */ \ +V_(ImmSystemRegister, 19, 5, Bits) \ +V_(SysO0, 19, 19, Bits) \ +V_(SysOp1, 18, 16, Bits) \ +V_(SysOp2, 7, 5, Bits) \ +V_(CRn, 15, 12, Bits) \ +V_(CRm, 11, 8, Bits) \ + + +#define SYSTEM_REGISTER_FIELDS_LIST(V_, M_) \ +/* NZCV */ \ +V_(Flags, 31, 28, Bits) \ +V_(N, 31, 31, Bits) \ +V_(Z, 30, 30, Bits) \ +V_(C, 29, 29, Bits) \ +V_(V, 28, 28, Bits) \ +M_(NZCV, Flags_mask) \ + \ +/* FPCR */ \ +V_(AHP, 26, 26, Bits) \ +V_(DN, 25, 25, Bits) \ +V_(FZ, 24, 24, Bits) \ +V_(RMode, 23, 22, Bits) \ +M_(FPCR, AHP_mask | DN_mask | FZ_mask | RMode_mask) + + +// Fields offsets. +#define DECLARE_FIELDS_OFFSETS(Name, HighBit, LowBit, X) \ +const int Name##_offset = LowBit; \ +const int Name##_width = HighBit - LowBit + 1; \ +const uint32_t Name##_mask = ((1 << Name##_width) - 1) << LowBit; +#define NOTHING(A, B) +INSTRUCTION_FIELDS_LIST(DECLARE_FIELDS_OFFSETS) +SYSTEM_REGISTER_FIELDS_LIST(DECLARE_FIELDS_OFFSETS, NOTHING) +#undef NOTHING +#undef DECLARE_FIELDS_BITS + +// ImmPCRel is a compound field (not present in INSTRUCTION_FIELDS_LIST), formed +// from ImmPCRelLo and ImmPCRelHi. +const int ImmPCRel_mask = ImmPCRelLo_mask | ImmPCRelHi_mask; + +// Condition codes. +enum Condition { + eq = 0, + ne = 1, + hs = 2, + lo = 3, + mi = 4, + pl = 5, + vs = 6, + vc = 7, + hi = 8, + ls = 9, + ge = 10, + lt = 11, + gt = 12, + le = 13, + al = 14, + nv = 15 // Behaves as always/al. +}; + +inline Condition InvertCondition(Condition cond) { + // Conditions al and nv behave identically, as "always true". They can't be + // inverted, because there is no "always false" condition. + ASSERT((cond != al) && (cond != nv)); + return static_cast<Condition>(cond ^ 1); +} + +enum FlagsUpdate { + SetFlags = 1, + LeaveFlags = 0 +}; + +enum StatusFlags { + NoFlag = 0, + + // Derive the flag combinations from the system register bit descriptions. + NFlag = N_mask, + ZFlag = Z_mask, + CFlag = C_mask, + VFlag = V_mask, + NZFlag = NFlag | ZFlag, + NCFlag = NFlag | CFlag, + NVFlag = NFlag | VFlag, + ZCFlag = ZFlag | CFlag, + ZVFlag = ZFlag | VFlag, + CVFlag = CFlag | VFlag, + NZCFlag = NFlag | ZFlag | CFlag, + NZVFlag = NFlag | ZFlag | VFlag, + NCVFlag = NFlag | CFlag | VFlag, + ZCVFlag = ZFlag | CFlag | VFlag, + NZCVFlag = NFlag | ZFlag | CFlag | VFlag, + + // Floating-point comparison results. + FPEqualFlag = ZCFlag, + FPLessThanFlag = NFlag, + FPGreaterThanFlag = CFlag, + FPUnorderedFlag = CVFlag +}; + +enum Shift { + NO_SHIFT = -1, + LSL = 0x0, + LSR = 0x1, + ASR = 0x2, + ROR = 0x3 +}; + +enum Extend { + NO_EXTEND = -1, + UXTB = 0, + UXTH = 1, + UXTW = 2, + UXTX = 3, + SXTB = 4, + SXTH = 5, + SXTW = 6, + SXTX = 7 +}; + +enum SystemHint { + NOP = 0, + YIELD = 1, + WFE = 2, + WFI = 3, + SEV = 4, + SEVL = 5 +}; + +// System/special register names. +// This information is not encoded as one field but as the concatenation of +// multiple fields (Op0<0>, Op1, Crn, Crm, Op2). +enum SystemRegister { + NZCV = ((0x1 << SysO0_offset) | + (0x3 << SysOp1_offset) | + (0x4 << CRn_offset) | + (0x2 << CRm_offset) | + (0x0 << SysOp2_offset)) >> ImmSystemRegister_offset, + FPCR = ((0x1 << SysO0_offset) | + (0x3 << SysOp1_offset) | + (0x4 << CRn_offset) | + (0x4 << CRm_offset) | + (0x0 << SysOp2_offset)) >> ImmSystemRegister_offset +}; + +// Instruction enumerations. +// +// These are the masks that define a class of instructions, and the list of +// instructions within each class. Each enumeration has a Fixed, FMask and +// Mask value. +// +// Fixed: The fixed bits in this instruction class. +// FMask: The mask used to extract the fixed bits in the class. +// Mask: The mask used to identify the instructions within a class. +// +// The enumerations can be used like this: +// +// ASSERT(instr->Mask(PCRelAddressingFMask) == PCRelAddressingFixed); +// switch(instr->Mask(PCRelAddressingMask)) { +// case ADR: Format("adr 'Xd, 'AddrPCRelByte"); break; +// case ADRP: Format("adrp 'Xd, 'AddrPCRelPage"); break; +// default: printf("Unknown instruction\n"); +// } + + +// Generic fields. +enum GenericInstrField { + SixtyFourBits = 0x80000000, + ThirtyTwoBits = 0x00000000, + FP32 = 0x00000000, + FP64 = 0x00400000 +}; + +// PC relative addressing. +enum PCRelAddressingOp { + PCRelAddressingFixed = 0x10000000, + PCRelAddressingFMask = 0x1F000000, + PCRelAddressingMask = 0x9F000000, + ADR = PCRelAddressingFixed | 0x00000000, + ADRP = PCRelAddressingFixed | 0x80000000 +}; + +// Add/sub (immediate, shifted and extended.) +const int kSFOffset = 31; +enum AddSubOp { + AddSubOpMask = 0x60000000, + AddSubSetFlagsBit = 0x20000000, + ADD = 0x00000000, + ADDS = ADD | AddSubSetFlagsBit, + SUB = 0x40000000, + SUBS = SUB | AddSubSetFlagsBit +}; + +#define ADD_SUB_OP_LIST(V) \ + V(ADD), \ + V(ADDS), \ + V(SUB), \ + V(SUBS) + +enum AddSubImmediateOp { + AddSubImmediateFixed = 0x11000000, + AddSubImmediateFMask = 0x1F000000, + AddSubImmediateMask = 0xFF000000, + #define ADD_SUB_IMMEDIATE(A) \ + A##_w_imm = AddSubImmediateFixed | A, \ + A##_x_imm = AddSubImmediateFixed | A | SixtyFourBits + ADD_SUB_OP_LIST(ADD_SUB_IMMEDIATE) + #undef ADD_SUB_IMMEDIATE +}; + +enum AddSubShiftedOp { + AddSubShiftedFixed = 0x0B000000, + AddSubShiftedFMask = 0x1F200000, + AddSubShiftedMask = 0xFF200000, + #define ADD_SUB_SHIFTED(A) \ + A##_w_shift = AddSubShiftedFixed | A, \ + A##_x_shift = AddSubShiftedFixed | A | SixtyFourBits + ADD_SUB_OP_LIST(ADD_SUB_SHIFTED) + #undef ADD_SUB_SHIFTED +}; + +enum AddSubExtendedOp { + AddSubExtendedFixed = 0x0B200000, + AddSubExtendedFMask = 0x1F200000, + AddSubExtendedMask = 0xFFE00000, + #define ADD_SUB_EXTENDED(A) \ + A##_w_ext = AddSubExtendedFixed | A, \ + A##_x_ext = AddSubExtendedFixed | A | SixtyFourBits + ADD_SUB_OP_LIST(ADD_SUB_EXTENDED) + #undef ADD_SUB_EXTENDED +}; + +// Add/sub with carry. +enum AddSubWithCarryOp { + AddSubWithCarryFixed = 0x1A000000, + AddSubWithCarryFMask = 0x1FE00000, + AddSubWithCarryMask = 0xFFE0FC00, + ADC_w = AddSubWithCarryFixed | ADD, + ADC_x = AddSubWithCarryFixed | ADD | SixtyFourBits, + ADC = ADC_w, + ADCS_w = AddSubWithCarryFixed | ADDS, + ADCS_x = AddSubWithCarryFixed | ADDS | SixtyFourBits, + SBC_w = AddSubWithCarryFixed | SUB, + SBC_x = AddSubWithCarryFixed | SUB | SixtyFourBits, + SBC = SBC_w, + SBCS_w = AddSubWithCarryFixed | SUBS, + SBCS_x = AddSubWithCarryFixed | SUBS | SixtyFourBits +}; + + +// Logical (immediate and shifted register). +enum LogicalOp { + LogicalOpMask = 0x60200000, + NOT = 0x00200000, + AND = 0x00000000, + BIC = AND | NOT, + ORR = 0x20000000, + ORN = ORR | NOT, + EOR = 0x40000000, + EON = EOR | NOT, + ANDS = 0x60000000, + BICS = ANDS | NOT +}; + +// Logical immediate. +enum LogicalImmediateOp { + LogicalImmediateFixed = 0x12000000, + LogicalImmediateFMask = 0x1F800000, + LogicalImmediateMask = 0xFF800000, + AND_w_imm = LogicalImmediateFixed | AND, + AND_x_imm = LogicalImmediateFixed | AND | SixtyFourBits, + ORR_w_imm = LogicalImmediateFixed | ORR, + ORR_x_imm = LogicalImmediateFixed | ORR | SixtyFourBits, + EOR_w_imm = LogicalImmediateFixed | EOR, + EOR_x_imm = LogicalImmediateFixed | EOR | SixtyFourBits, + ANDS_w_imm = LogicalImmediateFixed | ANDS, + ANDS_x_imm = LogicalImmediateFixed | ANDS | SixtyFourBits +}; + +// Logical shifted register. +enum LogicalShiftedOp { + LogicalShiftedFixed = 0x0A000000, + LogicalShiftedFMask = 0x1F000000, + LogicalShiftedMask = 0xFF200000, + AND_w = LogicalShiftedFixed | AND, + AND_x = LogicalShiftedFixed | AND | SixtyFourBits, + AND_shift = AND_w, + BIC_w = LogicalShiftedFixed | BIC, + BIC_x = LogicalShiftedFixed | BIC | SixtyFourBits, + BIC_shift = BIC_w, + ORR_w = LogicalShiftedFixed | ORR, + ORR_x = LogicalShiftedFixed | ORR | SixtyFourBits, + ORR_shift = ORR_w, + ORN_w = LogicalShiftedFixed | ORN, + ORN_x = LogicalShiftedFixed | ORN | SixtyFourBits, + ORN_shift = ORN_w, + EOR_w = LogicalShiftedFixed | EOR, + EOR_x = LogicalShiftedFixed | EOR | SixtyFourBits, + EOR_shift = EOR_w, + EON_w = LogicalShiftedFixed | EON, + EON_x = LogicalShiftedFixed | EON | SixtyFourBits, + EON_shift = EON_w, + ANDS_w = LogicalShiftedFixed | ANDS, + ANDS_x = LogicalShiftedFixed | ANDS | SixtyFourBits, + ANDS_shift = ANDS_w, + BICS_w = LogicalShiftedFixed | BICS, + BICS_x = LogicalShiftedFixed | BICS | SixtyFourBits, + BICS_shift = BICS_w +}; + +// Move wide immediate. +enum MoveWideImmediateOp { + MoveWideImmediateFixed = 0x12800000, + MoveWideImmediateFMask = 0x1F800000, + MoveWideImmediateMask = 0xFF800000, + MOVN = 0x00000000, + MOVZ = 0x40000000, + MOVK = 0x60000000, + MOVN_w = MoveWideImmediateFixed | MOVN, + MOVN_x = MoveWideImmediateFixed | MOVN | SixtyFourBits, + MOVZ_w = MoveWideImmediateFixed | MOVZ, + MOVZ_x = MoveWideImmediateFixed | MOVZ | SixtyFourBits, + MOVK_w = MoveWideImmediateFixed | MOVK, + MOVK_x = MoveWideImmediateFixed | MOVK | SixtyFourBits +}; + +// Bitfield. +const int kBitfieldNOffset = 22; +enum BitfieldOp { + BitfieldFixed = 0x13000000, + BitfieldFMask = 0x1F800000, + BitfieldMask = 0xFF800000, + SBFM_w = BitfieldFixed | 0x00000000, + SBFM_x = BitfieldFixed | 0x80000000, + SBFM = SBFM_w, + BFM_w = BitfieldFixed | 0x20000000, + BFM_x = BitfieldFixed | 0xA0000000, + BFM = BFM_w, + UBFM_w = BitfieldFixed | 0x40000000, + UBFM_x = BitfieldFixed | 0xC0000000, + UBFM = UBFM_w + // Bitfield N field. +}; + +// Extract. +enum ExtractOp { + ExtractFixed = 0x13800000, + ExtractFMask = 0x1F800000, + ExtractMask = 0xFFA00000, + EXTR_w = ExtractFixed | 0x00000000, + EXTR_x = ExtractFixed | 0x80000000, + EXTR = EXTR_w +}; + +// Unconditional branch. +enum UnconditionalBranchOp { + UnconditionalBranchFixed = 0x14000000, + UnconditionalBranchFMask = 0x7C000000, + UnconditionalBranchMask = 0xFC000000, + B = UnconditionalBranchFixed | 0x00000000, + BL = UnconditionalBranchFixed | 0x80000000 +}; + +// Unconditional branch to register. +enum UnconditionalBranchToRegisterOp { + UnconditionalBranchToRegisterFixed = 0xD6000000, + UnconditionalBranchToRegisterFMask = 0xFE000000, + UnconditionalBranchToRegisterMask = 0xFFFFFC1F, + BR = UnconditionalBranchToRegisterFixed | 0x001F0000, + BLR = UnconditionalBranchToRegisterFixed | 0x003F0000, + RET = UnconditionalBranchToRegisterFixed | 0x005F0000 +}; + +// Compare and branch. +enum CompareBranchOp { + CompareBranchFixed = 0x34000000, + CompareBranchFMask = 0x7E000000, + CompareBranchMask = 0xFF000000, + CBZ_w = CompareBranchFixed | 0x00000000, + CBZ_x = CompareBranchFixed | 0x80000000, + CBZ = CBZ_w, + CBNZ_w = CompareBranchFixed | 0x01000000, + CBNZ_x = CompareBranchFixed | 0x81000000, + CBNZ = CBNZ_w +}; + +// Test and branch. +enum TestBranchOp { + TestBranchFixed = 0x36000000, + TestBranchFMask = 0x7E000000, + TestBranchMask = 0x7F000000, + TBZ = TestBranchFixed | 0x00000000, + TBNZ = TestBranchFixed | 0x01000000 +}; + +// Conditional branch. +enum ConditionalBranchOp { + ConditionalBranchFixed = 0x54000000, + ConditionalBranchFMask = 0xFE000000, + ConditionalBranchMask = 0xFF000010, + B_cond = ConditionalBranchFixed | 0x00000000 +}; + +// System. +// System instruction encoding is complicated because some instructions use op +// and CR fields to encode parameters. To handle this cleanly, the system +// instructions are split into more than one enum. + +enum SystemOp { + SystemFixed = 0xD5000000, + SystemFMask = 0xFFC00000 +}; + +enum SystemSysRegOp { + SystemSysRegFixed = 0xD5100000, + SystemSysRegFMask = 0xFFD00000, + SystemSysRegMask = 0xFFF00000, + MRS = SystemSysRegFixed | 0x00200000, + MSR = SystemSysRegFixed | 0x00000000 +}; + +enum SystemHintOp { + SystemHintFixed = 0xD503201F, + SystemHintFMask = 0xFFFFF01F, + SystemHintMask = 0xFFFFF01F, + HINT = SystemHintFixed | 0x00000000 +}; + +// Exception. +enum ExceptionOp { + ExceptionFixed = 0xD4000000, + ExceptionFMask = 0xFF000000, + ExceptionMask = 0xFFE0001F, + HLT = ExceptionFixed | 0x00400000, + BRK = ExceptionFixed | 0x00200000, + SVC = ExceptionFixed | 0x00000001, + HVC = ExceptionFixed | 0x00000002, + SMC = ExceptionFixed | 0x00000003, + DCPS1 = ExceptionFixed | 0x00A00001, + DCPS2 = ExceptionFixed | 0x00A00002, + DCPS3 = ExceptionFixed | 0x00A00003 +}; + +// Any load or store. +enum LoadStoreAnyOp { + LoadStoreAnyFMask = 0x0a000000, + LoadStoreAnyFixed = 0x08000000 +}; + +#define LOAD_STORE_PAIR_OP_LIST(V) \ + V(STP, w, 0x00000000), \ + V(LDP, w, 0x00400000), \ + V(LDPSW, x, 0x40400000), \ + V(STP, x, 0x80000000), \ + V(LDP, x, 0x80400000), \ + V(STP, s, 0x04000000), \ + V(LDP, s, 0x04400000), \ + V(STP, d, 0x44000000), \ + V(LDP, d, 0x44400000) + +// Load/store pair (post, pre and offset.) +enum LoadStorePairOp { + LoadStorePairMask = 0xC4400000, + LoadStorePairLBit = 1 << 22, + #define LOAD_STORE_PAIR(A, B, C) \ + A##_##B = C + LOAD_STORE_PAIR_OP_LIST(LOAD_STORE_PAIR) + #undef LOAD_STORE_PAIR +}; + +enum LoadStorePairPostIndexOp { + LoadStorePairPostIndexFixed = 0x28800000, + LoadStorePairPostIndexFMask = 0x3B800000, + LoadStorePairPostIndexMask = 0xFFC00000, + #define LOAD_STORE_PAIR_POST_INDEX(A, B, C) \ + A##_##B##_post = LoadStorePairPostIndexFixed | A##_##B + LOAD_STORE_PAIR_OP_LIST(LOAD_STORE_PAIR_POST_INDEX) + #undef LOAD_STORE_PAIR_POST_INDEX +}; + +enum LoadStorePairPreIndexOp { + LoadStorePairPreIndexFixed = 0x29800000, + LoadStorePairPreIndexFMask = 0x3B800000, + LoadStorePairPreIndexMask = 0xFFC00000, + #define LOAD_STORE_PAIR_PRE_INDEX(A, B, C) \ + A##_##B##_pre = LoadStorePairPreIndexFixed | A##_##B + LOAD_STORE_PAIR_OP_LIST(LOAD_STORE_PAIR_PRE_INDEX) + #undef LOAD_STORE_PAIR_PRE_INDEX +}; + +enum LoadStorePairOffsetOp { + LoadStorePairOffsetFixed = 0x29000000, + LoadStorePairOffsetFMask = 0x3B800000, + LoadStorePairOffsetMask = 0xFFC00000, + #define LOAD_STORE_PAIR_OFFSET(A, B, C) \ + A##_##B##_off = LoadStorePairOffsetFixed | A##_##B + LOAD_STORE_PAIR_OP_LIST(LOAD_STORE_PAIR_OFFSET) + #undef LOAD_STORE_PAIR_OFFSET +}; + +enum LoadStorePairNonTemporalOp { + LoadStorePairNonTemporalFixed = 0x28000000, + LoadStorePairNonTemporalFMask = 0x3B800000, + LoadStorePairNonTemporalMask = 0xFFC00000, + STNP_w = LoadStorePairNonTemporalFixed | STP_w, + LDNP_w = LoadStorePairNonTemporalFixed | LDP_w, + STNP_x = LoadStorePairNonTemporalFixed | STP_x, + LDNP_x = LoadStorePairNonTemporalFixed | LDP_x, + STNP_s = LoadStorePairNonTemporalFixed | STP_s, + LDNP_s = LoadStorePairNonTemporalFixed | LDP_s, + STNP_d = LoadStorePairNonTemporalFixed | STP_d, + LDNP_d = LoadStorePairNonTemporalFixed | LDP_d +}; + +// Load literal. +enum LoadLiteralOp { + LoadLiteralFixed = 0x18000000, + LoadLiteralFMask = 0x3B000000, + LoadLiteralMask = 0xFF000000, + LDR_w_lit = LoadLiteralFixed | 0x00000000, + LDR_x_lit = LoadLiteralFixed | 0x40000000, + LDRSW_x_lit = LoadLiteralFixed | 0x80000000, + PRFM_lit = LoadLiteralFixed | 0xC0000000, + LDR_s_lit = LoadLiteralFixed | 0x04000000, + LDR_d_lit = LoadLiteralFixed | 0x44000000 +}; + +#define LOAD_STORE_OP_LIST(V) \ + V(ST, RB, w, 0x00000000), \ + V(ST, RH, w, 0x40000000), \ + V(ST, R, w, 0x80000000), \ + V(ST, R, x, 0xC0000000), \ + V(LD, RB, w, 0x00400000), \ + V(LD, RH, w, 0x40400000), \ + V(LD, R, w, 0x80400000), \ + V(LD, R, x, 0xC0400000), \ + V(LD, RSB, x, 0x00800000), \ + V(LD, RSH, x, 0x40800000), \ + V(LD, RSW, x, 0x80800000), \ + V(LD, RSB, w, 0x00C00000), \ + V(LD, RSH, w, 0x40C00000), \ + V(ST, R, s, 0x84000000), \ + V(ST, R, d, 0xC4000000), \ + V(LD, R, s, 0x84400000), \ + V(LD, R, d, 0xC4400000) + + +// Load/store unscaled offset. +enum LoadStoreUnscaledOffsetOp { + LoadStoreUnscaledOffsetFixed = 0x38000000, + LoadStoreUnscaledOffsetFMask = 0x3B200C00, + LoadStoreUnscaledOffsetMask = 0xFFE00C00, + #define LOAD_STORE_UNSCALED(A, B, C, D) \ + A##U##B##_##C = LoadStoreUnscaledOffsetFixed | D + LOAD_STORE_OP_LIST(LOAD_STORE_UNSCALED) + #undef LOAD_STORE_UNSCALED +}; + +// Load/store (post, pre, offset and unsigned.) +enum LoadStoreOp { + LoadStoreOpMask = 0xC4C00000, + #define LOAD_STORE(A, B, C, D) \ + A##B##_##C = D + LOAD_STORE_OP_LIST(LOAD_STORE), + #undef LOAD_STORE + PRFM = 0xC0800000 +}; + +// Load/store post index. +enum LoadStorePostIndex { + LoadStorePostIndexFixed = 0x38000400, + LoadStorePostIndexFMask = 0x3B200C00, + LoadStorePostIndexMask = 0xFFE00C00, + #define LOAD_STORE_POST_INDEX(A, B, C, D) \ + A##B##_##C##_post = LoadStorePostIndexFixed | D + LOAD_STORE_OP_LIST(LOAD_STORE_POST_INDEX) + #undef LOAD_STORE_POST_INDEX +}; + +// Load/store pre index. +enum LoadStorePreIndex { + LoadStorePreIndexFixed = 0x38000C00, + LoadStorePreIndexFMask = 0x3B200C00, + LoadStorePreIndexMask = 0xFFE00C00, + #define LOAD_STORE_PRE_INDEX(A, B, C, D) \ + A##B##_##C##_pre = LoadStorePreIndexFixed | D + LOAD_STORE_OP_LIST(LOAD_STORE_PRE_INDEX) + #undef LOAD_STORE_PRE_INDEX +}; + +// Load/store unsigned offset. +enum LoadStoreUnsignedOffset { + LoadStoreUnsignedOffsetFixed = 0x39000000, + LoadStoreUnsignedOffsetFMask = 0x3B000000, + LoadStoreUnsignedOffsetMask = 0xFFC00000, + PRFM_unsigned = LoadStoreUnsignedOffsetFixed | PRFM, + #define LOAD_STORE_UNSIGNED_OFFSET(A, B, C, D) \ + A##B##_##C##_unsigned = LoadStoreUnsignedOffsetFixed | D + LOAD_STORE_OP_LIST(LOAD_STORE_UNSIGNED_OFFSET) + #undef LOAD_STORE_UNSIGNED_OFFSET +}; + +// Load/store register offset. +enum LoadStoreRegisterOffset { + LoadStoreRegisterOffsetFixed = 0x38200800, + LoadStoreRegisterOffsetFMask = 0x3B200C00, + LoadStoreRegisterOffsetMask = 0xFFE00C00, + PRFM_reg = LoadStoreRegisterOffsetFixed | PRFM, + #define LOAD_STORE_REGISTER_OFFSET(A, B, C, D) \ + A##B##_##C##_reg = LoadStoreRegisterOffsetFixed | D + LOAD_STORE_OP_LIST(LOAD_STORE_REGISTER_OFFSET) + #undef LOAD_STORE_REGISTER_OFFSET +}; + +// Conditional compare. +enum ConditionalCompareOp { + ConditionalCompareMask = 0x60000000, + CCMN = 0x20000000, + CCMP = 0x60000000 +}; + +// Conditional compare register. +enum ConditionalCompareRegisterOp { + ConditionalCompareRegisterFixed = 0x1A400000, + ConditionalCompareRegisterFMask = 0x1FE00800, + ConditionalCompareRegisterMask = 0xFFE00C10, + CCMN_w = ConditionalCompareRegisterFixed | CCMN, + CCMN_x = ConditionalCompareRegisterFixed | SixtyFourBits | CCMN, + CCMP_w = ConditionalCompareRegisterFixed | CCMP, + CCMP_x = ConditionalCompareRegisterFixed | SixtyFourBits | CCMP +}; + +// Conditional compare immediate. +enum ConditionalCompareImmediateOp { + ConditionalCompareImmediateFixed = 0x1A400800, + ConditionalCompareImmediateFMask = 0x1FE00800, + ConditionalCompareImmediateMask = 0xFFE00C10, + CCMN_w_imm = ConditionalCompareImmediateFixed | CCMN, + CCMN_x_imm = ConditionalCompareImmediateFixed | SixtyFourBits | CCMN, + CCMP_w_imm = ConditionalCompareImmediateFixed | CCMP, + CCMP_x_imm = ConditionalCompareImmediateFixed | SixtyFourBits | CCMP +}; + +// Conditional select. +enum ConditionalSelectOp { + ConditionalSelectFixed = 0x1A800000, + ConditionalSelectFMask = 0x1FE00000, + ConditionalSelectMask = 0xFFE00C00, + CSEL_w = ConditionalSelectFixed | 0x00000000, + CSEL_x = ConditionalSelectFixed | 0x80000000, + CSEL = CSEL_w, + CSINC_w = ConditionalSelectFixed | 0x00000400, + CSINC_x = ConditionalSelectFixed | 0x80000400, + CSINC = CSINC_w, + CSINV_w = ConditionalSelectFixed | 0x40000000, + CSINV_x = ConditionalSelectFixed | 0xC0000000, + CSINV = CSINV_w, + CSNEG_w = ConditionalSelectFixed | 0x40000400, + CSNEG_x = ConditionalSelectFixed | 0xC0000400, + CSNEG = CSNEG_w +}; + +// Data processing 1 source. +enum DataProcessing1SourceOp { + DataProcessing1SourceFixed = 0x5AC00000, + DataProcessing1SourceFMask = 0x5FE00000, + DataProcessing1SourceMask = 0xFFFFFC00, + RBIT = DataProcessing1SourceFixed | 0x00000000, + RBIT_w = RBIT, + RBIT_x = RBIT | SixtyFourBits, + REV16 = DataProcessing1SourceFixed | 0x00000400, + REV16_w = REV16, + REV16_x = REV16 | SixtyFourBits, + REV = DataProcessing1SourceFixed | 0x00000800, + REV_w = REV, + REV32_x = REV | SixtyFourBits, + REV_x = DataProcessing1SourceFixed | SixtyFourBits | 0x00000C00, + CLZ = DataProcessing1SourceFixed | 0x00001000, + CLZ_w = CLZ, + CLZ_x = CLZ | SixtyFourBits, + CLS = DataProcessing1SourceFixed | 0x00001400, + CLS_w = CLS, + CLS_x = CLS | SixtyFourBits +}; + +// Data processing 2 source. +enum DataProcessing2SourceOp { + DataProcessing2SourceFixed = 0x1AC00000, + DataProcessing2SourceFMask = 0x5FE00000, + DataProcessing2SourceMask = 0xFFE0FC00, + UDIV_w = DataProcessing2SourceFixed | 0x00000800, + UDIV_x = DataProcessing2SourceFixed | 0x80000800, + UDIV = UDIV_w, + SDIV_w = DataProcessing2SourceFixed | 0x00000C00, + SDIV_x = DataProcessing2SourceFixed | 0x80000C00, + SDIV = SDIV_w, + LSLV_w = DataProcessing2SourceFixed | 0x00002000, + LSLV_x = DataProcessing2SourceFixed | 0x80002000, + LSLV = LSLV_w, + LSRV_w = DataProcessing2SourceFixed | 0x00002400, + LSRV_x = DataProcessing2SourceFixed | 0x80002400, + LSRV = LSRV_w, + ASRV_w = DataProcessing2SourceFixed | 0x00002800, + ASRV_x = DataProcessing2SourceFixed | 0x80002800, + ASRV = ASRV_w, + RORV_w = DataProcessing2SourceFixed | 0x00002C00, + RORV_x = DataProcessing2SourceFixed | 0x80002C00, + RORV = RORV_w, + CRC32B = DataProcessing2SourceFixed | 0x00004000, + CRC32H = DataProcessing2SourceFixed | 0x00004400, + CRC32W = DataProcessing2SourceFixed | 0x00004800, + CRC32X = DataProcessing2SourceFixed | SixtyFourBits | 0x00004C00, + CRC32CB = DataProcessing2SourceFixed | 0x00005000, + CRC32CH = DataProcessing2SourceFixed | 0x00005400, + CRC32CW = DataProcessing2SourceFixed | 0x00005800, + CRC32CX = DataProcessing2SourceFixed | SixtyFourBits | 0x00005C00 +}; + +// Data processing 3 source. +enum DataProcessing3SourceOp { + DataProcessing3SourceFixed = 0x1B000000, + DataProcessing3SourceFMask = 0x1F000000, + DataProcessing3SourceMask = 0xFFE08000, + MADD_w = DataProcessing3SourceFixed | 0x00000000, + MADD_x = DataProcessing3SourceFixed | 0x80000000, + MADD = MADD_w, + MSUB_w = DataProcessing3SourceFixed | 0x00008000, + MSUB_x = DataProcessing3SourceFixed | 0x80008000, + MSUB = MSUB_w, + SMADDL_x = DataProcessing3SourceFixed | 0x80200000, + SMSUBL_x = DataProcessing3SourceFixed | 0x80208000, + SMULH_x = DataProcessing3SourceFixed | 0x80400000, + UMADDL_x = DataProcessing3SourceFixed | 0x80A00000, + UMSUBL_x = DataProcessing3SourceFixed | 0x80A08000, + UMULH_x = DataProcessing3SourceFixed | 0x80C00000 +}; + +// Floating point compare. +enum FPCompareOp { + FPCompareFixed = 0x1E202000, + FPCompareFMask = 0x5F203C00, + FPCompareMask = 0xFFE0FC1F, + FCMP_s = FPCompareFixed | 0x00000000, + FCMP_d = FPCompareFixed | FP64 | 0x00000000, + FCMP = FCMP_s, + FCMP_s_zero = FPCompareFixed | 0x00000008, + FCMP_d_zero = FPCompareFixed | FP64 | 0x00000008, + FCMP_zero = FCMP_s_zero, + FCMPE_s = FPCompareFixed | 0x00000010, + FCMPE_d = FPCompareFixed | FP64 | 0x00000010, + FCMPE_s_zero = FPCompareFixed | 0x00000018, + FCMPE_d_zero = FPCompareFixed | FP64 | 0x00000018 +}; + +// Floating point conditional compare. +enum FPConditionalCompareOp { + FPConditionalCompareFixed = 0x1E200400, + FPConditionalCompareFMask = 0x5F200C00, + FPConditionalCompareMask = 0xFFE00C10, + FCCMP_s = FPConditionalCompareFixed | 0x00000000, + FCCMP_d = FPConditionalCompareFixed | FP64 | 0x00000000, + FCCMP = FCCMP_s, + FCCMPE_s = FPConditionalCompareFixed | 0x00000010, + FCCMPE_d = FPConditionalCompareFixed | FP64 | 0x00000010, + FCCMPE = FCCMPE_s +}; + +// Floating point conditional select. +enum FPConditionalSelectOp { + FPConditionalSelectFixed = 0x1E200C00, + FPConditionalSelectFMask = 0x5F200C00, + FPConditionalSelectMask = 0xFFE00C00, + FCSEL_s = FPConditionalSelectFixed | 0x00000000, + FCSEL_d = FPConditionalSelectFixed | FP64 | 0x00000000, + FCSEL = FCSEL_s +}; + +// Floating point immediate. +enum FPImmediateOp { + FPImmediateFixed = 0x1E201000, + FPImmediateFMask = 0x5F201C00, + FPImmediateMask = 0xFFE01C00, + FMOV_s_imm = FPImmediateFixed | 0x00000000, + FMOV_d_imm = FPImmediateFixed | FP64 | 0x00000000 +}; + +// Floating point data processing 1 source. +enum FPDataProcessing1SourceOp { + FPDataProcessing1SourceFixed = 0x1E204000, + FPDataProcessing1SourceFMask = 0x5F207C00, + FPDataProcessing1SourceMask = 0xFFFFFC00, + FMOV_s = FPDataProcessing1SourceFixed | 0x00000000, + FMOV_d = FPDataProcessing1SourceFixed | FP64 | 0x00000000, + FMOV = FMOV_s, + FABS_s = FPDataProcessing1SourceFixed | 0x00008000, + FABS_d = FPDataProcessing1SourceFixed | FP64 | 0x00008000, + FABS = FABS_s, + FNEG_s = FPDataProcessing1SourceFixed | 0x00010000, + FNEG_d = FPDataProcessing1SourceFixed | FP64 | 0x00010000, + FNEG = FNEG_s, + FSQRT_s = FPDataProcessing1SourceFixed | 0x00018000, + FSQRT_d = FPDataProcessing1SourceFixed | FP64 | 0x00018000, + FSQRT = FSQRT_s, + FCVT_ds = FPDataProcessing1SourceFixed | 0x00028000, + FCVT_sd = FPDataProcessing1SourceFixed | FP64 | 0x00020000, + FRINTN_s = FPDataProcessing1SourceFixed | 0x00040000, + FRINTN_d = FPDataProcessing1SourceFixed | FP64 | 0x00040000, + FRINTN = FRINTN_s, + FRINTP_s = FPDataProcessing1SourceFixed | 0x00048000, + FRINTP_d = FPDataProcessing1SourceFixed | FP64 | 0x00048000, + FRINTM_s = FPDataProcessing1SourceFixed | 0x00050000, + FRINTM_d = FPDataProcessing1SourceFixed | FP64 | 0x00050000, + FRINTZ_s = FPDataProcessing1SourceFixed | 0x00058000, + FRINTZ_d = FPDataProcessing1SourceFixed | FP64 | 0x00058000, + FRINTZ = FRINTZ_s, + FRINTA_s = FPDataProcessing1SourceFixed | 0x00060000, + FRINTA_d = FPDataProcessing1SourceFixed | FP64 | 0x00060000, + FRINTX_s = FPDataProcessing1SourceFixed | 0x00070000, + FRINTX_d = FPDataProcessing1SourceFixed | FP64 | 0x00070000, + FRINTI_s = FPDataProcessing1SourceFixed | 0x00078000, + FRINTI_d = FPDataProcessing1SourceFixed | FP64 | 0x00078000 +}; + +// Floating point data processing 2 source. +enum FPDataProcessing2SourceOp { + FPDataProcessing2SourceFixed = 0x1E200800, + FPDataProcessing2SourceFMask = 0x5F200C00, + FPDataProcessing2SourceMask = 0xFFE0FC00, + FMUL = FPDataProcessing2SourceFixed | 0x00000000, + FMUL_s = FMUL, + FMUL_d = FMUL | FP64, + FDIV = FPDataProcessing2SourceFixed | 0x00001000, + FDIV_s = FDIV, + FDIV_d = FDIV | FP64, + FADD = FPDataProcessing2SourceFixed | 0x00002000, + FADD_s = FADD, + FADD_d = FADD | FP64, + FSUB = FPDataProcessing2SourceFixed | 0x00003000, + FSUB_s = FSUB, + FSUB_d = FSUB | FP64, + FMAX = FPDataProcessing2SourceFixed | 0x00004000, + FMAX_s = FMAX, + FMAX_d = FMAX | FP64, + FMIN = FPDataProcessing2SourceFixed | 0x00005000, + FMIN_s = FMIN, + FMIN_d = FMIN | FP64, + FMAXNM = FPDataProcessing2SourceFixed | 0x00006000, + FMAXNM_s = FMAXNM, + FMAXNM_d = FMAXNM | FP64, + FMINNM = FPDataProcessing2SourceFixed | 0x00007000, + FMINNM_s = FMINNM, + FMINNM_d = FMINNM | FP64, + FNMUL = FPDataProcessing2SourceFixed | 0x00008000, + FNMUL_s = FNMUL, + FNMUL_d = FNMUL | FP64 +}; + +// Floating