aboutsummaryrefslogtreecommitdiff
path: root/target
diff options
context:
space:
mode:
authorJoseph Myers <joseph@codesourcery.com>2020-06-11 23:45:48 +0000
committerPaolo Bonzini <pbonzini@redhat.com>2020-06-26 09:39:37 -0400
commiteca30647fc078f4d9ed1b455bd67960f99dbeb7a (patch)
tree5294a8dd65cd8ef57a7f548e3f126dba936a797b /target
parentb00de3a51fc8e86d1678c57e65d57aa9ed052422 (diff)
downloadqemu-eca30647fc078f4d9ed1b455bd67960f99dbeb7a.zip
qemu-eca30647fc078f4d9ed1b455bd67960f99dbeb7a.tar.gz
qemu-eca30647fc078f4d9ed1b455bd67960f99dbeb7a.tar.bz2
target/i386: reimplement f2xm1 using floatx80 operations
The x87 f2xm1 emulation is currently based around conversion to double. This is inherently unsuitable for a good emulation of any floatx80 operation, even before considering that it is a particularly naive implementation using double (computing with pow and then subtracting 1 rather than attempting a better emulation using expm1). Reimplement using the soft-float operations, including additions and multiplications with higher precision where appropriate to limit accumulation of errors. I considered reusing some of the m68k code for transcendental operations, but the instructions don't generally correspond exactly to x87 operations (for example, m68k has 2^x and e^x - 1, but not 2^x - 1); to avoid possible accumulation of errors from applying multiple such operations each rounding to floatx80 precision, I wrote a direct implementation of 2^x - 1 instead. It would be possible in principle to make the implementation more efficient by doing the intermediate operations directly with significands, signs and exponents and not packing / unpacking floatx80 format for each operation, but that would make it significantly more complicated and it's not clear that's worthwhile; the m68k emulation doesn't try to do that. A test is included with many randomly generated inputs. The assumption of the test is that the result in round-to-nearest mode should always be one of the two closest floating-point numbers to the mathematical value of 2^x - 1; the implementation aims to do somewhat better than that (about 70 correct bits before rounding). I haven't investigated how accurate hardware is. Signed-off-by: Joseph Myers <joseph@codesourcery.com> Message-Id: <alpine.DEB.2.21.2006112341010.18393@digraph.polyomino.org.uk> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Diffstat (limited to 'target')
-rw-r--r--target/i386/fpu_helper.c385
1 files changed, 382 insertions, 3 deletions
diff --git a/target/i386/fpu_helper.c b/target/i386/fpu_helper.c
index 8ef5b46..e32a2aa 100644
--- a/target/i386/fpu_helper.c
+++ b/target/i386/fpu_helper.c
@@ -25,6 +25,7 @@
#include "exec/exec-all.h"
#include "exec/cpu_ldst.h"
#include "fpu/softfloat.h"
+#include "fpu/softfloat-macros.h"
#ifdef CONFIG_SOFTMMU
#include "hw/irq.h"
@@ -836,12 +837,390 @@ void helper_fbst_ST0(CPUX86State *env, target_ulong ptr)
merge_exception_flags(env, old_flags);
}
+/* 128-bit significand of log(2). */
+#define ln2_sig_high 0xb17217f7d1cf79abULL
+#define ln2_sig_low 0xc9e3b39803f2f6afULL
+
+/*
+ * Polynomial coefficients for an approximation to (2^x - 1) / x, on
+ * the interval [-1/64, 1/64].
+ */
+#define f2xm1_coeff_0 make_floatx80(0x3ffe, 0xb17217f7d1cf79acULL)
+#define f2xm1_coeff_0_low make_floatx80(0xbfbc, 0xd87edabf495b3762ULL)
+#define f2xm1_coeff_1 make_floatx80(0x3ffc, 0xf5fdeffc162c7543ULL)
+#define f2xm1_coeff_2 make_floatx80(0x3ffa, 0xe35846b82505fcc7ULL)
+#define f2xm1_coeff_3 make_floatx80(0x3ff8, 0x9d955b7dd273b899ULL)
+#define f2xm1_coeff_4 make_floatx80(0x3ff5, 0xaec3ff3c4ef4ac0cULL)
+#define f2xm1_coeff_5 make_floatx80(0x3ff2, 0xa184897c3a7f0de9ULL)
+#define f2xm1_coeff_6 make_floatx80(0x3fee, 0xffe634d0ec30d504ULL)
+#define f2xm1_coeff_7 make_floatx80(0x3feb, 0xb160111d2db515e4ULL)
+
+struct f2xm1_data {
+ /*
+ * A value very close to a multiple of 1/32, such that 2^t and 2^t - 1
+ * are very close to exact floatx80 values.
