diff options
author | Alex Bennée <alex.bennee@linaro.org> | 2018-01-12 11:24:02 +0000 |
---|---|---|
committer | Alex Bennée <alex.bennee@linaro.org> | 2018-02-21 10:21:54 +0000 |
commit | c13bb2da9eedfbc5886c8048df1bc1114b285fb0 (patch) | |
tree | 06ddb15da5ae722dd67c9a9484b9741185146824 /fpu | |
parent | 0c4c90929143a530730e2879204a55a30bf63758 (diff) | |
download | qemu-c13bb2da9eedfbc5886c8048df1bc1114b285fb0.zip qemu-c13bb2da9eedfbc5886c8048df1bc1114b285fb0.tar.gz qemu-c13bb2da9eedfbc5886c8048df1bc1114b285fb0.tar.bz2 |
fpu/softfloat: re-factor sqrt
This is a little bit of a departure from softfloat's original approach
as we skip the estimate step in favour of a straight iteration. There
is a minor optimisation to avoid calculating more bits of precision
than we need however this still brings a performance drop, especially
for float64 operations.
Suggested-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Diffstat (limited to 'fpu')
-rw-r--r-- | fpu/softfloat.c | 207 |
1 files changed, 96 insertions, 111 deletions
diff --git a/fpu/softfloat.c b/fpu/softfloat.c index 4bc425d..e7fb0d3 100644 --- a/fpu/softfloat.c +++ b/fpu/softfloat.c @@ -1896,6 +1896,102 @@ float64 float64_scalbn(float64 a, int n, float_status *status) return float64_round_pack_canonical(pr, status); } +/* + * Square Root + * + * The old softfloat code did an approximation step before zeroing in + * on the final result. However for simpleness we just compute the + * square root by iterating down from the implicit bit to enough extra + * bits to ensure we get a correctly rounded result. + * + * This does mean however the calculation is slower than before, + * especially for 64 bit floats. + */ + +static FloatParts sqrt_float(FloatParts a, float_status *s, const FloatFmt *p) +{ + uint64_t a_frac, r_frac, s_frac; + int bit, last_bit; + + if (is_nan(a.cls)) { + return return_nan(a, s); + } + if (a.cls == float_class_zero) { + return a; /* sqrt(+-0) = +-0 */ + } + if (a.sign) { + s->float_exception_flags |= float_flag_invalid; + a.cls = float_class_dnan; + return a; + } + if (a.cls == float_class_inf) { + return a; /* sqrt(+inf) = +inf */ + } + + assert(a.cls == float_class_normal); + + /* We need two overflow bits at the top. Adding room for that is a + * right shift. If the exponent is odd, we can discard the low bit + * by multiplying the fraction by 2; that's a left shift. Combine + * those and we shift right if the exponent is even. + */ + a_frac = a.frac; + if (!(a.exp & 1)) { + a_frac >>= 1; + } + a.exp >>= 1; + + /* Bit-by-bit computation of sqrt. */ + r_frac = 0; + s_frac = 0; + + /* Iterate from implicit bit down to the 3 extra bits to compute a + * properly rounded result. Remember we've inserted one more bit + * at the top, so these positions are one less. + */ + bit = DECOMPOSED_BINARY_POINT - 1; + last_bit = MAX(p->frac_shift - 4, 0); + do { + uint64_t q = 1ULL << bit; + uint64_t t_frac = s_frac + q; + if (t_frac <= a_frac) { + s_frac = t_frac + q; + a_frac -= t_frac; + r_frac += q; + } + a_frac <<= 1; + } while (--bit >= last_bit); + + /* Undo the right shift done above. If there is any remaining + * fraction, the result is inexact. Set the sticky bit. + */ + a.frac = (r_frac << 1) + (a_frac != 0); + + return a; +} + +float16 __attribute__((flatten)) float16_sqrt(float16 a, float_status *status) +{ + FloatParts pa = float16_unpack_canonical(a, status); + FloatParts pr = sqrt_float(pa, status, &float16_params); + return float16_round_pack_canonical(pr, status); +} + +float32 __attribute__((flatten)) float32_sqrt(float32 a, float_status *status) +{ + FloatParts pa = float32_unpack_canonical(a, status); + FloatParts pr = sqrt_float(pa, status, &float32_params); + return float32_round_pack_canonical(pr, status); +} + +float64 __attribute__((flatten)) float64_sqrt(float64 a, float_status *status) +{ + FloatParts pa = float64_unpack_canonical(a, status); + FloatParts pr = sqrt_float(pa, status, &float64_params); + return float64_round_pack_canonical(pr, status); +} + + /*---------------------------------------------------------------------------- | Takes