diff options
author | Stefan Hajnoczi <stefanha@redhat.com> | 2017-09-08 09:39:41 +0100 |
---|---|---|
committer | Kevin Wolf <kwolf@redhat.com> | 2017-09-26 14:46:23 +0200 |
commit | 78aa8aa019b999ec07b62b322c1280a8250e44ac (patch) | |
tree | 2900a607b469ef13e41d9182af8876ae453f62dd /qemu-doc.texi | |
parent | 97ec9117c346239fc5b0f6d1973111e8ca370087 (diff) | |
download | qemu-78aa8aa019b999ec07b62b322c1280a8250e44ac.zip qemu-78aa8aa019b999ec07b62b322c1280a8250e44ac.tar.gz qemu-78aa8aa019b999ec07b62b322c1280a8250e44ac.tar.bz2 |
docs: add qemu-block-drivers(7) man page
Block driver documentation is available in qemu-doc.html. It would be
convenient to have documentation for formats, protocols, and filter
drivers in a man page.
Extract the relevant part of qemu-doc.html into a new file called
docs/qemu-block-drivers.texi. This file can also be built as a
stand-alone document (man, html, etc).
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Diffstat (limited to 'qemu-doc.texi')
-rw-r--r-- | qemu-doc.texi | 781 |
1 files changed, 1 insertions, 780 deletions
diff --git a/qemu-doc.texi b/qemu-doc.texi index 4076226..ecd186a 100644 --- a/qemu-doc.texi +++ b/qemu-doc.texi @@ -490,786 +490,7 @@ state is not saved or restored properly (in particular USB). @include qemu-nbd.texi -@node disk_images_formats -@subsection Disk image file formats - -QEMU supports many image file formats that can be used with VMs as well as with -any of the tools (like @code{qemu-img}). This includes the preferred formats -raw and qcow2 as well as formats that are supported for compatibility with -older QEMU versions or other hypervisors. - -Depending on the image format, different options can be passed to -@code{qemu-img create} and @code{qemu-img convert} using the @code{-o} option. -This section describes each format and the options that are supported for it. - -@table @option -@item raw - -Raw disk image format. This format has the advantage of -being simple and easily exportable to all other emulators. If your -file system supports @emph{holes} (for example in ext2 or ext3 on -Linux or NTFS on Windows), then only the written sectors will reserve -space. Use @code{qemu-img info} to know the real size used by the -image or @code{ls -ls} on Unix/Linux. - -Supported options: -@table @code -@item preallocation -Preallocation mode (allowed values: @code{off}, @code{falloc}, @code{full}). -@code{falloc} mode preallocates space for image by calling posix_fallocate(). -@code{full} mode preallocates space for image by writing zeros to underlying -storage. -@end table - -@item qcow2 -QEMU image format, the most versatile format. Use it to have smaller -images (useful if your filesystem does not supports holes, for example -on Windows), zlib based compression and support of multiple VM -snapshots. - -Supported options: -@table @code -@item compat -Determines the qcow2 version to use. @code{compat=0.10} uses the -traditional image format that can be read by any QEMU since 0.10. -@code{compat=1.1} enables image format extensions that only QEMU 1.1 and -newer understand (this is the default). Amongst others, this includes -zero clusters, which allow efficient copy-on-read for sparse images. - -@item backing_file -File name of a base image (see @option{create} subcommand) -@item backing_fmt -Image format of the base image -@item encryption -This option is deprecated and equivalent to @code{encrypt.format=aes} - -@item encrypt.format - -If this is set to @code{luks}, it requests that the qcow2 payload (not -qcow2 header) be encrypted using the LUKS format. The passphrase to -use to unlock the LUKS key slot is given by the @code{encrypt.key-secret} -parameter. LUKS encryption parameters can be tuned with the other -@code{encrypt.