diff options
author | balrog <balrog@c046a42c-6fe2-441c-8c8c-71466251a162> | 2008-04-14 21:57:44 +0000 |
---|---|---|
committer | balrog <balrog@c046a42c-6fe2-441c-8c8c-71466251a162> | 2008-04-14 21:57:44 +0000 |
commit | 7e7c5e4c1ba5c9b7efcf1b0c1e34ea150c286e58 (patch) | |
tree | d7f37d6f4f29e47f7a5bd67086dbb76aa38f4f7d /hw/onenand.c | |
parent | a5d7eb6534a091566d63f97c8b35c0ac9623d90b (diff) | |
download | qemu-7e7c5e4c1ba5c9b7efcf1b0c1e34ea150c286e58.zip qemu-7e7c5e4c1ba5c9b7efcf1b0c1e34ea150c286e58.tar.gz qemu-7e7c5e4c1ba5c9b7efcf1b0c1e34ea150c286e58.tar.bz2 |
Nokia N800 machine support (ARM).
Also add various peripherals: two miscellaneous Nokia CBUS chips,
EPSON S1D13745 LCD/TV remote-framebuffer controller,
TWL92230 - standard OMAP2 power management companion chip on i2c.
Generic OneNAND flash memory,
TMP105 temperature sensor on i2c.
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@4215 c046a42c-6fe2-441c-8c8c-71466251a162
Diffstat (limited to 'hw/onenand.c')
-rw-r--r-- | hw/onenand.c | 642 |
1 files changed, 642 insertions, 0 deletions
diff --git a/hw/onenand.c b/hw/onenand.c new file mode 100644 index 0000000..d63ecea --- /dev/null +++ b/hw/onenand.c @@ -0,0 +1,642 @@ +/* + * OneNAND flash memories emulation. + * + * Copyright (C) 2008 Nokia Corporation + * Written by Andrzej Zaborowski <andrew@openedhand.com> + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License as + * published by the Free Software Foundation; either version 2 or + * (at your option) version 3 of the License. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, + * MA 02111-1307 USA + */ + +#include "qemu-common.h" +#include "flash.h" +#include "irq.h" +#include "sysemu.h" +#include "block.h" + +/* 11 for 2kB-page OneNAND ("2nd generation") and 10 for 1kB-page chips */ +#define PAGE_SHIFT 11 + +/* Fixed */ +#define BLOCK_SHIFT (PAGE_SHIFT + 6) + +struct onenand_s { + uint32_t id; + int shift; + target_phys_addr_t base; + qemu_irq intr; + qemu_irq rdy; + BlockDriverState *bdrv; + BlockDriverState *bdrv_cur; + uint8_t *image; + uint8_t *otp; + uint8_t *current; + ram_addr_t ram; + uint8_t *boot[2]; + uint8_t *data[2][2]; + int iomemtype; + int cycle; + int otpmode; + + uint16_t addr[8]; + uint16_t unladdr[8]; + int bufaddr; + int count; + uint16_t command; + uint16_t config[2]; + uint16_t status; + uint16_t intstatus; + uint16_t wpstatus; + + struct ecc_state_s ecc; + + int density_mask; + int secs; + int secs_cur; + int blocks; + uint8_t *blockwp; +}; + +enum { + ONEN_BUF_BLOCK = 0, + ONEN_BUF_BLOCK2 = 1, + ONEN_BUF_DEST_BLOCK = 2, + ONEN_BUF_DEST_PAGE = 3, + ONEN_BUF_PAGE = 7, +}; + +enum { + ONEN_ERR_CMD = 1 << 10, + ONEN_ERR_ERASE = 1 << 11, + ONEN_ERR_PROG = 1 << 12, + ONEN_ERR_LOAD = 1 << 13, +}; + +enum { + ONEN_INT_RESET = 1 << 4, + ONEN_INT_ERASE = 1 << 5, + ONEN_INT_PROG = 1 << 6, + ONEN_INT_LOAD = 1 << 7, + ONEN_INT = 1 << 15, +}; + +enum { + ONEN_LOCK_LOCKTIGHTEN = 1 << 0, + ONEN_LOCK_LOCKED = 1 << 1, + ONEN_LOCK_UNLOCKED = 1 << 2, +}; + +void onenand_base_update(void *opaque, target_phys_addr_t new) +{ + struct onenand_s *s = (struct onenand_s *) opaque; + + s->base = new; + + /* XXX: We should use IO_MEM_ROMD but we broke it earlier... + * Both 0x0000 ... 0x01ff and 0x8000 ... 