diff options
author | Joseph Myers <joseph@codesourcery.com> | 2020-06-11 23:45:48 +0000 |
---|---|---|
committer | Paolo Bonzini <pbonzini@redhat.com> | 2020-06-26 09:39:37 -0400 |
commit | eca30647fc078f4d9ed1b455bd67960f99dbeb7a (patch) | |
tree | 5294a8dd65cd8ef57a7f548e3f126dba936a797b /target/i386 | |
parent | b00de3a51fc8e86d1678c57e65d57aa9ed052422 (diff) | |
download | qemu-eca30647fc078f4d9ed1b455bd67960f99dbeb7a.zip qemu-eca30647fc078f4d9ed1b455bd67960f99dbeb7a.tar.gz qemu-eca30647fc078f4d9ed1b455bd67960f99dbeb7a.tar.bz2 |
target/i386: reimplement f2xm1 using floatx80 operations
The x87 f2xm1 emulation is currently based around conversion to
double. This is inherently unsuitable for a good emulation of any
floatx80 operation, even before considering that it is a particularly
naive implementation using double (computing with pow and then
subtracting 1 rather than attempting a better emulation using expm1).
Reimplement using the soft-float operations, including additions and
multiplications with higher precision where appropriate to limit
accumulation of errors. I considered reusing some of the m68k code
for transcendental operations, but the instructions don't generally
correspond exactly to x87 operations (for example, m68k has 2^x and
e^x - 1, but not 2^x - 1); to avoid possible accumulation of errors
from applying multiple such operations each rounding to floatx80
precision, I wrote a direct implementation of 2^x - 1 instead. It
would be possible in principle to make the implementation more
efficient by doing the intermediate operations directly with
significands, signs and exponents and not packing / unpacking floatx80
format for each operation, but that would make it significantly more
complicated and it's not clear that's worthwhile; the m68k emulation
doesn't try to do that.
A test is included with many randomly generated inputs. The
assumption of the test is that the result in round-to-nearest mode
should always be one of the two closest floating-point numbers to the
mathematical value of 2^x - 1; the implementation aims to do somewhat
better than that (about 70 correct bits before rounding). I haven't
investigated how accurate hardware is.
Signed-off-by: Joseph Myers <joseph@codesourcery.com>
Message-Id: <alpine.DEB.2.21.2006112341010.18393@digraph.polyomino.org.uk>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Diffstat (limited to 'target/i386')
-rw-r--r-- | target/i386/fpu_helper.c | 385 |
1 files changed, 382 insertions, 3 deletions