+ */
+ floatx80 t;
+ /* The value of 2^t. */
+ floatx80 exp2;
+ /* The value of 2^t - 1. */
+ floatx80 exp2m1;
+};
+
+static const struct f2xm1_data f2xm1_table[65] = {
+ { make_floatx80(0xbfff, 0x8000000000000000ULL),
+ make_floatx80(0x3ffe, 0x8000000000000000ULL),
+ make_floatx80(0xbffe, 0x8000000000000000ULL) },
+ { make_floatx80(0xbffe, 0xf800000000002e7eULL),
+ make_floatx80(0x3ffe, 0x82cd8698ac2b9160ULL),
+ make_floatx80(0xbffd, 0xfa64f2cea7a8dd40ULL) },
+ { make_floatx80(0xbffe, 0xefffffffffffe960ULL),
+ make_floatx80(0x3ffe, 0x85aac367cc488345ULL),
+ make_floatx80(0xbffd, 0xf4aa7930676ef976ULL) },
+ { make_floatx80(0xbffe, 0xe800000000006f10ULL),
+ make_floatx80(0x3ffe, 0x88980e8092da5c14ULL),
+ make_floatx80(0xbffd, 0xeecfe2feda4b47d8ULL) },
+ { make_floatx80(0xbffe, 0xe000000000008a45ULL),
+ make_floatx80(0x3ffe, 0x8b95c1e3ea8ba2a5ULL),
+ make_floatx80(0xbffd, 0xe8d47c382ae8bab6ULL) },
+ { make_floatx80(0xbffe, 0xd7ffffffffff8a9eULL),
+ make_floatx80(0x3ffe, 0x8ea4398b45cd8116ULL),
+ make_floatx80(0xbffd, 0xe2b78ce97464fdd4ULL) },
+ { make_floatx80(0xbffe, 0xd0000000000019a0ULL),
+ make_floatx80(0x3ffe, 0x91c3d373ab11b919ULL),
+ make_floatx80(0xbffd, 0xdc785918a9dc8dceULL) },
+ { make_floatx80(0xbffe, 0xc7ffffffffff14dfULL),
+ make_floatx80(0x3ffe, 0x94f4efa8fef76836ULL),
+ make_floatx80(0xbffd, 0xd61620ae02112f94ULL) },
+ { make_floatx80(0xbffe, 0xc000000000006530ULL),
+ make_floatx80(0x3ffe, 0x9837f0518db87fbbULL),
+ make_floatx80(0xbffd, 0xcf901f5ce48f008aULL) },
+ { make_floatx80(0xbffe, 0xb7ffffffffff1723ULL),
+ make_floatx80(0x3ffe, 0x9b8d39b9d54eb74cULL),
+ make_floatx80(0xbffd, 0xc8e58c8c55629168ULL) },
+ { make_floatx80(0xbffe, 0xb00000000000b5e1ULL),
+ make_floatx80(0x3ffe, 0x9ef5326091a0c366ULL),
+ make_floatx80(0xbffd, 0xc2159b3edcbe7934ULL) },
+ { make_floatx80(0xbffe, 0xa800000000006f8aULL),
+ make_floatx80(0x3ffe, 0xa27043030c49370aULL),
+ make_floatx80(0xbffd, 0xbb1f79f9e76d91ecULL) },
+ { make_floatx80(0xbffe, 0x9fffffffffff816aULL),
+ make_floatx80(0x3ffe, 0xa5fed6a9b15171cfULL),
+ make_floatx80(0xbffd, 0xb40252ac9d5d1c62ULL) },
+ { make_floatx80(0xbffe, 0x97ffffffffffb621ULL),
+ make_floatx80(0x3ffe, 0xa9a15ab4ea7c30e6ULL),
+ make_floatx80(0xbffd, 0xacbd4a962b079e34ULL) },
+ { make_floatx80(0xbffe, 0x8fffffffffff162bULL),
+ make_floatx80(0x3ffe, 0xad583eea42a1b886ULL),
+ make_floatx80(0xbffd, 0xa54f822b7abc8ef4ULL) },
+ { make_floatx80(0xbffe, 0x87ffffffffff4d34ULL),
+ make_floatx80(0x3ffe, 0xb123f581d2ac7b51ULL),
