aboutsummaryrefslogtreecommitdiff
path: root/target
diff options
context:
space:
mode:
authorAndrew Jones <drjones@redhat.com>2019-10-31 15:27:30 +0100
committerPeter Maydell <peter.maydell@linaro.org>2019-11-01 20:40:59 +0000
commit40b3fd21fb6567ade28007277eb653bc727aa415 (patch)
tree2a6fdc421f04b7b0d5542307fd986c48341fc6cb /target
parent0df9142d27d519f8686c8e92b8cfc4e04f2ddbe3 (diff)
downloadqemu-40b3fd21fb6567ade28007277eb653bc727aa415.zip
qemu-40b3fd21fb6567ade28007277eb653bc727aa415.tar.gz
qemu-40b3fd21fb6567ade28007277eb653bc727aa415.tar.bz2
target/arm/kvm64: Add kvm_arch_get/put_sve
These are the SVE equivalents to kvm_arch_get/put_fpsimd. Note, the swabbing is different than it is for fpsmid because the vector format is a little-endian stream of words. Signed-off-by: Andrew Jones <drjones@redhat.com> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Reviewed-by: Eric Auger <eric.auger@redhat.com> Tested-by: Masayoshi Mizuma <m.mizuma@jp.fujitsu.com> Message-id: 20191031142734.8590-6-drjones@redhat.com Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Diffstat (limited to 'target')
-rw-r--r--target/arm/kvm64.c183
1 files changed, 155 insertions, 28 deletions
diff --git a/target/arm/kvm64.c b/target/arm/kvm64.c
index 28f6db5..4c0b11d 100644
--- a/target/arm/kvm64.c
+++ b/target/arm/kvm64.c
@@ -671,11 +671,12 @@ int kvm_arch_destroy_vcpu(CPUState *cs)
bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
{
/* Return true if the regidx is a register we should synchronize
- * via the cpreg_tuples array (ie is not a core reg we sync by
- * hand in kvm_arch_get/put_registers())
+ * via the cpreg_tuples array (ie is not a core or sve reg that
+ * we sync by hand in kvm_arch_get/put_registers())
*/
switch (regidx & KVM_REG_ARM_COPROC_MASK) {
case KVM_REG_ARM_CORE:
+ case KVM_REG_ARM64_SVE:
return false;
default:
return true;
@@ -721,10 +722,8 @@ int kvm_arm_cpreg_level(uint64_t regidx)
static int kvm_arch_put_fpsimd(CPUState *cs)
{
- ARMCPU *cpu = ARM_CPU(cs);
- CPUARMState *env = &cpu->env;
+ CPUARMState *env = &ARM_CPU(cs)->env;
struct kvm_one_reg reg;
- uint32_t fpr;
int i, ret;
for (i = 0; i < 32; i++) {
@@ -742,17 +741,73 @@ static int kvm_arch_put_fpsimd(CPUState *cs)
}
}
- reg.addr = (uintptr_t)(&fpr);
- fpr = vfp_get_fpsr(env);
- reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
- ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
- if (ret) {
- return ret;
+ return 0;
+}
+
+/*
+ * SVE registers are encoded in KVM's memory in an endianness-invariant format.
+ * The byte at offset i from the start of the in-memory representation contains
+ * the bits [(7 + 8 * i) : (8 * i)] of the register value. As this means the
+ * lowest offsets are stored in the lowest memory addresses, then that nearly
+ * matches QEMU's representation, which is to use an array of host-endian
+ * uint64_t's, where the lower offsets are at the lower indices. To complete
+ * the translation we just need to byte swap the uint64_t's on big-endian hosts.
+ */
+static uint64_t *sve_bswap64(uint64_t *dst, uint64_t *src, int nr)
+{
+#ifdef HOST_WORDS_BIGENDIAN
+ int i;
+
+ for (i = 0; i < nr; ++i) {
+ dst[i] = bswap64(src[i]);
}
- reg.addr = (uintptr_t)(&fpr);
- fpr = vfp_get_fpcr(env);
- reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
+ return dst;
+#else
+ return src;
+#endif
+}
+
+/*
+ * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
+ * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
+ * code the slice index to zero for now as it's unlikely we'll need more than
+ * one slice for quite some time.