diff --git a/target/i386/fpu_helper.c b/target/i386/fpu_helper.c index 8ef5b46..e32a2aa 100644 --- a/target/i386/fpu_helper.c +++ b/target/i386/fpu_helper.c @@ -25,6 +25,7 @@ #include "exec/exec-all.h" #include "exec/cpu_ldst.h" #include "fpu/softfloat.h" +#include "fpu/softfloat-macros.h" #ifdef CONFIG_SOFTMMU #include "hw/irq.h" @@ -836,12 +837,390 @@ void helper_fbst_ST0(CPUX86State *env, target_ulong ptr) merge_exception_flags(env, old_flags); } +/* 128-bit significand of log(2). */ +#define ln2_sig_high 0xb17217f7d1cf79abULL +#define ln2_sig_low 0xc9e3b39803f2f6afULL + +/* + * Polynomial coefficients for an approximation to (2^x - 1) / x, on + * the interval [-1/64, 1/64]. + */ +#define f2xm1_coeff_0 make_floatx80(0x3ffe, 0xb17217f7d1cf79acULL) +#define f2xm1_coeff_0_low make_floatx80(0xbfbc, 0xd87edabf495b3762ULL) +#define f2xm1_coeff_1 make_floatx80(0x3ffc, 0xf5fdeffc162c7543ULL) +#define f2xm1_coeff_2 make_floatx80(0x3ffa, 0xe35846b82505fcc7ULL) +#define f2xm1_coeff_3 make_floatx80(0x3ff8, 0x9d955b7dd273b899ULL) +#define f2xm1_coeff_4 make_floatx80(0x3ff5, 0xaec3ff3c4ef4ac0cULL) +#define f2xm1_coeff_5 make_floatx80(0x3ff2, 0xa184897c3a7f0de9ULL) +#define f2xm1_coeff_6 make_floatx80(0x3fee, 0xffe634d0ec30d504ULL) +#define f2xm1_coeff_7 make_floatx80(0x3feb, 0xb160111d2db515e4ULL) + +struct f2xm1_data { + /* + * A value very close to a multiple of 1/32, such that 2^t and 2^t - 1 + * are very close to exact floatx80 values. + */ + floatx80 t; + /* The value of 2^t. */ + floatx80 exp2; + /* The value of 2^t - 1. */ + floatx80 exp2m1; +}; + +static const struct f2xm1_data f2xm1_table[65] = { + { make_floatx80(0xbfff, 0x8000000000000000ULL), + make_floatx80(0x3ffe, 0x8000000000000000ULL), + make_floatx80(0xbffe, 0x8000000000000000ULL) }, + { make_floatx80(0xbffe, 0xf800000000002e7eULL), + make_floatx80(0x3ffe, 0x82cd8698ac2b9160ULL), + make_floatx80(0xbffd, 0xfa64f2cea7a8dd40ULL) }, + { make_floatx80(0xbffe, 0xefffffffffffe960ULL), + make_floatx80(0x3ffe, 0x85aac367cc488345ULL), + make_floatx80(0xbffd, 0xf4aa7930676ef976ULL) }, + { make_floatx80(0xbffe, 0xe800000000006f10ULL), + make_floatx80(0x3ffe, 0x88980e8092da5c14ULL), + make_floatx80(0xbffd, 0xeecfe2feda4b47d8ULL) }, + { make_floatx80(0xbffe, 0xe000000000008a45ULL), + make_floatx80(0x3ffe, 0x8b95c1e3ea8ba2a5ULL), + make_floatx80(0xbffd, 0xe8d47c382ae8bab6ULL) }, + { make_floatx80(0xbffe, 0xd7ffffffffff8a9eULL), + make_floatx80(0x3ffe, 0x8ea4398b45cd8116ULL), + make_floatx80(0xbffd, 0xe2b78ce97464fdd4ULL) }, + { make_floatx80(0xbffe, 0xd0000000000019a0ULL), + make_floatx80(0x3ffe, 0x91c3d373ab11b919ULL), + make_floatx80(0xbffd, 0xdc785918a9dc8dceULL) }, + { make_floatx80(0xbffe, 0xc7ffffffffff14dfULL), + make_floatx80(0x3ffe, 0x94f4efa8fef76836ULL), + make_floatx80(0xbffd, 0xd61620ae02112f94ULL) }, + { make_floatx80(0xbffe, 0xc000000000006530ULL), + make_floatx80(0x3ffe, 0x9837f0518db87fbbULL), + make_floatx80(0xbffd, 0xcf901f5ce48f008aULL) }, + { make_floatx80(0xbffe, 0xb7ffffffffff1723ULL), + make_floatx80(0x3ffe, 