*} parameters. - -If this is set to @code{aes}, the image is encrypted with 128-bit AES-CBC. -The encryption key is given by the @code{encrypt.key-secret} parameter. -This encryption format is considered to be flawed by modern cryptography -standards, suffering from a number of design problems: - -@itemize @minus -@item The AES-CBC cipher is used with predictable initialization vectors based -on the sector number. This makes it vulnerable to chosen plaintext attacks -which can reveal the existence of encrypted data. -@item The user passphrase is directly used as the encryption key. A poorly -chosen or short passphrase will compromise the security of the encryption. -@item In the event of the passphrase being compromised there is no way to -change the passphrase to protect data in any qcow images. The files must -be cloned, using a different encryption passphrase in the new file. The -original file must then be securely erased using a program like shred, -though even this is ineffective with many modern storage technologies. -@end itemize - -The use of this is no longer supported in system emulators. Support only -remains in the command line utilities, for the purposes of data liberation -and interoperability with old versions of QEMU. The @code{luks} format -should be used instead. - -@item encrypt.key-secret - -Provides the ID of a @code{secret} object that contains the passphrase -(@code{encrypt.format=luks}) or encryption key (@code{encrypt.format=aes}). - -@item encrypt.cipher-alg - -Name of the cipher algorithm and key length. Currently defaults -to @code{aes-256}. Only used when @code{encrypt.format=luks}. - -@item encrypt.cipher-mode - -Name of the encryption mode to use. Currently defaults to @code{xts}. -Only used when @code{encrypt.format=luks}. - -@item encrypt.ivgen-alg - -Name of the initialization vector generator algorithm. Currently defaults -to @code{plain64}. Only used when @code{encrypt.format=luks}. - -@item encrypt.ivgen-hash-alg - -Name of the hash algorithm to use with the initialization vector generator -(if required). Defaults to @code{sha256}. Only used when @code{encrypt.format=luks}. - -@item encrypt.hash-alg - -Name of the hash algorithm to use for PBKDF algorithm -Defaults to @code{sha256}. Only used when @code{encrypt.format=luks}. - -@item encrypt.iter-time - -Amount of time, in milliseconds, to use for PBKDF algorithm per key slot. -Defaults to @code{2000}. Only used when @code{encrypt.format=luks}. - -@item cluster_size -Changes the qcow2 cluster size (must be between 512 and 2M). Smaller cluster -sizes can improve the image file size whereas larger cluster sizes generally -provide better performance. - -@item preallocation -Preallocation mode (allowed values: @code{off}, @code{metadata}, @code{falloc}, -@code{full}). An image with preallocated metadata is initially larger but can -improve performance when the image needs to grow. @code{falloc} and @code{full} -preallocations are like the same options of @code{raw} format, but sets up -metadata also. - -@item lazy_refcounts -If this option is set to @code{on}, reference count updates are postponed with -the goal of avoiding metadata I/O and improving performance. This is -particularly interesting with @option{cache=writethrough} which doesn't batch -metadata updates. The tradeoff is that after a host crash, the reference count -tables must be rebuilt, i.e. on the next open an (automatic) @code{qemu-img -check -r all} is required, which may take some time. - -This option can only be enabled if @code{compat=1.1} is specified. - -@item nocow -If this option is set to @code{on}, it will turn off COW of the file. It's only -valid on btrfs, no effect on other file systems. - -Btrfs has low performance when hosting a VM image file, even more when the guest -on the VM also using btrfs as file system. Turning off COW is a way to mitigate -this bad performance. Generally there are two ways to turn off COW on btrfs: -a) Disable it by mounting with nodatacow, then all newly created files will be -NOCOW. b) For an empty file, add the NOCOW file attribute. That's what this option -does. - -Note: this option is only valid to new or empty files. If there is an existing -file which is COW and has data blocks already, it couldn't be changed to NOCOW -by setting @code{nocow=on}. One can issue @code{lsattr filename} to check if -the NOCOW flag is set or not (Capital 'C' is NOCOW flag). - -@end table - -@item qed -Old QEMU image format with support for backing files and compact image files -(when your filesystem or transport medium does not support holes). - -When converting QED images to qcow2, you might want to consider using the -@code{lazy_refcounts=on} option to get a more QED-like behaviour. - -Supported options: -@table @code -@item backing_file -File name of a base