+ make_floatx80(0xbffd, 0x9db814fc5aa7095eULL) },
+ { make_floatx80(0xbffe, 0x800000000000227dULL),
+ make_floatx80(0x3ffe, 0xb504f333f9de539dULL),
+ make_floatx80(0xbffd, 0x95f619980c4358c6ULL) },
+ { make_floatx80(0xbffd, 0xefffffffffff3978ULL),
+ make_floatx80(0x3ffe, 0xb8fbaf4762fbd0a1ULL),
+ make_floatx80(0xbffd, 0x8e08a1713a085ebeULL) },
+ { make_floatx80(0xbffd, 0xe00000000000df81ULL),
+ make_floatx80(0x3ffe, 0xbd08a39f580bfd8cULL),
+ make_floatx80(0xbffd, 0x85eeb8c14fe804e8ULL) },
+ { make_floatx80(0xbffd, 0xd00000000000bccfULL),
+ make_floatx80(0x3ffe, 0xc12c4cca667062f6ULL),
+ make_floatx80(0xbffc, 0xfb4eccd6663e7428ULL) },
+ { make_floatx80(0xbffd, 0xc00000000000eff0ULL),
+ make_floatx80(0x3ffe, 0xc5672a1155069abeULL),
+ make_floatx80(0xbffc, 0xea6357baabe59508ULL) },
+ { make_floatx80(0xbffd, 0xb000000000000fe6ULL),
+ make_floatx80(0x3ffe, 0xc9b9bd866e2f234bULL),
+ make_floatx80(0xbffc, 0xd91909e6474372d4ULL) },
+ { make_floatx80(0xbffd, 0x9fffffffffff2172ULL),
+ make_floatx80(0x3ffe, 0xce248c151f84bf00ULL),
+ make_floatx80(0xbffc, 0xc76dcfab81ed0400ULL) },
+ { make_floatx80(0xbffd, 0x8fffffffffffafffULL),
+ make_floatx80(0x3ffe, 0xd2a81d91f12afb2bULL),
+ make_floatx80(0xbffc, 0xb55f89b83b541354ULL) },
+ { make_floatx80(0xbffc, 0xffffffffffff81a3ULL),
+ make_floatx80(0x3ffe, 0xd744fccad69d7d5eULL),
+ make_floatx80(0xbffc, 0xa2ec0cd4a58a0a88ULL) },
+ { make_floatx80(0xbffc, 0xdfffffffffff1568ULL),
+ make_floatx80(0x3ffe, 0xdbfbb797daf25a44ULL),
+ make_floatx80(0xbffc, 0x901121a0943696f0ULL) },
+ { make_floatx80(0xbffc, 0xbfffffffffff68daULL),
+ make_floatx80(0x3ffe, 0xe0ccdeec2a94f811ULL),
+ make_floatx80(0xbffb, 0xf999089eab583f78ULL) },
+ { make_floatx80(0xbffc, 0x9fffffffffff4690ULL),
+ make_floatx80(0x3ffe, 0xe5b906e77c83657eULL),
+ make_floatx80(0xbffb, 0xd237c8c41be4d410ULL) },
+ { make_floatx80(0xbffb, 0xffffffffffff8aeeULL),
+ make_floatx80(0x3ffe, 0xeac0c6e7dd24427cULL),
+ make_floatx80(0xbffb, 0xa9f9c8c116ddec20ULL) },
+ { make_floatx80(0xbffb, 0xbfffffffffff2d18ULL),
+ make_floatx80(0x3ffe, 0xefe4b99bdcdb06ebULL),
+ make_floatx80(0xbffb, 0x80da33211927c8a8ULL) },
+ { make_floatx80(0xbffa, 0xffffffffffff8ccbULL),
+ make_floatx80(0x3ffe, 0xf5257d152486d0f4ULL),
+ make_floatx80(0xbffa, 0xada82eadb792f0c0ULL) },
+ { make_floatx80(0xbff9, 0xffffffffffff11feULL),
+ make_floatx80(0x3ffe, 0xfa83b2db722a0846ULL),
+ make_floatx80(0xbff9, 0xaf89a491babef740ULL) },
+ { floatx80_zero,