0x9b8d39b9d54eb74cULL), + make_floatx80(0xbffd, 0xc8e58c8c55629168ULL) }, + { make_floatx80(0xbffe, 0xb00000000000b5e1ULL), + make_floatx80(0x3ffe, 0x9ef5326091a0c366ULL), + make_floatx80(0xbffd, 0xc2159b3edcbe7934ULL) }, + { make_floatx80(0xbffe, 0xa800000000006f8aULL), + make_floatx80(0x3ffe, 0xa27043030c49370aULL), + make_floatx80(0xbffd, 0xbb1f79f9e76d91ecULL) }, + { make_floatx80(0xbffe, 0x9fffffffffff816aULL), + make_floatx80(0x3ffe, 0xa5fed6a9b15171cfULL), + make_floatx80(0xbffd, 0xb40252ac9d5d1c62ULL) }, + { make_floatx80(0xbffe, 0x97ffffffffffb621ULL), + make_floatx80(0x3ffe, 0xa9a15ab4ea7c30e6ULL), + make_floatx80(0xbffd, 0xacbd4a962b079e34ULL) }, + { make_floatx80(0xbffe, 0x8fffffffffff162bULL), + make_floatx80(0x3ffe, 0xad583eea42a1b886ULL), + make_floatx80(0xbffd, 0xa54f822b7abc8ef4ULL) }, + { make_floatx80(0xbffe, 0x87ffffffffff4d34ULL), + make_floatx80(0x3ffe, 0xb123f581d2ac7b51ULL), + make_floatx80(0xbffd, 0x9db814fc5aa7095eULL) }, + { make_floatx80(0xbffe, 0x800000000000227dULL), + make_floatx80(0x3ffe, 0xb504f333f9de539dULL), + make_floatx80(0xbffd, 0x95f619980c4358c6ULL) }, + { make_floatx80(0xbffd, 0xefffffffffff3978ULL), + make_floatx80(0x3ffe, 0xb8fbaf4762fbd0a1ULL), + make_floatx80(0xbffd, 0x8e08a1713a085ebeULL) }, + { make_floatx80(0xbffd, 0xe00000000000df81ULL), + make_floatx80(0x3ffe, 0xbd08a39f580bfd8cULL), + make_floatx80(0xbffd, 0x85eeb8c14fe804e8ULL) }, + { make_floatx80(0xbffd, 0xd00000000000bccfULL), + make_floatx80(0x3ffe, 0xc12c4cca667062f6ULL), + make_floatx80(0xbffc, 0xfb4eccd6663e7428ULL) }, + { make_floatx80(0xbffd, 0xc00000000000eff0ULL), + make_floatx80(0x3ffe, 0xc5672a1155069abeULL), + make_floatx80(0xbffc, 0xea6357baabe59508ULL) }, + { make_floatx80(0xbffd, 0xb000000000000fe6ULL), + make_floatx80(0x3ffe, 0xc9b9bd866e2f234bULL), + make_floatx80(0xbffc, 0xd91909e6474372d4ULL) }, + { make_floatx80(0xbffd, 0x9fffffffffff2172ULL), + make_floatx80(0x3ffe, 0xce248c151f84bf00ULL), + make_floatx80(0xbffc, 0xc76dcfab81ed0400ULL) }, + { make_floatx80(0xbffd, 0x8fffffffffffafffULL), + make_floatx80(0x3ffe, 0xd2a81d91f12afb2bULL), + make_floatx80(0xbffc, 0xb55f89b83b541354ULL) }, + { make_floatx80(0xbffc, 0xffffffffffff81a3ULL), + make_floatx80(0x3ffe, 0xd744fccad69d7d5eULL), + make_floatx80(0xbffc, 0xa2ec0cd4a58a0a88ULL) }, + { make_floatx80(0xbffc, 0xdfffffffffff1568ULL), + make_floatx80(0x3ffe, 0xdbfbb797daf25a44ULL), + make_floatx80(0xbffc, 0x901121a0943696f0ULL) }, + { make_floatx80(0xbffc, 0xbfffffffffff68daULL), + make_floatx80(0x3ffe, 0xe0ccdeec2a94f811ULL), + make_floatx80(0xbffb, 0xf999089eab583f78ULL) }, + { make_floatx80(0xbffc, 0x9fffffffffff4690ULL), + make_floatx80(0x3ffe, 0xe5b906e77c83657eULL), + make_floatx80(0xbffb, 0xd237c8c41be4d410ULL) }, + { make_floatx80(0xbffb, 