point data processing 3 source. +enum FPDataProcessing3SourceOp { + FPDataProcessing3SourceFixed = 0x1F000000, + FPDataProcessing3SourceFMask = 0x5F000000, + FPDataProcessing3SourceMask = 0xFFE08000, + FMADD_s = FPDataProcessing3SourceFixed | 0x00000000, + FMSUB_s = FPDataProcessing3SourceFixed | 0x00008000, + FNMADD_s = FPDataProcessing3SourceFixed | 0x00200000, + FNMSUB_s = FPDataProcessing3SourceFixed | 0x00208000, + FMADD_d = FPDataProcessing3SourceFixed | 0x00400000, + FMSUB_d = FPDataProcessing3SourceFixed | 0x00408000, + FNMADD_d = FPDataProcessing3SourceFixed | 0x00600000, + FNMSUB_d = FPDataProcessing3SourceFixed | 0x00608000 +}; + +// Conversion between floating point and integer. +enum FPIntegerConvertOp { + FPIntegerConvertFixed = 0x1E200000, + FPIntegerConvertFMask = 0x5F20FC00, + FPIntegerConvertMask = 0xFFFFFC00, + FCVTNS = FPIntegerConvertFixed | 0x00000000, + FCVTNS_ws = FCVTNS, + FCVTNS_xs = FCVTNS | SixtyFourBits, + FCVTNS_wd = FCVTNS | FP64, + FCVTNS_xd = FCVTNS | SixtyFourBits | FP64, + FCVTNU = FPIntegerConvertFixed | 0x00010000, + FCVTNU_ws = FCVTNU, + FCVTNU_xs = FCVTNU | SixtyFourBits, + FCVTNU_wd = FCVTNU | FP64, + FCVTNU_xd = FCVTNU | SixtyFourBits | FP64, + FCVTPS = FPIntegerConvertFixed | 0x00080000, + FCVTPS_ws = FCVTPS, + FCVTPS_xs = FCVTPS | SixtyFourBits, + FCVTPS_wd = FCVTPS | FP64, + FCVTPS_xd = FCVTPS | SixtyFourBits | FP64, + FCVTPU = FPIntegerConvertFixed | 0x00090000, + FCVTPU_ws = FCVTPU, + FCVTPU_xs = FCVTPU | SixtyFourBits, + FCVTPU_wd = FCVTPU | FP64, + FCVTPU_xd = FCVTPU | SixtyFourBits | FP64, + FCVTMS = FPIntegerConvertFixed | 0x00100000, + FCVTMS_ws = FCVTMS, + FCVTMS_xs = FCVTMS | SixtyFourBits, + FCVTMS_wd = FCVTMS | FP64, + FCVTMS_xd = FCVTMS | SixtyFourBits | FP64, + FCVTMU = FPIntegerConvertFixed | 0x00110000, + FCVTMU_ws = FCVTMU, + FCVTMU_xs = FCVTMU | SixtyFourBits, + FCVTMU_wd = FCVTMU | FP64, + FCVTMU_xd = FCVTMU | SixtyFourBits | FP64, + FCVTZS = FPIntegerConvertFixed | 0x00180000, + FCVTZS_ws = FCVTZS, + FCVTZS_xs = FCVTZS | SixtyFourBits, + FCVTZS_wd = FCVTZS | FP64, + FCVTZS_xd = FCVTZS | SixtyFourBits | FP64, + FCVTZU = FPIntegerConvertFixed | 0x00190000, + FCVTZU_ws = FCVTZU, + FCVTZU_xs = FCVTZU | SixtyFourBits, + FCVTZU_wd = FCVTZU | FP64, + FCVTZU_xd = FCVTZU | SixtyFourBits | FP64, + SCVTF = FPIntegerConvertFixed | 0x00020000, + SCVTF_sw = SCVTF, + SCVTF_sx = SCVTF | SixtyFourBits, + SCVTF_dw = SCVTF | FP64, + SCVTF_dx = SCVTF | SixtyFourBits | FP64, + UCVTF = FPIntegerConvertFixed | 0x00030000, + UCVTF_sw = UCVTF, + UCVTF_sx = UCVTF | SixtyFourBits, + UCVTF_dw = UCVTF | FP64, + UCVTF_dx = UCVTF | SixtyFourBits | FP64, + FCVTAS = FPIntegerConvertFixed | 0x00040000, + FCVTAS_ws = FCVTAS, + FCVTAS_xs = FCVTAS | SixtyFourBits, + FCVTAS_wd = FCVTAS | FP64, + FCVTAS_xd = FCVTAS | SixtyFourBits | FP64, + FCVTAU = FPIntegerConvertFixed | 0x00050000, + FCVTAU_ws = FCVTAU, + FCVTAU_xs = FCVTAU | SixtyFourBits, + FCVTAU_wd = FCVTAU | FP64, + FCVTAU_xd = FCVTAU | SixtyFourBits | FP64, + FMOV_ws = FPIntegerConvertFixed | 0x00060000, + FMOV_sw = FPIntegerConvertFixed | 0x00070000, + FMOV_xd = FMOV_ws | SixtyFourBits | FP64, + FMOV_dx = FMOV_sw | SixtyFourBits | FP64 +}; + +// Conversion between fixed point and floating point. +enum FPFixedPointConvertOp { + FPFixedPointConvertFixed = 0x1E000000, + FPFixedPointConvertFMask = 0x5F200000, + FPFixedPointConvertMask = 0xFFFF0000, + FCVTZS_fixed = FPFixedPointConvertFixed | 0x00180000, + FCVTZS_ws_fixed = FCVTZS_fixed, + FCVTZS_xs_fixed = FCVTZS_fixed | SixtyFourBits, + FCVTZS_wd_fixed = FCVTZS_fixed | FP64, + FCVTZS_xd_fixed = FCVTZS_fixed | SixtyFourBits | FP64, + FCVTZU_fixed = FPFixedPointConvertFixed | 0x00190000, + FCVTZU_ws_fixed = FCVTZU_fixed, + FCVTZU_xs_fixed = FCVTZU_fixed | SixtyFourBits, + FCVTZU_wd_fixed = FCVTZU_fixed | FP64, + FCVTZU_xd_fixed = FCVTZU_fixed | SixtyFourBits | FP64, + SCVTF_fixed = FPFixedPointConvertFixed | 0x00020000, + SCVTF_sw_fixed = SCVTF_fixed, + SCVTF_sx_fixed = SCVTF_fixed | SixtyFourBits, + SCVTF_dw_fixed = SCVTF_fixed | FP64, + SCVTF_dx_fixed = SCVTF_fixed | SixtyFourBits | FP64, + UCVTF_fixed = FPFixedPointConvertFixed | 0x00030000, + UCVTF_sw_fixed = UCVTF_fixed, + UCVTF_sx_fixed = UCVTF_fixed | SixtyFourBits, + UCVTF_dw_fixed = UCVTF_fixed | FP64, + UCVTF_dx_fixed = UCVTF_fixed | SixtyFourBits | FP64 +}; + +// Unimplemented and unallocated instructions. These are defined to make fixed +// bit assertion easier. +enum UnimplementedOp { + UnimplementedFixed = 0x00000000, + UnimplementedFMask = 0x00000000 +}; + +enum UnallocatedOp { + UnallocatedFixed = 0x00000000, + UnallocatedFMask = 0x00000000 +}; + +} // namespace vixl + +#endif // VIXL_A64_CONSTANTS_A64_H_ diff --git a/disas/libvixl/a64/cpu-a64.h b/disas/libvixl/a64/cpu-a64.h new file mode 100644 index 0000000..dfd8f01 --- /dev/null +++ b/disas/libvixl/a64/cpu-a64.h @@ -0,0 +1,56 @@ +// Copyright 2013, ARM Limited +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are met: +// +// * Redistributions of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// * Neither the name of ARM Limited nor the names of its contributors may be +// used to endorse or promote products derived from this software without +// specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND +// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE +// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#ifndef VIXL_CPU_A64_H +#define VIXL_CPU_A64_H + +#include "globals.h" + +namespace vixl { + +class CPU { + public: + // Initialise CPU support. + static void SetUp(); + + // Ensures the data at a given address and with a given size is the same for + // the I and D caches. I and D caches are not automatically coherent on ARM + // so this operation is required before any dynamically generated code can + // safely run. + static void EnsureIAndDCacheCoherency(void *address, size_t length); + + private: + // Return the content of the cache type register. + static uint32_t GetCacheType(); + + // I and D cache line size in bytes. + static unsigned icache_line_size_; + static unsigned dcache_line_size_; +}; + +} // namespace vixl + +#endif // VIXL_CPU_A64_H diff --git a/disas/libvixl/a64/decoder-a64.cc b/disas/libvixl/a64/decoder-a64.cc new file mode 100644 index 0000000..9e9033c --- /dev/null +++ b/disas/libvixl/a64/decoder-a64.cc @@ -0,0 +1,712 @@ +// Copyright 2013, ARM Limited +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are met: +// +// * Redistributions of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// * Neither the name of ARM Limited nor the names of its contributors may be +// used to endorse or promote products derived from this software without +// specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND +// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE +// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#include "globals.h" +#include "utils.h" +#include "a64/decoder-a64.h" + +namespace vixl { +// Top-level instruction decode function. +void Decoder::Decode(Instruction *instr) { + if (instr->Bits(28, 27) == 0) { + VisitUnallocated(instr); + } else { + switch (instr->Bits(27, 24)) { + // 0: PC relative addressing. + case 0x0: DecodePCRelAddressing(instr); break; + + // 1: Add/sub immediate. + case 0x1: DecodeAddSubImmediate(instr); break; + + // A: Logical shifted register. + // Add/sub with carry. + // Conditional compare register. + // Conditional compare immediate. + // Conditional select. + // Data processing 1 source. + // Data processing 2 source. + // B: Add/sub shifted register. + // Add/sub extended register. + // Data processing 3 source. + case 0xA: + case 0xB: DecodeDataProcessing(instr); break; + + // 2: Logical immediate. + // Move wide immediate. + case 0x2: DecodeLogical(instr); break; + + // 3: Bitfield. + // Extract. + case 0x3: DecodeBitfieldExtract(instr); break; + + // 4: Unconditional branch immediate. + // Exception generation. + // Compare and branch immediate. + // 5: Compare and branch immediate. + // Conditional branch. + // System. + // 6,7: Unconditional branch. + // Test and branch immediate. + case 0x4: + case 0x5: + case 0x6: + case 0x7: DecodeBranchSystemException(instr); break; + + // 8,9: Load/store register pair post-index. + // Load register literal. + // Load/store register unscaled immediate. + // Load/store register immediate post-index. + // Load/store register immediate pre-index. + // Load/store register offset. + // Load/store exclusive. + // C,D: Load/store register pair offset. + // Load/store register pair pre-index. + // Load/store register unsigned immediate. + // Advanced SIMD. + case 0x8: + case 0x9: + case 0xC: + case 0xD: DecodeLoadStore(instr); break; + + // E: FP fixed point conversion. + // FP integer conversion. + // FP data processing 1 source. + // FP compare. + // FP immediate. + // FP data processing 2 source. + // FP conditional compare. + // FP conditional select. + // Advanced SIMD. + // F: FP data processing 3 source. + // Advanced SIMD. + case 0xE: + case 0xF: DecodeFP(instr); break; + } + } +} + +void Decoder::AppendVisitor(DecoderVisitor* new_visitor) { + visitors_.remove(new_visitor); + visitors_.push_front(new_visitor); +} + + +void Decoder::PrependVisitor(DecoderVisitor* new_visitor) { + visitors_.remove(new_visitor); + visitors_.push_back(new_visitor); +} + + +void Decoder::InsertVisitorBefore(DecoderVisitor* new_visitor, + DecoderVisitor* registered_visitor) { + visitors_.remove(new_visitor); + std::list<DecoderVisitor*>::iterator it; + for (it = visitors_.begin(); it != visitors_.end(); it++) { + if (*it == registered_visitor) { + visitors_.insert(it, new_visitor); + return; + } + } + // We reached the end of the list. The last element must be + // registered_visitor. + ASSERT(*it == registered_visitor); + visitors_.insert(it, new_visitor); +} + + +void Decoder::InsertVisitorAfter(DecoderVisitor* new_visitor, + DecoderVisitor* registered_visitor) { + visitors_.remove(new_visitor); + std::list<DecoderVisitor*>::iterator it; + for (it = visitors_.begin(); it != visitors_.end(); it++) { + if (*it == registered_visitor) { + it++; + visitors_.insert(it, new_visitor); + return; + } + } + // We reached the end of the list. The last element must be + // registered_visitor. + ASSERT(*it == registered_visitor); + visitors_.push_back(new_visitor); +} + + +void Decoder::RemoveVisitor(DecoderVisitor* visitor) { + visitors_.remove(visitor); +} + + +void Decoder::DecodePCRelAddressing(Instruction* instr) { + ASSERT(instr->Bits(27, 24) == 0x0); + // We know bit 28 is set, as <b28:b27> = 0 is filtered out at the top level + // decode. + ASSERT(instr->Bit(28) == 0x1); + VisitPCRelAddressing(instr); +} + + +void Decoder::DecodeBranchSystemException(Instruction* instr) { + ASSERT((instr->Bits(27, 24) == 0x4) || + (instr->Bits(27, 24) == 0x5) || + (instr->Bits(27, 24) == 0x6) || + (instr->Bits(27, 24) == 0x7) ); + + switch (instr->Bits(31, 29)) { + case 0: + case 4: { + VisitUnconditionalBranch(instr); + break; + } + case 1: + case 5: { + if (instr->Bit(25) == 0) { + VisitCompareBranch(instr); + } else { + VisitTestBranch(instr); + } + break; + } + case 2: { + if (instr->Bit(25) == 0) { + if ((instr->Bit(24) == 0x1) || + (instr->Mask(0x01000010) == 0x00000010)) { + VisitUnallocated(instr); + } else { + VisitConditionalBranch(instr); + } + } else { + VisitUnallocated(instr); + } + break; + } + case 6: { + if (instr->Bit(25) == 0) { + if (instr->Bit(24) == 0) { + if ((instr->Bits(4, 2) != 0) || + (instr->Mask(0x00E0001D) == 0x00200001) || + (instr->Mask(0x00E0001D) == 0x00400001) || + (instr->Mask(0x00E0001E) == 0x00200002) || + (instr->Mask(0x00E0001E) == 0x00400002) || + (instr->Mask(0x00E0001C) == 0x00600000) || + (instr->Mask(0x00E0001C) == 0x00800000) || + (instr->Mask(0x00E0001F) == 0x00A00000) || + (instr->Mask(0x00C0001C) == 0x00C00000)) { + VisitUnallocated(instr); + } else { + VisitException(instr); + } + } else { + if (instr->Bits(23, 22) == 0) { + const Instr masked_003FF0E0 = instr->Mask(0x003FF0E0); + if ((instr->Bits(21, 19) == 0x4) || + (masked_003FF0E0 == 0x00033000) || + (masked_003FF0E0 == 0x003FF020) || + (masked_003FF0E0 == 0x003FF060) || + (masked_003FF0E0 == 0x003FF0E0) || + (instr->Mask(0x00388000) == 0x00008000) || + (instr->Mask(0x0038E000) == 0x00000000) || + (instr->Mask(0x0039E000) == 0x00002000) || + (instr->Mask(0x003AE000) == 0x00002000) || + (instr->Mask(0x003CE000) == 0x00042000) || + (instr->Mask(0x003FFFC0) == 0x000320C0) || + (instr->Mask(0x003FF100) == 0x00032100) || + (instr->Mask(0x003FF200) == 0x00032200) || + (instr->Mask(0x003FF400) == 0x00032400) || + (instr->Mask(0x003FF800) == 0x00032800) || + (instr->Mask(0x0038F000) == 0x00005000) || + (instr->Mask(0x0038E000) == 0x00006000)) { + VisitUnallocated(instr); + } else { + VisitSystem(instr); + } + } else { + VisitUnallocated(instr); + } + } + } else { + if ((instr->Bit(24) == 0x1) || + (instr->Bits(20, 16) != 0x1F) || + (instr->Bits(15, 10) != 0) || + (instr->Bits(4, 0) != 0) || + (instr->Bits(24, 21) == 0x3) || + (instr->Bits(24, 22) == 0x3)) { + VisitUnallocated(instr); + } else { + VisitUnconditionalBranchToRegister(instr); + } + } + break; + } + case 3: + case 7: { + VisitUnallocated(instr); + break; + } + } +} + + +void Decoder::DecodeLoadStore(Instruction* instr) { + ASSERT((instr->Bits(27, 24) == 0x8) || + (instr->Bits(27, 24) == 0x9) || + (instr->Bits(27, 24) == 0xC) || + (instr->Bits(27, 24) == 0xD) ); + + if (instr->Bit(24) == 0) { + if (instr->Bit(28) == 0) { + if (instr->Bit(29) == 0) { + if (instr->Bit(26) == 0) { + // TODO: VisitLoadStoreExclusive. + VisitUnimplemented(instr); + } else { + DecodeAdvSIMDLoadStore(instr); + } + } else { + if ((instr->Bits(31, 30) == 0x3) || + (instr->Mask(0xC4400000) == 0x40000000)) { + VisitUnallocated(instr); + } else { + if (instr->Bit(23) == 0) { + if (instr->Mask(0xC4400000) == 0xC0400000) { + VisitUnallocated(instr); + } else { + VisitLoadStorePairNonTemporal(instr); + } + } else { + VisitLoadStorePairPostIndex(instr); + } + } + } + } else { + if (instr->Bit(29) == 0) { + if (instr->Mask(0xC4000000) == 0xC4000000) { + VisitUnallocated(instr); + } else { + VisitLoadLiteral(instr); + } + } else { + if ((instr->Mask(0x84C00000) == 0x80C00000) || + (instr->Mask(0x44800000) == 0x44800000) || + (instr->Mask(0x84800000) == 0x84800000)) { + VisitUnallocated(instr); + } else { + if (instr->Bit(21) == 0) { + switch (instr->Bits(11, 10)) { + case 0: { + VisitLoadStoreUnscaledOffset(instr); + break; + } + case 1: { + if (instr->Mask(0xC4C00000) == 0xC0800000) { + VisitUnallocated(instr); + } else { + VisitLoadStorePostIndex(instr); + } + break; + } + case 2: { + // TODO: VisitLoadStoreRegisterOffsetUnpriv. + VisitUnimplemented(instr); + break; + } + case 3: { + if (instr->Mask(0xC4C00000) == 0xC0800000) { + VisitUnallocated(instr); + } else { + VisitLoadStorePreIndex(instr); + } + break; + } + } + } else { + if (instr->Bits(11, 10) == 0x2) { + if (instr->Bit(14) == 0) { + VisitUnallocated(instr); + } else { + VisitLoadStoreRegisterOffset(instr); + } + } else { + VisitUnallocated(instr); + } + } + } + } + } + } else { + if (instr->Bit(28) == 0) { + if (instr->Bit(29) == 0) { + VisitUnallocated(instr); + } else { + if ((instr->Bits(31, 30) == 0x3) || + (instr->Mask(0xC4400000) == 0x40000000)) { + VisitUnallocated(instr); + } else { + if (instr->Bit(23) == 0) { + VisitLoadStorePairOffset(instr); + } else { + VisitLoadStorePairPreIndex(instr); + } + } + } + } else { + if (instr->Bit(29) == 0) { + VisitUnallocated(instr); + } else { + if ((instr->Mask(0x84C00000) == 0x80C00000) || + (instr->Mask(0x44800000) == 0x44800000) || + (instr->Mask(0x84800000) == 0x84800000)) { + VisitUnallocated(instr); + } else { + VisitLoadStoreUnsignedOffset(instr); + } + } + } + } +} + + +void Decoder::DecodeLogical(Instruction* instr) { + ASSERT(instr->Bits(27, 24) == 0x2); + + if (instr->Mask(0x80400000) == 0x00400000) { + VisitUnallocated(instr); + } else { + if (instr->Bit(23) == 0) { + VisitLogicalImmediate(instr); + } else { + if (instr->Bits(30, 29) == 0x1) { + VisitUnallocated(instr); + } else { + VisitMoveWideImmediate(instr); + } + } + } +} + + +void Decoder::DecodeBitfieldExtract(Instruction* instr) { + ASSERT(instr->Bits(27, 24) == 0x3); + + if ((instr->Mask(0x80400000) == 0x80000000) || + (instr->Mask(0x80400000) == 0x00400000) || + (instr->Mask(0x80008000) == 0x00008000)) { + VisitUnallocated(instr); + } else if (instr->Bit(23) == 0) { + if ((instr->Mask(0x80200000) == 0x00200000) || + (instr->Mask(0x60000000) == 0x60000000)) { + VisitUnallocated(instr); + } else { + VisitBitfield(instr); + } + } else { + if ((instr->Mask(0x60200000) == 0x00200000) || + (instr->Mask(0x60000000) != 0x00000000)) { + VisitUnallocated(instr); + } else { + VisitExtract(instr); + } + } +} + + +void Decoder::DecodeAddSubImmediate(Instruction* instr) { + ASSERT(instr->Bits(27, 24) == 0x1); + if (instr->Bit(23) == 1) { + VisitUnallocated(instr); + } else { + VisitAddSubImmediate(instr); + } +} + + +void Decoder::DecodeDataProcessing(Instruction* instr) { + ASSERT((instr->Bits(27, 24) == 0xA) || + (instr->Bits(27, 24) == 0xB) ); + + if (instr->Bit(24) == 0) { + if (instr->Bit(28) == 0) { + if (instr->Mask(0x80008000) == 0x00008000) { + VisitUnallocated(instr); + } else { + VisitLogicalShifted(instr); + } + } else { + switch (instr->Bits(23, 21)) { + case 0: { + if (instr->Mask(0x0000FC00) != 0) { + VisitUnallocated(instr); + } else { + VisitAddSubWithCarry(instr); + } + break; + } + case 2: { + if ((instr->Bit(29) == 0) || + (instr->Mask(0x00000410) != 0)) { + VisitUnallocated(instr); + } else { + if (instr->Bit(11) == 0) { + VisitConditionalCompareRegister(instr); + } else { + VisitConditionalCompareImmediate(instr); + } + } + break; + } + case 4: { + if (instr->Mask(0x20000800) != 0x00000000) { + VisitUnallocated(instr); + } else { + VisitConditionalSelect(instr); + } + break; + } + case 6: { + if (instr->Bit(29) == 0x1) { + VisitUnallocated(instr); + } else { + if (instr->Bit(30) == 0) { + if ((instr->Bit(15) == 0x1) || + (instr->Bits(15, 11) == 0) || + (instr->Bits(15, 12) == 0x1) || + (instr->Bits(15, 12) == 0x3) || + (instr->Bits(15, 13) == 0x3) || + (instr->Mask(0x8000EC00) == 0x00004C00) || + (instr->Mask(0x8000E800) == 0x80004000) || + (instr->Mask(0x8000E400) == 0x80004000)) { + VisitUnallocated(instr); + } else { + VisitDataProcessing2Source(instr); + } + } else { + if ((instr->Bit(13) == 1) || + (instr->Bits(20, 16) != 0) || + (instr->Bits(15, 14) != 0) || + (instr->Mask(0xA01FFC00) == 0x00000C00) || + (instr->Mask(0x201FF800) == 0x00001800)) { + VisitUnallocated(instr); + } else { + VisitDataProcessing1Source(instr); + } + } + break; + } + } + case 1: + case 3: + case 5: + case 7: VisitUnallocated(instr); break; + } + } + } else { + if (instr->Bit(28) == 0) { + if (instr->Bit(21) == 0) { + if ((instr->Bits(23, 22) == 0x3) || + (instr->Mask(0x80008000) == 0x00008000)) { + VisitUnallocated(instr); + } else { + VisitAddSubShifted(instr); + } + } else { + if ((instr->Mask(0x00C00000) != 0x00000000) || + (instr->Mask(0x00001400) == 0x00001400) || + (instr->Mask(0x00001800) == 0x00001800)) { + VisitUnallocated(instr); + } else { + VisitAddSubExtended(instr); + } + } + } else { + if ((instr->Bit(30) == 0x1) || + (instr->Bits(30, 29) == 0x1) || + (instr->Mask(0xE0600000) == 0x00200000) || + (instr->Mask(0xE0608000) == 0x00400000) || + (instr->Mask(0x60608000) == 0x00408000) || + (instr->Mask(0x60E00000) == 0x00E00000) || + (instr->Mask(0x60E00000) == 0x00800000) || + (instr->Mask(0x60E00000) == 0x00600000)) { + VisitUnallocated(instr); + } else { + VisitDataProcessing3Source(instr); + } + } + } +} + + +void Decoder::DecodeFP(Instruction* instr) { + ASSERT((instr->Bits(27, 24) == 0xE) || + (instr->Bits(27, 24) == 0xF) ); + + if (instr->Bit(28) == 0) { + DecodeAdvSIMDDataProcessing(instr); + } else { + if (instr->Bit(29) == 1) { + VisitUnallocated(instr); + } else { + if (instr->Bits(31, 30) == 0x3) { + VisitUnallocated(instr); + } else if (instr->Bits(31, 30) == 0x1) { + DecodeAdvSIMDDataProcessing(instr); + } else { + if (instr->Bit(24) == 0) { + if (instr->Bit(21) == 0) { + if ((instr->Bit(23) == 1) || + (instr->Bit(18) == 1) || + (instr->Mask(0x80008000) == 0x00000000) || + (instr->Mask(0x000E0000) == 0x00000000) || + (instr->Mask(0x000E0000) == 0x000A0000) || + (instr->Mask(0x00160000) == 0x00000000) || + (instr->Mask(0x00160000) == 0x00120000)) { + VisitUnallocated(instr); + } else { + VisitFPFixedPointConvert(instr); + } + } else { + if (instr->Bits(15, 10) == 32) { + VisitUnallocated(instr); + } else if (instr->Bits(15, 10) == 0) { + if ((instr->Bits(23, 22) == 0x3) || + (instr->Mask(0x000E0000) == 0x000A0000) || + (instr->Mask(0x000E0000) == 0x000C0000) || + (instr->Mask(0x00160000) == 0x00120000) || + (instr->Mask(0x00160000) == 0x00140000) || + (instr->Mask(0x20C40000) == 0x00800000) || + (instr->Mask(0x20C60000) == 0x00840000) || + (instr->Mask(0xA0C60000) == 0x80060000) || + (instr->Mask(0xA0C60000) == 0x00860000) || + (instr->Mask(0xA0C60000) == 0x00460000) || + (instr->Mask(0xA0CE0000) == 0x80860000) || + (instr->Mask(0xA0CE0000) == 0x804E0000) || + (instr->Mask(0xA0CE0000) == 0x000E0000) || + (instr->Mask(0xA0D60000) == 0x00160000) || + (instr->Mask(0xA0D60000) == 0x80560000) || + (instr->Mask(0xA0D60000) == 0x80960000)) { + VisitUnallocated(instr); + } else { + VisitFPIntegerConvert(instr); + } + } else if (instr->Bits(14, 10) == 16) { + const Instr masked_A0DF8000 = instr->Mask(0xA0DF8000); + if ((instr->Mask(0x80180000) != 0) || + (masked_A0DF8000 == 0x00020000) || + (masked_A0DF8000 == 0x00030000) || + (masked_A0DF8000 == 0x00068000) || + (masked_A0DF8000 == 0x00428000) || + (masked_A0DF8000 == 0x00430000) || + (masked_A0DF8000 == 0x00468000) || + (instr->Mask(0xA0D80000) == 0x00800000) || + (instr->Mask(0xA0DE0000) == 0x00C00000) || + (instr->Mask(0xA0DF0000) == 0x00C30000) || + (instr->Mask(0xA0DC0000) == 0x00C40000)) { + VisitUnallocated(instr); + } else { + VisitFPDataProcessing1Source(instr); + } + } else if (instr->Bits(13, 10) == 8) { + if ((instr->Bits(15, 14) != 0) || + (instr->Bits(2, 0) != 0) || + (instr->Mask(0x80800000) != 0x00000000)) { + VisitUnallocated(instr); + } else { + VisitFPCompare(instr); + } + } else if (instr->Bits(12, 10) == 4) { + if ((instr->Bits(9, 5) != 0) || + (instr->Mask(0x80800000) != 0x00000000)) { + VisitUnallocated(instr); + } else { + VisitFPImmediate(instr); + } + } else { + if (instr->Mask(0x80800000) != 0x00000000) { + VisitUnallocated(instr); + } else { + switch (instr->Bits(11, 10)) { + case 1: { + VisitFPConditionalCompare(instr); + break; + } + case 2: { + if ((instr->Bits(15, 14) == 0x3) || + (instr->Mask(0x00009000) == 0x00009000) || + (instr->Mask(0x0000A000) == 0x0000A000)) { + VisitUnallocated(instr); + } else { + VisitFPDataProcessing2Source(instr); + } + break; + } + case 3: { + VisitFPConditionalSelect(instr); + break; + } + default: UNREACHABLE(); + } + } + } + } + } else { + // Bit 30 == 1 has been handled earlier. + ASSERT(instr->Bit(30) == 0); + if (instr->Mask(0xA0800000) != 0) { + VisitUnallocated(instr); + } else { + VisitFPDataProcessing3Source(instr); + } + } + } + } + } +} + + +void Decoder::DecodeAdvSIMDLoadStore(Instruction* instr) { + // TODO: Implement Advanced SIMD load/store instruction decode. + ASSERT(instr->Bits(29, 25) == 0x6); + VisitUnimplemented(instr); +} + + +void Decoder::DecodeAdvSIMDDataProcessing(Instruction* instr) { + // TODO: Implement Advanced SIMD data processing instruction decode. + ASSERT(instr->Bits(27, 25) == 0x7); + VisitUnimplemented(instr); +} + + +#define DEFINE_VISITOR_CALLERS(A) \ + void Decoder::Visit##A(Instruction *instr) { \ + ASSERT(instr->Mask(A##FMask) == A##Fixed); \ + std::list<DecoderVisitor*>::iterator it; \ + for (it = visitors_.begin(); it != visitors_.end(); it++) { \ + (*it)->Visit##A(instr); \ + } \ + } +VISITOR_LIST(DEFINE_VISITOR_CALLERS) +#undef DEFINE_VISITOR_CALLERS +} // namespace vixl diff --git a/disas/libvixl/a64/decoder-a64.h b/disas/libvixl/a64/decoder-a64.h new file mode 100644 index 0000000..bbbbd81 --- /dev/null +++ b/disas/libvixl/a64/decoder-a64.h @@ -0,0 +1,198 @@ +// Copyright 2013, ARM Limited +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are met: +// +// * Redistributions of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// * Neither the name of ARM Limited nor the names of its contributors may be +// used to endorse or promote products derived from this software without +// specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND +// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE +// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#ifndef VIXL_A64_DECODER_A64_H_ +#define VIXL_A64_DECODER_A64_H_ + +#include <list> + +#include "globals.h" +#include "a64/instructions-a64.h" + + +// List macro containing all visitors needed by the decoder class. + +#define VISITOR_LIST(V) \ + V(PCRelAddressing) \ + V(AddSubImmediate) \ + V(LogicalImmediate) \ + V(MoveWideImmediate) \ + V(Bitfield) \ + V(Extract) \ + V(UnconditionalBranch) \ + V(UnconditionalBranchToRegister) \ + V(CompareBranch) \ + V(TestBranch) \ + V(ConditionalBranch) \ + V(System) \ + V(Exception) \ + V(LoadStorePairPostIndex) \ + V(LoadStorePairOffset) \ + V(LoadStorePairPreIndex) \ + V(LoadStorePairNonTemporal) \ + V(LoadLiteral) \ + V(LoadStoreUnscaledOffset) \ + V(LoadStorePostIndex) \ + V(LoadStorePreIndex) \ + V(LoadStoreRegisterOffset) \ + V(LoadStoreUnsignedOffset) \ + V(LogicalShifted) \ + V(AddSubShifted) \ + V(AddSubExtended) \ + V(AddSubWithCarry) \ + V(ConditionalCompareRegister) \ + V(ConditionalCompareImmediate) \ + V(ConditionalSelect) \ + V(DataProcessing1Source) \ + V(DataProcessing2Source) \ + V(DataProcessing3Source) \ + V(FPCompare) \ + V(FPConditionalCompare) \ + V(FPConditionalSelect) \ + V(FPImmediate) \ + V(FPDataProcessing1Source) \ + V(FPDataProcessing2Source) \ + V(FPDataProcessing3Source) \ + V(FPIntegerConvert) \ + V(FPFixedPointConvert) \ + V(Unallocated) \ + V(Unimplemented) + +namespace vixl { + +// The Visitor interface. Disassembler and simulator (and other tools) +// must provide implementations for all of these functions. +class DecoderVisitor { + public: + #define DECLARE(A) virtual void Visit##A(Instruction* instr) = 0; + VISITOR_LIST(DECLARE) + #undef DECLARE + + virtual ~DecoderVisitor() {} + + private: + // Visitors are registered in a list. + std::list<DecoderVisitor*> visitors_; + + friend class Decoder; +}; + + +class Decoder: public