0x800f can be used to + * write boot commands. Also take note of the BWPS bit. */ + cpu_register_physical_memory(s->base + (0x0000 << s->shift), + 0x0200 << s->shift, s->iomemtype); + cpu_register_physical_memory(s->base + (0x0200 << s->shift), + 0xbe00 << s->shift, + (s->ram +(0x0200 << s->shift)) | IO_MEM_RAM); + if (s->iomemtype) + cpu_register_physical_memory(s->base + (0xc000 << s->shift), + 0x4000 << s->shift, s->iomemtype); +} + +void onenand_base_unmap(void *opaque) +{ + struct onenand_s *s = (struct onenand_s *) opaque; + + cpu_register_physical_memory(s->base, + 0x10000 << s->shift, IO_MEM_UNASSIGNED); +} + +static void onenand_intr_update(struct onenand_s *s) +{ + qemu_set_irq(s->intr, ((s->intstatus >> 15) ^ (~s->config[0] >> 6)) & 1); +} + +/* Hot reset (Reset OneNAND command) or warm reset (RP pin low) */ +static void onenand_reset(struct onenand_s *s, int cold) +{ + memset(&s->addr, 0, sizeof(s->addr)); + s->command = 0; + s->count = 1; + s->bufaddr = 0; + s->config[0] = 0x40c0; + s->config[1] = 0x0000; + onenand_intr_update(s); + qemu_irq_raise(s->rdy); + s->status = 0x0000; + s->intstatus = cold ? 0x8080 : 0x8010; + s->unladdr[0] = 0; + s->unladdr[1] = 0; + s->wpstatus = 0x0002; + s->cycle = 0; + s->otpmode = 0; + s->bdrv_cur = s->bdrv; + s->current = s->image; + s->secs_cur = s->secs; + + if (cold) { + /* Lock the whole flash */ + memset(s->blockwp, ONEN_LOCK_LOCKED, s->blocks); + + if (s->bdrv && bdrv_read(s->bdrv, 0, s->boot[0], 8) < 0) + cpu_abort(cpu_single_env, "%s: Loading the BootRAM failed.\n", + __FUNCTION__); + } +} + +static inline int onenand_load_main(struct onenand_s *s, int sec, int secn, + void *dest) +{ + if (s->bdrv_cur) + return bdrv_read(s->bdrv_cur, sec, dest, secn) < 0; + else if (sec + secn > s->secs_cur) + return 1; + + memcpy(dest, s->current + (sec << 9), secn << 9); + + return 0; +} + +static inline int onenand_prog_main(struct onenand_s *s, int sec, int secn, + void *src) +{ + if (s->bdrv_cur) + return bdrv_write(s->bdrv_cur, sec, src, secn) < 0; + else if (sec + secn > s->secs_cur) + return 1; + + memcpy(s->current + (sec << 9), src, secn << 9); + + return 0; +} + +static inline int onenand_load_spare(struct onenand_s *s, int sec, int secn, + void *dest) +{ + uint8_t buf[512]; + + if (s->bdrv_cur) { + if (bdrv_read(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0) + return 1; + memcpy(dest, buf + ((sec & 31) << 4), secn << 4); + } else if (sec + secn > s->secs_cur) + return 1; + else + memcpy(dest, s->current + (s->secs_cur << 9) + (sec << 4), secn << 4); + + return 0; +} + +static inline int onenand_prog_spare(struct onenand_s *s, int sec, int secn, + void *src) +{ + uint8_t buf[512]; + + if (s->bdrv_cur) { + if (bdrv_read(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0) + return 1; + memcpy(buf + ((sec & 31) << 4), src, secn << 4); + return bdrv_write(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0; + } else if (sec + secn > s->secs_cur) + return 1; + + memcpy(s->current + (s->secs_cur << 9) + (sec << 4), src, secn << 4); + + return 0; +} + +static inline int onenand_erase(struct onenand_s *s, int sec, int num) +{ + /* TODO: optimise */ + uint8_t buf[512]; + + memset(buf, 0xff, sizeof(buf)); + for (; num > 0; num --, sec ++) { + if (onenand_prog_main(s, sec, 1, buf)) + return 1; + if (onenand_prog_spare(s, sec, 1, buf)) + return 1; + } + + return 0; +} + +static void onenand_command(struct onenand_s *s, int cmd) +{ + int b; + int sec; + void *buf; +#define SETADDR(block, page) \ + sec = (s->addr[page] & 3) + \ + ((((s->addr[page] >> 2) & 0x3f) + \ + (((s->addr[block] & 0xfff) | \ + (s->addr[block] >> 15 ? \ + s->density_mask : 0)) << 6)) << (PAGE_SHIFT - 9)); +#define SETBUF_M() \ + buf = (s->bufaddr & 8) ? \ + s->data[(s->bufaddr >> 2) & 1][0] : s->boot[0]; \ + buf += (s->bufaddr & 3) << 9; +#define SETBUF_S() \ + buf = (s->bufaddr & 8) ? \ + s->data[(s->bufaddr >> 2) & 1][1] : s->boot[1]; \ + buf += (s->bufaddr & 3) << 4; + + switch (cmd) { + case 0x00: /* Load single/multiple sector data unit into buffer */ + SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE) + + SETBUF_M() + if (onenand_load_main(s, sec, s->count, buf)) + s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD; + +#if 0 + SETBUF_S() + if (onenand_load_spare(s, sec, s->count, buf)) + s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD; +#endif + + /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages) + * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages) + * then we need two split the read/write into two chunks. + */ + s->intstatus |= ONEN_INT | ONEN_INT_LOAD; + break; + case 0x13: /* Load single/multiple spare sector into buffer */ + SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE) + + SETBUF_S() + if (onenand_load_spare(s, sec, s->count, buf)) + s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD; + + /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages) + * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages) + * then we need two split the read/write into two chunks. + */ + s->intstatus |= ONEN_INT | ONEN_INT_LOAD; + break; + case 0x80: /* Program single/multiple sector data unit from buffer */ + SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE) + + SETBUF_M() + if (onenand_prog_main(s, sec, s->count, buf)) + s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG; + +#if 0 + SETBUF_S() + if (onenand_prog_spare(s, sec, s->count, buf)) + s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG; +#endif + + /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages) + * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages) + * then we need two split the read/write into two chunks. + */ + s->intstatus |= ONEN_INT | ONEN_INT_PROG; + break; + case 0x1a: /* Program single/multiple spare area sector from buffer */ + SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE) + + SETBUF_S() + if (onenand_prog_spare(s, sec, s->count, buf)) + s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG; + + /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages) + * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages) + * then we need two split the read/write into two chunks. + */ + s->intstatus |= ONEN_INT | ONEN_INT_PROG; + break; + case 0x1b: /* Copy-back program */ + SETBUF_S() + + SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE) + if (onenand_load_main(s, sec, s->count, buf)) + s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG; + + SETADDR(ONEN_BUF_DEST_BLOCK, ONEN_BUF_DEST_PAGE) + if (onenand_prog_main(s, sec, s->count, buf)) + s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG; + + /* TODO: spare areas */ + + s->intstatus |= ONEN_INT | ONEN_INT_PROG; + break; + + case 0x23: /* Unlock NAND array block(s) */ + s->intstatus |= ONEN_INT; + + /* XXX the previous (?) area should be locked automatically */ + for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) { + if (b >= s->blocks) { + s->status |= ONEN_ERR_CMD; + break; + } + if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN) + break; + + s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED; + } + break; + case 0x2a: /* Lock NAND array block(s) */ + s->intstatus |= ONEN_INT; + + for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) { + if (b >= s->blocks) { + s->status |= ONEN_ERR_CMD; + break; + } + if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN) + break; + + s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKED; + } + break; + case 0x2c: /* Lock-tight NAND array block(s) */ + s->intstatus |= ONEN_INT; + + for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) { + if (b >= s->blocks) { + s->status |= ONEN_ERR_CMD; + break; + } + if (s->blockwp[b] == ONEN_LOCK_UNLOCKED) + continue; + + s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKTIGHTEN; + } + break; + + case 0x71: /* Erase-Verify-Read */ + s->intstatus |= ONEN_INT; + break; + case 0x95: /* Multi-block erase */ + qemu_irq_pulse(s->intr); + /* Fall through. */ + case 0x94: /* Block erase */ + sec = ((s->addr[ONEN_BUF_BLOCK] & 0xfff) | + (s->addr[ONEN_BUF_BLOCK] >> 15 ? s->density_mask : 0)) + << (BLOCK_SHIFT - 9); + if (onenand_erase(s, sec, 1 << (BLOCK_SHIFT - 9))) + s->status |= ONEN_ERR_CMD | ONEN_ERR_ERASE; + + s->intstatus |= ONEN_INT | ONEN_INT_ERASE; + break; + case 0xb0: /* Erase suspend */ + break; + case 0x30: /* Erase resume */ + s->intstatus |= ONEN_INT | ONEN_INT_ERASE; + break; + + case 0xf0: /* Reset NAND Flash core */ + onenand_reset(s, 0); + break; + case 0xf3: /* Reset OneNAND */ + onenand_reset(s, 0); + break; + + case 0x65: /* OTP Access */ + s->intstatus |= ONEN_INT; + s->bdrv_cur = 0; + s->current = s->otp; + s->secs_cur = 1 << (BLOCK_SHIFT - 9); + s->addr[ONEN_BUF_BLOCK] = 0; + s->otpmode = 1; + break; + + default: + s->status |= ONEN_ERR_CMD; + s->intstatus |= ONEN_INT; + fprintf(stderr, "%s: unknown OneNAND command %x\n", + __FUNCTION__, cmd); + } + + onenand_intr_update(s); +} + +static uint32_t onenand_read(void *opaque, target_phys_addr_t addr) +{ + struct onenand_s *s = (struct onenand_s *) opaque; + int offset = (addr - s->base) >> s->shift; + + switch (offset) { + case 0x0000 ... 0xc000: + return lduw_le_p(s->boot[0] + (addr - s->base)); + + case 0xf000: /* Manufacturer ID */ + return (s->id >> 16) & 0xff; + case 0xf001: /* Device ID */ + return (s->id >> 8) & 0xff; + /* TODO: get the following values from a real chip! */ + case 0xf002: /* Version ID */ + return (s->id >> 0) & 0xff; + case 0xf003: /* Data Buffer size */ + return 1 << PAGE_SHIFT; + case 0xf004: /* Boot Buffer size */ + return 0x200; + case 0xf005: /* Amount of buffers */ + return 1 | (2 << 8); + case 0xf006: /* Technology */ + return 0; + + case 0xf100 ... 0xf107: /* Start addresses */ + return s->addr[offset - 0xf100]; + + case 0xf200: /* Start buffer */ + return (s->bufaddr << 8) | ((s->count - 1) & (1 << (PAGE_SHIFT - 10))); + + case 0xf220: /* Command */ + return s->command; + case 0xf221: /* System Configuration 1 */ + return s->config[0] & 0xffe0; + case 0xf222: /* System Configuration 2 */ + return s->config[1]; + + case 0xf240: /* Controller Status */ + return s->status; + case 0xf241: /* Interrupt */ + return s->intstatus; + case 0xf24c: /* Unlock Start Block Address */ + return s->unladdr[0]; + case 0xf24d: /* Unlock End Block Address */ + return s->unladdr[1]; + case 0xf24e: /* Write Protection Status */ + return s->wpstatus; + + case 0xff00: /* ECC Status */ + return 0x00; + case 0xff01: /* ECC Result of main area data */ + case 0xff02: /* ECC Result of spare area data */ + case 0xff03: /* ECC Result of main area data */ + case 0xff04: /* ECC Result of spare area data */ + cpu_abort(cpu_single_env, "%s: imeplement ECC\n", __FUNCTION__); + return 0x0000; + } + + fprintf(stderr, "%s: unknown OneNAND register %x\n", + __FUNCTION__, offset); + return 0; +} + +static void onenand_write(void *opaque, target_phys_addr_t addr, + uint32_t value) +{ + struct onenand_s *s = (struct onenand_s *) opaque; + int offset = (addr - s->base) >> s->shift; + int sec; + + switch (offset) { + case 0x0000 ... 0x01ff: + case 0x8000 ... 