image (see @option{create} subcommand). -@item backing_fmt -Image file format of backing file (optional). Useful if the format cannot be -autodetected because it has no header, like some vhd/vpc files. -@item cluster_size -Changes the cluster size (must be power-of-2 between 4K and 64K). Smaller -cluster sizes can improve the image file size whereas larger cluster sizes -generally provide better performance. -@item table_size -Changes the number of clusters per L1/L2 table (must be power-of-2 between 1 -and 16). There is normally no need to change this value but this option can be -used for performance benchmarking. -@end table - -@item qcow -Old QEMU image format with support for backing files, compact image files, -encryption and compression. - -Supported options: -@table @code -@item backing_file -File name of a base image (see @option{create} subcommand) -@item encryption -This option is deprecated and equivalent to @code{encrypt.format=aes} - -@item encrypt.format -If this is set to @code{aes}, the image is encrypted with 128-bit AES-CBC. -The encryption key is given by the @code{encrypt.key-secret} parameter. -This encryption format is considered to be flawed by modern cryptography -standards, suffering from a number of design problems enumerated previously -against the @code{qcow2} image format. - -The use of this is no longer supported in system emulators. Support only -remains in the command line utilities, for the purposes of data liberation -and interoperability with old versions of QEMU. - -Users requiring native encryption should use the @code{qcow2} format -instead with @code{encrypt.format=luks}. - -@item encrypt.key-secret - -Provides the ID of a @code{secret} object that contains the encryption -key (@code{encrypt.format=aes}). - -@end table - -@item luks - -LUKS v1 encryption format, compatible with Linux dm-crypt/cryptsetup - -Supported options: -@table @code - -@item key-secret - -Provides the ID of a @code{secret} object that contains the passphrase. - -@item cipher-alg - -Name of the cipher algorithm and key length. Currently defaults -to @code{aes-256}. - -@item cipher-mode - -Name of the encryption mode to use. Currently defaults to @code{xts}. - -@item ivgen-alg - -Name of the initialization vector generator algorithm. Currently defaults -to @code{plain64}. - -@item ivgen-hash-alg - -Name of the hash algorithm to use with the initialization vector generator -(if required). Defaults to @code{sha256}. - -@item hash-alg - -Name of the hash algorithm to use for PBKDF algorithm -Defaults to @code{sha256}. - -@item iter-time - -Amount of time, in milliseconds, to use for PBKDF algorithm per key slot. -Defaults to @code{2000}. - -@end table - -@item vdi -VirtualBox 1.1 compatible image format. -Supported options: -@table @code -@item static -If this option is set to @code{on}, the image is created with metadata -preallocation. -@end table - -@item vmdk -VMware 3 and 4 compatible image format. - -Supported options: -@table @code -@item backing_file -File name of a base image (see @option{create} subcommand). -@item compat6 -Create a VMDK version 6 image (instead of version 4) -@item hwversion -Specify vmdk virtual hardware version. Compat6 flag cannot be enabled -if hwversion is specified. -@item subformat -Specifies which VMDK subformat to use. Valid options are -@code{monolithicSparse} (default), -@code{monolithicFlat}, -@code{twoGbMaxExtentSparse}, -@code{twoGbMaxExtentFlat} and -@code{streamOptimized}. -@end table - -@item vpc -VirtualPC compatible image format (VHD). -Supported options: -@table @code -@item subformat -Specifies which VHD subformat to use. Valid options are -@code{dynamic} (default) and @code{fixed}. -@end table - -@item VHDX -Hyper-V compatible image format (VHDX). -Supported options: -@table @code -@item subformat -Specifies which VHDX subformat to use. Valid options are -@code{dynamic} (default) and @code{fixed}. -@item block_state_zero -Force use of payload blocks of type 'ZERO'. Can be set to @code{on} (default) -or @code{off}. When set to @code{off}, new blocks will be created as -@code{PAYLOAD_BLOCK_NOT_PRESENT}, which means parsers are free to return -arbitrary data for those blocks. Do not set to @code{off} when using -@code{qemu-img convert} with @code{subformat=dynamic}. -@item