a 64-bit fixed-point value `absZ' with binary point between bits 6 | and 7, and returns the properly rounded 32-bit integer corresponding to the @@ -3303,62 +3399,6 @@ float32 float32_rem(float32 a, float32 b, float_status *status) } -/*---------------------------------------------------------------------------- -| Returns the square root of the single-precision floating-point value `a'. -| The operation is performed according to the IEC/IEEE Standard for Binary -| Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float32 float32_sqrt(float32 a, float_status *status) -{ - flag aSign; - int aExp, zExp; - uint32_t aSig, zSig; - uint64_t rem, term; - a = float32_squash_input_denormal(a, status); - - aSig = extractFloat32Frac( a ); - aExp = extractFloat32Exp( a ); - aSign = extractFloat32Sign( a ); - if ( aExp == 0xFF ) { - if (aSig) { - return propagateFloat32NaN(a, float32_zero, status); - } - if ( ! aSign ) return a; - float_raise(float_flag_invalid, status); - return float32_default_nan(status); - } - if ( aSign ) { - if ( ( aExp | aSig ) == 0 ) return a; - float_raise(float_flag_invalid, status); - return float32_default_nan(status); - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return float32_zero; - normalizeFloat32Subnormal( aSig, &aExp, &aSig ); - } - zExp = ( ( aExp - 0x7F )>>1 ) + 0x7E; - aSig = ( aSig | 0x00800000 )<<8; - zSig = estimateSqrt32( aExp, aSig ) + 2; - if ( ( zSig & 0x7F ) <= 5 ) { - if ( zSig < 2 ) { - zSig = 0x7FFFFFFF; - goto roundAndPack; - } - aSig >>= aExp & 1; - term = ( (uint64_t) zSig ) * zSig; - rem = ( ( (uint64_t) aSig )<<32 ) - term; - while ( (int64_t) rem < 0 ) { - --zSig; - rem += ( ( (uint64_t) zSig )<<1 ) | 1; - } - zSig |= ( rem != 0 ); - } - shift32RightJamming( zSig, 1, &zSig ); - roundAndPack: - return roundAndPackFloat32(0, zExp, zSig, status); - -} /*---------------------------------------------------------------------------- | Returns the binary exponential of the single-precision floating-point value @@ -4202,61 +4242,6 @@ float64 float64_rem(float64 a, float64 b, float_status *status) } - -/*---------------------------------------------------------------------------- -| Returns the square root of the double-precision floating-point value `a'. -| The operation is performed according to the IEC/IEEE Standard for Binary -| Floating-Point Arithmetic. -*----------------------------------------------------------------------------*/ - -float64 float64_sqrt(float64 a, float_status *status) -{ - flag aSign; - int aExp, zExp; - uint64_t aSig, zSig, doubleZSig; - uint64_t rem0, rem1, term0, term1; - a = float64_squash_input_denormal(a, status); - - aSig = extractFloat64Frac( a ); - aExp = extractFloat64Exp( a ); - aSign = extractFloat64Sign( a ); - if ( aExp == 0x7FF ) { - if (aSig) { - return propagateFloat64NaN(a, a, status); - } - if ( ! aSign ) return a; - float_raise(float_flag_invalid, status); - return float64_default_nan(status); - } - if ( aSign ) { - if ( ( aExp | aSig ) == 0 ) return a; - float_raise(float_flag_invalid, status); - return float64_default_nan(status); - } - if ( aExp == 0 ) { - if ( aSig == 0 ) return float64_zero; - normalizeFloat64Subnormal( aSig, &aExp, &aSig ); - } - zExp = ( ( aExp - 0x3FF )>>1 ) + 0x3FE; - aSig |= LIT64( 0x0010000000000000 ); - zSig = estimateSqrt32( aExp, aSig>>21 ); - aSig <<= 9 - ( aExp & 1 ); - zSig = estimateDiv128To64( aSig, 0, zSig<<32 ) + ( zSig<<30 ); - if ( ( zSig & 0x1FF ) <= 5 ) { - doubleZSig = zSig<<1; - mul64To128( zSig, zSig, &term0, &term1 ); - sub128( aSig, 0, term0, term1, &rem0, &rem1 ); - while ( (int64_t) rem0 < 0 ) { - --zSig; - doubleZSig -= 2; - add128( rem0, rem1, zSig>>63, doubleZSig | 1, &rem0, &rem1 ); - } - zSig |= ( ( rem0 | rem1 ) != 0 ); - } - return roundAndPackFloat64(0, zExp, zSig, status); - -} - /*---------------------------------------------------------------------------- | Returns the binary log of the double-precision floating-point value `a'. | The operation is performed according to the IEC/IEEE Standard for Binary |