diff options
author | Cédric Le Goater <clg@kaod.org> | 2018-06-26 17:50:42 +0100 |
---|---|---|
committer | Peter Maydell <peter.maydell@linaro.org> | 2018-06-26 17:50:42 +0100 |
commit | fda9aaa60ec27dfdbc1b70605e5439a6d1b30c2e (patch) | |
tree | 848c0a7b7bba16a285bd5d027e7473770f1f8569 /hw/misc | |
parent | 832e4222c82071e4399cffdecd605abed5ac0c27 (diff) | |
download | qemu-fda9aaa60ec27dfdbc1b70605e5439a6d1b30c2e.zip qemu-fda9aaa60ec27dfdbc1b70605e5439a6d1b30c2e.tar.gz qemu-fda9aaa60ec27dfdbc1b70605e5439a6d1b30c2e.tar.bz2 |
aspeed/scu: introduce clock frequencies
All Aspeed SoC clocks are driven by an input source clock which can
have different frequencies : 24MHz or 25MHz, and also, on the Aspeed
AST2400 SoC, 48MHz. The H-PLL (CPU) clock is defined from a
calculation using parameters in the H-PLL Parameter register or from a
predefined set of frequencies if the setting is strapped by hardware
(Aspeed AST2400 SoC). The other clocks of the SoC are then defined
from the H-PLL using dividers.
We introduce first the APB clock because it should be used to drive
the Aspeed timer model.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Andrew Jeffery <andrew@aj.id.au>
Message-id: 20180622075700.5923-2-clg@kaod.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Diffstat (limited to 'hw/misc')
-rw-r--r-- | hw/misc/aspeed_scu.c | 106 |
1 files changed, 106 insertions, 0 deletions
diff --git a/hw/misc/aspeed_scu.c b/hw/misc/aspeed_scu.c index 5931501..59333b5 100644 --- a/hw/misc/aspeed_scu.c +++ b/hw/misc/aspeed_scu.c @@ -168,6 +168,27 @@ static uint32_t aspeed_scu_get_random(void) return num; } +static void aspeed_scu_set_apb_freq(AspeedSCUState *s) +{ + uint32_t apb_divider; + + switch (s->silicon_rev) { + case AST2400_A0_SILICON_REV: + case AST2400_A1_SILICON_REV: + apb_divider = 2; + break; + case AST2500_A0_SILICON_REV: + case AST2500_A1_SILICON_REV: + apb_divider = 4; + break; + default: + g_assert_not_reached(); + } + + s->apb_freq = s->hpll / (SCU_CLK_GET_PCLK_DIV(s->regs[CLK_SEL]) + 1) + / apb_divider; +} + static uint64_t aspeed_scu_read(void *opaque, hwaddr offset, unsigned size) { AspeedSCUState *s = ASPEED_SCU(opaque); @@ -222,6 +243,10 @@ static void aspeed_scu_write(void *opaque, hwaddr offset, uint64_t data, case PROT_KEY: s->regs[reg] = (data == ASPEED_SCU_PROT_KEY) ? 1 : 0; return; + case CLK_SEL: + s->regs[reg] = data; + aspeed_scu_set_apb_freq(s); + break; case FREQ_CNTR_EVAL: case VGA_SCRATCH1 ... VGA_SCRATCH8: @@ -247,19 +272,93 @@ static const MemoryRegionOps aspeed_scu_ops = { .valid.unaligned = false, }; +static uint32_t aspeed_scu_get_clkin(AspeedSCUState *s) +{ + if (s->hw_strap1 & SCU_HW_STRAP_CLK_25M_IN) { + return 25000000; + } else if (s->hw_strap1 & SCU_HW_STRAP_CLK_48M_IN) { + return 48000000; + } else { + return 24000000; + } +} + +/* + * Strapped frequencies for the AST2400 in MHz. They depend on the + * clkin frequency. + */ +static const uint32_t hpll_ast2400_freqs[][4] = { + { 384, 360, 336, 408 }, /* 24MHz or 48MHz */ + { 400, 375, 350, 425 }, /* 25MHz */ +}; + +static uint32_t aspeed_scu_calc_hpll_ast2400(AspeedSCUState *s) +{ + uint32_t hpll_reg = s->regs[HPLL_PARAM]; + uint8_t freq_select; + bool clk_25m_in; + + if (hpll_reg & SCU_AST2400_H_PLL_OFF) { + return 0; + } + + if (hpll_reg & SCU_AST2400_H_PLL_PROGRAMMED) { + uint32_t multiplier = 1; + + if (!(hpll_reg & SCU_AST2400_H_PLL_BYPASS_EN)) { + uint32_t n = (hpll_reg >> 5) & 0x3f; + uint32_t od = (hpll_reg >> 4) & 0x1; + uint32_t d = hpll_reg & 0xf; + + multiplier = (2 - od) * ((n + 2) / (d + 1)); + } + + return s->clkin * multiplier; + } + + /* HW strapping */ + clk_25m_in = !!(s->hw_strap1 & SCU_HW_STRAP_CLK_25M_IN); + freq_select = SCU_AST2400_HW_STRAP_GET_H_PLL_CLK(s->hw_strap1); + + return hpll_ast2400_freqs[clk_25m_in][freq_select] * 1000000; +} + +static uint32_t aspeed_scu_calc_hpll_ast2500(AspeedSCUState *s) +{ + uint32_t hpll_reg = s->regs[HPLL_PARAM]; + uint32_t multiplier = 1; + + if (hpll_reg & SCU_H_PLL_OFF) { + return 0; + } + + if (!(hpll_reg & SCU_H_PLL_BYPASS_EN)) { + uint32_t p = (hpll_reg >> 13) & 0x3f; + uint32_t m = (hpll_reg >> 5) & 0xff; + uint32_t n = hpll_reg & 0x1f; + + multiplier = ((m + 1) / (n + 1)) / (p + 1); + } + + return s->clkin * multiplier; +} + static void aspeed_scu_reset(DeviceState *dev) { AspeedSCUState *s = ASPEED_SCU(dev); const uint32_t *reset; + uint32_t (*calc_hpll)(AspeedSCUState *s); switch (s->silicon_rev) { case AST2400_A0_SILICON_REV: case AST2400_A1_SILICON_REV: reset = ast2400_a0_resets; + calc_hpll = aspeed_scu_calc_hpll_ast2400; break; case AST2500_A0_SILICON_REV: case AST2500_A1_SILICON_REV: reset = ast2500_a1_resets; + calc_hpll = aspeed_scu_calc_hpll_ast2500; break; default: g_assert_not_reached(); @@ -270,6 +369,13 @@ static void aspeed_scu_reset(DeviceState *dev) s->regs[HW_STRAP1] = s->hw_strap1; s->regs[HW_STRAP2] = s->hw_strap2; s->regs[PROT_KEY] = s->hw_prot_key; + + /* + * All registers are set. Now compute the frequencies of the main clocks + */ + s->clkin = aspeed_scu_get_clkin(s); + s->hpll = calc_hpll(s); + aspeed_scu_set_apb_freq(s); } static uint32_t aspeed_silicon_revs[] = { |