block_size -Block size; min 1 MB, max 256 MB. 0 means auto-calculate based on image size. -@item log_size -Log size; min 1 MB. -@end table -@end table - -@subsubsection Read-only formats -More disk image file formats are supported in a read-only mode. -@table @option -@item bochs -Bochs images of @code{growing} type. -@item cloop -Linux Compressed Loop image, useful only to reuse directly compressed -CD-ROM images present for example in the Knoppix CD-ROMs. -@item dmg -Apple disk image. -@item parallels -Parallels disk image format. -@end table - - -@node host_drives -@subsection Using host drives - -In addition to disk image files, QEMU can directly access host -devices. We describe here the usage for QEMU version >= 0.8.3. - -@subsubsection Linux - -On Linux, you can directly use the host device filename instead of a -disk image filename provided you have enough privileges to access -it. For example, use @file{/dev/cdrom} to access to the CDROM. - -@table @code -@item CD -You can specify a CDROM device even if no CDROM is loaded. QEMU has -specific code to detect CDROM insertion or removal. CDROM ejection by -the guest OS is supported. Currently only data CDs are supported. -@item Floppy -You can specify a floppy device even if no floppy is loaded. Floppy -removal is currently not detected accurately (if you change floppy -without doing floppy access while the floppy is not loaded, the guest -OS will think that the same floppy is loaded). -Use of the host's floppy device is deprecated, and support for it will -be removed in a future release. -@item Hard disks -Hard disks can be used. Normally you must specify the whole disk -(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can -see it as a partitioned disk. WARNING: unless you know what you do, it -is better to only make READ-ONLY accesses to the hard disk otherwise -you may corrupt your host data (use the @option{-snapshot} command -line option or modify the device permissions accordingly). -@end table - -@subsubsection Windows - -@table @code -@item CD -The preferred syntax is the drive letter (e.g. @file{d:}). The -alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is -supported as an alias to the first CDROM drive. - -Currently there is no specific code to handle removable media, so it -is better to use the @code{change} or @code{eject} monitor commands to -change or eject media. -@item Hard disks -Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}} -where @var{N} is the drive number (0 is the first hard disk). - -WARNING: unless you know what you do, it is better to only make -READ-ONLY accesses to the hard disk otherwise you may corrupt your -host data (use the @option{-snapshot} command line so that the -modifications are written in a temporary file). -@end table - - -@subsubsection Mac OS X - -@file{/dev/cdrom} is an alias to the first CDROM. - -Currently there is no specific code to handle removable media, so it -is better to use the @code{change} or @code{eject} monitor commands to -change or eject media. - -@node disk_images_fat_images -@subsection Virtual FAT disk images - -QEMU can automatically create a virtual FAT disk image from a -directory tree. In order to use it, just type: - -@example -qemu-system-i386 linux.img -hdb fat:/my_directory -@end example - -Then you access access to all the files in the @file{/my_directory} -directory without having to copy them in a disk image or to export -them via SAMBA or NFS. The default access is @emph{read-only}. - -Floppies can be emulated with the @code{:floppy:} option: - -@example -qemu-system-i386 linux.img -fda fat:floppy:/my_directory -@end example - -A read/write support is available for testing (beta stage) with the -@code{:rw:} option: - -@example -qemu-system-i386 linux.img -fda fat:floppy:rw:/my_directory -@end example - -What you should @emph{never} do: -@itemize -@item use non-ASCII filenames ; -@item use "-snapshot" together with ":rw:" ; -@item expect it to work when loadvm'ing ; -@item write to the FAT directory on the host system while accessing it with the guest system. -@end itemize - -@node disk_images_nbd -@subsection NBD access - -QEMU can access directly to block device exported using the Network Block Device -protocol. - -@example -qemu-system-i386 linux.img -hdb nbd://my_nbd_server.mydomain.org:1024/ -@end example - -If the NBD server is located on the same host, you can use an unix socket instead -of an inet socket: - -@example -qemu-system-i386 linux.img -hdb nbd+unix://?socket=/tmp/my_socket -@end example - -In this case, the block device must be exported using qemu-nbd: - -@example -qemu-nbd --socket=/tmp/my_socket my_disk.qcow2 -@end example - -The use of qemu-nbd allows sharing of a disk between several guests: -@example -qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2 -@end example - -@noindent -and then you can use it with two guests: -@example -qemu-system-i386 linux1.img -hdb nbd+unix://?socket=/tmp/my_socket -qemu-system-i386 linux2.img -hdb nbd+unix://?socket=/tmp/my_socket -@end example - -If the nbd-server uses named exports (supported since NBD 2.9.18, or with QEMU's -own embedded NBD server), you must specify an export name in the URI: -@example -qemu-system-i386 -cdrom nbd://localhost/debian-500-ppc-netinst -qemu-system-i386 -cdrom nbd://localhost/openSUSE-11.1-ppc-netinst -@end example - -The URI syntax for NBD is supported since QEMU 1.3. An alternative syntax is -also available. Here are some example of the older syntax: -@example -qemu-system-i386 linux.img -hdb nbd:my_nbd_server.mydomain.org:1024 -qemu-system-i386 linux2.img -hdb nbd:unix:/tmp/my_socket -qemu-system-i386 -cdrom nbd:localhost:10809:exportname=debian-500-ppc-netinst -@end example - -@node disk_images_sheepdog -@subsection Sheepdog disk images - -Sheepdog is a distributed storage system for QEMU. It provides highly -available block level storage volumes that can be attached to -QEMU-based virtual machines. - -You can create a Sheepdog disk image with the command: -@example -qemu-img create sheepdog:///@var{image} @var{size} -@end example -where @var{image} is the Sheepdog image name and @var{size} is its -size. - -To import the existing @var{filename} to Sheepdog, you can use a -convert command. -@example -qemu-img convert @var{filename} sheepdog:///@var{image} -@end example - -You can boot from the Sheepdog disk image with the command: -@example -qemu-system-i386 sheepdog:///@var{image} -@end example - -You can also create a snapshot of the Sheepdog image like qcow2. -@example -qemu-img snapshot -c @var{tag} sheepdog:///@var{image} -@end example -where @var{tag} is a tag name of the newly created snapshot. - -To boot from the Sheepdog snapshot, specify the tag name of the -snapshot. -@example -qemu-system-i386 sheepdog:///@var{image}#@var{tag} -@end example - -You can create a cloned image from the existing snapshot. -@example -qemu-img create -b sheepdog:///@var{base}#@var{tag} sheepdog:///@var{image} -@end example -where @var{base} is a image name of the source snapshot and @var{tag} -is its tag name. - -You can use an unix socket instead of an inet socket: - -@example -qemu-system-i386 sheepdog+unix:///@var{image}?socket=@var{path} -@end example - -If the Sheepdog daemon doesn't run on the local host, you need to -specify one of the Sheepdog servers to connect to. -@example -qemu-img create sheepdog://@var{hostname}:@var{port}/@var{image} @var{size} -qemu-system-i386 sheepdog://@var{hostname}:@var{port}/@var{image} -@end example - -@node disk_images_iscsi -@subsection iSCSI LUNs - -iSCSI is a popular protocol used to access SCSI devices across a computer -network. - -There are two different ways iSCSI devices can be used by QEMU. - -The first method is to mount the iSCSI LUN on the host, and make it appear as -any other ordinary SCSI device on the host and then to access this device as a -/dev/sd device from QEMU. How to do this differs between host OSes. - -The second method involves using the iSCSI initiator that is built into -QEMU. This provides a mechanism that works the same way regardless of which -host OS you are running QEMU on. This section will describe this second method -of using iSCSI together with QEMU. - -In QEMU, iSCSI devices are described using special iSCSI URLs - -@example -URL syntax: -iscsi://[<username>[%<password>]@@]<host>[:<port>]/<target-iqn-name>/<lun> -@end example - -Username and password are optional and only used if your target is set up -using CHAP authentication for access control. -Alternatively the username and password can also be