+ */
+static int kvm_arch_put_sve(CPUState *cs)
+{
+ ARMCPU *cpu = ARM_CPU(cs);
+ CPUARMState *env = &cpu->env;
+ uint64_t tmp[ARM_MAX_VQ * 2];
+ uint64_t *r;
+ struct kvm_one_reg reg;
+ int n, ret;
+
+ for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
+ r = sve_bswap64(tmp, &env->vfp.zregs[n].d[0], cpu->sve_max_vq * 2);
+ reg.addr = (uintptr_t)r;
+ reg.id = KVM_REG_ARM64_SVE_ZREG(n, 0);
+ ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
+ if (ret) {
+ return ret;
+ }
+ }
+
+ for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
+ r = sve_bswap64(tmp, r = &env->vfp.pregs[n].p[0],
+ DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
+ reg.addr = (uintptr_t)r;
+ reg.id = KVM_REG_ARM64_SVE_PREG(n, 0);
+ ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
+ if (ret) {
+ return ret;
+ }
+ }
+
+ r = sve_bswap64(tmp, &env->vfp.pregs[FFR_PRED_NUM].p[0],
+ DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
+ reg.addr = (uintptr_t)r;
+ reg.id = KVM_REG_ARM64_SVE_FFR(0);
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (ret) {
return ret;
@@ -765,6 +820,7 @@ int kvm_arch_put_registers(CPUState *cs, int level)
{
struct kvm_one_reg reg;
uint64_t val;
+ uint32_t fpr;
int i, ret;
unsigned int el;
@@ -855,7 +911,27 @@ int kvm_arch_put_registers(CPUState *cs, int level)
}
}
- ret = kvm_arch_put_fpsimd(cs);
+ if (cpu_isar_feature(aa64_sve, cpu)) {
+ ret = kvm_arch_put_sve(cs);
+ } else {
+ ret = kvm_arch_put_fpsimd(cs);
+ }
+ if (ret) {
+ return ret;
+ }
+
+ reg.addr = (uintptr_t)(&fpr);
+ fpr = vfp_get_fpsr(env);
+ reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
+ ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
+ if (ret) {
+ return ret;
+ }
+
+ reg.addr = (uintptr_t)(&fpr);
+ fpr = vfp_get_fpcr(env);
+ reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
+ ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (ret) {
return ret;
}
@@ -878,10 +954,8 @@ int kvm_arch_put_registers(CPUState *cs, int level)
static int kvm_arch_get_fpsimd(CPUState *cs)
{
- ARMCPU *cpu = ARM_CPU(cs);
- CPUARMState *env = &cpu->env;
+ CPUARMState *env = &ARM_CPU(cs)->env;
struct kvm_one_reg reg;
- uint32_t fpr;
int i, ret;
for (i = 0; i < 32; i++) {
@@ -899,21 +973,53 @@ static int kvm_arch_get_fpsimd(CPUState *cs)
}
}
- reg.addr = (uintptr_t)(&fpr);
- reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
- ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
- if (ret) {
- return ret;
+ return 0;
+}
+
+/*
+ * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
+ * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
+ * code the slice index to zero for now as it's unlikely we'll need more than
+ * one slice for quite some time.
+ */
+static int kvm_arch_get_sve(CPUState *cs)
+{
+ ARMCPU *cpu = ARM_CPU(cs);
+ CPUARMState *env = &cpu->env;
+ struct kvm_one_reg reg;
+ uint64_t *r;
+ int n, ret;
+
+ for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
+ r = &env->vfp.zregs[n].d[0];
+ reg.addr = (uintptr_t)r;
+ reg.id = KVM_REG_ARM64_SVE_ZREG(n, 0);
+ ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
+ if (ret) {
+ return ret;
+ }
+ sve_bswap64(r, r, cpu->sve_max_vq * 2);
}
- vfp_set_fpsr(env, fpr);
- reg.addr = (uintptr_t)(&fpr);
- reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
+ for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
+ r = &env->vfp.pregs[n].p[0];
+ reg.addr = (uintptr_t)r;
+ reg.id = KVM_REG_ARM64_SVE_PREG(n, 0);
+ ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
+ if (ret) {
+ return ret;
+ }
+ sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
+ }
+
+ r = &env->vfp.pregs[FFR_PRED_NUM].p[0];
+ reg.addr = (uintptr_t)r;
+ reg.id = KVM_REG_ARM64_SVE_FFR(0);
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
if (ret) {
return ret;
}
- vfp_set_fpcr(env, fpr);
+ sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
return 0;
}
@@ -923,6 +1029,7 @@ int kvm_arch_get_registers(CPUState *cs)
struct kvm_one_reg reg;
uint64_t val;
unsigned int el;
+ uint32_t fpr;
int i, ret;
ARMCPU *cpu = ARM_CPU(cs);
@@ -1012,10 +1119,30 @@ int kvm_arch_get_registers(CPUState *cs)
env->spsr = env->banked_spsr[i];
}
- ret = kvm_arch_get_fpsimd(cs);
+ if (cpu_isar_feature(aa64_sve, cpu)) {
+ ret = kvm_arch_get_sve(cs);
+ } else {
+ ret = kvm_arch_get_fpsimd(cs);
+ }
+ if (ret) {
+ return ret;
+ }
+
+ reg.addr = (uintptr_t)(&fpr);
+ reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
+ ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
+ if (ret) {
+ return ret;
+ }
+ vfp_set_fpsr(env, fpr);
+
+ reg.addr = (uintptr_t)(&fpr);
+ reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
+ ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
if (ret) {
return ret;
}
+ vfp_set_fpcr(env, fpr);
ret = kvm_get_vcpu_events(cpu);
if (ret) {