aboutsummaryrefslogtreecommitdiff
path: root/fpu/softfloat-parts.c.inc
diff options
context:
space:
mode:
authorRichard Henderson <richard.henderson@linaro.org>2020-11-18 12:14:37 -0800
committerRichard Henderson <richard.henderson@linaro.org>2021-06-03 13:59:34 -0700
commit9261b245f061cb80410fdae7be8460eaa21a5d7d (patch)
treeba15449329741217804db6a3dba2756f9319ad6a /fpu/softfloat-parts.c.inc
parent39626b0ce830e6cd99459a8168b35c6a57be21bc (diff)
downloadqemu-9261b245f061cb80410fdae7be8460eaa21a5d7d.zip
qemu-9261b245f061cb80410fdae7be8460eaa21a5d7d.tar.gz
qemu-9261b245f061cb80410fdae7be8460eaa21a5d7d.tar.bz2
softfloat: Move sqrt_float to softfloat-parts.c.inc
Rename to parts$N_sqrt. Reimplement float128_sqrt with FloatParts128. Reimplement with the inverse sqrt newton-raphson algorithm from musl. This is significantly faster than even the berkeley sqrt n-r algorithm, because it does not use division instructions, only multiplication. Ordinarily, changing algorithms at the same time as migrating code is a bad idea, but this is the only way I found that didn't break one of the routines at the same time. Tested-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alex Bennée <alex.bennee@linaro.org> Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Diffstat (limited to 'fpu/softfloat-parts.c.inc')
-rw-r--r--fpu/softfloat-parts.c.inc206
1 files changed, 206 insertions, 0 deletions
diff --git a/fpu/softfloat-parts.c.inc b/fpu/softfloat-parts.c.inc
index bf935c4..d69f357 100644
--- a/fpu/softfloat-parts.c.inc
+++ b/fpu/softfloat-parts.c.inc
@@ -598,6 +598,212 @@ static FloatPartsN *partsN(div)(FloatPartsN *a, FloatPartsN *b,
}
/*
+ * Square Root
+ *
+ * The base algorithm is lifted from
+ * https://git.musl-libc.org/cgit/musl/tree/src/math/sqrtf.c
+ * https://git.musl-libc.org/cgit/musl/tree/src/math/sqrt.c
+ * https://git.musl-libc.org/cgit/musl/tree/src/math/sqrtl.c
+ * and is thus MIT licenced.
+ */
+static void partsN(sqrt)(FloatPartsN *a, float_status *status,
+ const FloatFmt *fmt)
+{
+ const uint32_t three32 = 3u << 30;
+ const uint64_t three64 = 3ull << 62;
+ uint32_t d32, m32, r32, s32, u32; /* 32-bit computation */
+ uint64_t d64, m64, r64, s64, u64; /* 64-bit computation */
+ uint64_t dh, dl, rh, rl, sh, sl, uh, ul; /* 128-bit computation */
+ uint64_t d0h, d0l, d1h, d1l, d2h, d2l;
+ uint64_t discard;
+ bool exp_odd;
+ size_t index;
+
+ if (unlikely(a->cls != float_class_normal)) {
+ switch (a->cls) {
+ case float_class_snan:
+ case float_class_qnan:
+ parts_return_nan(a, status);
+ return;
+ case float_class_zero:
+ return;
+ case float_class_inf:
+ if (unlikely(a->sign)) {
+ goto d_nan;
+ }
+ return;
+ default:
+ g_assert_not_reached();
+ }
+ }
+
+ if (unlikely(a->sign)) {
+ goto d_nan;
+ }
+
+ /*
+ * Argument reduction.
+ * x = 4^e frac; with integer e, and frac in [1, 4)
+ * m = frac fixed point at bit 62, since we're in base 4.
+ * If base-2 exponent is odd, exchange that for multiply by 2,
+ * which results in no shift.
+ */
+ exp_odd = a->exp & 1;
+ index = extract64(a->frac_hi, 57, 6) | (!exp_odd << 6);
+ if (!exp_odd) {
+ frac_shr(a, 1);
+ }
+
+ /*
+ * Approximate r ~= 1/sqrt(m) and s ~= sqrt(m) when m in [1, 4).
+ *
+ * Initial estimate:
+ * 7-bit lookup table (1-bit exponent and 6-bit significand).
+ *
+ * The relative error (e = r0*sqrt(m)-1) of a linear estimate
+ * (r0 = a*m + b) is |e| < 0.085955 ~ 0x1.6p-4 at best;
+ * a table lookup is faster and needs one less iteration.
+ * The 7-bit table gives |e| < 0x1.fdp-9.