set via environment -variables to have these not show up in the process list - -@example -export LIBISCSI_CHAP_USERNAME=<username> -export LIBISCSI_CHAP_PASSWORD=<password> -iscsi://<host>/<target-iqn-name>/<lun> -@end example - -Various session related parameters can be set via special options, either -in a configuration file provided via '-readconfig' or directly on the -command line. - -If the initiator-name is not specified qemu will use a default name -of 'iqn.2008-11.org.linux-kvm[:<uuid>'] where <uuid> is the UUID of the -virtual machine. If the UUID is not specified qemu will use -'iqn.2008-11.org.linux-kvm[:<name>'] where <name> is the name of the -virtual machine. - -@example -Setting a specific initiator name to use when logging in to the target --iscsi initiator-name=iqn.qemu.test:my-initiator -@end example - -@example -Controlling which type of header digest to negotiate with the target --iscsi header-digest=CRC32C|CRC32C-NONE|NONE-CRC32C|NONE -@end example - -These can also be set via a configuration file -@example -[iscsi] - user = "CHAP username" - password = "CHAP password" - initiator-name = "iqn.qemu.test:my-initiator" - # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE - header-digest = "CRC32C" -@end example - - -Setting the target name allows different options for different targets -@example -[iscsi "iqn.target.name"] - user = "CHAP username" - password = "CHAP password" - initiator-name = "iqn.qemu.test:my-initiator" - # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE - header-digest = "CRC32C" -@end example - - -Howto use a configuration file to set iSCSI configuration options: -@example -cat >iscsi.conf <<EOF -[iscsi] - user = "me" - password = "my password" - initiator-name = "iqn.qemu.test:my-initiator" - header-digest = "CRC32C" -EOF - -qemu-system-i386 -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \ - -readconfig iscsi.conf -@end example - - -Howto set up a simple iSCSI target on loopback and accessing it via QEMU: -@example -This example shows how to set up an iSCSI target with one CDROM and one DISK -using the Linux STGT software target. This target is available on Red Hat based -systems as the package 'scsi-target-utils'. - -tgtd --iscsi portal=127.0.0.1:3260 -tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.qemu.test -tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 1 \ - -b /IMAGES/disk.img --device-type=disk -tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \ - -b /IMAGES/cd.iso --device-type=cd -tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL - -qemu-system-i386 -iscsi initiator-name=iqn.qemu.test:my-initiator \ - -boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \ - -cdrom iscsi://127.0.0.1/iqn.qemu.test/2 -@end example - -@node disk_images_gluster -@subsection GlusterFS disk images - -GlusterFS is a user space distributed file system. - -You can boot from the GlusterFS disk image with the command: -@example -URI: -qemu-system-x86_64 -drive file=gluster[+@var{type}]://[@var{host}[:@var{port}]]/@var{volume}/@var{path} - [?socket=...][,file.debug=9][,file.logfile=...] - -JSON: -qemu-system-x86_64 'json:@{"driver":"qcow2", - "file":@{"driver":"gluster", - "volume":"testvol","path":"a.img","debug":9,"logfile":"...", - "server":[@{"type":"tcp","host":"...","port":"..."@}, - @{"type":"unix","socket":"..."@}]@}@}' -@end example - -@var{gluster} is the protocol. - -@var{type} specifies the transport type used to connect to gluster -management daemon (glusterd). Valid transport types are -tcp and unix. In the URI form, if a transport type isn't specified, -then tcp type is assumed. - -@var{host} specifies the server where the volume file specification for -the given volume resides. This can be either a hostname or an ipv4 address. -If transport type is unix, then @var{host} field should not be specified. -Instead @var{socket} field needs to be populated with the path to unix domain -socket. - -@var{port} is the port number on which glusterd is listening. This is optional -and if not specified, it defaults to port 24007. If the transport type is unix, -then @var{port} should not be specified. - -@var{volume} is the name of the gluster volume which contains the disk image. - -@var{path} is the path to the actual disk image that resides