0x800f: + if (s->cycle) { + s->cycle = 0; + + if (value == 0x0000) { + SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE) + onenand_load_main(s, sec, + 1 << (PAGE_SHIFT - 9), s->data[0][0]); + s->addr[ONEN_BUF_PAGE] += 4; + s->addr[ONEN_BUF_PAGE] &= 0xff; + } + break; + } + + switch (value) { + case 0x00f0: /* Reset OneNAND */ + onenand_reset(s, 0); + break; + + case 0x00e0: /* Load Data into Buffer */ + s->cycle = 1; + break; + + case 0x0090: /* Read Identification Data */ + memset(s->boot[0], 0, 3 << s->shift); + s->boot[0][0 << s->shift] = (s->id >> 16) & 0xff; + s->boot[0][1 << s->shift] = (s->id >> 8) & 0xff; + s->boot[0][2 << s->shift] = s->wpstatus & 0xff; + break; + + default: + fprintf(stderr, "%s: unknown OneNAND boot command %x\n", + __FUNCTION__, value); + } + break; + + case 0xf100 ... 0xf107: /* Start addresses */ + s->addr[offset - 0xf100] = value; + break; + + case 0xf200: /* Start buffer */ + s->bufaddr = (value >> 8) & 0xf; + if (PAGE_SHIFT == 11) + s->count = (value & 3) ?: 4; + else if (PAGE_SHIFT == 10) + s->count = (value & 1) ?: 2; + break; + + case 0xf220: /* Command */ + if (s->intstatus & (1 << 15)) + break; + s->command = value; + onenand_command(s, s->command); + break; + case 0xf221: /* System Configuration 1 */ + s->config[0] = value; + onenand_intr_update(s); + qemu_set_irq(s->rdy, (s->config[0] >> 7) & 1); + break; + case 0xf222: /* System Configuration 2 */ + s->config[1] = value; + break; + + case 0xf241: /* Interrupt */ + s->intstatus &= value; + if ((1 << 15) & ~s->intstatus) + s->status &= ~(ONEN_ERR_CMD | ONEN_ERR_ERASE | + ONEN_ERR_PROG | ONEN_ERR_LOAD); + onenand_intr_update(s); + break; + case 0xf24c: /* Unlock Start Block Address */ + s->unladdr[0] = value & (s->blocks - 1); + /* For some reason we have to set the end address to by default + * be same as start because the software forgets to write anything + * in there. */ + s->unladdr[1] = value & (s->blocks - 1); + break; + case 0xf24d: /* Unlock End Block Address */ + s->unladdr[1] = value & (s->blocks - 1); + break; + + default: + fprintf(stderr, "%s: unknown OneNAND register %x\n", + __FUNCTION__, offset); + } +} + +static CPUReadMemoryFunc *onenand_readfn[] = { + onenand_read, /* TODO */ + onenand_read, + onenand_read, +}; + +static CPUWriteMemoryFunc *onenand_writefn[] = { + onenand_write, /* TODO */ + onenand_write, + onenand_write, +}; + +void *onenand_init(uint32_t id, int regshift, qemu_irq irq) +{ + struct onenand_s *s = (struct onenand_s *) qemu_mallocz(sizeof(*s)); + int bdrv_index = drive_get_index(IF_MTD, 0, 0); + uint32_t size = 1 << (24 + ((id >> 12) & 7)); + void *ram; + + s->shift = regshift; + s->intr = irq; + s->rdy = 0; + s->id = id; + s->blocks = size >> BLOCK_SHIFT; + s->secs = size >> 9; + s->blockwp = qemu_malloc(s->blocks); + s->density_mask = (id & (1 << 11)) ? (1 << (6 + ((id >> 12) & 7))) : 0; + s->iomemtype = cpu_register_io_memory(0, onenand_readfn, + onenand_writefn, s); + if (bdrv_index == -1) + s->image = memset(qemu_malloc(size + (size >> 5)), + 0xff, size + (size >> 5)); + else + s->bdrv = drives_table[bdrv_index].bdrv; + s->otp = memset(qemu_malloc((64 + 2) << PAGE_SHIFT), + 0xff, (64 + 2) << PAGE_SHIFT); + s->ram = qemu_ram_alloc(0xc000 << s->shift); + ram = phys_ram_base + s->ram; + s->boot[0] = ram + (0x0000 << s->shift); + s->boot[1] = ram + (0x8000 << s->shift); + s->data[0][0] = ram + ((0x0200 + (0 << (PAGE_SHIFT - 1))) << s->shift); + s->data[0][1] = ram + ((0x8010 + (0 << (PAGE_SHIFT - 6))) << s->shift); + s->data[1][0] = ram + ((0x0200 + (1 << (PAGE_SHIFT - 1))) << s->shift); + s->data[1][1] = ram + ((0x8010 + (1 << (PAGE_SHIFT - 6))) << s->shift); + + onenand_reset(s, 1); + + return s; +} |