+ *
+ * A Newton-Raphson iteration for r is
+ * s = m*r
+ * d = s*r
+ * u = 3 - d
+ * r = r*u/2
+ *
+ * Fixed point representations:
+ * m, s, d, u, three are all 2.30; r is 0.32
+ */
+ m64 = a->frac_hi;
+ m32 = m64 >> 32;
+
+ r32 = rsqrt_tab[index] << 16;
+ /* |r*sqrt(m) - 1| < 0x1.FDp-9 */
+
+ s32 = ((uint64_t)m32 * r32) >> 32;
+ d32 = ((uint64_t)s32 * r32) >> 32;
+ u32 = three32 - d32;
+
+ if (N == 64) {
+ /* float64 or smaller */
+
+ r32 = ((uint64_t)r32 * u32) >> 31;
+ /* |r*sqrt(m) - 1| < 0x1.7Bp-16 */
+
+ s32 = ((uint64_t)m32 * r32) >> 32;
+ d32 = ((uint64_t)s32 * r32) >> 32;
+ u32 = three32 - d32;
+
+ if (fmt->frac_size <= 23) {
+ /* float32 or smaller */
+
+ s32 = ((uint64_t)s32 * u32) >> 32; /* 3.29 */
+ s32 = (s32 - 1) >> 6; /* 9.23 */
+ /* s < sqrt(m) < s + 0x1.08p-23 */
+
+ /* compute nearest rounded result to 2.23 bits */
+ uint32_t d0 = (m32 << 16) - s32 * s32;
+ uint32_t d1 = s32 - d0;
+ uint32_t d2 = d1 + s32 + 1;
+ s32 += d1 >> 31;
+ a->frac_hi = (uint64_t)s32 << (64 - 25);
+
+ /* increment or decrement for inexact */
+ if (d2 != 0) {
+ a->frac_hi += ((int32_t)(d1 ^ d2) < 0 ? -1 : 1);
+ }
+ goto done;
+ }
+
+ /* float64 */
+
+ r64 = (uint64_t)r32 * u32 * 2;
+ /* |r*sqrt(m) - 1| < 0x1.37-p29; convert to 64-bit arithmetic */
+ mul64To128(m64, r64, &s64, &discard);
+ mul64To128(s64, r64, &d64, &discard);
+ u64 = three64 - d64;
+
+ mul64To128(s64, u64, &s64, &discard); /* 3.61 */
+ s64 = (s64 - 2) >> 9; /* 12.52 */
+
+ /* Compute nearest rounded result */
+ uint64_t d0 = (m64 << 42) - s64 * s64;
+ uint64_t d1 = s64 - d0;
+ uint64_t d2 = d1 + s64 + 1;
+ s64 += d1 >> 63;
+ a->frac_hi = s64 << (64 - 54);
+
+ /* increment or decrement for inexact */
+ if (d2 != 0) {
+ a->frac_hi += ((int64_t)(d1 ^ d2) < 0 ? -1 : 1);
+ }
+ goto done;
+ }
+
+ r64 = (uint64_t)r32 * u32 * 2;
+ /* |r*sqrt(m) - 1| < 0x1.7Bp-16; convert to 64-bit arithmetic */
+
+ mul64To128(m64, r64, &s64, &discard);
+ mul64To128(s64, r64, &d64, &discard);
+ u64 = three64 - d64;
+ mul64To128(u64, r64, &r64, &discard);
+ r64 <<= 1;
+ /* |r*sqrt(m) - 1| < 0x1.a5p-31 */
+
+ mul64To128(m64, r64, &s64, &discard);
+ mul64To128(s64, r64, &d64, &discard);
+ u64 = three64 - d64;
+ mul64To128(u64, r64, &rh, &rl);
+ add128(rh, rl, rh, rl, &rh, &rl);
+ /* |r*sqrt(m) - 1| < 0x1.c001p-59; change to 128-bit arithmetic */
+
+ mul128To256(a->frac_hi, a->frac_lo, rh, rl, &sh, &sl, &discard, &discard);
+ mul128To256(sh, sl, rh, rl, &dh, &dl, &discard, &discard);
+ sub128(three64, 0, dh, dl, &uh, &ul);
+ mul128To256(uh, ul, sh, sl, &sh, &sl, &discard, &discard); /* 3.125 */
+ /* -0x1p-116 < s - sqrt(m) < 0x3.8001p-125 */
+
+ sub128(sh, sl, 0, 4, &sh, &sl);
+ shift128Right(sh, sl, 13, &sh, &sl); /* 16.112 */
+ /* s < sqrt(m) < s + 1ulp */
+
+ /* Compute nearest rounded result */
+ mul64To128(sl, sl, &d0h, &d0l);
+ d0h += 2 * sh * sl;
+ sub128(a->frac_lo << 34, 0, d0h, d0l, &d0h, &d0l);
+ sub128(sh, sl, d0h, d0l, &d1h, &d1l);
+ add128(sh, sl, 0, 1, &d2h, &d2l);
+ add128(d2h, d2l, d1h, d1l, &d2h, &d2l);
+ add128(sh, sl, 0, d1h >> 63, &sh, &sl);
+ shift128Left(sh, sl, 128 - 114, &sh, &sl);
+
+ /* increment or decrement for inexact */
+ if (d2h | d2l) {
+ if ((int64_t)(d1h ^ d2h) < 0) {
+ sub128(sh, sl, 0, 1, &sh, &sl);
+ } else {
+ add128(sh, sl, 0, 1, &sh, &sl);
+ }
+ }
+ a->frac_lo = sl;
+ a->frac_hi = sh;
+
+ done:
+ /* Convert back from base 4 to base 2. */
+ a->exp >>= 1;
+ if (!(a->frac_hi & DECOMPOSED_IMPLICIT_BIT)) {
+ frac_add(a, a, a);
+ } else {
+ a->exp += 1;
+ }
+ return;
+
+ d_nan:
+ float_raise(float_flag_invalid, status);
+ parts_default_nan(a, status);
+}
+
+/*
* Rounds the floating-point value `a' to an integer, and returns the
* result as a floating-point value. The operation is performed
* according to the IEC/IEEE Standard for Binary Floating-Point