+ make_floatx80(0x3fff, 0x8000000000000000ULL),
+ floatx80_zero },
+ { make_floatx80(0x3ff9, 0xffffffffffff2680ULL),
+ make_floatx80(0x3fff, 0x82cd8698ac2b9f6fULL),
+ make_floatx80(0x3ff9, 0xb361a62b0ae7dbc0ULL) },
+ { make_floatx80(0x3ffb, 0x800000000000b500ULL),
+ make_floatx80(0x3fff, 0x85aac367cc488345ULL),
+ make_floatx80(0x3ffa, 0xb5586cf9891068a0ULL) },
+ { make_floatx80(0x3ffb, 0xbfffffffffff4b67ULL),
+ make_floatx80(0x3fff, 0x88980e8092da7cceULL),
+ make_floatx80(0x3ffb, 0x8980e8092da7cce0ULL) },
+ { make_floatx80(0x3ffb, 0xffffffffffffff57ULL),
+ make_floatx80(0x3fff, 0x8b95c1e3ea8bd6dfULL),
+ make_floatx80(0x3ffb, 0xb95c1e3ea8bd6df0ULL) },
+ { make_floatx80(0x3ffc, 0x9fffffffffff811fULL),
+ make_floatx80(0x3fff, 0x8ea4398b45cd4780ULL),
+ make_floatx80(0x3ffb, 0xea4398b45cd47800ULL) },
+ { make_floatx80(0x3ffc, 0xbfffffffffff9980ULL),
+ make_floatx80(0x3fff, 0x91c3d373ab11b919ULL),
+ make_floatx80(0x3ffc, 0x8e1e9b9d588dc8c8ULL) },
+ { make_floatx80(0x3ffc, 0xdffffffffffff631ULL),
+ make_floatx80(0x3fff, 0x94f4efa8fef70864ULL),
+ make_floatx80(0x3ffc, 0xa7a77d47f7b84320ULL) },
+ { make_floatx80(0x3ffc, 0xffffffffffff2499ULL),
+ make_floatx80(0x3fff, 0x9837f0518db892d4ULL),
+ make_floatx80(0x3ffc, 0xc1bf828c6dc496a0ULL) },
+ { make_floatx80(0x3ffd, 0x8fffffffffff80fbULL),
+ make_floatx80(0x3fff, 0x9b8d39b9d54e3a79ULL),
+ make_floatx80(0x3ffc, 0xdc69cdceaa71d3c8ULL) },
+ { make_floatx80(0x3ffd, 0x9fffffffffffbc23ULL),
+ make_floatx80(0x3fff, 0x9ef5326091a10313ULL),
+ make_floatx80(0x3ffc, 0xf7a993048d081898ULL) },
+ { make_floatx80(0x3ffd, 0xafffffffffff20ecULL),
+ make_floatx80(0x3fff, 0xa27043030c49370aULL),
+ make_floatx80(0x3ffd, 0x89c10c0c3124dc28ULL) },
+ { make_floatx80(0x3ffd, 0xc00000000000fd2cULL),
+ make_floatx80(0x3fff, 0xa5fed6a9b15171cfULL),
+ make_floatx80(0x3ffd, 0x97fb5aa6c545c73cULL) },
+ { make_floatx80(0x3ffd, 0xd0000000000093beULL),
+ make_floatx80(0x3fff, 0xa9a15ab4ea7c30e6ULL),
+ make_floatx80(0x3ffd, 0xa6856ad3a9f0c398ULL) },
+ { make_floatx80(0x3ffd, 0xe00000000000c2aeULL),
+ make_floatx80(0x3fff, 0xad583eea42a17876ULL),
+ make_floatx80(0x3ffd, 0xb560fba90a85e1d8ULL) },
+ { make_floatx80(0x3ffd, 0xefffffffffff1e3fULL),
+ make_floatx80(0x3fff, 0xb123f581d2abef6cULL),
+ make_floatx80(0x3ffd, 0xc48fd6074aafbdb0ULL) },
+ { make_floatx80(0x3ffd, 0xffffffffffff1c23ULL),
+ make_floatx80(0x3fff, 0xb504f333f9de2cadULL),
+ make_floatx80(0x3ffd, 0xd413cccfe778b2b4ULL) },
+ { make_floatx80(0x3ffe, 0x8800000000006344ULL),