DecoderVisitor { + public: + Decoder() {} + + // Top-level instruction decoder function. Decodes an instruction and calls + // the visitor functions registered with the Decoder class. + void Decode(Instruction *instr); + + // Register a new visitor class with the decoder. + // Decode() will call the corresponding visitor method from all registered + // visitor classes when decoding reaches the leaf node of the instruction + // decode tree. + // Visitors are called in the order. + // A visitor can only be registered once. + // Registering an already registered visitor will update its position. + // + // d.AppendVisitor(V1); + // d.AppendVisitor(V2); + // d.PrependVisitor(V2); // Move V2 at the start of the list. + // d.InsertVisitorBefore(V3, V2); + // d.AppendVisitor(V4); + // d.AppendVisitor(V4); // No effect. + // + // d.Decode(i); + // + // will call in order visitor methods in V3, V2, V1, V4. + void AppendVisitor(DecoderVisitor* visitor); + void PrependVisitor(DecoderVisitor* visitor); + void InsertVisitorBefore(DecoderVisitor* new_visitor, + DecoderVisitor* registered_visitor); + void InsertVisitorAfter(DecoderVisitor* new_visitor, + DecoderVisitor* registered_visitor); + + // Remove a previously registered visitor class from the list of visitors + // stored by the decoder. + void RemoveVisitor(DecoderVisitor* visitor); + + #define DECLARE(A) void Visit##A(Instruction* instr); + VISITOR_LIST(DECLARE) + #undef DECLARE + + private: + // Decode the PC relative addressing instruction, and call the corresponding + // visitors. + // On entry, instruction bits 27:24 = 0x0. + void DecodePCRelAddressing(Instruction* instr); + + // Decode the add/subtract immediate instruction, and call the correspoding + // visitors. + // On entry, instruction bits 27:24 = 0x1. + void DecodeAddSubImmediate(Instruction* instr); + + // Decode the branch, system command, and exception generation parts of + // the instruction tree, and call the corresponding visitors. + // On entry, instruction bits 27:24 = {0x4, 0x5, 0x6, 0x7}. + void DecodeBranchSystemException(Instruction* instr); + + // Decode the load and store parts of the instruction tree, and call + // the corresponding visitors. + // On entry, instruction bits 27:24 = {0x8, 0x9, 0xC, 0xD}. + void DecodeLoadStore(Instruction* instr); + + // Decode the logical immediate and move wide immediate parts of the + // instruction tree, and call the corresponding visitors. + // On entry, instruction bits 27:24 = 0x2. + void DecodeLogical(Instruction* instr); + + // Decode the bitfield and extraction parts of the instruction tree, + // and call the corresponding visitors. + // On entry, instruction bits 27:24 = 0x3. + void DecodeBitfieldExtract(Instruction* instr); + + // Decode the data processing parts of the instruction tree, and call the + // corresponding visitors. + // On entry, instruction bits 27:24 = {0x1, 0xA, 0xB}. + void DecodeDataProcessing(Instruction* instr); + + // Decode the floating point parts of the instruction tree, and call the + // corresponding visitors. + // On entry, instruction bits 27:24 = {0xE, 0xF}. + void DecodeFP(Instruction* instr); + + // Decode the Advanced SIMD (NEON) load/store part of the instruction tree, + // and call the corresponding visitors. + // On entry, instruction bits 29:25 = 0x6. + void DecodeAdvSIMDLoadStore(Instruction* instr); + + // Decode the Advanced SIMD (NEON) data processing part of the instruction + // tree, and call the corresponding visitors. + // On entry, instruction bits 27:25 = 0x7. + void DecodeAdvSIMDDataProcessing(Instruction* instr); +}; +} // namespace vixl + +#endif // VIXL_A64_DECODER_A64_H_ diff --git a/disas/libvixl/a64/disasm-a64.cc b/disas/libvixl/a64/disasm-a64.cc new file mode 100644 index 0000000..4a49748 --- /dev/null +++ b/disas/libvixl/a64/disasm-a64.cc @@ -0,0 +1,1678 @@ +// Copyright 2013, ARM Limited +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are met: +// +// * Redistributions of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// * Neither the name of ARM Limited nor the names of its contributors may be +// used to endorse or promote products derived from this software without +// specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND +// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE +// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#include "a64/disasm-a64.h" + +namespace vixl { + +Disassembler::Disassembler() { + buffer_size_ = 256; + buffer_ = reinterpret_cast<char*>(malloc(buffer_size_)); + buffer_pos_ = 0; + own_buffer_ = true; +} + + +Disassembler::Disassembler(char* text_buffer, int buffer_size) { + buffer_size_ = buffer_size; + buffer_ = text_buffer; + buffer_pos_ = 0; + own_buffer_ = false; +} + + +Disassembler::~Disassembler() { + if (own_buffer_) { + free(buffer_); + } +} + + +char* Disassembler::GetOutput() { + return buffer_; +} + + +void Disassembler::VisitAddSubImmediate(Instruction* instr) { + bool rd_is_zr = RdIsZROrSP(instr); + bool stack_op = (rd_is_zr || RnIsZROrSP(instr)) && + (instr->ImmAddSub() == 0) ? true : false; + const char *mnemonic = ""; + const char *form = "'Rds, 'Rns, 'IAddSub"; + const char *form_cmp = "'Rns, 'IAddSub"; + const char *form_mov = "'Rds, 'Rns"; + + switch (instr->Mask(AddSubImmediateMask)) { + case ADD_w_imm: + case ADD_x_imm: { + mnemonic = "add"; + if (stack_op) { + mnemonic = "mov"; + form = form_mov; + } + break; + } + case ADDS_w_imm: + case ADDS_x_imm: { + mnemonic = "adds"; + if (rd_is_zr) { + mnemonic = "cmn"; + form = form_cmp; + } + break; + } + case SUB_w_imm: + case SUB_x_imm: mnemonic = "sub"; break; + case SUBS_w_imm: + case SUBS_x_imm: { + mnemonic = "subs"; + if (rd_is_zr) { + mnemonic = "cmp"; + form = form_cmp; + } + break; + } + default: UNREACHABLE(); + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitAddSubShifted(Instruction* instr) { + bool rd_is_zr = RdIsZROrSP(instr); + bool rn_is_zr = RnIsZROrSP(instr); + const char *mnemonic = ""; + const char *form = "'Rd, 'Rn, 'Rm'HDP"; + const char *form_cmp = "'Rn, 'Rm'HDP"; + const char *form_neg = "'Rd, 'Rm'HDP"; + + switch (instr->Mask(AddSubShiftedMask)) { + case ADD_w_shift: + case ADD_x_shift: mnemonic = "add"; break; + case ADDS_w_shift: + case ADDS_x_shift: { + mnemonic = "adds"; + if (rd_is_zr) { + mnemonic = "cmn"; + form = form_cmp; + } + break; + } + case SUB_w_shift: + case SUB_x_shift: { + mnemonic = "sub"; + if (rn_is_zr) { + mnemonic = "neg"; + form = form_neg; + } + break; + } + case SUBS_w_shift: + case SUBS_x_shift: { + mnemonic = "subs"; + if (rd_is_zr) { + mnemonic = "cmp"; + form = form_cmp; + } else if (rn_is_zr) { + mnemonic = "negs"; + form = form_neg; + } + break; + } + default: UNREACHABLE(); + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitAddSubExtended(Instruction* instr) { + bool rd_is_zr = RdIsZROrSP(instr); + const char *mnemonic = ""; + Extend mode = static_cast<Extend>(instr->ExtendMode()); + const char *form = ((mode == UXTX) || (mode == SXTX)) ? + "'Rds, 'Rns, 'Xm'Ext" : "'Rds, 'Rns, 'Wm'Ext"; + const char *form_cmp = ((mode == UXTX) || (mode == SXTX)) ? + "'Rns, 'Xm'Ext" : "'Rns, 'Wm'Ext"; + + switch (instr->Mask(AddSubExtendedMask)) { + case ADD_w_ext: + case ADD_x_ext: mnemonic = "add"; break; + case ADDS_w_ext: + case ADDS_x_ext: { + mnemonic = "adds"; + if (rd_is_zr) { + mnemonic = "cmn"; + form = form_cmp; + } + break; + } + case SUB_w_ext: + case SUB_x_ext: mnemonic = "sub"; break; + case SUBS_w_ext: + case SUBS_x_ext: { + mnemonic = "subs"; + if (rd_is_zr) { + mnemonic = "cmp"; + form = form_cmp; + } + break; + } + default: UNREACHABLE(); + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitAddSubWithCarry(Instruction* instr) { + bool rn_is_zr = RnIsZROrSP(instr); + const char *mnemonic = ""; + const char *form = "'Rd, 'Rn, 'Rm"; + const char *form_neg = "'Rd, 'Rm"; + + switch (instr->Mask(AddSubWithCarryMask)) { + case ADC_w: + case ADC_x: mnemonic = "adc"; break; + case ADCS_w: + case ADCS_x: mnemonic = "adcs"; break; + case SBC_w: + case SBC_x: { + mnemonic = "sbc"; + if (rn_is_zr) { + mnemonic = "ngc"; + form = form_neg; + } + break; + } + case SBCS_w: + case SBCS_x: { + mnemonic = "sbcs"; + if (rn_is_zr) { + mnemonic = "ngcs"; + form = form_neg; + } + break; + } + default: UNREACHABLE(); + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitLogicalImmediate(Instruction* instr) { + bool rd_is_zr = RdIsZROrSP(instr); + bool rn_is_zr = RnIsZROrSP(instr); + const char *mnemonic = ""; + const char *form = "'Rds, 'Rn, 'ITri"; + + if (instr->ImmLogical() == 0) { + // The immediate encoded in the instruction is not in the expected format. + Format(instr, "unallocated", "(LogicalImmediate)"); + return; + } + + switch (instr->Mask(LogicalImmediateMask)) { + case AND_w_imm: + case AND_x_imm: mnemonic = "and"; break; + case ORR_w_imm: + case ORR_x_imm: { + mnemonic = "orr"; + unsigned reg_size = (instr->SixtyFourBits() == 1) ? kXRegSize + : kWRegSize; + if (rn_is_zr && !IsMovzMovnImm(reg_size, instr->ImmLogical())) { + mnemonic = "mov"; + form = "'Rds, 'ITri"; + } + break; + } + case EOR_w_imm: + case EOR_x_imm: mnemonic = "eor"; break; + case ANDS_w_imm: + case ANDS_x_imm: { + mnemonic = "ands"; + if (rd_is_zr) { + mnemonic = "tst"; + form = "'Rn, 'ITri"; + } + break; + } + default: UNREACHABLE(); + } + Format(instr, mnemonic, form); +} + + +bool Disassembler::IsMovzMovnImm(unsigned reg_size, uint64_t value) { + ASSERT((reg_size == kXRegSize) || + ((reg_size == kWRegSize) && (value <= 0xffffffff))); + + // Test for movz: 16 bits set at positions 0, 16, 32 or 48. + if (((value & 0xffffffffffff0000UL) == 0UL) || + ((value & 0xffffffff0000ffffUL) == 0UL) || + ((value & 0xffff0000ffffffffUL) == 0UL) || + ((value & 0x0000ffffffffffffUL) == 0UL)) { + return true; + } + + // Test for movn: NOT(16 bits set at positions 0, 16, 32 or 48). + if ((reg_size == kXRegSize) && + (((value & 0xffffffffffff0000UL) == 0xffffffffffff0000UL) || + ((value & 0xffffffff0000ffffUL) == 0xffffffff0000ffffUL) || + ((value & 0xffff0000ffffffffUL) == 0xffff0000ffffffffUL) || + ((value & 0x0000ffffffffffffUL) == 0x0000ffffffffffffUL))) { + return true; + } + if ((reg_size == kWRegSize) && + (((value & 0xffff0000) == 0xffff0000) || + ((value & 0x0000ffff) == 0x0000ffff))) { + return true; + } + return false; +} + + +void Disassembler::VisitLogicalShifted(Instruction* instr) { + bool rd_is_zr = RdIsZROrSP(instr); + bool rn_is_zr = RnIsZROrSP(instr); + const char *mnemonic = ""; + const char *form = "'Rd, 'Rn, 'Rm'HLo"; + + switch (instr->Mask(LogicalShiftedMask)) { + case AND_w: + case AND_x: mnemonic = "and"; break; + case BIC_w: + case BIC_x: mnemonic = "bic"; break; + case EOR_w: + case EOR_x: mnemonic = "eor"; break; + case EON_w: + case EON_x: mnemonic = "eon"; break; + case BICS_w: + case BICS_x: mnemonic = "bics"; break; + case ANDS_w: + case ANDS_x: { + mnemonic = "ands"; + if (rd_is_zr) { + mnemonic = "tst"; + form = "'Rn, 'Rm'HLo"; + } + break; + } + case ORR_w: + case ORR_x: { + mnemonic = "orr"; + if (rn_is_zr && (instr->ImmDPShift() == 0) && (instr->ShiftDP() == LSL)) { + mnemonic = "mov"; + form = "'Rd, 'Rm"; + } + break; + } + case ORN_w: + case ORN_x: { + mnemonic = "orn"; + if (rn_is_zr) { + mnemonic = "mvn"; + form = "'Rd, 'Rm'HLo"; + } + break; + } + default: UNREACHABLE(); + } + + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitConditionalCompareRegister(Instruction* instr) { + const char *mnemonic = ""; + const char *form = "'Rn, 'Rm, 'INzcv, 'Cond"; + + switch (instr->Mask(ConditionalCompareRegisterMask)) { + case CCMN_w: + case CCMN_x: mnemonic = "ccmn"; break; + case CCMP_w: + case CCMP_x: mnemonic = "ccmp"; break; + default: UNREACHABLE(); + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitConditionalCompareImmediate(Instruction* instr) { + const char *mnemonic = ""; + const char *form = "'Rn, 'IP, 'INzcv, 'Cond"; + + switch (instr->Mask(ConditionalCompareImmediateMask)) { + case CCMN_w_imm: + case CCMN_x_imm: mnemonic = "ccmn"; break; + case CCMP_w_imm: + case CCMP_x_imm: mnemonic = "ccmp"; break; + default: UNREACHABLE(); + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitConditionalSelect(Instruction* instr) { + bool rnm_is_zr = (RnIsZROrSP(instr) && RmIsZROrSP(instr)); + bool rn_is_rm = (instr->Rn() == instr->Rm()); + const char *mnemonic = ""; + const char *form = "'Rd, 'Rn, 'Rm, 'Cond"; + const char *form_test = "'Rd, 'CInv"; + const char *form_update = "'Rd, 'Rn, 'CInv"; + + Condition cond = static_cast<Condition>(instr->Condition()); + bool invertible_cond = (cond != al) && (cond != nv); + + switch (instr->Mask(ConditionalSelectMask)) { + case CSEL_w: + case CSEL_x: mnemonic = "csel"; break; + case CSINC_w: + case CSINC_x: { + mnemonic = "csinc"; + if (rnm_is_zr && invertible_cond) { + mnemonic = "cset"; + form = form_test; + } else if (rn_is_rm && invertible_cond) { + mnemonic = "cinc"; + form = form_update; + } + break; + } + case CSINV_w: + case CSINV_x: { + mnemonic = "csinv"; + if (rnm_is_zr && invertible_cond) { + mnemonic = "csetm"; + form = form_test; + } else if (rn_is_rm && invertible_cond) { + mnemonic = "cinv"; + form = form_update; + } + break; + } + case CSNEG_w: + case CSNEG_x: { + mnemonic = "csneg"; + if (rn_is_rm && invertible_cond) { + mnemonic = "cneg"; + form = form_update; + } + break; + } + default: UNREACHABLE(); + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitBitfield(Instruction* instr) { + unsigned s = instr->ImmS(); + unsigned r = instr->ImmR(); + unsigned rd_size_minus_1 = + ((instr->SixtyFourBits() == 1) ? kXRegSize : kWRegSize) - 1; + const char *mnemonic = ""; + const char *form = ""; + const char *form_shift_right = "'Rd, 'Rn, 'IBr"; + const char *form_extend = "'Rd, 'Wn"; + const char *form_bfiz = "'Rd, 'Rn, 'IBZ-r, 'IBs+1"; + const char *form_bfx = "'Rd, 'Rn, 'IBr, 'IBs-r+1"; + const char *form_lsl = "'Rd, 'Rn, 'IBZ-r"; + + switch (instr->Mask(BitfieldMask)) { + case SBFM_w: + case SBFM_x: { + mnemonic = "sbfx"; + form = form_bfx; + if (r == 0) { + form = form_extend; + if (s == 7) { + mnemonic = "sxtb"; + } else if (s == 15) { + mnemonic = "sxth"; + } else if ((s == 31) && (instr->SixtyFourBits() == 1)) { + mnemonic = "sxtw"; + } else { + form = form_bfx; + } + } else if (s == rd_size_minus_1) { + mnemonic = "asr"; + form = form_shift_right; + } else if (s < r) { + mnemonic = "sbfiz"; + form = form_bfiz; + } + break; + } + case UBFM_w: + case UBFM_x: { + mnemonic = "ubfx"; + form = form_bfx; + if (r == 0) { + form = form_extend; + if (s == 7) { + mnemonic = "uxtb"; + } else if (s == 15) { + mnemonic = "uxth"; + } else { + form = form_bfx; + } + } + if (s == rd_size_minus_1) { + mnemonic = "lsr"; + form = form_shift_right; + } else if (r == s + 1) { + mnemonic = "lsl"; + form = form_lsl; + } else if (s < r) { + mnemonic = "ubfiz"; + form = form_bfiz; + } + break; + } + case BFM_w: + case BFM_x: { + mnemonic = "bfxil"; + form = form_bfx; + if (s < r) { + mnemonic = "bfi"; + form = form_bfiz; + } + } + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitExtract(Instruction* instr) { + const char *mnemonic = ""; + const char *form = "'Rd, 'Rn, 'Rm, 'IExtract"; + + switch (instr->Mask(ExtractMask)) { + case EXTR_w: + case EXTR_x: { + if (instr->Rn() == instr->Rm()) { + mnemonic = "ror"; + form = "'Rd, 'Rn, 'IExtract"; + } else { + mnemonic = "extr"; + } + break; + } + default: UNREACHABLE(); + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitPCRelAddressing(Instruction* instr) { + switch (instr->Mask(PCRelAddressingMask)) { + case ADR: Format(instr, "adr", "'Xd, 'AddrPCRelByte"); break; + // ADRP is not implemented. + default: Format(instr, "unimplemented", "(PCRelAddressing)"); + } +} + + +void Disassembler::VisitConditionalBranch(Instruction* instr) { + switch (instr->Mask(ConditionalBranchMask)) { + case B_cond: Format(instr, "b.'CBrn", "'BImmCond"); break; + default: UNREACHABLE(); + } +} + + +void Disassembler::VisitUnconditionalBranchToRegister(Instruction* instr) { + const char *mnemonic = "unimplemented"; + const char *form = "'Xn"; + + switch (instr->Mask(UnconditionalBranchToRegisterMask)) { + case BR: mnemonic = "br"; break; + case BLR: mnemonic = "blr"; break; + case RET: { + mnemonic = "ret"; + if (instr->Rn() == kLinkRegCode) { + form = NULL; + } + break; + } + default: form = "(UnconditionalBranchToRegister)"; + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitUnconditionalBranch(Instruction* instr) { + const char *mnemonic = ""; + const char *form = "'BImmUncn"; + + switch (instr->Mask(UnconditionalBranchMask)) { + case B: mnemonic = "b"; break; + case BL: mnemonic = "bl"; break; + default: UNREACHABLE(); + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitDataProcessing1Source(Instruction* instr) { + const char *mnemonic = ""; + const char *form = "'Rd, 'Rn"; + + switch (instr->Mask(DataProcessing1SourceMask)) { + #define FORMAT(A, B) \ + case A##_w: \ + case A##_x: mnemonic = B; break; + FORMAT(RBIT, "rbit"); + FORMAT(REV16, "rev16"); + FORMAT(REV, "rev"); + FORMAT(CLZ, "clz"); + FORMAT(CLS, "cls"); + #undef FORMAT + case REV32_x: mnemonic = "rev32"; break; + default: UNREACHABLE(); + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitDataProcessing2Source(Instruction* instr) { + const char *mnemonic = "unimplemented"; + const char *form = "'Rd, 'Rn, 'Rm"; + + switch (instr->Mask(DataProcessing2SourceMask)) { + #define FORMAT(A, B) \ + case A##_w: \ + case A##_x: mnemonic = B; break; + FORMAT(UDIV, "udiv"); + FORMAT(SDIV, "sdiv"); + FORMAT(LSLV, "lsl"); + FORMAT(LSRV, "lsr"); + FORMAT(ASRV, "asr"); + FORMAT(RORV, "ror"); + #undef FORMAT + default: form = "(DataProcessing2Source)"; + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitDataProcessing3Source(Instruction* instr) { + bool ra_is_zr = RaIsZROrSP(instr); + const char *mnemonic = ""; + const char *form = "'Xd, 'Wn, 'Wm, 'Xa"; + const char *form_rrr = "'Rd, 'Rn, 'Rm"; + const char *form_rrrr = "'Rd, 'Rn, 'Rm, 'Ra"; + const char *form_xww = "'Xd, 'Wn, 'Wm"; + const char *form_xxx = "'Xd, 'Xn, 'Xm"; + + switch (instr->Mask(DataProcessing3SourceMask)) { + case MADD_w: + case MADD_x: { + mnemonic = "madd"; + form = form_rrrr; + if (ra_is_zr) { + mnemonic = "mul"; + form = form_rrr; + } + break; + } + case MSUB_w: + case MSUB_x: { + mnemonic = "msub"; + form = form_rrrr; + if (ra_is_zr) { + mnemonic = "mneg"; + form = form_rrr; + } + break; + } + case SMADDL_x: { + mnemonic = "smaddl"; + if (ra_is_zr) { + mnemonic = "smull"; + form = form_xww; + } + break; + } + case SMSUBL_x: { + mnemonic = "smsubl"; + if (ra_is_zr) { + mnemonic = "smnegl"; + form = form_xww; + } + break; + } + case UMADDL_x: { + mnemonic = "umaddl"; + if (ra_is_zr) { + mnemonic = "umull"; + form = form_xww; + } + break; + } + case UMSUBL_x: { + mnemonic = "umsubl"; + if (ra_is_zr) { + mnemonic = "umnegl"; + form = form_xww; + } + break; + } + case SMULH_x: { + mnemonic = "smulh"; + form = form_xxx; + break; + } + case UMULH_x: { + mnemonic = "umulh"; + form = form_xxx; + break; + } + default: UNREACHABLE(); + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitCompareBranch(Instruction* instr) { + const char *mnemonic = ""; + const char *form = "'Rt, 'BImmCmpa"; + + switch (instr->Mask(CompareBranchMask)) { + case CBZ_w: + case CBZ_x: mnemonic = "cbz"; break; + case CBNZ_w: + case CBNZ_x: mnemonic = "cbnz"; break; + default: UNREACHABLE(); + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitTestBranch(Instruction* instr) { + const char *mnemonic = ""; + // If the top bit of the immediate is clear, the tested register is + // disassembled as Wt, otherwise Xt. As the top bit of the immediate is + // encoded in bit 31 of the instruction, we can reuse the Rt form, which + // uses bit 31 (normally "sf") to choose the register size. + const char *form = "'Rt, 'IS, 'BImmTest"; + + switch (instr->Mask(TestBranchMask)) { + case TBZ: mnemonic = "tbz"; break; + case TBNZ: mnemonic = "tbnz"; break; + default: UNREACHABLE(); + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitMoveWideImmediate(Instruction* instr) { + const char *mnemonic = ""; + const char *form = "'Rd, 'IMoveImm"; + + // Print the shift separately for movk, to make it clear which half word will + // be overwritten. Movn and movz print the computed immediate, which includes + // shift calculation. + switch (instr->Mask(MoveWideImmediateMask)) { + case MOVN_w: + case MOVN_x: mnemonic = "movn"; break; + case MOVZ_w: + case MOVZ_x: mnemonic = "movz"; break; + case MOVK_w: + case MOVK_x: mnemonic = "movk"; form = "'Rd, 'IMoveLSL"; break; + default: UNREACHABLE(); + } + Format(instr, mnemonic, form); +} + + +#define LOAD_STORE_LIST(V) \ + V(STRB_w, "strb", "'Wt") \ + V(STRH_w, "strh", "'Wt") \ + V(STR_w, "str", "'Wt") \ + V(STR_x, "str", "'Xt") \ + V(LDRB_w, "ldrb", "'Wt") \ + V(LDRH_w, "ldrh", "'Wt") \ + V(LDR_w, "ldr", "'Wt") \ + V(LDR_x, "ldr", "'Xt") \ + V(LDRSB_x, "ldrsb", "'Xt") \ + V(LDRSH_x, "ldrsh", "'Xt") \ + V(LDRSW_x, "ldrsw", "'Xt") \ + V(LDRSB_w, "ldrsb", "'Wt") \ + V(LDRSH_w, "ldrsh", "'Wt") \ + V(STR_s, "str", "'St") \ + V(STR_d, "str", "'Dt") \ + V(LDR_s, "ldr", "'St") \ + V(LDR_d, "ldr", "'Dt") + +void Disassembler::VisitLoadStorePreIndex(Instruction* instr) { + const char *mnemonic = "unimplemented"; + const char *form = "(LoadStorePreIndex)"; + + switch (instr->Mask(LoadStorePreIndexMask)) { + #define LS_PREINDEX(A, B, C) \ + case A##_pre: mnemonic = B; form = C ", ['Xns'ILS]!"; break; + LOAD_STORE_LIST(LS_PREINDEX) + #undef LS_PREINDEX + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitLoadStorePostIndex(Instruction* instr) { + const char *mnemonic = "unimplemented"; + const char *form = "(LoadStorePostIndex)"; + + switch (instr->Mask(LoadStorePostIndexMask)) { + #define LS_POSTINDEX(A, B, C) \ + case A##_post: mnemonic = B; form = C ", ['Xns]'ILS"; break; + LOAD_STORE_LIST(LS_POSTINDEX) + #undef LS_POSTINDEX + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitLoadStoreUnsignedOffset(Instruction* instr) { + const char *mnemonic = "unimplemented"; + const char *form = "(LoadStoreUnsignedOffset)"; + + switch (instr->Mask(LoadStoreUnsignedOffsetMask)) { + #define LS_UNSIGNEDOFFSET(A, B, C) \ + case A##_unsigned: mnemonic = B; form = C ", ['Xns'ILU]"; break; + LOAD_STORE_LIST(LS_UNSIGNEDOFFSET) + #undef LS_UNSIGNEDOFFSET + case PRFM_unsigned: mnemonic = "prfm"; form = "'PrefOp, ['Xn'ILU]"; + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitLoadStoreRegisterOffset(Instruction* instr) { + const char *mnemonic = "unimplemented"; + const char *form = "(LoadStoreRegisterOffset)"; + + switch (instr->Mask(LoadStoreRegisterOffsetMask)) { + #define LS_REGISTEROFFSET(A, B, C) \ + case A##_reg: mnemonic = B; form = C ", ['Xns, 'Offsetreg]"; break; + LOAD_STORE_LIST(LS_REGISTEROFFSET) + #undef LS_REGISTEROFFSET + case PRFM_reg: mnemonic = "prfm"; form = "'PrefOp, ['Xns, 'Offsetreg]"; + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitLoadStoreUnscaledOffset(Instruction* instr) { + const char *mnemonic = "unimplemented"; + const char *form = "'Wt, ['Xns'ILS]"; + const char *form_x = "'Xt, ['Xns'ILS]"; + const char *form_s = "'St, ['Xns'ILS]"; + const char *form_d = "'Dt, ['Xns'ILS]"; + + switch (instr->Mask(LoadStoreUnscaledOffsetMask)) { + case STURB_w: mnemonic = "sturb"; break; + case STURH_w: mnemonic = "sturh"; break; + case STUR_w: mnemonic = "stur"; break; + case STUR_x: mnemonic = "stur"; form = form_x; break; + case STUR_s: mnemonic = "stur"; form = form_s; break; + case STUR_d: mnemonic = "stur"; form = form_d; break; + case LDURB_w: mnemonic = "ldurb"; break; + case LDURH_w: mnemonic = "ldurh"; break; + case LDUR_w: mnemonic = "ldur"; break; + case LDUR_x: mnemonic = "ldur"; form = form_x; break; + case LDUR_s: mnemonic = "ldur"; form = form_s; break; + case LDUR_d: mnemonic = "ldur"; form = form_d; break; + case LDURSB_x: form = form_x; // Fall through. + case LDURSB_w: mnemonic = "ldursb"; break; + case LDURSH_x: form = form_x; // Fall through. + case LDURSH_w: mnemonic = "ldursh"; break; + case LDURSW_x: mnemonic = "ldursw"; form = form_x; break; + default: form = "(LoadStoreUnscaledOffset)"; + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitLoadLiteral(Instruction* instr) { + const char *mnemonic = "ldr"; + const char *form = "(LoadLiteral)"; + + switch (instr->Mask(LoadLiteralMask)) { + case LDR_w_lit: form = "'Wt, 'ILLiteral 'LValue"; break; + case LDR_x_lit: form = "'Xt, 'ILLiteral 'LValue"; break; + case LDR_s_lit: form = "'St, 'ILLiteral 'LValue"; break; + case LDR_d_lit: form = "'Dt, 'ILLiteral 'LValue"; break; + default: mnemonic = "unimplemented"; + } + Format(instr, mnemonic, form); +} + + +#define LOAD_STORE_PAIR_LIST(V) \ + V(STP_w, "stp", "'Wt, 'Wt2", "4") \ + V(LDP_w, "ldp", "'Wt, 'Wt2", "4") \ + V(LDPSW_x, "ldpsw", "'Xt, 'Xt2", "4") \ + V(STP_x, "stp", "'Xt, 'Xt2", "8") \ + V(LDP_x, "ldp", "'Xt, 'Xt2", "8") \ + V(STP_s, "stp", "'St, 'St2", "4") \ + V(LDP_s, "ldp", "'St, 'St2", "4") \ + V(STP_d, "stp", "'Dt, 'Dt2", "8") \ + V(LDP_d, "ldp", "'Dt, 'Dt2", "8") + +void Disassembler::VisitLoadStorePairPostIndex(Instruction* instr) { + const char *mnemonic = "unimplemented"; + const char *form = "(LoadStorePairPostIndex)"; + + switch (instr->Mask(LoadStorePairPostIndexMask)) { + #define LSP_POSTINDEX(A, B, C, D) \ + case A##_post: mnemonic = B; form = C ", ['Xns]'ILP" D; break; + LOAD_STORE_PAIR_LIST(LSP_POSTINDEX) + #undef LSP_POSTINDEX + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitLoadStorePairPreIndex(Instruction* instr) { + const char *mnemonic = "unimplemented"; + const char *form = "(LoadStorePairPreIndex)"; + + switch (instr->Mask(LoadStorePairPreIndexMask)) { + #define LSP_PREINDEX(A, B, C, D) \ + case A##_pre: mnemonic = B; form = C ", ['Xns'ILP" D "]!"; break; + LOAD_STORE_PAIR_LIST(LSP_PREINDEX) + #undef LSP_PREINDEX + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitLoadStorePairOffset(Instruction* instr) { + const char *mnemonic = "unimplemented"; + const char *form = "(LoadStorePairOffset)"; + + switch (instr->Mask(LoadStorePairOffsetMask)) { + #define LSP_OFFSET(A, B, C, D) \ + case A##_off: mnemonic = B; form = C ", ['Xns'ILP" D "]"; break; + LOAD_STORE_PAIR_LIST(LSP_OFFSET) + #undef LSP_OFFSET + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitLoadStorePairNonTemporal(Instruction* instr) { + const char *mnemonic = "unimplemented"; + const char *form; + + switch (instr->Mask(LoadStorePairNonTemporalMask)) { + case STNP_w: mnemonic = "stnp"; form = "'Wt, 'Wt2, ['Xns'ILP4]"; break; + case LDNP_w: mnemonic = "ldnp"; form = "'Wt, 'Wt2, ['Xns'ILP4]"; break; + case STNP_x: mnemonic = "stnp"; form = "'Xt, 'Xt2, ['Xns'ILP8]"; break; + case LDNP_x: mnemonic = "ldnp"; form = "'Xt, 'Xt2, ['Xns'ILP8]"; break; + case STNP_s: mnemonic = "stnp"; form = "'St, 'St2, ['Xns'ILP4]"; break; + case LDNP_s: mnemonic = "ldnp"; form = "'St, 'St2, ['Xns'ILP4]"; break; + case STNP_d: mnemonic = "stnp"; form = "'Dt, 'Dt2, ['Xns'ILP8]"; break; + case LDNP_d: mnemonic = "ldnp"; form = "'Dt, 'Dt2, ['Xns'ILP8]"; break; + default: form = "(LoadStorePairNonTemporal)"; + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitFPCompare(Instruction* instr) { + const char *mnemonic = "unimplemented"; + const char *form = "'Fn, 'Fm"; + const char *form_zero = "'Fn, #0.0"; + + switch (instr->Mask(FPCompareMask)) { + case FCMP_s_zero: + case FCMP_d_zero: form = form_zero; // Fall through. + case FCMP_s: + case FCMP_d: mnemonic = "fcmp"; break; + default: form = "(FPCompare)"; + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitFPConditionalCompare(Instruction* instr) { + const char *mnemonic = "unmplemented"; + const char *form = "'Fn, 'Fm, 'INzcv, 'Cond"; + + switch (instr->Mask(FPConditionalCompareMask)) { + case FCCMP_s: + case FCCMP_d: mnemonic = "fccmp"; break; + case FCCMPE_s: + case FCCMPE_d: mnemonic = "fccmpe"; break; + default: form = "(FPConditionalCompare)"; + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitFPConditionalSelect(Instruction* instr) { + const char *mnemonic = ""; + const char *form = "'Fd, 'Fn, 'Fm, 'Cond"; + + switch (instr->Mask(FPConditionalSelectMask)) { + case FCSEL_s: + case FCSEL_d: mnemonic = "fcsel"; break; + default: UNREACHABLE(); + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitFPDataProcessing1Source(Instruction* instr) { + const char *mnemonic = "unimplemented"; + const char *form = "'Fd, 'Fn"; + + switch (instr->Mask(FPDataProcessing1SourceMask)) { + #define FORMAT(A, B) \ + case A##_s: \ + case A##_d: mnemonic = B; break; + FORMAT(FMOV, "fmov"); + FORMAT(FABS, "fabs"); + FORMAT(FNEG, "fneg"); + FORMAT(FSQRT, "fsqrt"); + FORMAT(FRINTN, "frintn"); + FORMAT(FRINTP, "frintp"); + FORMAT(FRINTM, "frintm"); + FORMAT(FRINTZ, "frintz"); + FORMAT(FRINTA, "frinta"); + FORMAT(FRINTX, "frintx"); + FORMAT(FRINTI, "frinti"); + #undef FORMAT + case FCVT_ds: mnemonic = "fcvt"; form = "'Dd, 'Sn"; break; + case FCVT_sd: mnemonic = "fcvt"; form = "'Sd, 'Dn"; break; + default: form = "(FPDataProcessing1Source)"; + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitFPDataProcessing2Source(Instruction* instr) { + const char *mnemonic = ""; + const char *form = "'Fd, 'Fn, 'Fm"; + + switch (instr->Mask(FPDataProcessing2SourceMask)) { + #define FORMAT(A, B) \ + case A##_s: \ + case A##_d: mnemonic = B; break; + FORMAT(FMUL, "fmul"); + FORMAT(FDIV, "fdiv"); + FORMAT(FADD, "fadd"); + FORMAT(FSUB, "fsub"); + FORMAT(FMAX, "fmax"); + FORMAT(FMIN, "fmin"); + FORMAT(FMAXNM, "fmaxnm"); + FORMAT(FMINNM, "fminnm"); + FORMAT(FNMUL, "fnmul"); + #undef FORMAT + default: UNREACHABLE(); + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitFPDataProcessing3Source(Instruction* instr) { + const char *mnemonic = ""; + const char *form = "'Fd, 'Fn, 'Fm, 'Fa"; + + switch (instr->Mask(FPDataProcessing3SourceMask)) { + #define FORMAT(A, B) \ + case A##_s: \ + case A##_d: mnemonic = B; break; + FORMAT(FMADD, "fmadd"); + FORMAT(FMSUB, "fmsub"); + FORMAT(FNMADD, "fnmadd"); + FORMAT(FNMSUB, "fnmsub"); + #undef FORMAT + default: UNREACHABLE(); + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitFPImmediate(Instruction* instr) { + const char *mnemonic = ""; + const char *form = "(FPImmediate)"; + + switch (instr->Mask(FPImmediateMask)) { + case FMOV_s_imm: mnemonic = "fmov"; form = "'Sd, 'IFPSingle"; break; + case FMOV_d_imm: mnemonic = "fmov"; form = "'Dd, 'IFPDouble"; break; + default: UNREACHABLE(); + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitFPIntegerConvert(Instruction* instr) { + const char *mnemonic = "unimplemented"; + const char *form = "(FPIntegerConvert)"; + const char *form_rf = "'Rd, 'Fn"; + const char *form_fr = "'Fd, 'Rn"; + + switch (instr->Mask(FPIntegerConvertMask)) { + case FMOV_ws: + case FMOV_xd: mnemonic = "fmov"; form = form_rf; break; + case FMOV_sw: + case FMOV_dx: mnemonic = "fmov"; form = form_fr; break; + case FCVTMS_ws: + case FCVTMS_xs: + case FCVTMS_wd: + case FCVTMS_xd: mnemonic = "fcvtms"; form = form_rf; break; + case FCVTMU_ws: + case FCVTMU_xs: + case FCVTMU_wd: + case FCVTMU_xd: mnemonic = "fcvtmu"; form = form_rf; break; + case FCVTNS_ws: + case FCVTNS_xs: + case FCVTNS_wd: + case FCVTNS_xd: mnemonic = "fcvtns"; form = form_rf; break; + case FCVTNU_ws: + case FCVTNU_xs: + case FCVTNU_wd: + case FCVTNU_xd: mnemonic = "fcvtnu"; form = form_rf; break; + case FCVTZU_xd: + case FCVTZU_ws: + case FCVTZU_wd: + case FCVTZU_xs: mnemonic = "fcvtzu"; form = form_rf; break; + case FCVTZS_xd: + case FCVTZS_wd: + case FCVTZS_xs: + case FCVTZS_ws: mnemonic = "fcvtzs"; form = form_rf; break; + case SCVTF_sw: + case SCVTF_sx: + case SCVTF_dw: + case SCVTF_dx: mnemonic = "scvtf"; form = form_fr; break; + case UCVTF_sw: + case UCVTF_sx: + case UCVTF_dw: + case UCVTF_dx: mnemonic = "ucvtf"; form = form_fr; break; + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitFPFixedPointConvert(Instruction* instr) { + const char *mnemonic = ""; + const char *form = "'Rd, 'Fn, 'IFPFBits"; + const char *form_fr = "'Fd, 'Rn, 'IFPFBits"; + + switch (instr->Mask(FPFixedPointConvertMask)) { + case FCVTZS_ws_fixed: + case FCVTZS_xs_fixed: + case FCVTZS_wd_fixed: + case FCVTZS_xd_fixed: mnemonic = "fcvtzs"; break; + case FCVTZU_ws_fixed: + case FCVTZU_xs_fixed: + case FCVTZU_wd_fixed: + case FCVTZU_xd_fixed: mnemonic = "fcvtzu"; break; + case SCVTF_sw_fixed: + case SCVTF_sx_fixed: + case SCVTF_dw_fixed: + case SCVTF_dx_fixed: mnemonic = "scvtf"; form = form_fr; break; + case UCVTF_sw_fixed: + case UCVTF_sx_fixed: + case UCVTF_dw_fixed: + case UCVTF_dx_fixed: mnemonic = "ucvtf"; form = form_fr; break; + default: UNREACHABLE(); + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitSystem(Instruction* instr) { + // Some system instructions hijack their Op and Cp fields to represent a + // range of immediates instead of indicating a different instruction. This + // makes the decoding tricky. + const char *mnemonic = "unimplemented"; + const char *form = "(System)"; + + if (instr->Mask(SystemSysRegFMask) == SystemSysRegFixed) { + switch (instr->Mask(SystemSysRegMask)) { + case MRS: { + mnemonic = "mrs"; + switch (instr->ImmSystemRegister()) { + case NZCV: form = "'Xt, nzcv"; break; + case FPCR: form = "'Xt, fpcr"; break; + default: form = "'Xt, (unknown)"; break; + } + break; + } + case MSR: { + mnemonic = "msr"; + switch (instr->ImmSystemRegister()) { + case NZCV: form = "nzcv, 'Xt"; break; + case FPCR: form = "fpcr, 'Xt"; break; + default: form = "(unknown), 'Xt"; break; + } + break; + } + } + } else if (instr->Mask(SystemHintFMask) == SystemHintFixed) { + ASSERT(instr->Mask(SystemHintMask) == HINT); + switch (instr->ImmHint()) { + case NOP: { + mnemonic = "nop"; + form = NULL; + break; + } + } + } + + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitException(Instruction* instr) { + const char *mnemonic = "unimplemented"; + const char *form = "'IDebug"; + + switch (instr->Mask(ExceptionMask)) { + case HLT: mnemonic = "hlt"; break; + case BRK: mnemonic = "brk"; break; + case SVC: mnemonic = "svc"; break; + case HVC: mnemonic = "hvc"; break; + case SMC: mnemonic = "smc"; break; + case DCPS1: mnemonic = "dcps1"; form = "{'IDebug}"; break; + case DCPS2: mnemonic = "dcps2"; form = "{'IDebug}"; break; + case DCPS3: mnemonic = "dcps3"; form = "{'IDebug}"; break; + default: form = "(Exception)"; + } + Format(instr, mnemonic, form); +} + + +void Disassembler::VisitUnimplemented(Instruction* instr) { + Format(instr, "unimplemented", "(Unimplemented)"); +} + + +void Disassembler::VisitUnallocated(Instruction* instr) { + Format(instr, "unallocated", "(Unallocated)"); +} + + +void Disassembler::ProcessOutput(Instruction* /*instr*/) { + // The base disasm does nothing more than disassembling into a buffer. +} + + +void Disassembler::Format(Instruction* instr, const char* mnemonic, + const char* format) { + ASSERT(mnemonic != NULL); + ResetOutput(); + Substitute(instr, mnemonic); + if (format != NULL) { + buffer_[buffer_pos_++] = ' '; + Substitute(instr, format); + } + buffer_[buffer_pos_] = 0; + ProcessOutput(instr); +} + + +void Disassembler::Substitute(Instruction* instr, const char* string) { + char chr = *string++; + while (chr != '\0') { + if (chr == '\'') { + string += SubstituteField(instr, string); + } else { + buffer_[buffer_pos_++] = chr; + } + chr = *string++; + } +} + + +int Disassembler::SubstituteField(Instruction* instr, const char* format) { + switch (format[0]) { + case 'R': // Register. X or W, selected by sf bit. + case 'F': // FP Register. S or D, selected by type field. + case 'W': + case 'X': + case 'S': + case 'D': return SubstituteRegisterField(instr, format); + case 'I': return SubstituteImmediateField(instr, format); + case 'L': return SubstituteLiteralField(instr, format); + case 'H': return SubstituteShiftField(instr, format); + case 'P': return SubstitutePrefetchField(instr, format); + case 'C': return SubstituteConditionField(instr, format); + case 'E': return SubstituteExtendField(instr, format); + case 'A': return SubstitutePCRelAddressField(instr, format); + case 'B': return SubstituteBranchTargetField(instr, format); + case 'O': return SubstituteLSRegOffsetField(instr, format); + default: { + UNREACHABLE(); + return 1; + } + } +} + + +int Disassembler::SubstituteRegisterField(Instruction* instr, + const char* format) { + unsigned reg_num = 0; + unsigned field_len = 2; + switch (format[1]) { + case 'd': reg_num = instr->Rd(); break; + case 'n': reg_num = instr->Rn(); break; + case 'm': reg_num = instr->Rm(); break; + case 'a': reg_num = instr->Ra(); break; + case 't': { + if (format[2] == '2') { + reg_num = instr->Rt2(); + field_len = 3; + } else { + reg_num = instr->Rt(); + } + break; + } + default: UNREACHABLE(); + } + + // Increase field length for registers tagged as stack. + if (format[2] == 's') { + field_len = 3; + } + + char reg_type; + if (format[0] == 'R') { + // Register type is R: use sf bit to choose X and W. + reg_type = instr->SixtyFourBits() ? 'x' : 'w'; + } else if (format[0] == 'F') { + // Floating-point register: use type field to choose S or D. + reg_type = ((instr->FPType() & 1) == 0) ? 's' : 'd'; + } else { + // Register type is specified. Make it lower case. + reg_type = format[0] + 0x20; + } + + if ((reg_num != kZeroRegCode) || (reg_type == 's') || (reg_type == 'd')) { + // A normal register: w0 - w30, x0 - x30, s0 - s31, d0 - d31. + AppendToOutput("%c%d", reg_type, reg_num); + } else if (format[2] == 's') { + // Disassemble w31/x31 as stack pointer wsp/sp. + AppendToOutput("%s", (reg_type == 'w') ? "wsp" : "sp"); + } else { + // Disassemble w31/x31 as zero register wzr/xzr. + AppendToOutput("%czr", reg_type); + } + + return field_len; +} + + +int Disassembler::SubstituteImmediateField(Instruction* instr, + const char* format) { + ASSERT(format[0] == 'I'); + + switch (format[1]) { + case 'M': { // IMoveImm or IMoveLSL. + if (format[5] == 'I') { + uint64_t imm = instr->ImmMoveWide() << (16 * instr->ShiftMoveWide()); + AppendToOutput("#0x%" PRIx64, imm); + } else { + ASSERT(format[5] == 'L'); + AppendToOutput("#0x%" PRIx64, instr->ImmMoveWide()); + if (instr->ShiftMoveWide() > 0) { + AppendToOutput(", lsl #%d", 16 * instr->ShiftMoveWide()); + } + } + return 8; + } + case 'L': { + switch (format[2]) { + case 'L': { // ILLiteral - Immediate Load Literal. + AppendToOutput("pc%+" PRId64, + instr->ImmLLiteral() << kLiteralEntrySizeLog2); + return 9; + } + case 'S': { // ILS - Immediate Load/Store. + if (instr->ImmLS() != 0) { + AppendToOutput(", #%" PRId64, instr->ImmLS()); + } + return 3; + } + case 'P': { // ILPx - Immediate Load/Store Pair, x = access size. + if (instr->ImmLSPair() != 0) { + // format[3] is the scale value. Convert to a number. + int scale = format[3] - 0x30; + AppendToOutput(", #%" PRId64, instr->ImmLSPair() * scale); + } + return 4; + } + case 'U': { // ILU - Immediate Load/Store Unsigned. + if (instr->ImmLSUnsigned() != 0) { + AppendToOutput(", #%" PRIu64, + instr->ImmLSUnsigned() << instr->SizeLS()); + } + return 3; + } + } + } + case 'C': { // ICondB - Immediate Conditional Branch. + int64_t offset = instr->ImmCondBranch() << 2; + char sign = (offset >= 0) ? '+' : '-'; + AppendToOutput("#%c0x%" PRIx64, sign, offset); + return 6; + } + case 'A': { // IAddSub. + ASSERT(instr->ShiftAddSub() <= 1); + int64_t imm = instr->ImmAddSub() << (12 * instr->ShiftAddSub()); + AppendToOutput("#0x%" PRIx64 " (%" PRId64 ")", imm, imm); + return 7; + } + case 'F': { // IFPSingle, IFPDouble or IFPFBits. + if (format[3] == 'F') { // IFPFbits. + AppendToOutput("#%d", 64 - instr->FPScale()); + return 8; + } else { + AppendToOutput("#0x%" PRIx64 " (%.4f)", instr->ImmFP(), + format[3] == 'S' ? instr->ImmFP32() : instr->ImmFP64()); + return 9; + } + } + case 'T': { // ITri - Immediate Triangular Encoded. + AppendToOutput("#0x%" PRIx64, instr->ImmLogical()); + return 4; + } + case 'N': { // INzcv. + int nzcv = (instr->Nzcv() << Flags_offset); + AppendToOutput("#%c%c%c%c", ((nzcv & NFlag) == 0) ? 'n' : 'N', + ((nzcv & ZFlag) == 0) ? 'z' : 'Z', + ((nzcv & CFlag) == 0) ? 'c' : 'C', + ((nzcv & VFlag) == 0) ? 'v' : 'V'); + return 5; + } + case 'P': { // IP - Conditional compare. + AppendToOutput("#%d", instr->ImmCondCmp()); + return 2; + } + case 'B': { // Bitfields. + return SubstituteBitfieldImmediateField(instr, format); + } + case 'E': { // IExtract. + AppendToOutput("#%d", instr->ImmS()); + return 8; + } + case 'S': { // IS - Test and branch bit. + AppendToOutput("#%d", (instr->ImmTestBranchBit5() << 5) | + instr->ImmTestBranchBit40()); + return 2; + } + case 'D': { // IDebug - HLT and BRK instructions. + AppendToOutput("#0x%x", instr->ImmException()); + return 6; + } + default: { + UNIMPLEMENTED(); + return 0; + } + } +} + + +int Disassembler::SubstituteBitfieldImmediateField(Instruction* instr, + const char* format) { + ASSERT((format[0] == 'I') && (format[1] == 'B')); + unsigned r = instr->ImmR(); + unsigned s = instr->ImmS(); + + switch (format[2]) { + case 'r': { // IBr. + AppendToOutput("#%d", r); + return 3; + } + case 's': { // IBs+1 or IBs-r+1. + if (format[3] == '+') { + AppendToOutput("#%d", s + 1); + return 5; + } else { + ASSERT(format[3] == '-'); + AppendToOutput("#%d", s - r + 1); + return 7; + } + } + case 'Z': { // IBZ-r. + ASSERT((format[3] == '-') && (format[4] == 'r')); + unsigned reg_size = (instr->SixtyFourBits() == 1) ? kXRegSize : kWRegSize; + AppendToOutput("#%d", reg_size - r); + return 5; + } + default: { + UNREACHABLE(); + return 0; + } + } +} + + +int Disassembler::SubstituteLiteralField(Instruction* instr, + const char* format) { + ASSERT(strncmp(format, "LValue", 6) == 0); + USE(format); + + switch (instr->Mask(LoadLiteralMask)) { + case LDR_w_lit: + case LDR_x_lit: + case LDR_s_lit: + case LDR_d_lit: AppendToOutput("(addr %p)", instr->LiteralAddress()); break; + default: UNREACHABLE(); + } + + return 6; +} + + +int Disassembler::SubstituteShiftField(Instruction* instr, const char* format) { + ASSERT(format[0] == 'H'); + ASSERT(instr->ShiftDP() <= 0x3); + + switch (format[1]) { + case 'D': { // HDP. + ASSERT(instr->ShiftDP() != ROR); + } // Fall through. + case 'L': { // HLo. + if (instr->ImmDPShift() != 0) { + const char* shift_type[] = {"lsl", "lsr", "asr", "ror"}; + AppendToOutput(", %s #%" PRId64, shift_type[instr->ShiftDP()], + instr->ImmDPShift()); + } + return 3; + } + default: + UNIMPLEMENTED(); + return 0; + } +} + + +int Disassembler::SubstituteConditionField(Instruction* instr, + const char* format) { + ASSERT(format[0] == 'C'); + const char* condition_code[] = { "eq", "ne", "hs", "lo", + "mi", "pl", "vs", "vc", + "hi", "ls", "ge", "lt", + "gt", "le", "al", "nv" }; + int cond; + switch (format[1]) { + case 'B': cond = instr->ConditionBranch(); break; + case 'I': { + cond = InvertCondition(static_cast<Condition>(instr->Condition())); + break; + } + default: cond = instr->Condition(); + } + AppendToOutput("%s", condition_code[cond]); + return 4; +} + + +int Disassembler::SubstitutePCRelAddressField(Instruction* instr, + const char* format) { + USE(format); + ASSERT(strncmp(format, "AddrPCRel", 9) == 0); + + int offset = instr->ImmPCRel(); + + // Only ADR (AddrPCRelByte) is supported. + ASSERT(strcmp(format, "AddrPCRelByte") == 0); + + char sign = '+'; + if (offset < 0) { + offset = -offset; + sign = '-'; + } + // TODO: Extend this to support printing the target address. + AppendToOutput("#%c0x%x", sign, offset); + return 13; +} + + +int Disassembler::SubstituteBranchTargetField(Instruction* instr, + const char* format) { + ASSERT(strncmp(format, "BImm", 4) == 0); + + int64_t offset = 0; + switch (format[5]) { + // BImmUncn - unconditional branch immediate. + case 'n': offset = instr->ImmUncondBranch(); break; + // BImmCond - conditional branch immediate. + case 'o': offset = instr->ImmCondBranch(); break; + // BImmCmpa - compare and branch immediate. + case 'm': offset = instr->ImmCmpBranch(); break; + // BImmTest - test and branch immediate. + case 'e': offset = instr->ImmTestBranch(); break; + default: UNIMPLEMENTED(); + } + offset <<= kInstructionSizeLog2; + char sign = '+'; + if (offset < 0) { + offset = -offset; + sign = '-'; + } + AppendToOutput("#%c0x%" PRIx64, sign, offset); + return 8; +} + + +int Disassembler::SubstituteExtendField(Instruction* instr, + const char* format) { + ASSERT(strncmp(format, "Ext", 3) == 0); + ASSERT(instr->ExtendMode() <= 7); + USE(format); + + const char* extend_mode[] = { "uxtb", "uxth", "uxtw", "uxtx", + "sxtb", "sxth", "sxtw", "sxtx" }; + + // If rd or rn is SP, uxtw on 32-bit registers and uxtx on 64-bit + // registers becomes lsl. + if (((instr->Rd() == kZeroRegCode) || (instr->Rn() == kZeroRegCode)) && + (((instr->ExtendMode() == UXTW) && (instr->SixtyFourBits() == 0)) || + (instr->ExtendMode() == UXTX))) { + if (instr->ImmExtendShift() > 0) { + AppendToOutput(", lsl #%d", instr->ImmExtendShift()); + } + } else { + AppendToOutput(", %s", extend_mode[instr->ExtendMode()]); + if (instr->ImmExtendShift() > 0) { + AppendToOutput(" #%d", instr->ImmExtendShift()); + } + } + return 3; +} + + +int Disassembler::SubstituteLSRegOffsetField(Instruction* instr, + const char* format) { + ASSERT(strncmp(format, "Offsetreg", 9) == 0); + const char* extend_mode[] = { "undefined", "undefined", "uxtw", "lsl", + "undefined", "undefined", "sxtw", "sxtx" }; + USE(format); + + unsigned shift = instr->ImmShiftLS(); + Extend ext = static_cast<Extend>(instr->ExtendMode()); + char reg_type = ((ext == UXTW) || (ext == SXTW)) ? 'w' : 'x'; + + unsigned rm = instr->Rm(); + if (rm == kZeroRegCode) { + AppendToOutput("%czr", reg_type); + } else { + AppendToOutput("%c%d", reg_type, rm); + } + + // Extend mode UXTX is an alias for shift mode LSL here. + if (!((ext == UXTX) && (shift == 0))) { + AppendToOutput(", %s", extend_mode[ext]); + if (shift != 0) { + AppendToOutput(" #%d", instr->SizeLS()); + } + } + return 9; +} + + +int Disassembler::SubstitutePrefetchField(Instruction* instr, + const char* format) { + ASSERT(format[0] == 'P'); + USE(format); + + int prefetch_mode = instr->PrefetchMode(); + + const char* ls = (prefetch_mode & 0x10) ? "st" : "ld"; + int level = (prefetch_mode >> 1) + 1; + const char* ks = (prefetch_mode & 1) ? "strm" : "keep"; + + AppendToOutput("p%sl%d%s", ls, level, ks); + return 6; +} + + +void Disassembler::ResetOutput() { + buffer_pos_ = 0; + buffer_[buffer_pos_] = 0; +} + + +void Disassembler::AppendToOutput(const char* format, ...) { + va_list args; + va_start(args, format); + buffer_pos_ += vsnprintf(&buffer_[buffer_pos_], buffer_size_, format, args); + va_end(args); +} + + +void PrintDisassembler::ProcessOutput(Instruction* instr) { + fprintf(stream_, "0x%016" PRIx64 " %08" PRIx32 "\t\t%s\n", + reinterpret_cast<uint64_t>(instr), + instr->InstructionBits(), + GetOutput()); +} +} // namespace vixl diff --git a/disas/libvixl/a64/disasm-a64.h b/disas/libvixl/a64/disasm-a64.h new file mode 100644 index 0000000..857a5ac --- /dev/null +++ b/disas/libvixl/a64/disasm-a64.h @@ -0,0 +1,109 @@ +// Copyright 2013, ARM Limited +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are met: +// +// * Redistributions of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// * Neither the name of ARM Limited nor the names of its contributors may be +// used to endorse or promote products derived from this software without +// specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND +// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE +// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#ifndef VIXL_A64_DISASM_A64_H +#define VIXL_A64_DISASM_A64_H + +#include "globals.h" +#include "utils.h" +#include "instructions-a64.h" +#include "decoder-a64.h" + +namespace vixl { + +class Disassembler: public DecoderVisitor { + public: + Disassembler(); + Disassembler(char* text_buffer, int buffer_size); + virtual ~Disassembler(); + char* GetOutput(); + + // Declare all Visitor functions. + #define DECLARE(A) void Visit##A(Instruction* instr); + VISITOR_LIST(DECLARE) + #undef DECLARE + + protected: + virtual void ProcessOutput(Instruction* instr); + + private: + void Format(Instruction* instr, const char* mnemonic, const char* format); + void Substitute(Instruction* instr, const char* string); + int SubstituteField(Instruction* instr, const char* format); + int SubstituteRegisterField(Instruction* instr, const char* format); + int SubstituteImmediateField(Instruction* instr, const char* format); + int SubstituteLiteralField(Instruction* instr, const char* format); + int SubstituteBitfieldImmediateField(Instruction* instr, const char* format); + int SubstituteShiftField(Instruction* instr, const char* format); + int SubstituteExtendField(Instruction* instr, const char* format); + int SubstituteConditionField(Instruction* instr, const char* format); + int SubstitutePCRelAddressField(Instruction* instr, const char* format); + int SubstituteBranchTargetField(Instruction* instr, const char* format); + int SubstituteLSRegOffsetField(Instruction* instr, const char* format); + int SubstitutePrefetchField(Instruction* instr, const char* format); + + inline bool RdIsZROrSP(Instruction* instr) const { + return (instr->Rd() == kZeroRegCode); + } + + inline bool RnIsZROrSP(Instruction* instr) const { + return (instr->Rn() == kZeroRegCode); + } + + inline bool RmIsZROrSP(Instruction* instr) const { + return (instr->Rm() == kZeroRegCode); + } + + inline bool RaIsZROrSP(Instruction* instr) const { + return (instr->Ra() == kZeroRegCode); + } + + bool IsMovzMovnImm(unsigned reg_size, uint64_t value); + + void ResetOutput(); + void AppendToOutput(const char* string, ...); + + char* buffer_; + uint32_t buffer_pos_; + uint32_t buffer_size_; + bool own_buffer_; +}; + + +class PrintDisassembler: public Disassembler { + public: + explicit PrintDisassembler(FILE* stream) : stream_(stream) { } + ~PrintDisassembler() { } + + protected: + virtual void ProcessOutput(Instruction* instr); + + private: + FILE *stream_; +}; +} // namespace vixl + +#endif // VIXL_A64_DISASM_A64_H diff --git a/disas/libvixl/a64/instructions-a64.cc b/disas/libvixl/a64/instructions-a64.cc new file mode 100644 index 0000000..e87fa3a --- /dev/null +++ b/disas/libvixl/a64/instructions-a64.cc @@ -0,0 +1,238 @@ +// Copyright 2013, ARM Limited +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are met: +// +// * Redistributions of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// * Neither the name of ARM Limited nor the names of its contributors may be +// used to endorse or promote products derived from this software without +// specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND +// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE +// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#include "a64/instructions-a64.h" +#include "a64/assembler-a64.h" + +namespace vixl { + + +static uint64_t RotateRight(uint64_t value, + unsigned int rotate, + unsigned int width) { + ASSERT(width <= 64); + rotate &= 63; + return ((value & ((1UL << rotate) - 1UL)) << (width - rotate)) | + (value >> rotate); +} + + +static uint64_t RepeatBitsAcrossReg(unsigned reg_size, + uint64_t value, + unsigned width) { + ASSERT((width == 2) || (width == 4) || (width == 8) || (width == 16) || + (width == 32)); + ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize)); + uint64_t result = value & ((1UL << width) - 1UL); + for (unsigned i = width; i < reg_size; i *= 2) { + result |= (result << i); + } + return result; +} + + +// Logical immediates can't encode zero, so a return value of zero is used to +// indicate a failure case. Specifically, where the constraints on imm_s are +// not met. +uint64_t Instruction::ImmLogical() { + unsigned reg_size = SixtyFourBits() ? kXRegSize : kWRegSize; + int64_t n = BitN(); + int64_t imm_s = ImmSetBits(); + int64_t imm_r = ImmRotate(); + + // An integer is constructed from the n, imm_s and imm_r bits according to + // the following table: + // + // N imms immr size S R + // 1 ssssss rrrrrr 64 UInt(ssssss) UInt(rrrrrr) + // 0 0sssss xrrrrr 32 UInt(sssss) UInt(rrrrr) + // 0 10ssss xxrrrr 16 UInt(ssss) UInt(rrrr) + // 0 110sss xxxrrr 8 UInt(sss) UInt(rrr) + // 0 1110ss xxxxrr 4 UInt(ss) UInt(rr) + // 0 11110s xxxxxr 2 UInt(s) UInt(r) + // (s bits must not be all set) + // + // A pattern is constructed of size bits, where the least significant S+1 + // bits are set. The pattern is rotated right by R, and repeated across a + // 32 or 64-bit value, depending on destination register width. + // + + if (n == 1) { + if (imm_s == 0x3F) { + return 0; + } + uint64_t bits = (1UL << (imm_s + 1)) - 1; + return RotateRight(bits, imm_r, 64); + } else { + if ((imm_s >> 1) == 0x1F) { + return 0; + } + for (int width = 0x20; width >= 0x2; width >>= 1) { + if ((imm_s & width) == 0) { + int mask = width - 1; + if ((imm_s & mask) == mask) { + return 0; + } + uint64_t bits = (1UL << ((imm_s & mask) + 1)) - 1; + return RepeatBitsAcrossReg(reg_size, + RotateRight(bits, imm_r & mask, width), + width); + } + } + } + UNREACHABLE(); + return 0; +} + + +float Instruction::ImmFP32() { + // ImmFP: abcdefgh (8 bits) + // Single: aBbb.bbbc.defg.h000.0000.0000.0000.0000 (32 bits) + // where B is b ^ 1 + uint32_t bits = ImmFP(); + uint32_t bit7 = (bits >> 7) & 0x1; + uint32_t bit6 = (bits >> 6) & 0x1; + uint32_t bit5_to_0 = bits & 0x3f; + uint32_t result = (bit7 << 31) | ((32 - bit6) << 25) | (bit5_to_0 << 19); + + return rawbits_to_float(result); +} + + +double Instruction::ImmFP64() { + // ImmFP: abcdefgh (8 bits) + // Double: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000 + // 0000.0000.0000.0000.0000.0000.0000.0000 (64 bits) + // where B is b ^ 1 + uint32_t bits = ImmFP(); + uint64_t bit7 = (bits >> 7) & 0x1; + uint64_t bit6 = (bits >> 6) & 0x1; + uint64_t bit5_to_0 = bits & 0x3f; + uint64_t result = (bit7 << 63) | ((256 - bit6) << 54) | (bit5_to_0 << 48); + + return rawbits_to_double(result); +} + + +LSDataSize CalcLSPairDataSize(LoadStorePairOp op) { + switch (op) { + case STP_x: + case LDP_x: + case STP_d: + case LDP_d: return LSDoubleWord; + default: return LSWord; + } +} + + +Instruction* Instruction::ImmPCOffsetTarget() { + ptrdiff_t offset; + if (IsPCRelAddressing()) { + // PC-relative addressing. Only ADR is supported. + offset = ImmPCRel(); + } else { + // All PC-relative branches. + ASSERT(BranchType() != UnknownBranchType); + // Relative branch offsets are instruction-size-aligned. + offset = ImmBranch() << kInstructionSizeLog2; + } + return this + offset; +} + + +inline int Instruction::ImmBranch() const { + switch (BranchType()) { + case CondBranchType: return ImmCondBranch(); + case UncondBranchType: return ImmUncondBranch(); + case CompareBranchType: return ImmCmpBranch(); + case TestBranchType: return ImmTestBranch(); + default: UNREACHABLE(); + } + return 0; +} + + +void Instruction::SetImmPCOffsetTarget(Instruction* target) { + if (IsPCRelAddressing()) { + SetPCRelImmTarget(target); + } else { + SetBranchImmTarget(target); + } +} + + +void Instruction::SetPCRelImmTarget(Instruction* target) { + // ADRP is not supported, so 'this' must point to an ADR instruction. + ASSERT(Mask(PCRelAddressingMask) == ADR); + + Instr imm = Assembler::ImmPCRelAddress(target - this); + + SetInstructionBits(Mask(~ImmPCRel_mask) | imm); +} + + +void Instruction::SetBranchImmTarget(Instruction* target) { + ASSERT(((target - this) & 3) == 0); + Instr branch_imm = 0; + uint32_t imm_mask = 0; + int offset = (target - this) >> kInstructionSizeLog2; + switch (BranchType()) { + case CondBranchType: { + branch_imm = Assembler::ImmCondBranch(offset); + imm_mask = ImmCondBranch_mask; + break; + } + case UncondBranchType: { + branch_imm = Assembler::ImmUncondBranch(offset); + imm_mask = ImmUncondBranch_mask; + break; + } + case CompareBranchType: { + branch_imm = Assembler::ImmCmpBranch(offset); + imm_mask = ImmCmpBranch_mask; + break; + } + case TestBranchType: { + branch_imm = Assembler::ImmTestBranch(offset); + imm_mask = ImmTestBranch_mask; + break; + } + default: UNREACHABLE(); + } + SetInstructionBits(Mask(~imm_mask) | branch_imm); +} + + +void Instruction::SetImmLLiteral(Instruction* source) { + ASSERT(((source - this) & 3) == 0); + int offset = (source - this) >> kLiteralEntrySizeLog2; + Instr imm = Assembler::ImmLLiteral(offset); + Instr mask = ImmLLiteral_mask; + + SetInstructionBits(Mask(~mask) | imm); +} +} // namespace vixl + diff --git a/disas/libvixl/a64/instructions-a64.h b/disas/libvixl/a64/instructions-a64.h new file mode 100644 index 0000000..ba9068c --- /dev/null +++ b/disas/libvixl/a64/instructions-a64.h @@ -0,0 +1,344 @@ +// Copyright 2013, ARM Limited +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are met: +// +// * Redistributions of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// * Neither the name of ARM Limited nor the names of its contributors may be +// used to endorse or promote products derived from this software without +// specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND +// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE +// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#ifndef VIXL_A64_INSTRUCTIONS_A64_H_ +#define VIXL_A64_INSTRUCTIONS_A64_H_ + +#include "globals.h" +#include "utils.h" +#include "a64/constants-a64.h" + +namespace vixl { +// ISA constants. -------------------------------------------------------------- + +typedef uint32_t Instr; +const unsigned kInstructionSize = 4; +const unsigned kInstructionSizeLog2 = 2; +const unsigned kLiteralEntrySize = 4; +const unsigned kLiteralEntrySizeLog2 = 2; +const unsigned kMaxLoadLiteralRange = 1 * MBytes; + +const unsigned kWRegSize = 32; +const unsigned kWRegSizeLog2 = 5; +const unsigned kWRegSizeInBytes = kWRegSize / 8; +const unsigned kXRegSize = 64; +const unsigned kXRegSizeLog2 = 6; +const unsigned kXRegSizeInBytes = kXRegSize / 8; +const unsigned kSRegSize = 32; +const unsigned kSRegSizeLog2 = 5; +const unsigned kSRegSizeInBytes = kSRegSize / 8; +const unsigned kDRegSize = 64; +const unsigned kDRegSizeLog2 = 6; +const unsigned kDRegSizeInBytes = kDRegSize / 8; +const int64_t kWRegMask = 0x00000000ffffffffLL; +const int64_t kXRegMask = 0xffffffffffffffffLL; +const int64_t kSRegMask = 0x00000000ffffffffLL; +const int64_t kDRegMask = 0xffffffffffffffffLL; +const int64_t kXSignMask = 0x1LL << 63; +const int64_t kWSignMask = 0x1LL << 31; +const int64_t kByteMask = 0xffL; +const int64_t kHalfWordMask = 0xffffL; +const int64_t kWordMask = 0xffffffffLL; +const uint64_t kXMaxUInt = 0xffffffffffffffffULL; +const uint64_t kWMaxUInt = 0xffffffffULL; +const int64_t kXMaxInt = 0x7fffffffffffffffLL; +const int64_t kXMinInt = 0x8000000000000000LL; +const int32_t kWMaxInt = 0x7fffffff; +const int32_t kWMinInt = 0x80000000; +const unsigned kLinkRegCode = 30; +const unsigned kZeroRegCode = 31; +const unsigned kSPRegInternalCode = 63; +const unsigned kRegCodeMask = 0x1f; + +// AArch64 floating-point specifics. These match IEEE-754. +const unsigned kDoubleMantissaBits = 52; +const unsigned kDoubleExponentBits = 11; +const unsigned kFloatMantissaBits = 23; +const unsigned kFloatExponentBits = 8; + +const float kFP32PositiveInfinity = rawbits_to_float(0x7f800000); +const float kFP32NegativeInfinity = rawbits_to_float(0xff800000); +const double kFP64PositiveInfinity = rawbits_to_double(0x7ff0000000000000ULL); +const double kFP64NegativeInfinity = rawbits_to_double(0xfff0000000000000ULL); + +// This value is a signalling NaN as both a double and as a float (taking the +// least-significant word). +static const double kFP64SignallingNaN = rawbits_to_double(0x7ff000007f800001ULL); +static const float kFP32SignallingNaN = rawbits_to_float(0x7f800001); + +// A similar value, but as a quiet NaN. +static const double kFP64QuietNaN = rawbits_to_double(0x7ff800007fc00001ULL); +static const float kFP32QuietNaN = rawbits_to_float(0x7fc00001); + +enum LSDataSize { + LSByte = 0, + LSHalfword = 1, + LSWord = 2, + LSDoubleWord = 3 +}; + +LSDataSize CalcLSPairDataSize(LoadStorePairOp op); + +enum ImmBranchType { + UnknownBranchType = 0, + CondBranchType = 1, + UncondBranchType = 2, + CompareBranchType = 3, + TestBranchType = 4 +}; + +enum AddrMode { + Offset, + PreIndex, + PostIndex +}; + +enum FPRounding { + // The first four values are encodable directly by FPCR<RMode>. + FPTieEven = 0x0, + FPPositiveInfinity = 0x1, + FPNegativeInfinity = 0x2, + FPZero = 0x3, + + // The final rounding mode is only available when explicitly specified by the + // instruction (such as with fcvta). It cannot be set in FPCR. + FPTieAway +}; + +enum Reg31Mode { + Reg31IsStackPointer, + Reg31IsZeroRegister +}; + +// Instructions. --------------------------------------------------------------- + +class Instruction { + public: + inline Instr InstructionBits() const { + return *(reinterpret_cast<const Instr*>(this)); + } + + inline void SetInstructionBits(Instr new_instr) { + *(reinterpret_cast<Instr*>(this)) = new_instr; + } + + inline int Bit(int pos) const { + return (InstructionBits() >> pos) & 1; + } + + inline uint32_t Bits(int msb, int lsb) const { + return unsigned_bitextract_32(msb, lsb, InstructionBits()); + } + + inline int32_t SignedBits(int msb, int lsb) const { + int32_t bits = *(reinterpret_cast<const int32_t*>(this)); + return signed_bitextract_32(msb, lsb, bits); + } + + inline Instr Mask(uint32_t mask) const { + return InstructionBits() & mask; + } + + #define DEFINE_GETTER(Name, HighBit, LowBit, Func) \ + inline int64_t Name() const { return Func(HighBit, LowBit); } + INSTRUCTION_FIELDS_LIST(DEFINE_GETTER) + #undef DEFINE_GETTER + + // ImmPCRel is a compound field (not present in INSTRUCTION_FIELDS_LIST), + // formed from ImmPCRelLo and ImmPCRelHi. + int ImmPCRel() const { + int const offset = ((ImmPCRelHi() << ImmPCRelLo_width) | ImmPCRelLo()); + int const width = ImmPCRelLo_width + ImmPCRelHi_width; + return signed_bitextract_32(width-1, 0, offset); + } + + uint64_t ImmLogical(); + float ImmFP32(); + double ImmFP64(); + + inline LSDataSize SizeLSPair() const { + return CalcLSPairDataSize( + static_cast<LoadStorePairOp>(Mask(LoadStorePairMask))); + } + + // Helpers. + inline bool IsCondBranchImm() const { + return Mask(ConditionalBranchFMask) == ConditionalBranchFixed; + } + + inline bool IsUncondBranchImm() const { + return Mask(UnconditionalBranchFMask) == UnconditionalBranchFixed; + } + + inline bool IsCompareBranch() const { + return Mask(CompareBranchFMask) == CompareBranchFixed; + } + + inline bool IsTestBranch() const { + return Mask(TestBranchFMask) == TestBranchFixed; + } + + inline bool IsPCRelAddressing() const { + return Mask(PCRelAddressingFMask) == PCRelAddressingFixed; + } + + inline bool IsLogicalImmediate() const { + return Mask(LogicalImmediateFMask) == LogicalImmediateFixed; + } + + inline bool IsAddSubImmediate() const { + return Mask(AddSubImmediateFMask) == AddSubImmediateFixed; + } + + inline bool IsAddSubExtended() const { + return Mask(AddSubExtendedFMask) == AddSubExtendedFixed; + } + + inline bool IsLoadOrStore() const { + return Mask(LoadStoreAnyFMask) == LoadStoreAnyFixed; + } + + inline bool IsMovn() const { + return (Mask(MoveWideImmediateMask) == MOVN_x) || + (Mask(MoveWideImmediateMask) == MOVN_w); + } + + // Indicate whether Rd can be the stack pointer or the zero register. This + // does not check that the instruction actually has an Rd field. + inline Reg31Mode RdMode() const { + // The following instructions use sp or wsp as Rd: + // Add/sub (immediate) when not setting the flags. + // Add/sub (extended) when not setting the flags. + // Logical (immediate) when not setting the flags. + // Otherwise, r31 is the zero register. + if (IsAddSubImmediate() || IsAddSubExtended()) { + if (Mask(AddSubSetFlagsBit)) { + return Reg31IsZeroRegister; + } else { + return Reg31IsStackPointer; + } + } + if (IsLogicalImmediate()) { + // Of the logical (immediate) instructions, only ANDS (and its aliases) + // can set the flags. The others can all write into sp. + // Note that some logical operations are not available to + // immediate-operand instructions, so we have to combine two masks here. + if (Mask(LogicalImmediateMask & LogicalOpMask) == ANDS) { + return Reg31IsZeroRegister; + } else { + return Reg31IsStackPointer; + } + } + return Reg31IsZeroRegister; + } + + // Indicate whether Rn can be the stack pointer or the zero register. This + // does not check that the instruction actually has an Rn field. + inline Reg31Mode RnMode() const { + // The following instructions use sp or wsp as Rn: + // All loads and stores. + // Add/sub (immediate). + // Add/sub (extended). + // Otherwise, r31 is the zero register. + if (IsLoadOrStore() || IsAddSubImmediate() || IsAddSubExtended()) { + return Reg31IsStackPointer; + } + return Reg31IsZeroRegister; + } + + inline ImmBranchType BranchType() const { + if (IsCondBranchImm()) { + return CondBranchType; + } else if (IsUncondBranchImm()) { + return UncondBranchType; + } else if (IsCompareBranch()) { + return CompareBranchType; + } else if (IsTestBranch()) { + return TestBranchType; + } else { + return UnknownBranchType; + } + } + + // Find the target of this instruction. 'this' may be a branch or a + // PC-relative addressing instruction. + Instruction* ImmPCOffsetTarget(); + + // Patch a PC-relative offset to refer to 'target'. 'this' may be a branch or + // a PC-relative addressing instruction. + void SetImmPCOffsetTarget(Instruction* target); + // Patch a literal load instruction to load from 'source'. + void SetImmLLiteral(Instruction* source); + + inline uint8_t* LiteralAddress() { + int offset = ImmLLiteral() << kLiteralEntrySizeLog2; + return reinterpret_cast<uint8_t*>(this) + offset; + } + + inline uint32_t Literal32() { + uint32_t literal; + memcpy(&literal, LiteralAddress(), sizeof(literal)); + + return literal; + } + + inline uint64_t Literal64() { + uint64_t literal; + memcpy(&literal, LiteralAddress(), sizeof(literal)); + + return literal; + } + + inline float LiteralFP32() { + return rawbits_to_float(Literal32()); + } + + inline double LiteralFP64() { + return rawbits_to_double(Literal64()); + } + + inline Instruction* NextInstruction() { + return this + kInstructionSize; + } + + inline Instruction* InstructionAtOffset(int64_t offset) { + ASSERT(IsWordAligned(this + offset)); + return this + offset; + } + + template<typename T> static inline Instruction* Cast(T src) { + return reinterpret_cast<Instruction*>(src); + } + + private: + inline int ImmBranch() const; + + void SetPCRelImmTarget(Instruction* target); + void SetBranchImmTarget(Instruction* target); +}; +} // namespace vixl + +#endif // VIXL_A64_INSTRUCTIONS_A64_H_ diff --git a/disas/libvixl/globals.h b/disas/libvixl/globals.h new file mode 100644 index 0000000..a6a3fcc --- /dev/null +++ b/disas/libvixl/globals.h @@ -0,0 +1,65 @@ +// Copyright 2013, ARM Limited +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are met: +// +// * Redistributions of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// * Neither the name of ARM Limited nor the names of its contributors may be +// used to endorse or promote products derived from this software without +// specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND +// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE +// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#ifndef VIXL_GLOBALS_H +#define VIXL_GLOBALS_H + +// Get the standard printf format macros for C99 stdint types. +#define __STDC_FORMAT_MACROS +#include <inttypes.h> + +#include <assert.h> +#include <stdarg.h> +#include <stdio.h> +#include <stdint.h> +#include <stdlib.h> +#include <stddef.h> +#include "platform.h" + + +typedef uint8_t byte; + +const int KBytes = 1024; +const int MBytes = 1024 * KBytes; + + #define ABORT() printf("in %s, line %i", __FILE__, __LINE__); abort() +#ifdef DEBUG + #define ASSERT(condition) assert(condition) + #define CHECK(condition) ASSERT(condition) + #define UNIMPLEMENTED() printf("UNIMPLEMENTED\t"); ABORT() + #define UNREACHABLE() printf("UNREACHABLE\t"); ABORT() +#else + #define ASSERT(condition) ((void) 0) + #define CHECK(condition) assert(condition) + #define UNIMPLEMENTED() ((void) 0) + #define UNREACHABLE() ((void) 0) +#endif + +template <typename T> inline void USE(T) {} + +#define ALIGNMENT_EXCEPTION() printf("ALIGNMENT EXCEPTION\t"); ABORT() + +#endif // VIXL_GLOBALS_H diff --git a/disas/libvixl/platform.h b/disas/libvixl/platform.h new file mode 100644 index 0000000..a2600f3 --- /dev/null +++ b/disas/libvixl/platform.h @@ -0,0 +1,43 @@ +// Copyright 2013, ARM Limited +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are met: +// +// * Redistributions of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// * Neither the name of ARM Limited nor the names of its contributors may be +// used to endorse or promote products derived from this software without +// specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND +// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE +// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#ifndef PLATFORM_H +#define PLATFORM_H + +// Define platform specific functionalities. + +namespace vixl { +#ifdef USE_SIMULATOR +// Currently we assume running the simulator implies running on x86 hardware. +inline void HostBreakpoint() { asm("int3"); } +#else +inline void HostBreakpoint() { + // TODO: Implement HostBreakpoint on a64. +} +#endif +} // namespace vixl + +#endif diff --git a/disas/libvixl/utils.cc b/disas/libvixl/utils.cc new file mode 100644 index 0000000..6f85e61 --- /dev/null +++ b/disas/libvixl/utils.cc @@ -0,0 +1,120 @@ +// Copyright 2013, ARM Limited +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are met: +// +// * Redistributions of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// * Neither the name of ARM Limited nor the names of its contributors may be +// used to endorse or promote products derived from this software without +// specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND +// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE +// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#include "utils.h" +#include <stdio.h> + +namespace vixl { + +uint32_t float_to_rawbits(float value) { + uint32_t bits = 0; + memcpy(&bits, &value, 4); + return bits; +} + + +uint64_t double_to_rawbits(double value) { + uint64_t bits = 0; + memcpy(&bits, &value, 8); + return bits; +} + + +float rawbits_to_float(uint32_t bits) { + float value = 0.0; + memcpy(&value, &bits, 4); + return value; +} + + +double rawbits_to_double(uint64_t bits) { + double value = 0.0; + memcpy(&value, &bits, 8); + return value; +} + + +int CountLeadingZeros(uint64_t value, int width) { + ASSERT((width == 32) || (width == 64)); + int count = 0; + uint64_t bit_test = 1UL << (width - 1); + while ((count < width) && ((bit_test & value) == 0)) { + count++; + bit_test >>= 1; + } + return count; +} + + +int CountLeadingSignBits(int64_t value, int width) { + ASSERT((width == 32) || (width == 64)); + if (value >= 0) { + return CountLeadingZeros(value, width) - 1; + } else { + return CountLeadingZeros(~value, width) - 1; + } +} + + +int CountTrailingZeros(uint64_t value, int width) { + ASSERT((width == 32) || (width == 64)); + int count = 0; + while ((count < width) && (((value >> count) & 1) == 0)) { + count++; + } + return count; +} + + +int CountSetBits(uint64_t value, int width) { + // TODO: Other widths could be added here, as the implementation already + // supports them. + ASSERT((width == 32) || (width == 64)); + + // Mask out unused bits to ensure that they are not counted. + value &= (0xffffffffffffffffUL >> (64-width)); + + // Add up the set bits. + // The algorithm works by adding pairs of bit fields together iteratively, + // where the size of each bit field doubles each time. + // An example for an 8-bit value: + // Bits: h g f e d c b a + // \ | \ | \ | \ | + // value = h+g f+e d+c b+a + // \ | \ | + // value = h+g+f+e d+c+b+a + // \ | + // value = h+g+f+e+d+c+b+a + value = ((value >> 1) & 0x5555555555555555) + (value & 0x5555555555555555); + value = ((value >> 2) & 0x3333333333333333) + (value & 0x3333333333333333); + value = ((value >> 4) & 0x0f0f0f0f0f0f0f0f) + (value & 0x0f0f0f0f0f0f0f0f); + value = ((value >> 8) & 0x00ff00ff00ff00ff) + (value & 0x00ff00ff00ff00ff); + value = ((value >> 16) & 0x0000ffff0000ffff) + (value & 0x0000ffff0000ffff); + value = ((value >> 32) & 0x00000000ffffffff) + (value & 0x00000000ffffffff); + + return value; +} +} // namespace vixl diff --git a/disas/libvixl/utils.h b/disas/libvixl/utils.h new file mode 100644 index 0000000..029341e --- /dev/null +++ b/disas/libvixl/utils.h @@ -0,0 +1,126 @@ +// Copyright 2013, ARM Limited +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are met: +// +// * Redistributions of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// * Neither the name of ARM Limited nor the names of its contributors may be +// used to endorse or promote products derived from this software without +// specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND +// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED +// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE +// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#ifndef VIXL_UTILS_H +#define VIXL_UTILS_H + + +#include <string.h> +#include "globals.h" + +namespace vixl { + +// Check number width. +inline bool is_intn(unsigned n, int64_t x) { + ASSERT((0 < n) && (n < 64)); + int64_t limit = 1ULL << (n - 1); + return (-limit <= x) && (x < limit); +} + +inline bool is_uintn(unsigned n, int64_t x) { + ASSERT((0 < n) && (n < 64)); + return !(x >> n); +} + +inline unsigned truncate_to_intn(unsigned n, int64_t x) { + ASSERT((0 < n) && (n < 64)); + return (x & ((1ULL << n) - 1)); +} + +#define INT_1_TO_63_LIST(V) \ +V(1) V(2) V(3) V(4) V(5) V(6) V(7) V(8) \ +V(9) V(10) V(11) V(12) V(13) V(14) V(15) V(16) \ +V(17) V(18) V(19) V(20) V(21) V(22) V(23) V(24) \ +V(25) V(26) V(27) V(28) V(29) V(30) V(31) V(32) \ +V(33) V(34) V(35) V(36) V(37) V(38) V(39) V(40) \ +V(41) V(42) V(43) V(44) V(45) V(46) V(47) V(48) \ +V(49) V(50) V(51) V(52) V(53) V(54) V(55) V(56) \ +V(57) V(58) V(59) V(60) V(61) V(62) V(63) + +#define DECLARE_IS_INT_N(N) \ +inline bool is_int##N(int64_t x) { return is_intn(N, x); } +#define DECLARE_IS_UINT_N(N) \ +inline bool is_uint##N(int64_t x) { return is_uintn(N, x); } +#define DECLARE_TRUNCATE_TO_INT_N(N) \ +inline int truncate_to_int##N(int x) { return truncate_to_intn(N, x); } +INT_1_TO_63_LIST(DECLARE_IS_INT_N) +INT_1_TO_63_LIST(DECLARE_IS_UINT_N) +INT_1_TO_63_LIST(DECLARE_TRUNCATE_TO_INT_N) +#undef DECLARE_IS_INT_N +#undef DECLARE_IS_UINT_N +#undef DECLARE_TRUNCATE_TO_INT_N + +// Bit field extraction. +inline uint32_t unsigned_bitextract_32(int msb, int lsb, uint32_t x) { + return (x >> lsb) & ((1 << (1 + msb - lsb)) - 1); +} + +inline uint64_t unsigned_bitextract_64(int msb, int lsb, uint64_t x) { + return (x >> lsb) & ((static_cast<uint64_t>(1) << (1 + msb - lsb)) - 1); +} + +inline int32_t signed_bitextract_32(int msb, int lsb, int32_t x) { + return (x << (31 - msb)) >> (lsb + 31 - msb); +} + +inline int64_t signed_bitextract_64(int msb, int lsb, int64_t x) { + return (x << (63 - msb)) >> (lsb + 63 - msb); +} + +// floating point representation +uint32_t float_to_rawbits(float value); +uint64_t double_to_rawbits(double value); +float rawbits_to_float(uint32_t bits); +double rawbits_to_double(uint64_t bits); + +// Bits counting. +int CountLeadingZeros(uint64_t value, int width); +int CountLeadingSignBits(int64_t value, int width); +int CountTrailingZeros(uint64_t value, int width); +int CountSetBits(uint64_t value, int width); + +// Pointer alignment +// TODO: rename/refactor to make it specific to instructions. +template<typename T> +bool IsWordAligned(T pointer) { + ASSERT(sizeof(pointer) == sizeof(intptr_t)); // NOLINT(runtime/sizeof) + return (reinterpret_cast<intptr_t>(pointer) & 3) == 0; +} + +// Increment a pointer until it has the specified alignment. +template<class T> +T AlignUp(T pointer, size_t alignment) { + ASSERT(sizeof(pointer) == sizeof(uintptr_t)); + uintptr_t pointer_raw = reinterpret_cast<uintptr_t>(pointer); + size_t align_step = (alignment - pointer_raw) % alignment; + ASSERT((pointer_raw + align_step) % alignment == 0); + return reinterpret_cast<T>(pointer_raw + align_step); +} + + +} // namespace vixl + +#endif // VIXL_UTILS_H diff --git a/hw/arm/allwinner-a10.c b/hw/arm/allwinner-a10.c index 4658e19..01206f2 100644 --- a/hw/arm/allwinner-a10.c +++ b/hw/arm/allwinner-a10.c @@ -31,6 +31,13 @@ static void aw_a10_init(Object *obj) object_initialize(&s->timer, sizeof(s->timer), TYPE_AW_A10_PIT); qdev_set_parent_bus(DEVICE(&s->timer), sysbus_get_default()); + + object_initialize(&s->emac, sizeof(s->emac), TYPE_AW_EMAC); + qdev_set_parent_bus(DEVICE(&s->emac), sysbus_get_default()); + if (nd_table[0].used) { + qemu_check_nic_model(&nd_table[0], TYPE_AW_EMAC); + qdev_set_nic_properties(DEVICE(&s->emac), &nd_table[0]); + } } static void aw_a10_realize(DeviceState *dev, Error **errp) @@ -76,6 +83,15 @@ static void aw_a10_realize(DeviceState *dev, Error **errp) sysbus_connect_irq(sysbusdev, 4, s->irq[67]); sysbus_connect_irq(sysbusdev, 5, s->irq[68]); + object_property_set_bool(OBJECT(&s->emac), true, "realized", &err); + if (err != NULL) { + error_propagate(errp, err); + return; + } + sysbusdev = SYS_BUS_DEVICE(&s->emac); + sysbus_mmio_map(sysbusdev, 0, AW_A10_EMAC_BASE); + sysbus_connect_irq(sysbusdev, 0, s->irq[55]); + serial_mm_init(get_system_memory(), AW_A10_UART0_REG_BASE, 2, s->irq[1], 115200, serial_hds[0], DEVICE_NATIVE_ENDIAN); } diff --git a/hw/arm/cubieboard.c b/hw/arm/cubieboard.c index 3fcb6d2..d95a7f3 100644 --- a/hw/arm/cubieboard.c +++ b/hw/arm/cubieboard.c @@ -36,10 +36,17 @@ static void cubieboard_init(QEMUMachineInitArgs *args) Error *err = NULL; s->a10 = AW_A10(object_new(TYPE_AW_A10)); + + object_property_set_int(OBJECT(&s->a10->emac), 1, "phy-addr", &err); + if (err != NULL) { + error_report("Couldn't set phy address: %s", error_get_pretty(err)); + exit(1); + } + object_property_set_bool(OBJECT(s->a10), true, "realized", &err); if (err != NULL) { - error_report("Couldn't realize Allwinner A10: %s\n", - error_get_pretty(err)); + error_report("Couldn't realize Allwinner A10: %s", + error_get_pretty(err)); exit(1); } diff --git a/hw/intc/arm_gic.c b/hw/intc/arm_gic.c index 1c4a114..93eaa6b 100644 --- a/hw/intc/arm_gic.c +++ b/hw/intc/arm_gic.c @@ -66,7 +66,7 @@ void gic_update(GICState *s) best_prio = 0x100; best_irq = 1023; for (irq = 0; irq < s->num_irq; irq++) { - if (GIC_TEST_ENABLED(irq, cm) && GIC_TEST_PENDING(irq, cm)) { + if (GIC_TEST_ENABLED(irq, cm) && gic_test_pending(s, irq, cm)) { if (GIC_GET_PRIORITY(irq, cpu) < best_prio) { best_prio = GIC_GET_PRIORITY(irq, cpu); best_irq = irq; @@ -89,14 +89,43 @@ void gic_set_pending_private(GICState *s, int cpu, int irq) { int cm = 1 << cpu; - if (GIC_TEST_PENDING(irq, cm)) + if (gic_test_pending(s, irq, cm)) { return; + } DPRINTF("Set %d pending cpu %d\n", irq, cpu); GIC_SET_PENDING(irq, cm); gic_update(s); } +static void gic_set_irq_11mpcore(GICState *s, int irq, int level, + int cm, int target) +{ + if (level) { + GIC_SET_LEVEL(irq, cm); + if (GIC_TEST_EDGE_TRIGGER(irq) || GIC_TEST_ENABLED(irq, cm)) { + DPRINTF("Set %d pending mask %x\n", irq, target); + GIC_SET_PENDING(irq, target); + } + } else { + GIC_CLEAR_LEVEL(irq, cm); + } +} + +static void gic_set_irq_generic(GICState *s, int irq, int level, + int cm, int target) +{ + if (level) { + GIC_SET_LEVEL(irq, cm); + DPRINTF("Set %d pending mask %x\n", irq, target); + if (GIC_TEST_EDGE_TRIGGER(irq)) { + GIC_SET_PENDING(irq, target); + } + } else { + GIC_CLEAR_LEVEL(irq, cm); + } +} + /* Process a change in an external IRQ input. */ static void gic_set_irq(void *opaque, int irq, int level) { @@ -122,19 +151,18 @@ static void gic_set_irq(void *opaque, int irq, int level) target = cm; } + assert(irq >= GIC_NR_SGIS); + if (level == GIC_TEST_LEVEL(irq, cm)) { return; } - if (level) { - GIC_SET_LEVEL(irq, cm); - if (GIC_TEST_EDGE_TRIGGER(irq) || GIC_TEST_ENABLED(irq, cm)) { - DPRINTF("Set %d pending mask %x\n", irq, target); - GIC_SET_PENDING(irq, target); - } + if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) { + gic_set_irq_11mpcore(s, irq, level, cm, target); } else { - GIC_CLEAR_LEVEL(irq, cm); + gic_set_irq_generic(s, irq, level, cm, target); } + gic_update(s); } @@ -151,21 +179,48 @@ static void gic_set_running_irq(GICState *s, int cpu, int irq) uint32_t gic_acknowledge_irq(GICState *s, int cpu) { - int new_irq; + int ret, irq, src; int cm = 1 << cpu; - new_irq = s->current_pending[cpu]; - if (new_irq == 1023 - || GIC_GET_PRIORITY(new_irq, cpu) >= s->running_priority[cpu]) { + irq = s->current_pending[cpu]; + if (irq == 1023 + || GIC_GET_PRIORITY(irq, cpu) >= s->running_priority[cpu]) { DPRINTF("ACK no pending IRQ\n"); return 1023; } - s->last_active[new_irq][cpu] = s->running_irq[cpu]; - /* Clear pending flags for both level and edge triggered interrupts. - Level triggered IRQs will be reasserted once they become inactive. */ - GIC_CLEAR_PENDING(new_irq, GIC_TEST_MODEL(new_irq) ? ALL_CPU_MASK : cm); - gic_set_running_irq(s, cpu, new_irq); - DPRINTF("ACK %d\n", new_irq); - return new_irq; + s->last_active[irq][cpu] = s->running_irq[cpu]; + + if (s->revision == REV_11MPCORE) { + /* Clear pending flags for both level and edge triggered interrupts. + * Level triggered IRQs will be reasserted once they become inactive. + */ + GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm); + ret = irq; + } else { + if (irq < GIC_NR_SGIS) { + /* Lookup the source CPU for the SGI and clear this in the + * sgi_pending map. Return the src and clear the overall pending + * state on this CPU if the SGI is not pending from any CPUs. + */ + assert(s->sgi_pending[irq][cpu] != 0); + src = ctz32(s->sgi_pending[irq][cpu]); + s->sgi_pending[irq][cpu] &= ~(1 << src); + if (s->sgi_pending[irq][cpu] == 0) { + GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm); + } + ret = irq | ((src & 0x7) << 10); + } else { + /* Clear pending state for both level and edge triggered + * interrupts. (level triggered interrupts with an active line + * remain pending, see gic_test_pending) + */ + GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm); + ret = irq; + } + } + + gic_set_running_irq(s, cpu, irq); + DPRINTF("ACK %d\n", irq); + return ret; } void gic_set_priority(GICState *s, int cpu, int irq, uint8_t val) @@ -195,14 +250,18 @@ void gic_complete_irq(GICState *s, int cpu, int irq) } if (s->running_irq[cpu] == 1023) return; /* No active IRQ. */ - /* Mark level triggered interrupts as pending if they are still - raised. */ - if (!GIC_TEST_EDGE_TRIGGER(irq) && GIC_TEST_ENABLED(irq, cm) - && GIC_TEST_LEVEL(irq, cm) && (GIC_TARGET(irq) & cm) != 0) { - DPRINTF("Set %d pending mask %x\n", irq, cm); - GIC_SET_PENDING(irq, cm); - update = 1; + + if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) { + /* Mark level triggered interrupts as pending if they are still + raised. */ + if (!GIC_TEST_EDGE_TRIGGER(irq) && GIC_TEST_ENABLED(irq, cm) + && GIC_TEST_LEVEL(irq, cm) && (GIC_TARGET(irq) & cm) != 0) { + DPRINTF("Set %d pending mask %x\n", irq, cm); + GIC_SET_PENDING(irq, cm); + update = 1; + } } + if (irq != s->running_irq[cpu]) { /* Complete an IRQ that is not currently running. */ int tmp = s->running_irq[cpu]; @@ -273,7 +332,7 @@ static uint32_t gic_dist_readb(void *opaque, hwaddr offset) res = 0; mask = (irq < GIC_INTERNAL) ? cm : ALL_CPU_MASK; for (i = 0; i < 8; i++) { - if (GIC_TEST_PENDING(irq + i, mask)) { + if (gic_test_pending(s, irq + i, mask)) { res |= (1 << i); } } @@ -323,6 +382,22 @@ static uint32_t gic_dist_readb(void *opaque, hwaddr offset) if (GIC_TEST_EDGE_TRIGGER(irq + i)) res |= (2 << (i * 2)); } + } else if (offset < 0xf10) { + goto bad_reg; + } else if (offset < 0xf30) { + if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) { + goto bad_reg; + } + + if (offset < 0xf20) { + /* GICD_CPENDSGIRn */ + irq = (offset - 0xf10); + } else { + irq = (offset - 0xf20); + /* GICD_SPENDSGIRn */ + } + + res = s->sgi_pending[irq][cpu]; } else if (offset < 0xfe0) { goto bad_reg; } else /* offset >= 0xfe0 */ { @@ -497,9 +572,31 @@ static void gic_dist_writeb(void *opaque, hwaddr offset, GIC_CLEAR_EDGE_TRIGGER(irq + i); } } - } else { + } else if (offset < 0xf10) { /* 0xf00 is only handled for 32-bit writes. */ goto bad_reg; + } else if (offset < 0xf20) { + /* GICD_CPENDSGIRn */ + if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) { + goto bad_reg; + } + irq = (offset - 0xf10); + + s->sgi_pending[irq][cpu] &= ~value; + if (s->sgi_pending[irq][cpu] == 0) { + GIC_CLEAR_PENDING(irq, 1 << cpu); + } + } else if (offset < 0xf30) { + /* GICD_SPENDSGIRn */ + if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) { + goto bad_reg; + } + irq = (offset - 0xf20); + + GIC_SET_PENDING(irq, 1 << cpu); + s->sgi_pending[irq][cpu] |= value; + } else { + goto bad_reg; } gic_update(s); return; @@ -523,6 +620,7 @@ static void gic_dist_writel(void *opaque, hwaddr offset, int cpu; int irq; int mask; + int target_cpu; cpu = gic_get_current_cpu(s); irq = value & 0x3ff; @@ -542,6 +640,12 @@ static void gic_dist_writel(void *opaque, hwaddr offset, break; } GIC_SET_PENDING(irq, mask); + target_cpu = ctz32(mask); + while (target_cpu < GIC_NCPU) { + s->sgi_pending[irq][target_cpu] |= (1 << cpu); + mask &= ~(1 << target_cpu); + target_cpu = ctz32(mask); + } gic_update(s); return; } @@ -565,14 +669,17 @@ static uint32_t gic_cpu_read(GICState *s, int cpu, int offset) case 0x04: /* Priority mask */ return s->priority_mask[cpu]; case 0x08: /* Binary Point */ - /* ??? Not implemented. */ - return 0; + return s->bpr[cpu]; case 0x0c: /* Acknowledge */ return gic_acknowledge_irq(s, cpu); case 0x14: /* Running Priority */ return s->running_priority[cpu]; case 0x18: /* Highest Pending Interrupt */ return s->current_pending[cpu]; + case 0x1c: /* Aliased Binary Point */ + return s->abpr[cpu]; + case 0xd0: case 0xd4: case 0xd8: case 0xdc: + return s->apr[(offset - 0xd0) / 4][cpu]; default: qemu_log_mask(LOG_GUEST_ERROR, "gic_cpu_read: Bad offset %x\n", (int)offset); @@ -591,10 +698,18 @@ static void gic_cpu_write(GICState *s, int cpu, int offset, uint32_t value) s->priority_mask[cpu] = (value & 0xff); break; case 0x08: /* Binary Point */ - /* ??? Not implemented. */ + s->bpr[cpu] = (value & 0x7); break; case 0x10: /* End Of Interrupt */ return gic_complete_irq(s, cpu, value & 0x3ff); + case 0x1c: /* Aliased Binary Point */ + if (s->revision >= 2) { + s->abpr[cpu] = (value & 0x7); + } + break; + case 0xd0: case 0xd4: case 0xd8: case 0xdc: + qemu_log_mask(LOG_UNIMP, "Writing APR not implemented\n"); + break; default: qemu_log_mask(LOG_GUEST_ERROR, "gic_cpu_write: Bad offset %x\n", (int)offset); diff --git a/hw/intc/arm_gic_common.c b/hw/intc/arm_gic_common.c index e4fc650..6d884ec 100644 --- a/hw/intc/arm_gic_common.c +++ b/hw/intc/arm_gic_common.c @@ -58,8 +58,8 @@ static const VMStateDescription vmstate_gic_irq_state = { static const VMStateDescription vmstate_gic = { .name = "arm_gic", - .version_id = 4, - .minimum_version_id = 4, + .version_id = 7, + .minimum_version_id = 7, .pre_save = gic_pre_save, .post_load = gic_post_load, .fields = (VMStateField[]) { @@ -71,10 +71,14 @@ static const VMStateDescription vmstate_gic = { VMSTATE_UINT8_2DARRAY(priority1, GICState, GIC_INTERNAL, GIC_NCPU), VMSTATE_UINT8_ARRAY(priority2, GICState, GIC_MAXIRQ - GIC_INTERNAL), VMSTATE_UINT16_2DARRAY(last_active, GICState, GIC_MAXIRQ, GIC_NCPU), + VMSTATE_UINT8_2DARRAY(sgi_pending, GICState, GIC_NR_SGIS, GIC_NCPU), VMSTATE_UINT16_ARRAY(priority_mask, GICState, GIC_NCPU), VMSTATE_UINT16_ARRAY(running_irq, GICState, GIC_NCPU), VMSTATE_UINT16_ARRAY(running_priority, GICState, GIC_NCPU), VMSTATE_UINT16_ARRAY(current_pending, GICState, GIC_NCPU), + VMSTATE_UINT8_ARRAY(bpr, GICState, GIC_NCPU), + VMSTATE_UINT8_ARRAY(abpr, GICState, GIC_NCPU), + VMSTATE_UINT32_2DARRAY(apr, GICState, GIC_NR_APRS, GIC_NCPU), VMSTATE_END_OF_LIST() } }; diff --git a/hw/intc/gic_internal.h b/hw/intc/gic_internal.h index 8c02d58..92a6f7a 100644 --- a/hw/intc/gic_internal.h +++ b/hw/intc/gic_internal.h @@ -34,7 +34,6 @@ #define GIC_TEST_ENABLED(irq, cm) ((s->irq_state[irq].enabled & (cm)) != 0) #define GIC_SET_PENDING(irq, cm) s->irq_state[irq].pending |= (cm) #define GIC_CLEAR_PENDING(irq, cm) s->irq_state[irq].pending &= ~(cm) -#define GIC_TEST_PENDING(irq, cm) ((s->irq_state[irq].pending & (cm)) != 0) #define GIC_SET_ACTIVE(irq, cm) s->irq_state[irq].active |= (cm) #define GIC_CLEAR_ACTIVE(irq, cm) s->irq_state[irq].active &= ~(cm) #define GIC_TEST_ACTIVE(irq, cm) ((s->irq_state[irq].active & (cm)) != 0) @@ -63,4 +62,19 @@ void gic_update(GICState *s); void gic_init_irqs_and_distributor(GICState *s, int num_irq); void gic_set_priority(GICState *s, int cpu, int irq, uint8_t val); +static inline bool gic_test_pending(GICState *s, int irq, int cm) +{ + if (s->revision == REV_NVIC || s->revision == REV_11MPCORE) { + return s->irq_state[irq].pending & cm; + } else { + /* Edge-triggered interrupts are marked pending on a rising edge, but + * level-triggered interrupts are either considered pending when the + * level is active or if software has explicitly written to + * GICD_ISPENDR to set the state pending. + */ + return (s->irq_state[irq].pending & cm) || + (!GIC_TEST_EDGE_TRIGGER(irq) && GIC_TEST_LEVEL(irq, cm)); + } +} + #endif /* !QEMU_ARM_GIC_INTERNAL_H */ diff --git a/hw/misc/zynq_slcr.c b/hw/misc/zynq_slcr.c index e42a5b0..d1cc233 100644 --- a/hw/misc/zynq_slcr.c +++ b/hw/misc/zynq_slcr.c @@ -31,6 +31,8 @@ #define XILINX_LOCK_KEY 0x767b #define XILINX_UNLOCK_KEY 0xdf0d +#define R_PSS_RST_CTRL_SOFT_RST 0x1 + typedef enum { ARM_PLL_CTRL, DDR_PLL_CTRL, @@ -399,6 +401,9 @@ static void zynq_slcr_write(void *opaque, hwaddr offset, goto bad_reg; } s->reset[(offset - 0x200) / 4] = val; + if (offset == 0x200 && (val & R_PSS_RST_CTRL_SOFT_RST)) { + qemu_system_reset_request(); + } break; case 0x300: s->apu_ctrl = val; diff --git a/hw/net/Makefile.objs b/hw/net/Makefile.objs index 951cca3..75e80c2 100644 --- a/hw/net/Makefile.objs +++ b/hw/net/Makefile.objs @@ -18,6 +18,7 @@ common-obj-$(CONFIG_OPENCORES_ETH) += opencores_eth.o common-obj-$(CONFIG_XGMAC) += xgmac.o common-obj-$(CONFIG_MIPSNET) += mipsnet.o common-obj-$(CONFIG_XILINX_AXI) += xilinx_axienet.o +common-obj-$(CONFIG_ALLWINNER_EMAC) += allwinner_emac.o common-obj-$(CONFIG_CADENCE) += cadence_gem.o common-obj-$(CONFIG_STELLARIS_ENET) += stellaris_enet.o diff --git a/hw/net/allwinner_emac.c b/hw/net/allwinner_emac.c new file mode 100644 index 0000000..469f2f0 --- /dev/null +++ b/hw/net/allwinner_emac.c @@ -0,0 +1,539 @@ +/* + * Emulation of Allwinner EMAC Fast Ethernet controller and + * Realtek RTL8201CP PHY + * + * Copyright (C) 2014 Beniamino Galvani <b.galvani@gmail.com> + * + * This model is based on reverse-engineering of Linux kernel driver. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + */ +#include "hw/sysbus.h" +#include "net/net.h" +#include "qemu/fifo8.h" +#include "hw/net/allwinner_emac.h" +#include <zlib.h> + +static uint8_t padding[60]; + +static void mii_set_link(RTL8201CPState *mii, bool link_ok) +{ + if (link_ok) { + mii->bmsr |= MII_BMSR_LINK_ST; + mii->anlpar |= MII_ANAR_TXFD | MII_ANAR_10FD | MII_ANAR_10 | + MII_ANAR_CSMACD; + } else { + mii->bmsr &= ~MII_BMSR_LINK_ST; + mii->anlpar = MII_ANAR_TX; + } +} + +static void mii_reset(RTL8201CPState *mii, bool link_ok) +{ + mii->bmcr = MII_BMCR_FD | MII_BMCR_AUTOEN | MII_BMCR_SPEED; + mii->bmsr = MII_BMSR_100TX_FD | MII_BMSR_100TX_HD | MII_BMSR_10T_FD | + MII_BMSR_10T_HD | MII_BMSR_MFPS | MII_BMSR_AUTONEG; + mii->anar = MII_ANAR_TXFD | MII_ANAR_TX | MII_ANAR_10FD | MII_ANAR_10 | + MII_ANAR_CSMACD; + mii->anlpar = MII_ANAR_TX; + + mii_set_link(mii, link_ok); +} + +static uint16_t RTL8201CP_mdio_read(AwEmacState *s, uint8_t addr, uint8_t reg) +{ + RTL8201CPState *mii = &s->mii; + uint16_t ret = 0xffff; + + if (addr == s->phy_addr) { + switch (reg) { + case MII_BMCR: + return mii->bmcr; + case MII_BMSR: + return mii->bmsr; + case MII_PHYID1: + return RTL8201CP_PHYID1; + case MII_PHYID2: + return RTL8201CP_PHYID2; + case MII_ANAR: + return mii->anar; + case MII_ANLPAR: + return mii->anlpar; + case MII_ANER: + case MII_NSR: + case MII_LBREMR: + case MII_REC: + case MII_SNRDR: + case MII_TEST: + qemu_log_mask(LOG_UNIMP, + "allwinner_emac: read from unimpl. mii reg 0x%x\n", + reg); + return 0; + default: + qemu_log_mask(LOG_GUEST_ERROR, + "allwinner_emac: read from invalid mii reg 0x%x\n", + reg); + return 0; + } + } + return ret; +} + +static void RTL8201CP_mdio_write(AwEmacState *s, uint8_t addr, uint8_t reg, + uint16_t value) +{ + RTL8201CPState *mii = &s->mii; + NetClientState *nc; + + if (addr == s->phy_addr) { + switch (reg) { + case MII_BMCR: + if (value & MII_BMCR_RESET) { + nc = qemu_get_queue(s->nic); + mii_reset(mii, !nc->link_down); + } else { + mii->bmcr = value; + } + break; + case MII_ANAR: + mii->anar = value; + break; + case MII_BMSR: + case MII_PHYID1: + case MII_PHYID2: + case MII_ANLPAR: + case MII_ANER: + qemu_log_mask(LOG_GUEST_ERROR, + "allwinner_emac: write to read-only mii reg 0x%x\n", + reg); + break; + case MII_NSR: + case MII_LBREMR: + case MII_REC: + case MII_SNRDR: + case MII_TEST: + qemu_log_mask(LOG_UNIMP, + "allwinner_emac: write to unimpl. mii reg 0x%x\n", + reg); + break; + default: + qemu_log_mask(LOG_GUEST_ERROR, + "allwinner_emac: write to invalid mii reg 0x%x\n", + reg); + } + } +} + +static void aw_emac_update_irq(AwEmacState *s) +{ + qemu_set_irq(s->irq, (s->int_sta & s->int_ctl) != 0); +} + +static void aw_emac_tx_reset(AwEmacState *s, int chan) +{ + fifo8_reset(&s->tx_fifo[chan]); + s->tx_length[chan] = 0; +} + +static void aw_emac_rx_reset(AwEmacState *s) +{ + fifo8_reset(&s->rx_fifo); + s->rx_num_packets = 0; + s->rx_packet_size = 0; + s->rx_packet_pos = 0; +} + +static void fifo8_push_word(Fifo8 *fifo, uint32_t val) +{ + fifo8_push(fifo, val); + fifo8_push(fifo, val >> 8); + fifo8_push(fifo, val >> 16); + fifo8_push(fifo, val >> 24); +} + +static uint32_t fifo8_pop_word(Fifo8 *fifo) +{ + uint32_t ret; + + ret = fifo8_pop(fifo); + ret |= fifo8_pop(fifo) << 8; + ret |= fifo8_pop(fifo) << 16; + ret |= fifo8_pop(fifo) << 24; + + return ret; +} + +static int aw_emac_can_receive(NetClientState *nc) +{ + AwEmacState *s = qemu_get_nic_opaque(nc); + + /* + * To avoid packet drops, allow reception only when there is space + * for a full frame: 1522 + 8 (rx headers) + 2 (padding). + */ + return (s->ctl & EMAC_CTL_RX_EN) && (fifo8_num_free(&s->rx_fifo) >= 1532); +} + +static ssize_t aw_emac_receive(NetClientState *nc, const uint8_t *buf, + size_t size) +{ + AwEmacState *s = qemu_get_nic_opaque(nc); + Fifo8 *fifo = &s->rx_fifo; + size_t padded_size, total_size; + uint32_t crc; + + padded_size = size > 60 ? size : 60; + total_size = QEMU_ALIGN_UP(RX_HDR_SIZE + padded_size + CRC_SIZE, 4); + + if (!(s->ctl & EMAC_CTL_RX_EN) || (fifo8_num_free(fifo) < total_size)) { + return -1; + } + + fifo8_push_word(fifo, EMAC_UNDOCUMENTED_MAGIC); + fifo8_push_word(fifo, EMAC_RX_HEADER(padded_size + CRC_SIZE, + EMAC_RX_IO_DATA_STATUS_OK)); + fifo8_push_all(fifo, buf, size); + crc = crc32(~0, buf, size); + + if (padded_size != size) { + fifo8_push_all(fifo, padding, padded_size - size); + crc = crc32(crc, padding, padded_size - size); + } + + fifo8_push_word(fifo, crc); + fifo8_push_all(fifo, padding, QEMU_ALIGN_UP(padded_size, 4) - padded_size); + s->rx_num_packets++; + + s->int_sta |= EMAC_INT_RX; + aw_emac_update_irq(s); + + return size; +} + +static void aw_emac_cleanup(NetClientState *nc) +{ + AwEmacState *s = qemu_get_nic_opaque(nc); + + s->nic = NULL; +} + +static void aw_emac_reset(DeviceState *dev) +{ + AwEmacState *s = AW_EMAC(dev); + NetClientState *nc = qemu_get_queue(s->nic); + + s->ctl = 0; + s->tx_mode = 0; + s->int_ctl = 0; + s->int_sta = 0; + s->tx_channel = 0; + s->phy_target = 0; + + aw_emac_tx_reset(s, 0); + aw_emac_tx_reset(s, 1); + aw_emac_rx_reset(s); + + mii_reset(&s->mii, !nc->link_down); +} + +static uint64_t aw_emac_read(void *opaque, hwaddr offset, unsigned size) +{ + AwEmacState *s = opaque; + Fifo8 *fifo = &s->rx_fifo; + NetClientState *nc; + uint64_t ret; + + switch (offset) { + case EMAC_CTL_REG: + return s->ctl; + case EMAC_TX_MODE_REG: + return s->tx_mode; + case EMAC_TX_INS_REG: + return s->tx_channel; + case EMAC_RX_CTL_REG: + return s->rx_ctl; + case EMAC_RX_IO_DATA_REG: + if (!s->rx_num_packets) { + qemu_log_mask(LOG_GUEST_ERROR, + "Read IO data register when no packet available"); + return 0; + } + + ret = fifo8_pop_word(fifo); + + switch (s->rx_packet_pos) { + case 0: /* Word is magic header */ + s->rx_packet_pos += 4; + break; + case 4: /* Word is rx info header */ + s->rx_packet_pos += 4; + s->rx_packet_size = QEMU_ALIGN_UP(extract32(ret, 0, 16), 4); + break; + default: /* Word is packet data */ + s->rx_packet_pos += 4; + s->rx_packet_size -= 4; + + if (!s->rx_packet_size) { + s->rx_packet_pos = 0; + s->rx_num_packets--; + nc = qemu_get_queue(s->nic); + if (aw_emac_can_receive(nc)) { + qemu_flush_queued_packets(nc); + } + } + } + return ret; + case EMAC_RX_FBC_REG: + return s->rx_num_packets; + case EMAC_INT_CTL_REG: + return s->int_ctl; + case EMAC_INT_STA_REG: + return s->int_sta; + case EMAC_MAC_MRDD_REG: + return RTL8201CP_mdio_read(s, + extract32(s->phy_target, PHY_ADDR_SHIFT, 8), + extract32(s->phy_target, PHY_REG_SHIFT, 8)); + default: + qemu_log_mask(LOG_UNIMP, + "allwinner_emac: read access to unknown register 0x" + TARGET_FMT_plx "\n", offset); + ret = 0; + } + + return ret; +} + +static void aw_emac_write(void *opaque, hwaddr offset, uint64_t value, + unsigned size) +{ + AwEmacState *s = opaque; + Fifo8 *fifo; + NetClientState *nc = qemu_get_queue(s->nic); + int chan; + + switch (offset) { + case EMAC_CTL_REG: + if (value & EMAC_CTL_RESET) { + aw_emac_reset(DEVICE(s)); + value &= ~EMAC_CTL_RESET; + } + s->ctl = value; + if (aw_emac_can_receive(nc)) { + qemu_flush_queued_packets(nc); + } + break; + case EMAC_TX_MODE_REG: + s->tx_mode = value; + break; + case EMAC_TX_CTL0_REG: + case EMAC_TX_CTL1_REG: + chan = (offset == EMAC_TX_CTL0_REG ? 0 : 1); + if ((value & 1) && (s->ctl & EMAC_CTL_TX_EN)) { + uint32_t len, ret; + const uint8_t *data; + + fifo = &s->tx_fifo[chan]; + len = s->tx_length[chan]; + + if (len > fifo8_num_used(fifo)) { + len = fifo8_num_used(fifo); + qemu_log_mask(LOG_GUEST_ERROR, + "allwinner_emac: TX length > fifo data length\n"); + } + if (len > 0) { + data = fifo8_pop_buf(fifo, len, &ret); + qemu_send_packet(nc, data, ret); + aw_emac_tx_reset(s, chan); + /* Raise TX interrupt */ + s->int_sta |= EMAC_INT_TX_CHAN(chan); + aw_emac_update_irq(s); + } + } + break; + case EMAC_TX_INS_REG: + s->tx_channel = value < NUM_TX_FIFOS ? value : 0; + break; + case EMAC_TX_PL0_REG: + case EMAC_TX_PL1_REG: + chan = (offset == EMAC_TX_PL0_REG ? 0 : 1); + if (value > TX_FIFO_SIZE) { + qemu_log_mask(LOG_GUEST_ERROR, + "allwinner_emac: invalid TX frame length %d\n", + (int)value); + value = TX_FIFO_SIZE; + } + s->tx_length[chan] = value; + break; + case EMAC_TX_IO_DATA_REG: + fifo = &s->tx_fifo[s->tx_channel]; + if (fifo8_num_free(fifo) < 4) { + qemu_log_mask(LOG_GUEST_ERROR, + "allwinner_emac: TX data overruns fifo\n"); + break; + } + fifo8_push_word(fifo, value); + break; + case EMAC_RX_CTL_REG: + s->rx_ctl = value; + break; + case EMAC_RX_FBC_REG: + if (value == 0) { + aw_emac_rx_reset(s); + } + break; + case EMAC_INT_CTL_REG: + s->int_ctl = value; + break; + case EMAC_INT_STA_REG: + s->int_sta &= ~value; + break; + case EMAC_MAC_MADR_REG: + s->phy_target = value; + break; + case EMAC_MAC_MWTD_REG: + RTL8201CP_mdio_write(s, extract32(s->phy_target, PHY_ADDR_SHIFT, 8), + extract32(s->phy_target, PHY_REG_SHIFT, 8), value); + break; + default: + qemu_log_mask(LOG_UNIMP, + "allwinner_emac: write access to unknown register 0x" + TARGET_FMT_plx "\n", offset); + } +} + +static void aw_emac_set_link(NetClientState *nc) +{ + AwEmacState *s = qemu_get_nic_opaque(nc); + + mii_set_link(&s->mii, !nc->link_down); +} + +static const MemoryRegionOps aw_emac_mem_ops = { + .read = aw_emac_read, + .write = aw_emac_write, + .endianness = DEVICE_NATIVE_ENDIAN, + .valid = { + .min_access_size = 4, + .max_access_size = 4, + }, +}; + +static NetClientInfo net_aw_emac_info = { + .type = NET_CLIENT_OPTIONS_KIND_NIC, + .size = sizeof(NICState), + .can_receive = aw_emac_can_receive, + .receive = aw_emac_receive, + .cleanup = aw_emac_cleanup, + .link_status_changed = aw_emac_set_link, +}; + +static void aw_emac_init(Object *obj) +{ + SysBusDevice *sbd = SYS_BUS_DEVICE(obj); + AwEmacState *s = AW_EMAC(obj); + + memory_region_init_io(&s->iomem, OBJECT(s), &aw_emac_mem_ops, s, + "aw_emac", 0x1000); + sysbus_init_mmio(sbd, &s->iomem); + sysbus_init_irq(sbd, &s->irq); +} + +static void aw_emac_realize(DeviceState *dev, Error **errp) +{ + AwEmacState *s = AW_EMAC(dev); + + qemu_macaddr_default_if_unset(&s->conf.macaddr); + s->nic = qemu_new_nic(&net_aw_emac_info, &s->conf, + object_get_typename(OBJECT(dev)), dev->id, s); + qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a); + + fifo8_create(&s->rx_fifo, RX_FIFO_SIZE); + fifo8_create(&s->tx_fifo[0], TX_FIFO_SIZE); + fifo8_create(&s->tx_fifo[1], TX_FIFO_SIZE); +} + +static Property aw_emac_properties[] = { + DEFINE_NIC_PROPERTIES(AwEmacState, conf), + DEFINE_PROP_UINT8("phy-addr", AwEmacState, phy_addr, 0), + DEFINE_PROP_END_OF_LIST(), +}; + +static const VMStateDescription vmstate_mii = { + .name = "rtl8201cp", + .version_id = 1, + .minimum_version_id = 1, + .fields = (VMStateField[]) { + VMSTATE_UINT16(bmcr, RTL8201CPState), + VMSTATE_UINT16(bmsr, RTL8201CPState), + VMSTATE_UINT16(anar, RTL8201CPState), + VMSTATE_UINT16(anlpar, RTL8201CPState), + VMSTATE_END_OF_LIST() + } +}; + +static int aw_emac_post_load(void *opaque, int version_id) +{ + AwEmacState *s = opaque; + + aw_emac_set_link(qemu_get_queue(s->nic)); + + return 0; +} + +static const VMStateDescription vmstate_aw_emac = { + .name = "allwinner_emac", + .version_id = 1, + .minimum_version_id = 1, + .post_load = aw_emac_post_load, + .fields = (VMStateField[]) { + VMSTATE_STRUCT(mii, AwEmacState, 1, vmstate_mii, RTL8201CPState), + VMSTATE_UINT32(ctl, AwEmacState), + VMSTATE_UINT32(tx_mode, AwEmacState), + VMSTATE_UINT32(rx_ctl, AwEmacState), + VMSTATE_UINT32(int_ctl, AwEmacState), + VMSTATE_UINT32(int_sta, AwEmacState), + VMSTATE_UINT32(phy_target, AwEmacState), + VMSTATE_FIFO8(rx_fifo, AwEmacState), + VMSTATE_UINT32(rx_num_packets, AwEmacState), + VMSTATE_UINT32(rx_packet_size, AwEmacState), + VMSTATE_UINT32(rx_packet_pos, AwEmacState), + VMSTATE_STRUCT_ARRAY(tx_fifo, AwEmacState, NUM_TX_FIFOS, 1, + vmstate_fifo8, Fifo8), + VMSTATE_UINT32_ARRAY(tx_length, AwEmacState, NUM_TX_FIFOS), + VMSTATE_UINT32(tx_channel, AwEmacState), + VMSTATE_END_OF_LIST() + } +}; + +static void aw_emac_class_init(ObjectClass *klass, void *data) +{ + DeviceClass *dc = DEVICE_CLASS(klass); + + dc->realize = aw_emac_realize; + dc->props = aw_emac_properties; + dc->reset = aw_emac_reset; + dc->vmsd = &vmstate_aw_emac; +} + +static const TypeInfo aw_emac_info = { + .name = TYPE_AW_EMAC, + .parent = TYPE_SYS_BUS_DEVICE, + .instance_size = sizeof(AwEmacState), + .instance_init = aw_emac_init, + .class_init = aw_emac_class_init, +}; + +static void aw_emac_register_types(void) +{ + type_register_static(&aw_emac_info); +} + +type_init(aw_emac_register_types) diff --git a/include/disas/bfd.h b/include/disas/bfd.h index 803b6ef..8bd703c 100644 --- a/include/disas/bfd.h +++ b/include/disas/bfd.h @@ -379,6 +379,7 @@ int print_insn_h8300 (bfd_vma, disassemble_info*); int print_insn_h8300h (bfd_vma, disassemble_info*); int print_insn_h8300s (bfd_vma, disassemble_info*); int print_insn_h8500 (bfd_vma, disassemble_info*); +int print_insn_arm_a64 (bfd_vma, disassemble_info*); int print_insn_alpha (bfd_vma, disassemble_info*); disassembler_ftype arc_get_disassembler (int, int); int print_insn_arm (bfd_vma, disassemble_info*); diff --git a/include/hw/arm/allwinner-a10.h b/include/hw/arm/allwinner-a10.h index da36647..01a189b 100644 --- a/include/hw/arm/allwinner-a10.h +++ b/include/hw/arm/allwinner-a10.h @@ -6,6 +6,7 @@ #include "hw/arm/arm.h" #include "hw/timer/allwinner-a10-pit.h" #include "hw/intc/allwinner-a10-pic.h" +#include "hw/net/allwinner_emac.h" #include "sysemu/sysemu.h" #include "exec/address-spaces.h" @@ -14,6 +15,7 @@ #define AW_A10_PIC_REG_BASE 0x01c20400 #define AW_A10_PIT_REG_BASE 0x01c20c00 #define AW_A10_UART0_REG_BASE 0x01c28000 +#define AW_A10_EMAC_BASE 0x01c0b000 #define AW_A10_SDRAM_BASE 0x40000000 @@ -29,6 +31,7 @@ typedef struct AwA10State { qemu_irq irq[AW_A10_PIC_INT_NR]; AwA10PITState timer; AwA10PICState intc; + AwEmacState emac; } AwA10State; #define ALLWINNER_H_ diff --git a/include/hw/intc/arm_gic_common.h b/include/hw/intc/arm_gic_common.h index 8a2aa00..89384c2 100644 --- a/include/hw/intc/arm_gic_common.h +++ b/include/hw/intc/arm_gic_common.h @@ -31,6 +31,9 @@ /* Maximum number of possible CPU interfaces, determined by GIC architecture */ #define GIC_NCPU 8 +#define MAX_NR_GROUP_PRIO 128 +#define GIC_NR_APRS (MAX_NR_GROUP_PRIO / 32) + typedef struct gic_irq_state { /* The enable bits are only banked for per-cpu interrupts. */ uint8_t enabled; @@ -55,12 +58,42 @@ typedef struct GICState { uint8_t priority1[GIC_INTERNAL][GIC_NCPU]; uint8_t priority2[GIC_MAXIRQ - GIC_INTERNAL]; uint16_t last_active[GIC_MAXIRQ][GIC_NCPU]; + /* For each SGI on the target CPU, we store 8 bits + * indicating which source CPUs have made this SGI + * pending on the target CPU. These correspond to + * the bytes in the GIC_SPENDSGIR* registers as + * read by the target CPU. + */ + uint8_t sgi_pending[GIC_NR_SGIS][GIC_NCPU]; uint16_t priority_mask[GIC_NCPU]; uint16_t running_irq[GIC_NCPU]; uint16_t running_priority[GIC_NCPU]; uint16_t current_pending[GIC_NCPU]; + /* We present the GICv2 without security extensions to a guest and + * therefore the guest can configure the GICC_CTLR to configure group 1 + * binary point in the abpr. + */ + uint8_t bpr[GIC_NCPU]; + uint8_t