on gluster volume. - -@var{debug} is the logging level of the gluster protocol driver. Debug levels -are 0-9, with 9 being the most verbose, and 0 representing no debugging output. -The default level is 4. The current logging levels defined in the gluster source -are 0 - None, 1 - Emergency, 2 - Alert, 3 - Critical, 4 - Error, 5 - Warning, -6 - Notice, 7 - Info, 8 - Debug, 9 - Trace - -@var{logfile} is a commandline option to mention log file path which helps in -logging to the specified file and also help in persisting the gfapi logs. The -default is stderr. - - - - -You can create a GlusterFS disk image with the command: -@example -qemu-img create gluster://@var{host}/@var{volume}/@var{path} @var{size} -@end example - -Examples -@example -qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img -qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4/testvol/a.img -qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4:24007/testvol/dir/a.img -qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]/testvol/dir/a.img -qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]:24007/testvol/dir/a.img -qemu-system-x86_64 -drive file=gluster+tcp://server.domain.com:24007/testvol/dir/a.img -qemu-system-x86_64 -drive file=gluster+unix:///testvol/dir/a.img?socket=/tmp/glusterd.socket -qemu-system-x86_64 -drive file=gluster+rdma://1.2.3.4:24007/testvol/a.img -qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img,file.debug=9,file.logfile=/var/log/qemu-gluster.log -qemu-system-x86_64 'json:@{"driver":"qcow2", - "file":@{"driver":"gluster", - "volume":"testvol","path":"a.img", - "debug":9,"logfile":"/var/log/qemu-gluster.log", - "server":[@{"type":"tcp","host":"1.2.3.4","port":24007@}, - @{"type":"unix","socket":"/var/run/glusterd.socket"@}]@}@}' -qemu-system-x86_64 -drive driver=qcow2,file.driver=gluster,file.volume=testvol,file.path=/path/a.img, - file.debug=9,file.logfile=/var/log/qemu-gluster.log, - file.server.0.type=tcp,file.server.0.host=1.2.3.4,file.server.0.port=24007, - file.server.1.type=unix,file.server.1.socket=/var/run/glusterd.socket -@end example - -@node disk_images_ssh -@subsection Secure Shell (ssh) disk images - -You can access disk images located on a remote ssh server -by using the ssh protocol: - -@example -qemu-system-x86_64 -drive file=ssh://[@var{user}@@]@var{server}[:@var{port}]/@var{path}[?host_key_check=@var{host_key_check}] -@end example - -Alternative syntax using properties: - -@example -qemu-system-x86_64 -drive file.driver=ssh[,file.user=@var{user}],file.host=@var{server}[,file.port=@var{port}],file.path=@var{path}[,file.host_key_check=@var{host_key_check}] -@end example - -@var{ssh} is the protocol. - -@var{user} is the remote user. If not specified, then the local -username is tried. - -@var{server} specifies the remote ssh server. Any ssh server can be -used, but it must implement the sftp-server protocol. Most Unix/Linux -systems should work without requiring any extra configuration. - -@var{port} is the port number on which sshd is listening. By default -the standard ssh port (22) is used. - -@var{path} is the path to the disk image. - -The optional @var{host_key_check} parameter controls how the remote -host's key is checked. The default is @code{yes} which means to use -the local @file{.ssh/known_hosts} file. Setting this to @code{no} -turns off known-hosts checking. Or you can check that the host key -matches a specific fingerprint: -@code{host_key_check=md5:78:45:8e:14:57:4f:d5:45:83:0a:0e:f3:49:82:c9:c8} -(@code{sha1:} can also be used as a prefix, but note that OpenSSH -tools only use MD5 to print fingerprints). - -Currently authentication must be done using ssh-agent. Other -authentication methods may be supported in future. - -Note: Many ssh servers do not support an @code{fsync}-style operation. -The ssh driver cannot guarantee that disk flush requests are -obeyed, and this causes a risk of disk corruption if the remote -server or network goes down during writes. The driver will -print a warning when @code{fsync} is not supported: - -warning: ssh server @code{ssh.example.com:22} does not support fsync - -With sufficiently new versions of libssh2 and OpenSSH, @code{fsync} is -supported. +@include docs/qemu-block-drivers.texi @node pcsys_network @section Network emulation |