+ make_floatx80(0x3fff, 0xb8fbaf4762fbd0a1ULL),
+ make_floatx80(0x3ffd, 0xe3eebd1d8bef4284ULL) },
+ { make_floatx80(0x3ffe, 0x9000000000005d67ULL),
+ make_floatx80(0x3fff, 0xbd08a39f580c668dULL),
+ make_floatx80(0x3ffd, 0xf4228e7d60319a34ULL) },
+ { make_floatx80(0x3ffe, 0x9800000000009127ULL),
+ make_floatx80(0x3fff, 0xc12c4cca6670e042ULL),
+ make_floatx80(0x3ffe, 0x82589994cce1c084ULL) },
+ { make_floatx80(0x3ffe, 0x9fffffffffff06f9ULL),
+ make_floatx80(0x3fff, 0xc5672a11550655c3ULL),
+ make_floatx80(0x3ffe, 0x8ace5422aa0cab86ULL) },
+ { make_floatx80(0x3ffe, 0xa7fffffffffff80dULL),
+ make_floatx80(0x3fff, 0xc9b9bd866e2f234bULL),
+ make_floatx80(0x3ffe, 0x93737b0cdc5e4696ULL) },
+ { make_floatx80(0x3ffe, 0xafffffffffff1470ULL),
+ make_floatx80(0x3fff, 0xce248c151f83fd69ULL),
+ make_floatx80(0x3ffe, 0x9c49182a3f07fad2ULL) },
+ { make_floatx80(0x3ffe, 0xb800000000000e0aULL),
+ make_floatx80(0x3fff, 0xd2a81d91f12aec5cULL),
+ make_floatx80(0x3ffe, 0xa5503b23e255d8b8ULL) },
+ { make_floatx80(0x3ffe, 0xc00000000000b7faULL),
+ make_floatx80(0x3fff, 0xd744fccad69dd630ULL),
+ make_floatx80(0x3ffe, 0xae89f995ad3bac60ULL) },
+ { make_floatx80(0x3ffe, 0xc800000000003aa6ULL),
+ make_floatx80(0x3fff, 0xdbfbb797daf25a44ULL),
+ make_floatx80(0x3ffe, 0xb7f76f2fb5e4b488ULL) },
+ { make_floatx80(0x3ffe, 0xd00000000000a6aeULL),
+ make_floatx80(0x3fff, 0xe0ccdeec2a954685ULL),
+ make_floatx80(0x3ffe, 0xc199bdd8552a8d0aULL) },
+ { make_floatx80(0x3ffe, 0xd800000000004165ULL),
+ make_floatx80(0x3fff, 0xe5b906e77c837155ULL),
+ make_floatx80(0x3ffe, 0xcb720dcef906e2aaULL) },
+ { make_floatx80(0x3ffe, 0xe00000000000582cULL),
+ make_floatx80(0x3fff, 0xeac0c6e7dd24713aULL),
+ make_floatx80(0x3ffe, 0xd5818dcfba48e274ULL) },
+ { make_floatx80(0x3ffe, 0xe800000000001a5dULL),
+ make_floatx80(0x3fff, 0xefe4b99bdcdb06ebULL),
+ make_floatx80(0x3ffe, 0xdfc97337b9b60dd6ULL) },
+ { make_floatx80(0x3ffe, 0xefffffffffffc1efULL),
+ make_floatx80(0x3fff, 0xf5257d152486a2faULL),
+ make_floatx80(0x3ffe, 0xea4afa2a490d45f4ULL) },
+ { make_floatx80(0x3ffe, 0xf800000000001069ULL),
+ make_floatx80(0x3fff, 0xfa83b2db722a0e5cULL),
+ make_floatx80(0x3ffe, 0xf50765b6e4541cb8ULL) },
+ { make_floatx80(0x3fff, 0x8000000000000000ULL),
+ make_floatx80(0x4000, 0x8000000000000000ULL),
+ make_floatx80(0x3fff, 0x8000000000000000ULL) },
+};
+
void helper_f2xm1(CPUX86State *env)
{
- double val = floatx80_to_double(env, ST0);
+ uint8_t old_flags = save_exception_flags(env);