0xffffffffffff8aeeULL), + make_floatx80(0x3ffe, 0xeac0c6e7dd24427cULL), + make_floatx80(0xbffb, 0xa9f9c8c116ddec20ULL) }, + { make_floatx80(0xbffb, 0xbfffffffffff2d18ULL), + make_floatx80(0x3ffe, 0xefe4b99bdcdb06ebULL), + make_floatx80(0xbffb, 0x80da33211927c8a8ULL) }, + { make_floatx80(0xbffa, 0xffffffffffff8ccbULL), + make_floatx80(0x3ffe, 0xf5257d152486d0f4ULL), + make_floatx80(0xbffa, 0xada82eadb792f0c0ULL) }, + { make_floatx80(0xbff9, 0xffffffffffff11feULL), + make_floatx80(0x3ffe, 0xfa83b2db722a0846ULL), + make_floatx80(0xbff9, 0xaf89a491babef740ULL) }, + { floatx80_zero, + make_floatx80(0x3fff, 0x8000000000000000ULL), + floatx80_zero }, + { make_floatx80(0x3ff9, 0xffffffffffff2680ULL), + make_floatx80(0x3fff, 0x82cd8698ac2b9f6fULL), + make_floatx80(0x3ff9, 0xb361a62b0ae7dbc0ULL) }, + { make_floatx80(0x3ffb, 0x800000000000b500ULL), + make_floatx80(0x3fff, 0x85aac367cc488345ULL), + make_floatx80(0x3ffa, 0xb5586cf9891068a0ULL) }, + { make_floatx80(0x3ffb, 0xbfffffffffff4b67ULL), + make_floatx80(0x3fff, 0x88980e8092da7cceULL), + make_floatx80(0x3ffb, 0x8980e8092da7cce0ULL) }, + { make_floatx80(0x3ffb, 0xffffffffffffff57ULL), + make_floatx80(0x3fff, 0x8b95c1e3ea8bd6dfULL), + make_floatx80(0x3ffb, 0xb95c1e3ea8bd6df0ULL) }, + { make_floatx80(0x3ffc, 0x9fffffffffff811fULL), + make_floatx80(0x3fff, 0x8ea4398b45cd4780ULL), + make_floatx80(0x3ffb, 0xea4398b45cd47800ULL) }, + { make_floatx80(0x3ffc, 0xbfffffffffff9980ULL), + make_floatx80(0x3fff, 0x91c3d373ab11b919ULL), + make_floatx80(0x3ffc, 0x8e1e9b9d588dc8c8ULL) }, + { make_floatx80(0x3ffc, 0xdffffffffffff631ULL), + make_floatx80(0x3fff, 0x94f4efa8fef70864ULL), + make_floatx80(0x3ffc, 0xa7a77d47f7b84320ULL) }, + { make_floatx80(0x3ffc, 0xffffffffffff2499ULL), + make_floatx80(0x3fff, 0x9837f0518db892d4ULL), + make_floatx80(0x3ffc, 0xc1bf828c6dc496a0ULL) }, + { make_floatx80(0x3ffd, 0x8fffffffffff80fbULL), + make_floatx80(0x3fff, 0x9b8d39b9d54e3a79ULL), + make_floatx80(0x3ffc, 0xdc69cdceaa71d3c8ULL) }, + { make_floatx80(0x3ffd, 0x9fffffffffffbc23ULL), + make_floatx80(0x3fff, 0x9ef5326091a10313ULL), + make_floatx80(0x3ffc, 0xf7a993048d081898ULL) }, + { make_floatx80(0x3ffd, 0xafffffffffff20ecULL), + make_floatx80(0x3fff, 0xa27043030c49370aULL), + make_floatx80(0x3ffd, 0x89c10c0c3124dc28ULL) }, + { make_floatx80(0x3ffd, 0xc00000000000fd2cULL), + make_floatx80(0x3fff, 0xa5fed6a9b15171cfULL), + make_floatx80(0x3ffd, 0x97fb5aa6c545c73cULL) }, + { make_floatx80(0x3ffd, 0xd0000000000093beULL), + make_floatx80(0x3fff, 0xa9a15ab4ea7c30e6ULL), + make_floatx80(0x3ffd, 0xa6856ad3a9f0c398ULL) }, + { make_floatx80(0x3ffd, 0xe00000000000c2aeULL), + make_floatx80(0x3fff, 0xad583eea42a17876ULL), + make_floatx80(0x3ffd, 0xb560fba90a85e1d8ULL) }, + { make_floatx80(0x3ffd, 0xefffffffffff1e3fULL), + make_floatx80(0x3fff, 