abpr[GIC_NCPU]; + + /* The APR is implementation defined, so we choose a layout identical to + * the KVM ABI layout for QEMU's implementation of the gic: + * If an interrupt for preemption level X is active, then + * APRn[X mod 32] == 0b1, where n = X / 32 + * otherwise the bit is clear. + * + * TODO: rewrite the interrupt acknowlege/complete routines to use + * the APR registers to track the necessary information to update + * s->running_priority[] on interrupt completion (ie completely remove + * last_active[][] and running_irq[]). This will be necessary if we ever + * want to support TCG<->KVM migration, or TCG guests which can + * do power management involving powering down and restarting + * the GIC. + */ + uint32_t apr[GIC_NR_APRS][GIC_NCPU]; + uint32_t num_cpu; MemoryRegion iomem; /* Distributor */ diff --git a/include/hw/net/allwinner_emac.h b/include/hw/net/allwinner_emac.h new file mode 100644 index 0000000..a5e944a --- /dev/null +++ b/include/hw/net/allwinner_emac.h @@ -0,0 +1,210 @@ +/* + * Emulation of Allwinner EMAC Fast Ethernet controller and + * Realtek RTL8201CP PHY + * + * Copyright (C) 2014 Beniamino Galvani <b.galvani@gmail.com> + * + * Allwinner EMAC register definitions from Linux kernel are: + * Copyright 2012 Stefan Roese <sr@denx.de> + * Copyright 2013 Maxime Ripard <maxime.ripard@free-electrons.com> + * Copyright 1997 Sten Wang + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * version 2 as published by the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + */ +#ifndef AW_EMAC_H +#define AW_EMAC_H + +#include "net/net.h" +#include "qemu/fifo8.h" + +#define TYPE_AW_EMAC "allwinner-emac" +#define AW_EMAC(obj) OBJECT_CHECK(AwEmacState, (obj), TYPE_AW_EMAC) + +/* + * Allwinner EMAC register list + */ +#define EMAC_CTL_REG 0x00 + +#define EMAC_TX_MODE_REG 0x04 +#define EMAC_TX_FLOW_REG 0x08 +#define EMAC_TX_CTL0_REG 0x0C +#define EMAC_TX_CTL1_REG 0x10 +#define EMAC_TX_INS_REG 0x14 +#define EMAC_TX_PL0_REG 0x18 +#define EMAC_TX_PL1_REG 0x1C +#define EMAC_TX_STA_REG 0x20 +#define EMAC_TX_IO_DATA_REG 0x24 +#define EMAC_TX_IO_DATA1_REG 0x28 +#define EMAC_TX_TSVL0_REG 0x2C +#define EMAC_TX_TSVH0_REG 0x30 +#define EMAC_TX_TSVL1_REG 0x34 +#define EMAC_TX_TSVH1_REG 0x38 + +#define EMAC_RX_CTL_REG 0x3C +#define EMAC_RX_HASH0_REG 0x40 +#define EMAC_RX_HASH1_REG 0x44 +#define EMAC_RX_STA_REG 0x48 +#define EMAC_RX_IO_DATA_REG 0x4C +#define EMAC_RX_FBC_REG 0x50 + +#define EMAC_INT_CTL_REG 0x54 +#define EMAC_INT_STA_REG 0x58 + +#define EMAC_MAC_CTL0_REG 0x5C +#define EMAC_MAC_CTL1_REG 0x60 +#define EMAC_MAC_IPGT_REG 0x64 +#define EMAC_MAC_IPGR_REG 0x68 +#define EMAC_MAC_CLRT_REG 0x6C +#define EMAC_MAC_MAXF_REG 0x70 +#define EMAC_MAC_SUPP_REG 0x74 +#define EMAC_MAC_TEST_REG 0x78 +#define EMAC_MAC_MCFG_REG 0x7C +#define EMAC_MAC_MCMD_REG 0x80 +#define EMAC_MAC_MADR_REG 0x84 +#define EMAC_MAC_MWTD_REG 0x88 +#define EMAC_MAC_MRDD_REG 0x8C +#define EMAC_MAC_MIND_REG 0x90 +#define EMAC_MAC_SSRR_REG 0x94 +#define EMAC_MAC_A0_REG 0x98 +#define EMAC_MAC_A1_REG 0x9C +#define EMAC_MAC_A2_REG 0xA0 + +#define EMAC_SAFX_L_REG0 0xA4 +#define EMAC_SAFX_H_REG0 0xA8 +#define EMAC_SAFX_L_REG1 0xAC +#define EMAC_SAFX_H_REG1 0xB0 +#define EMAC_SAFX_L_REG2 0xB4 +#define EMAC_SAFX_H_REG2 0xB8 +#define EMAC_SAFX_L_REG3 0xBC +#define EMAC_SAFX_H_REG3 0xC0 + +/* CTL register fields */ +#define EMAC_CTL_RESET (1 << 0) +#define EMAC_CTL_TX_EN (1 << 1) +#define EMAC_CTL_RX_EN (1 << 2) + +/* TX MODE register fields */ +#define EMAC_TX_MODE_ABORTED_FRAME_EN (1 << 0) +#define EMAC_TX_MODE_DMA_EN (1 << 1) + +/* RX CTL register fields */ +#define EMAC_RX_CTL_AUTO_DRQ_EN (1 << 1) +#define EMAC_RX_CTL_DMA_EN (1 << 2) +#define EMAC_RX_CTL_PASS_ALL_EN (1 << 4) +#define EMAC_RX_CTL_PASS_CTL_EN (1 << 5) +#define EMAC_RX_CTL_PASS_CRC_ERR_EN (1 << 6) +#define EMAC_RX_CTL_PASS_LEN_ERR_EN (1 << 7) +#define EMAC_RX_CTL_PASS_LEN_OOR_EN (1 << 8) +#define EMAC_RX_CTL_ACCEPT_UNICAST_EN (1 << 16) +#define EMAC_RX_CTL_DA_FILTER_EN (1 << 17) +#define EMAC_RX_CTL_ACCEPT_MULTICAST_EN (1 << 20) +#define EMAC_RX_CTL_HASH_FILTER_EN (1 << 21) +#define EMAC_RX_CTL_ACCEPT_BROADCAST_EN (1 << 22) +#define EMAC_RX_CTL_SA_FILTER_EN (1 << 24) +#define EMAC_RX_CTL_SA_FILTER_INVERT_EN (1 << 25) + +/* RX IO DATA register fields */ +#define EMAC_RX_HEADER(len, status) (((len) & 0xffff) | ((status) << 16)) +#define EMAC_RX_IO_DATA_STATUS_CRC_ERR (1 << 4) +#define EMAC_RX_IO_DATA_STATUS_LEN_ERR (3 << 5) +#define EMAC_RX_IO_DATA_STATUS_OK (1 << 7) +#define EMAC_UNDOCUMENTED_MAGIC 0x0143414d /* header for RX frames */ + +/* PHY registers */ +#define MII_BMCR 0 +#define MII_BMSR 1 +#define MII_PHYID1 2 +#define MII_PHYID2 3 +#define MII_ANAR 4 +#define MII_ANLPAR 5 +#define MII_ANER 6 +#define MII_NSR 16 +#define MII_LBREMR 17 +#define MII_REC 18 +#define MII_SNRDR 19 +#define MII_TEST 25 + +/* PHY registers fields */ +#define MII_BMCR_RESET (1 << 15) +#define MII_BMCR_LOOPBACK (1 << 14) +#define MII_BMCR_SPEED (1 << 13) +#define MII_BMCR_AUTOEN (1 << 12) +#define MII_BMCR_FD (1 << 8) + +#define MII_BMSR_100TX_FD (1 << 14) +#define MII_BMSR_100TX_HD (1 << 13) +#define MII_BMSR_10T_FD (1 << 12) +#define MII_BMSR_10T_HD (1 << 11) +#define MII_BMSR_MFPS (1 << 6) +#define MII_BMSR_AUTONEG (1 << 3) +#define MII_BMSR_LINK_ST (1 << 2) + +#define MII_ANAR_TXFD (1 << 8) +#define MII_ANAR_TX (1 << 7) +#define MII_ANAR_10FD (1 << 6) +#define MII_ANAR_10 (1 << 5) +#define MII_ANAR_CSMACD (1 << 0) + +#define RTL8201CP_PHYID1 0x0000 +#define RTL8201CP_PHYID2 0x8201 + +/* INT CTL and INT STA registers fields */ +#define EMAC_INT_TX_CHAN(x) (1 << (x)) +#define EMAC_INT_RX (1 << 8) + +/* Due to lack of specifications, size of fifos is chosen arbitrarily */ +#define TX_FIFO_SIZE (4 * 1024) +#define RX_FIFO_SIZE (32 * 1024) + +#define NUM_TX_FIFOS 2 +#define RX_HDR_SIZE 8 +#define CRC_SIZE 4 + +#define PHY_REG_SHIFT 0 +#define PHY_ADDR_SHIFT 8 + +typedef struct RTL8201CPState { + uint16_t bmcr; + uint16_t bmsr; + uint16_t anar; + uint16_t anlpar; +} RTL8201CPState; + +typedef struct AwEmacState { + /*< private >*/ + SysBusDevice parent_obj; + /*< public >*/ + + MemoryRegion iomem; + qemu_irq irq; + NICState *nic; + NICConf conf; + RTL8201CPState mii; + uint8_t phy_addr; + + uint32_t ctl; + uint32_t tx_mode; + uint32_t rx_ctl; + uint32_t int_ctl; + uint32_t int_sta; + uint32_t phy_target; + + Fifo8 rx_fifo; + uint32_t rx_num_packets; + uint32_t rx_packet_size; + uint32_t rx_packet_pos; + + Fifo8 tx_fifo[NUM_TX_FIFOS]; + uint32_t tx_length[NUM_TX_FIFOS]; + uint32_t tx_channel; +} AwEmacState; + +#endif diff --git a/include/migration/vmstate.h b/include/migration/vmstate.h index fbd16a0..ded8e23 100644 --- a/include/migration/vmstate.h +++ b/include/migration/vmstate.h @@ -656,9 +656,15 @@ extern const VMStateInfo vmstate_info_bitmap; #define VMSTATE_UINT32_ARRAY_V(_f, _s, _n, _v) \ VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_uint32, uint32_t) +#define VMSTATE_UINT32_2DARRAY_V(_f, _s, _n1, _n2, _v) \ + VMSTATE_2DARRAY(_f, _s, _n1, _n2, _v, vmstate_info_uint32, uint32_t) + #define VMSTATE_UINT32_ARRAY(_f, _s, _n) \ VMSTATE_UINT32_ARRAY_V(_f, _s, _n, 0) +#define VMSTATE_UINT32_2DARRAY(_f, _s, _n1, _n2) \ + VMSTATE_UINT32_2DARRAY_V(_f, _s, _n1, _n2, 0) + #define VMSTATE_UINT64_ARRAY_V(_f, _s, _n, _v) \ VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_uint64, uint64_t) diff --git a/include/qemu/fifo8.h b/include/qemu/fifo8.h index d318f71..8820780 100644 --- a/include/qemu/fifo8.h +++ b/include/qemu/fifo8.h @@ -44,6 +44,19 @@ void fifo8_destroy(Fifo8 *fifo); void fifo8_push(Fifo8 *fifo, uint8_t data); /** + * fifo8_push_all: + * @fifo: FIFO to push to + * @data: data to push + * @size: number of bytes to push + * + * Push a byte array to the FIFO. Behaviour is undefined if the FIFO is full. + * Clients are responsible for checking the space left in the FIFO using + * fifo8_num_free(). + */ + +void fifo8_push_all(Fifo8 *fifo, const uint8_t *data, uint32_t num); + +/** * fifo8_pop: * @fifo: fifo to pop from * @@ -56,6 +69,32 @@ void fifo8_push(Fifo8 *fifo, uint8_t data); uint8_t fifo8_pop(Fifo8 *fifo); /** + * fifo8_pop_buf: + * @fifo: FIFO to pop from + * @max: maximum number of bytes to pop + * @num: actual number of returned bytes + * + * Pop a number of elements from the FIFO up to a maximum of max. The buffer + * containing the popped data is returned. This buffer points directly into + * the FIFO backing store and data is invalidated once any of the fifo8_* APIs + * are called on the FIFO. + * + * The function may return fewer bytes than requested when the data wraps + * around in the ring buffer; in this case only a contiguous part of the data + * is returned. + * + * The number of valid bytes returned is populated in *num; will always return + * at least 1 byte. max must not be 0 or greater than the number of bytes in + * the FIFO. + * + * Clients are responsible for checking the availability of requested data + * using fifo8_num_used(). + * + * Returns: A pointer to popped data. + */ +const uint8_t *fifo8_pop_buf(Fifo8 *fifo, uint32_t max, uint32_t *num); + +/** * fifo8_reset: * @fifo: FIFO to reset * @@ -86,6 +125,28 @@ bool fifo8_is_empty(Fifo8 *fifo); bool fifo8_is_full(Fifo8 *fifo); +/** + * fifo8_num_free: + * @fifo: FIFO to check + * + * Return the number of free bytes in the FIFO. + * + * Returns: Number of free bytes. + */ + +uint32_t fifo8_num_free(Fifo8 *fifo); + +/** + * fifo8_num_used: + * @fifo: FIFO to check + * + * Return the number of used bytes in the FIFO. + * + * Returns: Number of used bytes. + */ + +uint32_t fifo8_num_used(Fifo8 *fifo); + extern const VMStateDescription vmstate_fifo8; #define VMSTATE_FIFO8(_field, _state) { \ @@ -8,6 +8,7 @@ MAKEFLAGS += -rR %.d: %.h: %.c: +%.cc: %.cpp: %.m: %.mak: @@ -26,8 +27,12 @@ QEMU_INCLUDES += -I$(<D) -I$(@D) %.o: %.rc $(call quiet-command,$(WINDRES) -I. -o $@ $<," RC $(TARGET_DIR)$@") +# If we have a CXX we might have some C++ objects, in which case we +# must link with the C++ compiler, not the plain C compiler. +LINKPROG = $(or $(CXX),$(CC)) + ifeq ($(LIBTOOL),) -LINK = $(call quiet-command,$(CC) $(QEMU_CFLAGS) $(CFLAGS) $(LDFLAGS) -o $@ \ +LINK = $(call quiet-command,$(LINKPROG) $(QEMU_CFLAGS) $(CFLAGS) $(LDFLAGS) -o $@ \ $(sort $(filter %.o, $1)) $(filter-out %.o, $1) $(version-obj-y) \ $(LIBS)," LINK $(TARGET_DIR)$@") else @@ -41,7 +46,7 @@ LIBTOOL += $(if $(V),,--quiet) LINK = $(call quiet-command,\ $(if $(filter %.lo %.la,$^),$(LIBTOOL) --mode=link --tag=CC \ - )$(CC) $(QEMU_CFLAGS) $(CFLAGS) $(LDFLAGS) -o $@ \ + )$(LINKPROG) $(QEMU_CFLAGS) $(CFLAGS) $(LDFLAGS) -o $@ \ $(sort $(filter %.o, $1)) $(filter-out %.o, $1) \ $(if $(filter %.lo %.la,$^),$(version-lobj-y),$(version-obj-y)) \ $(if $(filter %.lo %.la,$^),$(LIBTOOLFLAGS)) \ @@ -54,6 +59,9 @@ endif %.o: %.asm $(call quiet-command,$(AS) $(ASFLAGS) -o $@ $<," AS $(TARGET_DIR)$@") +%.o: %.cc + $(call quiet-command,$(CXX) $(QEMU_INCLUDES) $(QEMU_CXXFLAGS) $(QEMU_DGFLAGS) $(CFLAGS) -c -o $@ $<," CXX $(TARGET_DIR)$@") + %.o: %.cpp $(call quiet-command,$(CXX) $(QEMU_INCLUDES) $(QEMU_CXXFLAGS) $(QEMU_DGFLAGS) $(CFLAGS) -c -o $@ $<," CXX $(TARGET_DIR)$@") @@ -77,7 +85,7 @@ quiet-command = $(if $(V),$1,$(if $(2),@echo $2 && $1, @$1)) cc-option = $(if $(shell $(CC) $1 $2 -S -o /dev/null -xc /dev/null \ >/dev/null 2>&1 && echo OK), $2, $3) -VPATH_SUFFIXES = %.c %.h %.S %.cpp %.m %.mak %.texi %.sh %.rc +VPATH_SUFFIXES = %.c %.h %.S %.cc %.cpp %.m %.mak %.texi %.sh %.rc set-vpath = $(if $1,$(foreach PATTERN,$(VPATH_SUFFIXES),$(eval vpath $(PATTERN) $1))) # find-in-path diff --git a/target-arm/helper.h b/target-arm/helper.h index 71b8411..951e6ad 100644 --- a/target-arm/helper.h +++ b/target-arm/helper.h @@ -320,6 +320,7 @@ DEF_HELPER_1(neon_cls_s8, i32, i32) DEF_HELPER_1(neon_cls_s16, i32, i32) DEF_HELPER_1(neon_cls_s32, i32, i32) DEF_HELPER_1(neon_cnt_u8, i32, i32) +DEF_HELPER_FLAGS_1(neon_rbit_u8, TCG_CALL_NO_RWG_SE, i32, i32) DEF_HELPER_3(neon_qdmulh_s16, i32, env, i32, i32) DEF_HELPER_3(neon_qrdmulh_s16, i32, env, i32, i32) diff --git a/target-arm/neon_helper.c b/target-arm/neon_helper.c index be6fbd9..b4c8690 100644 --- a/target-arm/neon_helper.c +++ b/target-arm/neon_helper.c @@ -1133,6 +1133,18 @@ uint32_t HELPER(neon_cnt_u8)(uint32_t x) return x; } +/* Reverse bits in each 8 bit word */ +uint32_t HELPER(neon_rbit_u8)(uint32_t x) +{ + x = ((x & 0xf0f0f0f0) >> 4) + | ((x & 0x0f0f0f0f) << 4); + x = ((x & 0x88888888) >> 3) + | ((x & 0x44444444) >> 1) + | ((x & 0x22222222) << 1) + | ((x & 0x11111111) << 3); + return x; +} + #define NEON_QDMULH16(dest, src1, src2, round) do { \ uint32_t tmp = (int32_t)(int16_t) src1 * (int16_t) src2; \ if ((tmp ^ (tmp << 1)) & SIGNBIT) { \ diff --git a/target-arm/translate-a64.c b/target-arm/translate-a64.c index 6c1ec1e..d60223a 100644 --- a/target-arm/translate-a64.c +++ b/target-arm/translate-a64.c @@ -74,6 +74,9 @@ typedef struct AArch64DecodeTable { /* Function prototype for gen_ functions for calling Neon helpers */ typedef void NeonGenTwoOpFn(TCGv_i32, TCGv_i32, TCGv_i32); +typedef void NeonGenTwoOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32); +typedef void NeonGenNarrowFn(TCGv_i32, TCGv_i64); +typedef void NeonGenNarrowEnvFn(TCGv_i32, TCGv_ptr, TCGv_i64); /* initialize TCG globals. */ void a64_translate_init(void) @@ -5500,7 +5503,119 @@ static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn) */ static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn) { - unsupported_encoding(s, insn); + int u = extract32(insn, 29, 1); + int size = extract32(insn, 22, 2); + int opcode = extract32(insn, 12, 5); + int rn = extract32(insn, 5, 5); + int rd = extract32(insn, 0, 5); + TCGv_ptr fpst; + + /* For some ops (the FP ones), size[1] is part of the encoding. + * For ADDP strictly it is not but size[1] is always 1 for valid + * encodings. + */ + opcode |= (extract32(size, 1, 1) << 5); + + switch (opcode) { + case 0x3b: /* ADDP */ + if (u || size != 3) { + unallocated_encoding(s); + return; + } + TCGV_UNUSED_PTR(fpst); + break; + case 0xc: /* FMAXNMP */ + case 0xd: /* FADDP */ + case 0xf: /* FMAXP */ + case 0x2c: /* FMINNMP */ + case 0x2f: /* FMINP */ + /* FP op, size[0] is 32 or 64 bit */ + if (!u) { + unallocated_encoding(s); + return; + } + size = extract32(size, 0, 1) ? 3 : 2; + fpst = get_fpstatus_ptr(); + break; + default: + unallocated_encoding(s); + return; + } + + if (size == 3) { + TCGv_i64 tcg_op1 = tcg_temp_new_i64(); + TCGv_i64 tcg_op2 = tcg_temp_new_i64(); + TCGv_i64 tcg_res = tcg_temp_new_i64(); + + read_vec_element(s, tcg_op1, rn, 0, MO_64); + read_vec_element(s, tcg_op2, rn, 1, MO_64); + + switch (opcode) { + case 0x3b: /* ADDP */ + tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2); + break; + case 0xc: /* FMAXNMP */ + gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); + break; + case 0xd: /* FADDP */ + gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); + break; + case 0xf: /* FMAXP */ + gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); + break; + case 0x2c: /* FMINNMP */ + gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); + break; + case 0x2f: /* FMINP */ + gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); + break; + default: + g_assert_not_reached(); + } + + write_fp_dreg(s, rd, tcg_res); + + tcg_temp_free_i64(tcg_op1); + tcg_temp_free_i64(tcg_op2); + tcg_temp_free_i64(tcg_res); + } else { + TCGv_i32 tcg_op1 = tcg_temp_new_i32(); + TCGv_i32 tcg_op2 = tcg_temp_new_i32(); + TCGv_i32 tcg_res = tcg_temp_new_i32(); + + read_vec_element_i32(s, tcg_op1, rn, 0, MO_32); + read_vec_element_i32(s, tcg_op2, rn, 1, MO_32); + + switch (opcode) { + case 0xc: /* FMAXNMP */ + gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); + break; + case 0xd: /* FADDP */ + gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); + break; + case 0xf: /* FMAXP */ + gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); + break; + case 0x2c: /* FMINNMP */ + gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); + break; + case 0x2f: /* FMINP */ + gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); + break; + default: + g_assert_not_reached(); + } + + write_fp_sreg(s, rd, tcg_res); + + tcg_temp_free_i32(tcg_op1); + tcg_temp_free_i32(tcg_op2); + tcg_temp_free_i32(tcg_res); + } + + if (!TCGV_IS_UNUSED_PTR(fpst)) { + tcg_temp_free_ptr(fpst); + } } /* @@ -5738,6 +5853,20 @@ static void handle_3same_64(DisasContext *s, int opcode, bool u, TCGCond cond; switch (opcode) { + case 0x1: /* SQADD */ + if (u) { + gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); + } else { + gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); + } + break; + case 0x5: /* SQSUB */ + if (u) { + gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); + } else { + gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); + } + break; case 0x6: /* CMGT, CMHI */ /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0. * We implement this using setcond (test) and then negating. @@ -5760,19 +5889,41 @@ static void handle_3same_64(DisasContext *s, int opcode, bool u, tcg_gen_setcondi_i64(TCG_COND_NE, tcg_rd, tcg_rd, 0); tcg_gen_neg_i64(tcg_rd, tcg_rd); break; - case 0x10: /* ADD, SUB */ + case 0x8: /* SSHL, USHL */ if (u) { - tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm); + gen_helper_neon_shl_u64(tcg_rd, tcg_rn, tcg_rm); } else { - tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm); + gen_helper_neon_shl_s64(tcg_rd, tcg_rn, tcg_rm); } break; - case 0x1: /* SQADD */ - case 0x5: /* SQSUB */ - case 0x8: /* SSHL, USHL */ case 0x9: /* SQSHL, UQSHL */ + if (u) { + gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); + } else { + gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); + } + break; case 0xa: /* SRSHL, URSHL */ + if (u) { + gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm); + } else { + gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm); + } + break; case 0xb: /* SQRSHL, UQRSHL */ + if (u) { + gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); + } else { + gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); + } + break; + case 0x10: /* ADD, SUB */ + if (u) { + tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm); + } else { + tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm); + } + break; default: g_assert_not_reached(); } @@ -5917,8 +6068,6 @@ static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn) int rm = extract32(insn, 16, 5); int size = extract32(insn, 22, 2); bool u = extract32(insn, 29, 1); - TCGv_i64 tcg_rn; - TCGv_i64 tcg_rm; TCGv_i64 tcg_rd; if (opcode >= 0x18) { @@ -5949,10 +6098,11 @@ static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn) switch (opcode) { case 0x1: /* SQADD, UQADD */ case 0x5: /* SQSUB, UQSUB */ + case 0x9: /* SQSHL, UQSHL */ + case 0xb: /* SQRSHL, UQRSHL */ + break; case 0x8: /* SSHL, USHL */ case 0xa: /* SRSHL, URSHL */ - unsupported_encoding(s, insn); - return; case 0x6: /* CMGT, CMHI */ case 0x7: /* CMGE, CMHS */ case 0x11: /* CMTST, CMEQ */ @@ -5962,39 +6112,162 @@ static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn) return; } break; - case 0x9: /* SQSHL, UQSHL */ - case 0xb: /* SQRSHL, UQRSHL */ - unsupported_encoding(s, insn); - return; case 0x16: /* SQDMULH, SQRDMULH (vector) */ if (size != 1 && size != 2) { unallocated_encoding(s); return; } - unsupported_encoding(s, insn); - return; + break; default: unallocated_encoding(s); return; } - tcg_rn = read_fp_dreg(s, rn); /* op1 */ - tcg_rm = read_fp_dreg(s, rm); /* op2 */ tcg_rd = tcg_temp_new_i64(); - /* For the moment we only support the opcodes which are - * 64-bit-width only. The size != 3 cases will - * be handled later when the relevant ops are implemented. - */ - handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm); + if (size == 3) { + TCGv_i64 tcg_rn = read_fp_dreg(s, rn); + TCGv_i64 tcg_rm = read_fp_dreg(s, rm); + + handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm); + tcg_temp_free_i64(tcg_rn); + tcg_temp_free_i64(tcg_rm); + } else { + /* Do a single operation on the lowest element in the vector. + * We use the standard Neon helpers and rely on 0 OP 0 == 0 with + * no side effects for all these operations. + * OPTME: special-purpose helpers would avoid doing some + * unnecessary work in the helper for the 8 and 16 bit cases. + */ + NeonGenTwoOpEnvFn *genenvfn; + TCGv_i32 tcg_rn = tcg_temp_new_i32(); + TCGv_i32 tcg_rm = tcg_temp_new_i32(); + TCGv_i32 tcg_rd32 = tcg_temp_new_i32(); + + read_vec_element_i32(s, tcg_rn, rn, 0, size); + read_vec_element_i32(s, tcg_rm, rm, 0, size); + + switch (opcode) { + case 0x1: /* SQADD, UQADD */ + { + static NeonGenTwoOpEnvFn * const fns[3][2] = { + { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, + { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, + { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, + }; + genenvfn = fns[size][u]; + break; + } + case 0x5: /* SQSUB, UQSUB */ + { + static NeonGenTwoOpEnvFn * const fns[3][2] = { + { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, + { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, + { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, + }; + genenvfn = fns[size][u]; + break; + } + case 0x9: /* SQSHL, UQSHL */ + { + static NeonGenTwoOpEnvFn * const fns[3][2] = { + { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, + { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, + { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, + }; + genenvfn = fns[size][u]; + break; + } + case 0xb: /* SQRSHL, UQRSHL */ + { + static NeonGenTwoOpEnvFn * const fns[3][2] = { + { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, + { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, + { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, + }; + genenvfn = fns[size][u]; + break; + } + case 0x16: /* SQDMULH, SQRDMULH */ + { + static NeonGenTwoOpEnvFn * const fns[2][2] = { + { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, + { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, + }; + assert(size == 1 || size == 2); + genenvfn = fns[size - 1][u]; + break; + } + default: + g_assert_not_reached(); + } + + genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm); + tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32); + tcg_temp_free_i32(tcg_rd32); + tcg_temp_free_i32(tcg_rn); + tcg_temp_free_i32(tcg_rm); + } write_fp_dreg(s, rd, tcg_rd); - tcg_temp_free_i64(tcg_rn); - tcg_temp_free_i64(tcg_rm); tcg_temp_free_i64(tcg_rd); } +static void handle_2misc_64(DisasContext *s, int opcode, bool u, + TCGv_i64 tcg_rd, TCGv_i64 tcg_rn) +{ + /* Handle 64->64 opcodes which are shared between the scalar and + * vector 2-reg-misc groups. We cover every integer opcode where size == 3 + * is valid in either group and also the double-precision fp ops. + */ + TCGCond cond; + + switch (opcode) { + case 0x5: /* NOT */ + /* This opcode is shared with CNT and RBIT but we have earlier + * enforced that size == 3 if and only if this is the NOT insn. + */ + tcg_gen_not_i64(tcg_rd, tcg_rn); + break; + case 0xa: /* CMLT */ + /* 64 bit integer comparison against zero, result is + * test ? (2^64 - 1) : 0. We implement via setcond(!test) and + * subtracting 1. + */ + cond = TCG_COND_LT; + do_cmop: + tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0); + tcg_gen_neg_i64(tcg_rd, tcg_rd); + break; + case 0x8: /* CMGT, CMGE */ + cond = u ? TCG_COND_GE : TCG_COND_GT; + goto do_cmop; + case 0x9: /* CMEQ, CMLE */ + cond = u ? TCG_COND_LE : TCG_COND_EQ; + goto do_cmop; + case 0xb: /* ABS, NEG */ + if (u) { + tcg_gen_neg_i64(tcg_rd, tcg_rn); + } else { + TCGv_i64 tcg_zero = tcg_const_i64(0); + tcg_gen_neg_i64(tcg_rd, tcg_rn); + tcg_gen_movcond_i64(TCG_COND_GT, tcg_rd, tcg_rn, tcg_zero, + tcg_rn, tcg_rd); + tcg_temp_free_i64(tcg_zero); + } + break; + case 0x2f: /* FABS */ + gen_helper_vfp_absd(tcg_rd, tcg_rn); + break; + case 0x6f: /* FNEG */ + gen_helper_vfp_negd(tcg_rd, tcg_rn); + break; + default: + g_assert_not_reached(); + } +} + /* C3.6.12 AdvSIMD scalar two reg misc * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 * +-----+---+-----------+------+-----------+--------+-----+------+------+ @@ -6003,7 +6276,50 @@ static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn) */ static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) { - unsupported_encoding(s, insn); + int rd = extract32(insn, 0, 5); + int rn = extract32(insn, 5, 5); + int opcode = extract32(insn, 12, 5); + int size = extract32(insn, 22, 2); + bool u = extract32(insn, 29, 1); + + switch (opcode) { + case 0xa: /* CMLT */ + if (u) { + unallocated_encoding(s); + return; + } + /* fall through */ + case 0x8: /* CMGT, CMGE */ + case 0x9: /* CMEQ, CMLE */ + case 0xb: /* ABS, NEG */ + if (size != 3) { + unallocated_encoding(s); + return; + } + break; + default: + /* Other categories of encoding in this class: + * + floating point (single and double) + * + SUQADD/USQADD/SQABS/SQNEG : size 8, 16, 32 or 64 + * + SQXTN/SQXTN2/SQXTUN/SQXTUN2/UQXTN/UQXTN2: + * narrowing saturate ops: size 64/32/16 -> 32/16/8 + */ + unsupported_encoding(s, insn); + return; + } + + if (size == 3) { + TCGv_i64 tcg_rn = read_fp_dreg(s, rn); + TCGv_i64 tcg_rd = tcg_temp_new_i64(); + + handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn); + write_fp_dreg(s, rd, tcg_rd); + tcg_temp_free_i64(tcg_rd); + tcg_temp_free_i64(tcg_rn); + } else { + /* the 'size might not be 64' ops aren't implemented yet */ + g_assert_not_reached(); + } } /* C3.6.13 AdvSIMD scalar x indexed element @@ -6519,10 +6835,153 @@ static void disas_simd_3same_logic(DisasContext *s, uint32_t insn) tcg_temp_free_i64(tcg_res[1]); } +/* Helper functions for 32 bit comparisons */ +static void gen_max_s32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2) +{ + tcg_gen_movcond_i32(TCG_COND_GE, res, op1, op2, op1, op2); +} + +static void gen_max_u32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2) +{ + tcg_gen_movcond_i32(TCG_COND_GEU, res, op1, op2, op1, op2); +} + +static void gen_min_s32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2) +{ + tcg_gen_movcond_i32(TCG_COND_LE, res, op1, op2, op1, op2); +} + +static void gen_min_u32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2) +{ + tcg_gen_movcond_i32(TCG_COND_LEU, res, op1, op2, op1, op2); +} + /* Pairwise op subgroup of C3.6.16. */ static void disas_simd_3same_pair(DisasContext *s, uint32_t insn) { - unsupported_encoding(s, insn); + int is_q = extract32(insn, 30, 1); + int u = extract32(insn, 29, 1); + int size = extract32(insn, 22, 2); + int opcode = extract32(insn, 11, 5); + int rm = extract32(insn, 16, 5); + int rn = extract32(insn, 5, 5); + int rd = extract32(insn, 0, 5); + int pass; + + if (size == 3 && !is_q) { + unallocated_encoding(s); + return; + } + + switch (opcode) { + case 0x14: /* SMAXP, UMAXP */ + case 0x15: /* SMINP, UMINP */ + if (size == 3) { + unallocated_encoding(s); + return; + } + break; + case 0x17: + if (u) { + unallocated_encoding(s); + return; + } + break; + default: + g_assert_not_reached(); + } + + /* These operations work on the concatenated rm:rn, with each pair of + * adjacent elements being operated on to produce an element in the result. + */ + if (size == 3) { + TCGv_i64 tcg_res[2]; + + for (pass = 0; pass < 2; pass++) { + TCGv_i64 tcg_op1 = tcg_temp_new_i64(); + TCGv_i64 tcg_op2 = tcg_temp_new_i64(); + int passreg = (pass == 0) ? rn : rm; + + read_vec_element(s, tcg_op1, passreg, 0, MO_64); + read_vec_element(s, tcg_op2, passreg, 1, MO_64); + tcg_res[pass] = tcg_temp_new_i64(); + + /* The only 64 bit pairwise integer op is ADDP */ + assert(opcode == 0x17); + tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); + + tcg_temp_free_i64(tcg_op1); + tcg_temp_free_i64(tcg_op2); + } + + for (pass = 0; pass < 2; pass++) { + write_vec_element(s, tcg_res[pass], rd, pass, MO_64); + tcg_temp_free_i64(tcg_res[pass]); + } + } else { + int maxpass = is_q ? 