+ uint64_t sig = extractFloatx80Frac(ST0);
+ int32_t exp = extractFloatx80Exp(ST0);
+ bool sign = extractFloatx80Sign(ST0);
+
+ if (floatx80_invalid_encoding(ST0)) {
+ float_raise(float_flag_invalid, &env->fp_status);
+ ST0 = floatx80_default_nan(&env->fp_status);
+ } else if (floatx80_is_any_nan(ST0)) {
+ if (floatx80_is_signaling_nan(ST0, &env->fp_status)) {
+ float_raise(float_flag_invalid, &env->fp_status);
+ ST0 = floatx80_silence_nan(ST0, &env->fp_status);
+ }
+ } else if (exp > 0x3fff ||
+ (exp == 0x3fff && sig != (0x8000000000000000ULL))) {
+ /* Out of range for the instruction, treat as invalid. */
+ float_raise(float_flag_invalid, &env->fp_status);
+ ST0 = floatx80_default_nan(&env->fp_status);
+ } else if (exp == 0x3fff) {
+ /* Argument 1 or -1, exact result 1 or -0.5. */
+ if (sign) {
+ ST0 = make_floatx80(0xbffe, 0x8000000000000000ULL);
+ }
+ } else if (exp < 0x3fb0) {
+ if (!floatx80_is_zero(ST0)) {
+ /*
+ * Multiplying the argument by an extra-precision version
+ * of log(2) is sufficiently precise. Zero arguments are
+ * returned unchanged.
+ */
+ uint64_t sig0, sig1, sig2;
+ if (exp == 0) {
+ normalizeFloatx80Subnormal(sig, &exp, &sig);
+ }
+ mul128By64To192(ln2_sig_high, ln2_sig_low, sig, &sig0, &sig1,
+ &sig2);
+ /* This result is inexact. */
+ sig1 |= 1;
+ ST0 = normalizeRoundAndPackFloatx80(80, sign, exp, sig0, sig1,
+ &env->fp_status);
+ }
+ } else {
+ floatx80 tmp, y, accum;
+ bool asign, bsign;
+ int32_t n, aexp, bexp;
+ uint64_t asig0, asig1, asig2, bsig0, bsig1;
+ FloatRoundMode save_mode = env->fp_status.float_rounding_mode;
+ signed char save_prec = env->fp_status.floatx80_rounding_precision;
+ env->fp_status.float_rounding_mode = float_round_nearest_even;
+ env->fp_status.floatx80_rounding_precision = 80;
- val = pow(2.0, val) - 1.0;
- ST0 = double_to_floatx80(env, val);
+ /* Find the nearest multiple of 1/32 to the argument. */
+ tmp = floatx80_scalbn(ST0, 5, &env->fp_status);
+ n = 32 + floatx80_to_int32(tmp, &env->fp_status);
+ y = floatx80_sub(ST0, f2xm1_table[n].t, &env->fp_status);
+
+ if (floatx80_is_zero(y)) {
+ /*
+ * Use the value of 2^t - 1 from the table, to avoid
+ * needing to special-case zero as a result of
+ * multiplication below.
+ */
+ ST0 = f2xm1_table[n].t;
+ set_float_exception_flags(float_flag_inexact, &env->fp_status);
+ env->fp_status.float_rounding_mode = save_mode;
+ } else {
+ /*
+ * Compute the lower parts of a polynomial expansion for
+ * (2^y - 1) / y.