0xb123f581d2abef6cULL), + make_floatx80(0x3ffd, 0xc48fd6074aafbdb0ULL) }, + { make_floatx80(0x3ffd, 0xffffffffffff1c23ULL), + make_floatx80(0x3fff, 0xb504f333f9de2cadULL), + make_floatx80(0x3ffd, 0xd413cccfe778b2b4ULL) }, + { make_floatx80(0x3ffe, 0x8800000000006344ULL), + make_floatx80(0x3fff, 0xb8fbaf4762fbd0a1ULL), + make_floatx80(0x3ffd, 0xe3eebd1d8bef4284ULL) }, + { make_floatx80(0x3ffe, 0x9000000000005d67ULL), + make_floatx80(0x3fff, 0xbd08a39f580c668dULL), + make_floatx80(0x3ffd, 0xf4228e7d60319a34ULL) }, + { make_floatx80(0x3ffe, 0x9800000000009127ULL), + make_floatx80(0x3fff, 0xc12c4cca6670e042ULL), + make_floatx80(0x3ffe, 0x82589994cce1c084ULL) }, + { make_floatx80(0x3ffe, 0x9fffffffffff06f9ULL), + make_floatx80(0x3fff, 0xc5672a11550655c3ULL), + make_floatx80(0x3ffe, 0x8ace5422aa0cab86ULL) }, + { make_floatx80(0x3ffe, 0xa7fffffffffff80dULL), + make_floatx80(0x3fff, 0xc9b9bd866e2f234bULL), + make_floatx80(0x3ffe, 0x93737b0cdc5e4696ULL) }, + { make_floatx80(0x3ffe, 0xafffffffffff1470ULL), + make_floatx80(0x3fff, 0xce248c151f83fd69ULL), + make_floatx80(0x3ffe, 0x9c49182a3f07fad2ULL) }, + { make_floatx80(0x3ffe, 0xb800000000000e0aULL), + make_floatx80(0x3fff, 0xd2a81d91f12aec5cULL), + make_floatx80(0x3ffe, 0xa5503b23e255d8b8ULL) }, + { make_floatx80(0x3ffe, 0xc00000000000b7faULL), + make_floatx80(0x3fff, 0xd744fccad69dd630ULL), + make_floatx80(0x3ffe, 0xae89f995ad3bac60ULL) }, + { make_floatx80(0x3ffe, 0xc800000000003aa6ULL), + make_floatx80(0x3fff, 0xdbfbb797daf25a44ULL), + make_floatx80(0x3ffe, 0xb7f76f2fb5e4b488ULL) }, + { make_floatx80(0x3ffe, 0xd00000000000a6aeULL), + make_floatx80(0x3fff, 0xe0ccdeec2a954685ULL), + make_floatx80(0x3ffe, 0xc199bdd8552a8d0aULL) }, + { make_floatx80(0x3ffe, 0xd800000000004165ULL), + make_floatx80(0x3fff, 0xe5b906e77c837155ULL), + make_floatx80(0x3ffe, 0xcb720dcef906e2aaULL) }, + { make_floatx80(0x3ffe, 0xe00000000000582cULL), + make_floatx80(0x3fff, 0xeac0c6e7dd24713aULL), + make_floatx80(0x3ffe, 0xd5818dcfba48e274ULL) }, + { make_floatx80(0x3ffe, 0xe800000000001a5dULL), + make_floatx80(0x3fff, 0xefe4b99bdcdb06ebULL), + make_floatx80(0x3ffe, 0xdfc97337b9b60dd6ULL) }, + { make_floatx80(0x3ffe, 0xefffffffffffc1efULL), + make_floatx80(0x3fff, 0xf5257d152486a2faULL), + make_floatx80(0x3ffe, 0xea4afa2a490d45f4ULL) }, + { make_floatx80(0x3ffe, 0xf800000000001069ULL), + make_floatx80(0x3fff, 0xfa83b2db722a0e5cULL), + make_floatx80(0x3ffe, 0xf50765b6e4541cb8ULL) }, + { make_floatx80(0x3fff, 0x8000000000000000ULL), + make_floatx80(0x4000, 0x8000000000000000ULL), + make_floatx80(0x3fff, 0x8000000000000000ULL) }, +}; + void helper_f2xm1(CPUX86State *env) { - double val = floatx80_to_double(env, ST0); + uint8_t old_flags = save_exception_flags(env); + uint64_t sig = extractFloatx80Frac(ST0); + int32_t exp = extractFloatx80Exp(ST0); + bool sign = extractFloatx80Sign(ST0); + + if (floatx80_invalid_encoding(ST0)) { + float_raise(float_flag_invalid, &env->fp_status); + ST0 = floatx80_default_nan(&env->fp_status); + } else if (floatx80_is_any_nan(ST0)) { + if (floatx80_is_signaling_nan(ST0, &env->fp_status)) { + float_raise(float_flag_invalid, &env->fp_status); + ST0 = floatx80_silence_nan(ST0, &env->fp_status); + } + } else if (exp > 0x3fff || + (exp == 0x3fff && sig != (0x8000000000000000ULL))) { + /* Out of range for the instruction, treat as invalid. */ + float_raise(float_flag_invalid, &env->fp_status); + ST0 = floatx80_default_nan(&env->fp_status); + } else if (exp == 0x3fff) { + /* Argument 1 or -1, exact result 1 or -0.5. */ + if (sign) { + ST0 = make_floatx80(0xbffe, 0x8000000000000000ULL); + } + } else if (exp < 0x3fb0) { + if (!floatx80_is_zero(ST0)) { + /* + * Multiplying the argument by an extra-precision version + * of log(2) is sufficiently precise. Zero arguments are + * returned unchanged. + */ + uint64_t sig0, sig1, sig2; + if (exp == 0) { + normalizeFloatx80Subnormal(sig, &exp, &sig); + } + mul128By64To192(ln2_sig_high, ln2_sig_low, sig, &sig0, &sig1, + &sig2); + /* This result is inexact. */ + sig1 |= 1; + ST0 = normalizeRoundAndPackFloatx80(80, sign, exp, sig0, sig1, + &env->fp_status); + } + } else { + floatx80 tmp, y, accum; + bool asign, bsign; + int32_t n, aexp, bexp; + uint64_t asig0, asig1, asig2, bsig0, bsig1; + FloatRoundMode save_mode = env->fp_status.float_rounding_mode; + signed char save_prec = env->fp_status.floatx80_rounding_precision; + env->fp_status.float_rounding_mode = float_round_nearest_even; + env->fp_status.floatx80_rounding_precision = 80; - val = pow(2.0, val) - 1.0; - ST0 = double_to_floatx80(env, val); + /* Find the nearest multiple of 1/32 to the argument. */ + tmp = floatx80_scalbn(ST0, 5, &env->fp_status); + n = 32 + floatx80_to_int32(tmp, &env->fp_status); + y = floatx80_sub(ST0, f2xm1_table[n].t, &env->fp_status); + + if (floatx80_is_zero(y)) { + /* + * Use the value of 2^t - 1 from the table, to avoid + * needing to special-case zero as a result of + * multiplication below. + */ + ST0 = f2xm1_table[n].t; + set_float_exception_flags(float_flag_inexact, &env->fp_status); + env->fp_status.float_rounding_mode = save_mode; + } else { + /* + * Compute the lower parts of a polynomial expansion for + * (2^y - 1) / y. + */ + accum = floatx80_mul(f2xm1_coeff_7, y, &env->fp_status); + accum = floatx80_add(f2xm1_coeff_6, accum, &env->fp_status); + accum = floatx80_mul(accum, y, &env->fp_status); + accum = floatx80_add(f2xm1_coeff_5, accum, &env->fp_status); + accum = floatx80_mul(accum, y, &env->fp_status); + accum = floatx80_add(f2xm1_coeff_4, accum, &env->fp_status); + accum = floatx80_mul(accum, y, &env->fp_status); + accum = floatx80_add(f2xm1_coeff_3, accum, &env->fp_status); + accum = floatx80_mul(accum, y, &env->fp_status); + accum = floatx80_add(f2xm1_coeff_2, accum, &env->fp_status); + accum = floatx80_mul(accum, y, &env->fp_status); + accum = floatx80_add(f2xm1_coeff_1, accum, &env->fp_status); + accum = floatx80_mul(accum, y, &env->fp_status); + accum = floatx80_add(f2xm1_coeff_0_low, accum, &env->fp_status); + + /* + * The full polynomial expansion is f2xm1_coeff_0 + accum + * (where accum has much lower magnitude, and so, in + * particular, carry out of the addition is not possible). + * (This expansion is only accurate to about 70 bits, not + * 128 bits.) + */ + aexp = extractFloatx80Exp(f2xm1_coeff_0); + asign = extractFloatx80Sign(f2xm1_coeff_0); + shift128RightJamming(extractFloatx80Frac(accum), 0, + aexp - extractFloatx80Exp(accum), + &asig0, &asig1); + bsig0 = extractFloatx80Frac(f2xm1_coeff_0); + bsig1 = 0; + if (asign == extractFloatx80Sign(accum)) { + add128(bsig0, bsig1, asig0, asig1, &asig0, &asig1); + } else { + sub128(bsig0, bsig1, asig0, asig1, &asig0, &asig1); + } + /* And thus compute an approximation to 2^y - 1. */ + mul128By64To192(asig0, asig1, extractFloatx80Frac(y), + &asig0, &asig1, &asig2); + aexp += extractFloatx80Exp(y) - 0x3ffe; + asign ^= extractFloatx80Sign(y); + if (n != 32) { + /* + * Multiply this by the precomputed value of 2^t and + * add that of 2^t - 1. + */ + mul128By64To192(asig0, asig1, + extractFloatx80Frac(f2xm1_table[n].exp2), + &asig0, &asig1, &asig2); + aexp += extractFloatx80Exp(f2xm1_table[n].exp2) - 0x3ffe; + bexp = extractFloatx80Exp(f2xm1_table[n].exp2m1); + bsig0 = extractFloatx80Frac(f2xm1_table[n].exp2m1); + bsig1 = 0; + if (bexp < aexp) { + shift128RightJamming(bsig0, bsig1, aexp - bexp, + &bsig0, &bsig1); + } else if (aexp < bexp) { + shift128RightJamming(asig0, asig1, bexp - aexp, + &asig0, &asig1); + aexp = bexp; + } + /* The sign of 2^t - 1 is always that of the result. */ + bsign = extractFloatx80Sign(f2xm1_table[n].exp2m1); + if (asign == bsign) { + /* Avoid possible carry out of the addition. */ + shift128RightJamming(asig0, asig1, 1, + &asig0, &asig1); + shift128RightJamming(bsig0, bsig1, 1, + &bsig0, &bsig1); + ++aexp; + add128(asig0, asig1, bsig0, bsig1, &asig0, &asig1); + } else { + sub128(bsig0, bsig1, asig0, asig1, &asig0, &asig1); + asign = bsign; + } + } + env->fp_status.float_rounding_mode = save_mode; + /* This result is inexact. */ + asig1 |= 1; + ST0 = normalizeRoundAndPackFloatx80(80, asign, aexp, asig0, asig1, + &env->fp_status); + } + + env->fp_status.floatx80_rounding_precision = save_prec; + } + merge_exception_flags(env, old_flags); } void helper_fyl2x(CPUX86State *env) |