4 : 2; + TCGv_i32 tcg_res[4]; + + for (pass = 0; pass < maxpass; pass++) { + TCGv_i32 tcg_op1 = tcg_temp_new_i32(); + TCGv_i32 tcg_op2 = tcg_temp_new_i32(); + NeonGenTwoOpFn *genfn; + int passreg = pass < (maxpass / 2) ? rn : rm; + int passelt = (is_q && (pass & 1)) ? 2 : 0; + + read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32); + read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32); + tcg_res[pass] = tcg_temp_new_i32(); + + switch (opcode) { + case 0x17: /* ADDP */ + { + static NeonGenTwoOpFn * const fns[3] = { + gen_helper_neon_padd_u8, + gen_helper_neon_padd_u16, + tcg_gen_add_i32, + }; + genfn = fns[size]; + break; + } + case 0x14: /* SMAXP, UMAXP */ + { + static NeonGenTwoOpFn * const fns[3][2] = { + { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 }, + { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 }, + { gen_max_s32, gen_max_u32 }, + }; + genfn = fns[size][u]; + break; + } + case 0x15: /* SMINP, UMINP */ + { + static NeonGenTwoOpFn * const fns[3][2] = { + { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 }, + { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 }, + { gen_min_s32, gen_min_u32 }, + }; + genfn = fns[size][u]; + break; + } + default: + g_assert_not_reached(); + } + + genfn(tcg_res[pass], tcg_op1, tcg_op2); + + tcg_temp_free_i32(tcg_op1); + tcg_temp_free_i32(tcg_op2); + } + + for (pass = 0; pass < maxpass; pass++) { + write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); + tcg_temp_free_i32(tcg_res[pass]); + } + if (!is_q) { + clear_vec_high(s, rd); + } + } } /* Floating point op subgroup of C3.6.16. */ @@ -6619,27 +7078,13 @@ static void disas_simd_3same_int(DisasContext *s, uint32_t insn) unallocated_encoding(s); return; } - unsupported_encoding(s, insn); - return; - case 0x1: /* SQADD */ - case 0x5: /* SQSUB */ - case 0x8: /* SSHL, USHL */ - case 0x9: /* SQSHL, UQSHL */ - case 0xa: /* SRSHL, URSHL */ - case 0xb: /* SQRSHL, UQRSHL */ - if (size == 3 && !is_q) { - unallocated_encoding(s); - return; - } - unsupported_encoding(s, insn); - return; + break; case 0x16: /* SQDMULH, SQRDMULH */ if (size == 0 || size == 3) { unallocated_encoding(s); return; } - unsupported_encoding(s, insn); - return; + break; default: if (size == 3 && !is_q) { unallocated_encoding(s); @@ -6670,12 +7115,63 @@ static void disas_simd_3same_int(DisasContext *s, uint32_t insn) TCGv_i32 tcg_op1 = tcg_temp_new_i32(); TCGv_i32 tcg_op2 = tcg_temp_new_i32(); TCGv_i32 tcg_res = tcg_temp_new_i32(); - NeonGenTwoOpFn *genfn; + NeonGenTwoOpFn *genfn = NULL; + NeonGenTwoOpEnvFn *genenvfn = NULL; read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); switch (opcode) { + case 0x0: /* SHADD, UHADD */ + { + static NeonGenTwoOpFn * const fns[3][2] = { + { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 }, + { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 }, + { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 }, + }; + genfn = fns[size][u]; + break; + } + case 0x1: /* SQADD, UQADD */ + { + static NeonGenTwoOpEnvFn * const fns[3][2] = { + { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, + { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, + { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, + }; + genenvfn = fns[size][u]; + break; + } + case 0x2: /* SRHADD, URHADD */ + { + static NeonGenTwoOpFn * const fns[3][2] = { + { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 }, + { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 }, + { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 }, + }; + genfn = fns[size][u]; + break; + } + case 0x4: /* SHSUB, UHSUB */ + { + static NeonGenTwoOpFn * const fns[3][2] = { + { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 }, + { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 }, + { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 }, + }; + genfn = fns[size][u]; + break; + } + case 0x5: /* SQSUB, UQSUB */ + { + static NeonGenTwoOpEnvFn * const fns[3][2] = { + { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, + { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, + { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, + }; + genenvfn = fns[size][u]; + break; + } case 0x6: /* CMGT, CMHI */ { static NeonGenTwoOpFn * const fns[3][2] = { @@ -6696,6 +7192,78 @@ static void disas_simd_3same_int(DisasContext *s, uint32_t insn) genfn = fns[size][u]; break; } + case 0x8: /* SSHL, USHL */ + { + static NeonGenTwoOpFn * const fns[3][2] = { + { gen_helper_neon_shl_s8, gen_helper_neon_shl_u8 }, + { gen_helper_neon_shl_s16, gen_helper_neon_shl_u16 }, + { gen_helper_neon_shl_s32, gen_helper_neon_shl_u32 }, + }; + genfn = fns[size][u]; + break; + } + case 0x9: /* SQSHL, UQSHL */ + { + static NeonGenTwoOpEnvFn * const fns[3][2] = { + { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, + { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, + { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, + }; + genenvfn = fns[size][u]; + break; + } + case 0xa: /* SRSHL, URSHL */ + { + static NeonGenTwoOpFn * const fns[3][2] = { + { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 }, + { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 }, + { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 }, + }; + genfn = fns[size][u]; + break; + } + case 0xb: /* SQRSHL, UQRSHL */ + { + static NeonGenTwoOpEnvFn * const fns[3][2] = { + { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, + { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, + { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, + }; + genenvfn = fns[size][u]; + break; + } + case 0xc: /* SMAX, UMAX */ + { + static NeonGenTwoOpFn * const fns[3][2] = { + { gen_helper_neon_max_s8, gen_helper_neon_max_u8 }, + { gen_helper_neon_max_s16, gen_helper_neon_max_u16 }, + { gen_max_s32, gen_max_u32 }, + }; + genfn = fns[size][u]; + break; + } + + case 0xd: /* SMIN, UMIN */ + { + static NeonGenTwoOpFn * const fns[3][2] = { + { gen_helper_neon_min_s8, gen_helper_neon_min_u8 }, + { gen_helper_neon_min_s16, gen_helper_neon_min_u16 }, + { gen_min_s32, gen_min_u32 }, + }; + genfn = fns[size][u]; + break; + } + case 0xe: /* SABD, UABD */ + case 0xf: /* SABA, UABA */ + { + static NeonGenTwoOpFn * const fns[3][2] = { + { gen_helper_neon_abd_s8, gen_helper_neon_abd_u8 }, + { gen_helper_neon_abd_s16, gen_helper_neon_abd_u16 }, + { gen_helper_neon_abd_s32, gen_helper_neon_abd_u32 }, + }; + genfn = fns[size][u]; + break; + } case 0x10: /* ADD, SUB */ { static NeonGenTwoOpFn * const fns[3][2] = { @@ -6716,11 +7284,57 @@ static void disas_simd_3same_int(DisasContext *s, uint32_t insn) genfn = fns[size][u]; break; } + case 0x13: /* MUL, PMUL */ + if (u) { + /* PMUL */ + assert(size == 0); + genfn = gen_helper_neon_mul_p8; + break; + } + /* fall through : MUL */ + case 0x12: /* MLA, MLS */ + { + static NeonGenTwoOpFn * const fns[3] = { + gen_helper_neon_mul_u8, + gen_helper_neon_mul_u16, + tcg_gen_mul_i32, + }; + genfn = fns[size]; + break; + } + case 0x16: /* SQDMULH, SQRDMULH */ + { + static NeonGenTwoOpEnvFn * const fns[2][2] = { + { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, + { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, + }; + assert(size == 1 || size == 2); + genenvfn = fns[size - 1][u]; + break; + } default: g_assert_not_reached(); } - genfn(tcg_res, tcg_op1, tcg_op2); + if (genenvfn) { + genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2); + } else { + genfn(tcg_res, tcg_op1, tcg_op2); + } + + if (opcode == 0xf || opcode == 0x12) { + /* SABA, UABA, MLA, MLS: accumulating ops */ + static NeonGenTwoOpFn * const fns[3][2] = { + { gen_helper_neon_add_u8, gen_helper_neon_sub_u8 }, + { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, + { tcg_gen_add_i32, tcg_gen_sub_i32 }, + }; + bool is_sub = (opcode == 0x12 && u); /* MLS */ + + genfn = fns[size][is_sub]; + read_vec_element_i32(s, tcg_op1, rd, pass, MO_32); + genfn(tcg_res, tcg_res, tcg_op1); + } write_vec_element_i32(s, tcg_res, rd, pass, MO_32); @@ -6765,6 +7379,148 @@ static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn) } } +static void handle_2misc_narrow(DisasContext *s, int opcode, bool u, bool is_q, + int size, int rn, int rd) +{ + /* Handle 2-reg-misc ops which are narrowing (so each 2*size element + * in the source becomes a size element in the destination). + */ + int pass; + TCGv_i32 tcg_res[2]; + int destelt = is_q ? 2 : 0; + + for (pass = 0; pass < 2; pass++) { + TCGv_i64 tcg_op = tcg_temp_new_i64(); + NeonGenNarrowFn *genfn = NULL; + NeonGenNarrowEnvFn *genenvfn = NULL; + + read_vec_element(s, tcg_op, rn, pass, MO_64); + tcg_res[pass] = tcg_temp_new_i32(); + + switch (opcode) { + case 0x12: /* XTN, SQXTUN */ + { + static NeonGenNarrowFn * const xtnfns[3] = { + gen_helper_neon_narrow_u8, + gen_helper_neon_narrow_u16, + tcg_gen_trunc_i64_i32, + }; + static NeonGenNarrowEnvFn * const sqxtunfns[3] = { + gen_helper_neon_unarrow_sat8, + gen_helper_neon_unarrow_sat16, + gen_helper_neon_unarrow_sat32, + }; + if (u) { + genenvfn = sqxtunfns[size]; + } else { + genfn = xtnfns[size]; + } + break; + } + case 0x14: /* SQXTN, UQXTN */ + { + static NeonGenNarrowEnvFn * const fns[3][2] = { + { gen_helper_neon_narrow_sat_s8, + gen_helper_neon_narrow_sat_u8 }, + { gen_helper_neon_narrow_sat_s16, + gen_helper_neon_narrow_sat_u16 }, + { gen_helper_neon_narrow_sat_s32, + gen_helper_neon_narrow_sat_u32 }, + }; + genenvfn = fns[size][u]; + break; + } + default: + g_assert_not_reached(); + } + + if (genfn) { + genfn(tcg_res[pass], tcg_op); + } else { + genenvfn(tcg_res[pass], cpu_env, tcg_op); + } + + tcg_temp_free_i64(tcg_op); + } + + for (pass = 0; pass < 2; pass++) { + write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); + tcg_temp_free_i32(tcg_res[pass]); + } + if (!is_q) { + clear_vec_high(s, rd); + } +} + +static void handle_rev(DisasContext *s, int opcode, bool u, + bool is_q, int size, int rn, int rd) +{ + int op = (opcode << 1) | u; + int opsz = op + size; + int grp_size = 3 - opsz; + int dsize = is_q ? 128 : 64; + int i; + + if (opsz >= 3) { + unallocated_encoding(s); + return; + } + + if (size == 0) { + /* Special case bytes, use bswap op on each group of elements */ + int groups = dsize / (8 << grp_size); + + for (i = 0; i < groups; i++) { + TCGv_i64 tcg_tmp = tcg_temp_new_i64(); + + read_vec_element(s, tcg_tmp, rn, i, grp_size); + switch (grp_size) { + case MO_16: + tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp); + break; + case MO_32: + tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp); + break; + case MO_64: + tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); + break; + default: + g_assert_not_reached(); + } + write_vec_element(s, tcg_tmp, rd, i, grp_size); + tcg_temp_free_i64(tcg_tmp); + } + if (!is_q) { + clear_vec_high(s, rd); + } + } else { + int revmask = (1 << grp_size) - 1; + int esize = 8 << size; + int elements = dsize / esize; + TCGv_i64 tcg_rn = tcg_temp_new_i64(); + TCGv_i64 tcg_rd = tcg_const_i64(0); + TCGv_i64 tcg_rd_hi = tcg_const_i64(0); + + for (i = 0; i < elements; i++) { + int e_rev = (i & 0xf) ^ revmask; + int off = e_rev * esize; + read_vec_element(s, tcg_rn, rn, i, size); + if (off >= 64) { + tcg_gen_deposit_i64(tcg_rd_hi, tcg_rd_hi, + tcg_rn, off - 64, esize); + } else { + tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, off, esize); + } + } + write_vec_element(s, tcg_rd, rd, 0, MO_64); + write_vec_element(s, tcg_rd_hi, rd, 1, MO_64); + + tcg_temp_free_i64(tcg_rd_hi); + tcg_temp_free_i64(tcg_rd); + tcg_temp_free_i64(tcg_rn); + } +} + /* C3.6.17 AdvSIMD two reg misc * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ @@ -6773,7 +7529,280 @@ static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn) */ static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) { - unsupported_encoding(s, insn); + int size = extract32(insn, 22, 2); + int opcode = extract32(insn, 12, 5); + bool u = extract32(insn, 29, 1); + bool is_q = extract32(insn, 30, 1); + int rn = extract32(insn, 5, 5); + int rd = extract32(insn, 0, 5); + + switch (opcode) { + case 0x0: /* REV64, REV32 */ + case 0x1: /* REV16 */ + handle_rev(s, opcode, u, is_q, size, rn, rd); + return; + case 0x5: /* CNT, NOT, RBIT */ + if (u && size == 0) { + /* NOT: adjust size so we can use the 64-bits-at-a-time loop. */ + size = 3; + break; + } else if (u && size == 1) { + /* RBIT */ + break; + } else if (!u && size == 0) { + /* CNT */ + break; + } + unallocated_encoding(s); + return; + case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ + case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ + if (size == 3) { + unallocated_encoding(s); + return; + } + handle_2misc_narrow(s, opcode, u, is_q, size, rn, rd); + return; + case 0x2: /* SADDLP, UADDLP */ + case 0x4: /* CLS, CLZ */ + case 0x6: /* SADALP, UADALP */ + if (size == 3) { + unallocated_encoding(s); + return; + } + unsupported_encoding(s, insn); + return; + case 0x13: /* SHLL, SHLL2 */ + if (u == 0 || size == 3) { + unallocated_encoding(s); + return; + } + unsupported_encoding(s, insn); + return; + case 0xa: /* CMLT */ + if (u == 1) { + unallocated_encoding(s); + return; + } + /* fall through */ + case 0x8: /* CMGT, CMGE */ + case 0x9: /* CMEQ, CMLE */ + case 0xb: /* ABS, NEG */ + if (size == 3 && !is_q) { + unallocated_encoding(s); + return; + } + break; + case 0x3: /* SUQADD, USQADD */ + case 0x7: /* SQABS, SQNEG */ + if (size == 3 && !is_q) { + unallocated_encoding(s); + return; + } + unsupported_encoding(s, insn); + return; + case 0xc ... 0xf: + case 0x16 ... 0x1d: + case 0x1f: + { + /* Floating point: U, size[1] and opcode indicate operation; + * size[0] indicates single or double precision. + */ + opcode |= (extract32(size, 1, 1) << 5) | (u << 6); + size = extract32(size, 0, 1) ? 3 : 2; + switch (opcode) { + case 0x2f: /* FABS */ + case 0x6f: /* FNEG */ + if (size == 3 && !is_q) { + unallocated_encoding(s); + return; + } + break; + case 0x16: /* FCVTN, FCVTN2 */ + case 0x17: /* FCVTL, FCVTL2 */ + case 0x18: /* FRINTN */ + case 0x19: /* FRINTM */ + case 0x1a: /* FCVTNS */ + case 0x1b: /* FCVTMS */ + case 0x1c: /* FCVTAS */ + case 0x1d: /* SCVTF */ + case 0x2c: /* FCMGT (zero) */ + case 0x2d: /* FCMEQ (zero) */ + case 0x2e: /* FCMLT (zero) */ + case 0x38: /* FRINTP */ + case 0x39: /* FRINTZ */ + case 0x3a: /* FCVTPS */ + case 0x3b: /* FCVTZS */ + case 0x3c: /* URECPE */ + case 0x3d: /* FRECPE */ + case 0x56: /* FCVTXN, FCVTXN2 */ + case 0x58: /* FRINTA */ + case 0x59: /* FRINTX */ + case 0x5a: /* FCVTNU */ + case 0x5b: /* FCVTMU */ + case 0x5c: /* FCVTAU */ + case 0x5d: /* UCVTF */ + case 0x6c: /* FCMGE (zero) */ + case 0x6d: /* FCMLE (zero) */ + case 0x79: /* FRINTI */ + case 0x7a: /* FCVTPU */ + case 0x7b: /* FCVTZU */ + case 0x7c: /* URSQRTE */ + case 0x7d: /* FRSQRTE */ + case 0x7f: /* FSQRT */ + unsupported_encoding(s, insn); + return; + default: + unallocated_encoding(s); + return; + } + break; + } + default: + unallocated_encoding(s); + return; + } + + if (size == 3) { + /* All 64-bit element operations can be shared with scalar 2misc */ + int pass; + + for (pass = 0; pass < (is_q ? 2 : 1); pass++) { + TCGv_i64 tcg_op = tcg_temp_new_i64(); + TCGv_i64 tcg_res = tcg_temp_new_i64(); + + read_vec_element(s, tcg_op, rn, pass, MO_64); + + handle_2misc_64(s, opcode, u, tcg_res, tcg_op); + + write_vec_element(s, tcg_res, rd, pass, MO_64); + + tcg_temp_free_i64(tcg_res); + tcg_temp_free_i64(tcg_op); + } + } else { + int pass; + + for (pass = 0; pass < (is_q ? 4 : 2); pass++) { + TCGv_i32 tcg_op = tcg_temp_new_i32(); + TCGv_i32 tcg_res = tcg_temp_new_i32(); + TCGCond cond; + + read_vec_element_i32(s, tcg_op, rn, pass, MO_32); + + if (size == 2) { + /* Special cases for 32 bit elements */ + switch (opcode) { + case 0xa: /* CMLT */ + /* 32 bit integer comparison against zero, result is + * test ? (2^32 - 1) : 0. We implement via setcond(test) + * and inverting. + */ + cond = TCG_COND_LT; + do_cmop: + tcg_gen_setcondi_i32(cond, tcg_res, tcg_op, 0); + tcg_gen_neg_i32(tcg_res, tcg_res); + break; + case 0x8: /* CMGT, CMGE */ + cond = u ? TCG_COND_GE : TCG_COND_GT; + goto do_cmop; + case 0x9: /* CMEQ, CMLE */ + cond = u ? TCG_COND_LE : TCG_COND_EQ; + goto do_cmop; + case 0xb: /* ABS, NEG */ + if (u) { + tcg_gen_neg_i32(tcg_res, tcg_op); + } else { + TCGv_i32 tcg_zero = tcg_const_i32(0); + tcg_gen_neg_i32(tcg_res, tcg_op); + tcg_gen_movcond_i32(TCG_COND_GT, tcg_res, tcg_op, + tcg_zero, tcg_op, tcg_res); + tcg_temp_free_i32(tcg_zero); + } + break; + case 0x2f: /* FABS */ + gen_helper_vfp_abss(tcg_res, tcg_op); + break; + case 0x6f: /* FNEG */ + gen_helper_vfp_negs(tcg_res, tcg_op); + break; + default: + g_assert_not_reached(); + } + } else { + /* Use helpers for 8 and 16 bit elements */ + switch (opcode) { + case 0x5: /* CNT, RBIT */ + /* For these two insns size is part of the opcode specifier + * (handled earlier); they always operate on byte elements. + */ + if (u) { + gen_helper_neon_rbit_u8(tcg_res, tcg_op); + } else { + gen_helper_neon_cnt_u8(tcg_res, tcg_op); + } + break; + case 0x8: /* CMGT, CMGE */ + case 0x9: /* CMEQ, CMLE */ + case 0xa: /* CMLT */ + { + static NeonGenTwoOpFn * const fns[3][2] = { + { gen_helper_neon_cgt_s8, gen_helper_neon_cgt_s16 }, + { gen_helper_neon_cge_s8, gen_helper_neon_cge_s16 }, + { gen_helper_neon_ceq_u8, gen_helper_neon_ceq_u16 }, + }; + NeonGenTwoOpFn *genfn; + int comp; + bool reverse; + TCGv_i32 tcg_zero = tcg_const_i32(0); + + /* comp = index into [CMGT, CMGE, CMEQ, CMLE, CMLT] */ + comp = (opcode - 0x8) * 2 + u; + /* ...but LE, LT are implemented as reverse GE, GT */ + reverse = (comp > 2); + if (reverse) { + comp = 4 - comp; + } + genfn = fns[comp][size]; + if (reverse) { + genfn(tcg_res, tcg_zero, tcg_op); + } else { + genfn(tcg_res, tcg_op, tcg_zero); + } + tcg_temp_free_i32(tcg_zero); + break; + } + case 0xb: /* ABS, NEG */ + if (u) { + TCGv_i32 tcg_zero = tcg_const_i32(0); + if (size) { + gen_helper_neon_sub_u16(tcg_res, tcg_zero, tcg_op); + } else { + gen_helper_neon_sub_u8(tcg_res, tcg_zero, tcg_op); + } + tcg_temp_free_i32(tcg_zero); + } else { + if (size) { + gen_helper_neon_abs_s16(tcg_res, tcg_op); + } else { + gen_helper_neon_abs_s8(tcg_res, tcg_op); + } + } + break; + default: + g_assert_not_reached(); + } + } + + write_vec_element_i32(s, tcg_res, rd, pass, MO_32); + + tcg_temp_free_i32(tcg_res); + tcg_temp_free_i32(tcg_op); + } + } + if (!is_q) { + clear_vec_high(s, rd); + } } /* C3.6.18 AdvSIMD vector x indexed element @@ -7076,7 +8105,7 @@ done_generating: qemu_log("----------------\n"); qemu_log("IN: %s\n", lookup_symbol(pc_start)); log_target_disas(env, pc_start, dc->pc - pc_start, - dc->thumb | (dc->bswap_code << 1)); + 4 | (dc->bswap_code << 1)); qemu_log("\n"); } #endif diff --git a/target-arm/translate.c b/target-arm/translate.c index e701c0f..782aab8 100644 --- a/target-arm/translate.c +++ b/target-arm/translate.c @@ -3142,16 +3142,19 @@ static int disas_vfp_insn(CPUARMState * env, DisasContext *s, uint32_t insn) VFP_DREG_N(rn, insn); } - if (op == 15 && (rn == 15 || ((rn & 0x1c) == 0x18))) { - /* Integer or single precision destination. */ + if (op == 15 && (rn == 15 || ((rn & 0x1c) == 0x18) || + ((rn & 0x1e) == 0x6))) { + /* Integer or single/half precision destination. */ rd = VFP_SREG_D(insn); } else { VFP_DREG_D(rd, insn); } if (op == 15 && - (((rn & 0x1c) == 0x10) || ((rn & 0x14) == 0x14))) { - /* VCVT from int is always from S reg regardless of dp bit. - * VCVT with immediate frac_bits has same format as SREG_M + (((rn & 0x1c) == 0x10) || ((rn & 0x14) == 0x14) || + ((rn & 0x1e) == 0x4))) { + /* VCVT from int or half precision is always from S reg + * regardless of dp bit. VCVT with immediate frac_bits + * has same format as SREG_M. */ rm = VFP_SREG_M(insn); } else { @@ -3241,12 +3244,19 @@ static int disas_vfp_insn(CPUARMState * env, DisasContext *s, uint32_t insn) case 5: case 6: case 7: - /* VCVTB, VCVTT: only present with the halfprec extension, - * UNPREDICTABLE if bit 8 is set (we choose to UNDEF) + /* VCVTB, VCVTT: only present with the halfprec extension + * UNPREDICTABLE if bit 8 is set prior to ARMv8 + * (we choose to UNDEF) */ - if (dp || !arm_feature(env, ARM_FEATURE_VFP_FP16)) { + if ((dp && !arm_feature(env, ARM_FEATURE_V8)) || + !arm_feature(env, ARM_FEATURE_VFP_FP16)) { return 1; } + if (!extract32(rn, 1, 1)) { + /* Half precision source. */ + gen_mov_F0_vreg(0, rm); + break; + } /* Otherwise fall through */ default: /* One source operand. */ @@ -3394,21 +3404,39 @@ static int disas_vfp_insn(CPUARMState * env, DisasContext *s, uint32_t insn) case 3: /* sqrt */ gen_vfp_sqrt(dp); break; - case 4: /* vcvtb.f32.f16 */ + case 4: /* vcvtb.f32.f16, vcvtb.f64.f16 */ tmp = gen_vfp_mrs(); tcg_gen_ext16u_i32(tmp, tmp); - gen_helper_vfp_fcvt_f16_to_f32(cpu_F0s, tmp, cpu_env); + if (dp) { + gen_helper_vfp_fcvt_f16_to_f64(cpu_F0d, tmp, + cpu_env); + } else { + gen_helper_vfp_fcvt_f16_to_f32(cpu_F0s, tmp, + cpu_env); + } tcg_temp_free_i32(tmp); break; - case 5: /* vcvtt.f32.f16 */ + case 5: /* vcvtt.f32.f16, vcvtt.f64.f16 */ tmp = gen_vfp_mrs(); tcg_gen_shri_i32(tmp, tmp, 16); - gen_helper_vfp_fcvt_f16_to_f32(cpu_F0s, tmp, cpu_env); + if (dp) { + gen_helper_vfp_fcvt_f16_to_f64(cpu_F0d, tmp, + cpu_env); + } else { + gen_helper_vfp_fcvt_f16_to_f32(cpu_F0s, tmp, + cpu_env); + } tcg_temp_free_i32(tmp); break; - case 6: /* vcvtb.f16.f32 */ + case 6: /* vcvtb.f16.f32, vcvtb.f16.f64 */ tmp = tcg_temp_new_i32(); - gen_helper_vfp_fcvt_f32_to_f16(tmp, cpu_F0s, cpu_env); + if (dp) { + gen_helper_vfp_fcvt_f64_to_f16(tmp, cpu_F0d, + cpu_env); + } else { + gen_helper_vfp_fcvt_f32_to_f16(tmp, cpu_F0s, + cpu_env); + } gen_mov_F0_vreg(0, rd); tmp2 = gen_vfp_mrs(); tcg_gen_andi_i32(tmp2, tmp2, 0xffff0000); @@ -3416,9 +3444,15 @@ static int disas_vfp_insn(CPUARMState * env, DisasContext *s, uint32_t insn) tcg_temp_free_i32(tmp2); gen_vfp_msr(tmp); break; - case 7: /* vcvtt.f16.f32 */ + case 7: /* vcvtt.f16.f32, vcvtt.f16.f64 */ tmp = tcg_temp_new_i32(); - gen_helper_vfp_fcvt_f32_to_f16(tmp, cpu_F0s, cpu_env); + if (dp) { + gen_helper_vfp_fcvt_f64_to_f16(tmp, cpu_F0d, + cpu_env); + } else { + gen_helper_vfp_fcvt_f32_to_f16(tmp, cpu_F0s, + cpu_env); + } tcg_gen_shli_i32(tmp, tmp, 16); gen_mov_F0_vreg(0, rd); tmp2 = gen_vfp_mrs(); @@ -3551,16 +3585,21 @@ static int disas_vfp_insn(CPUARMState * env, DisasContext *s, uint32_t insn) } /* Write back the result. */ - if (op == 15 && (rn >= 8 && rn <= 11)) - ; /* Comparison, do nothing. */ - else if (op == 15 && dp && ((rn & 0x1c) == 0x18)) - /* VCVT double to int: always integer result. */ + if (op == 15 && (rn >= 8 && rn <= 11)) { + /* Comparison, do nothing. */ + } else if (op == 15 && dp && ((rn & 0x1c) == 0x18 || + (rn & 0x1e) == 0x6)) { + /* VCVT double to int: always integer result. + * VCVT double to half precision is always a single + * precision result. + */ gen_mov_vreg_F0(0, rd); - else if (op == 15 && rn == 15) + } else if (op == 15 && rn == 15) { /* conversion */ gen_mov_vreg_F0(!dp, rd); - else + } else { gen_mov_vreg_F0(dp, rd); + } /* break out of the loop if we have finished */ if (veclen == 0) @@ -324,13 +324,16 @@ typedef int TCGv_i64; #define TCGV_EQUAL_I32(a, b) (GET_TCGV_I32(a) == GET_TCGV_I32(b)) #define TCGV_EQUAL_I64(a, b) (GET_TCGV_I64(a) == GET_TCGV_I64(b)) +#define TCGV_EQUAL_PTR(a, b) (GET_TCGV_PTR(a) == GET_TCGV_PTR(b)) /* Dummy definition to avoid compiler warnings. */ #define TCGV_UNUSED_I32(x) x = MAKE_TCGV_I32(-1) #define TCGV_UNUSED_I64(x) x = MAKE_TCGV_I64(-1) +#define TCGV_UNUSED_PTR(x) x = MAKE_TCGV_PTR(-1) #define TCGV_IS_UNUSED_I32(x) (GET_TCGV_I32(x) == -1) #define TCGV_IS_UNUSED_I64(x) (GET_TCGV_I64(x) == -1) +#define TCGV_IS_UNUSED_PTR(x) (GET_TCGV_PTR(x) == -1) /* call flags */ /* Helper does not read globals (either directly or through an exception). It diff --git a/util/fifo8.c b/util/fifo8.c index 013e903..6a43482 100644 --- a/util/fifo8.c +++ b/util/fifo8.c @@ -37,6 +37,27 @@ void fifo8_push(Fifo8 *fifo, uint8_t data) fifo->num++; } +void fifo8_push_all(Fifo8 *fifo, const uint8_t *data, uint32_t num) +{ + uint32_t start, avail; + + if (fifo->num + num > fifo->capacity) { + abort(); + } + + start = (fifo->head + fifo->num) % fifo->capacity; + + if (start + num <= fifo->capacity) { + memcpy(&fifo->data[start], data, num); + } else { + avail = fifo->capacity - start; + memcpy(&fifo->data[start], data, avail); + memcpy(&fifo->data[0], &data[avail], num - avail); + } + + fifo->num += num; +} + uint8_t fifo8_pop(Fifo8 *fifo) { uint8_t ret; @@ -50,9 +71,25 @@ uint8_t fifo8_pop(Fifo8 *fifo) return ret; } +const uint8_t *fifo8_pop_buf(Fifo8 *fifo, uint32_t max, uint32_t *num) +{ + uint8_t *ret; + + if (max == 0 || max > fifo->num) { + abort(); + } + *num = MIN(fifo->capacity - fifo->head, max); + ret = &fifo->data[fifo->head]; + fifo->head += *num; + fifo->head %= fifo->capacity; + fifo->num -= *num; + return ret; +} + void fifo8_reset(Fifo8 *fifo) { fifo->num = 0; + fifo->head = 0; } bool fifo8_is_empty(Fifo8 *fifo) @@ -65,6 +102,16 @@ bool fifo8_is_full(Fifo8 *fifo) return (fifo->num == fifo->capacity); } +uint32_t fifo8_num_free(Fifo8 *fifo) +{ + return fifo->capacity - fifo->num; +} + +uint32_t fifo8_num_used(Fifo8 *fifo) +{ + return fifo->num; +} + const VMStateDescription vmstate_fifo8 = { .name = "Fifo8", .version_id = 1, |