+ */
+ accum = floatx80_mul(f2xm1_coeff_7, y, &env->fp_status);
+ accum = floatx80_add(f2xm1_coeff_6, accum, &env->fp_status);
+ accum = floatx80_mul(accum, y, &env->fp_status);
+ accum = floatx80_add(f2xm1_coeff_5, accum, &env->fp_status);
+ accum = floatx80_mul(accum, y, &env->fp_status);
+ accum = floatx80_add(f2xm1_coeff_4, accum, &env->fp_status);
+ accum = floatx80_mul(accum, y, &env->fp_status);
+ accum = floatx80_add(f2xm1_coeff_3, accum, &env->fp_status);
+ accum = floatx80_mul(accum, y, &env->fp_status);
+ accum = floatx80_add(f2xm1_coeff_2, accum, &env->fp_status);
+ accum = floatx80_mul(accum, y, &env->fp_status);
+ accum = floatx80_add(f2xm1_coeff_1, accum, &env->fp_status);
+ accum = floatx80_mul(accum, y, &env->fp_status);
+ accum = floatx80_add(f2xm1_coeff_0_low, accum, &env->fp_status);
+
+ /*
+ * The full polynomial expansion is f2xm1_coeff_0 + accum
+ * (where accum has much lower magnitude, and so, in
+ * particular, carry out of the addition is not possible).
+ * (This expansion is only accurate to about 70 bits, not
+ * 128 bits.)
+ */
+ aexp = extractFloatx80Exp(f2xm1_coeff_0);
+ asign = extractFloatx80Sign(f2xm1_coeff_0);
+ shift128RightJamming(extractFloatx80Frac(accum), 0,
+ aexp - extractFloatx80Exp(accum),
+ &asig0, &asig1);
+ bsig0 = extractFloatx80Frac(f2xm1_coeff_0);
+ bsig1 = 0;
+ if (asign == extractFloatx80Sign(accum)) {
+ add128(bsig0, bsig1, asig0, asig1, &asig0, &asig1);
+ } else {
+ sub128(bsig0, bsig1, asig0, asig1, &asig0, &asig1);
+ }
+ /* And thus compute an approximation to 2^y - 1. */
+ mul128By64To192(asig0, asig1, extractFloatx80Frac(y),
+ &asig0, &asig1, &asig2);
+ aexp += extractFloatx80Exp(y) - 0x3ffe;
+ asign ^= extractFloatx80Sign(y);
+ if (n != 32) {
+ /*
+ * Multiply this by the precomputed value of 2^t and
+ * add that of 2^t - 1.
+ */
+ mul128By64To192(asig0, asig1,
+ extractFloatx80Frac(f2xm1_table[n].exp2),
+ &asig0, &asig1, &asig2);
+ aexp += extractFloatx80Exp(f2xm1_table[n].exp2) - 0x3ffe;
+ bexp = extractFloatx80Exp(f2xm1_table[n].exp2m1);
+ bsig0 = extractFloatx80Frac(f2xm1_table[n].exp2m1);
+ bsig1 = 0;
+ if (bexp < aexp) {
+ shift128RightJamming(bsig0, bsig1, aexp - bexp,
+ &bsig0, &bsig1);
+ } else if (aexp < bexp) {
+ shift128RightJamming(asig0, asig1, bexp - aexp,
+ &asig0, &asig1);
+ aexp = bexp;
+ }
+ /* The sign of 2^t - 1 is always that of the result. */
+ bsign = extractFloatx80Sign(f2xm1_table[n].exp2m1);
+ if (asign == bsign) {
+ /* Avoid possible carry out of the addition. */
+ shift128RightJamming(asig0, asig1, 1,
+ &asig0, &asig1);
+ shift128RightJamming(bsig0, bsig1, 1,
+ &bsig0, &bsig1);
+ ++aexp;
+ add128(asig0, asig1, bsig0, bsig1, &asig0, &asig1);
+ } else {
+ sub128(bsig0, bsig1, asig0, asig1, &asig0, &asig1);
+ asign = bsign;
+ }
+ }
+ env->fp_status.float_rounding_mode = save_mode;
+ /* This result is inexact. */
+ asig1 |= 1;
+ ST0 = normalizeRoundAndPackFloatx80(80, asign, aexp, asig0, asig1,
+ &env->fp_status);
+ }
+
+ env->fp_status.floatx80_rounding_precision = save_prec;
+ }
+ merge_exception_flags(env, old_flags);
}
void helper_fyl2x(CPUX86State *env)