aboutsummaryrefslogtreecommitdiff
path: root/contrib/plugins/cache.c
diff options
context:
space:
mode:
authorMahmoud Mandour <ma.mandourr@gmail.com>2021-07-09 15:30:01 +0100
committerAlex Bennée <alex.bennee@linaro.org>2021-07-14 15:54:13 +0100
commite2c5557ce1329f58efd8e1f27c3548acaa82e196 (patch)
treef8176431ad2af295439f5b67b343f885158d175e /contrib/plugins/cache.c
parent307ce0aaeb5799d05f63b76a91135466f6b15302 (diff)
downloadqemu-e2c5557ce1329f58efd8e1f27c3548acaa82e196.zip
qemu-e2c5557ce1329f58efd8e1f27c3548acaa82e196.tar.gz
qemu-e2c5557ce1329f58efd8e1f27c3548acaa82e196.tar.bz2
plugins: Added a new cache modelling plugin
Added a cache modelling plugin that uses a static configuration used in many of the commercial microprocessors and uses random eviction policy. The purpose of the plugin is to identify the most cache-thrashing instructions for both instruction cache and data cache. Signed-off-by: Mahmoud Mandour <ma.mandourr@gmail.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Message-Id: <20210623125458.450462-2-ma.mandourr@gmail.com> Message-Id: <20210709143005.1554-37-alex.bennee@linaro.org>
Diffstat (limited to 'contrib/plugins/cache.c')
-rw-r--r--contrib/plugins/cache.c419
1 files changed, 419 insertions, 0 deletions
diff --git a/contrib/plugins/cache.c b/contrib/plugins/cache.c
new file mode 100644
index 0000000..e9955cd
--- /dev/null
+++ b/contrib/plugins/cache.c
@@ -0,0 +1,419 @@
+/*
+ * Copyright (C) 2021, Mahmoud Mandour <ma.mandourr@gmail.com>
+ *
+ * License: GNU GPL, version 2 or later.
+ * See the COPYING file in the top-level directory.
+ */
+
+#include <inttypes.h>
+#include <stdio.h>
+#include <glib.h>
+
+#include <qemu-plugin.h>
+
+QEMU_PLUGIN_EXPORT int qemu_plugin_version = QEMU_PLUGIN_VERSION;
+
+static enum qemu_plugin_mem_rw rw = QEMU_PLUGIN_MEM_RW;
+
+static GHashTable *miss_ht;
+
+static GMutex mtx;
+static GRand *rng;
+
+static int limit;
+static bool sys;
+
+static uint64_t dmem_accesses;
+static uint64_t dmisses;
+
+static uint64_t imem_accesses;
+static uint64_t imisses;
+
+/*
+ * A CacheSet is a set of cache blocks. A memory block that maps to a set can be
+ * put in any of the blocks inside the set. The number of block per set is
+ * called the associativity (assoc).
+ *
+ * Each block contains the the stored tag and a valid bit. Since this is not
+ * a functional simulator, the data itself is not stored. We only identify
+ * whether a block is in the cache or not by searching for its tag.
+ *
+ * In order to search for memory data in the cache, the set identifier and tag
+ * are extracted from the address and the set is probed to see whether a tag
+ * match occur.
+ *
+ * An address is logically divided into three portions: The block offset,
+ * the set number, and the tag.
+ *
+ * The set number is used to identify the set in which the block may exist.
+ * The tag is compared against all the tags of a set to search for a match. If a
+ * match is found, then the access is a hit.
+ */
+
+typedef struct {
+ uint64_t tag;
+ bool valid;
+} CacheBlock;
+
+typedef struct {
+ CacheBlock *blocks;
+} CacheSet;
+
+typedef struct {
+ CacheSet *sets;
+ int num_sets;
+ int cachesize;
+ int assoc;
+ int blksize_shift;
+ uint64_t set_mask;
+ uint64_t tag_mask;
+} Cache;
+
+typedef struct {
+ char *disas_str;
+ const char *symbol;
+ uint64_t addr;
+ uint64_t dmisses;
+ uint64_t imisses;
+} InsnData;
+
+Cache *dcache, *icache;
+
+static int pow_of_two(int num)
+{
+ g_assert((num & (num - 1)) == 0);
+ int ret = 0;
+ while (num /= 2) {
+ ret++;
+ }
+ return ret;
+}
+
+static inline uint64_t extract_tag(Cache *cache, uint64_t addr)
+{
+ return addr & cache->tag_mask;
+}
+
+static inline uint64_t extract_set(Cache *cache, uint64_t addr)
+{
+ return (addr & cache->set_mask) >> cache->blksize_shift;
+}
+
+static Cache *cache_init(int blksize, int assoc, int cachesize)
+{
+ Cache *cache;
+ int i;
+ uint64_t blk_mask;
+
+ cache = g_new(Cache, 1);
+ cache->assoc = assoc;
+ cache->cachesize = cachesize;
+ cache->num_sets = cachesize / (blksize * assoc);
+ cache->sets = g_new(CacheSet, cache->num_sets);
+ cache->blksize_shift = pow_of_two(blksize);
+
+ for (i = 0; i < cache->num_sets; i++) {
+ cache->sets[i].blocks = g_new0(CacheBlock, assoc);
+ }
+
+ blk_mask = blksize - 1;
+ cache->set_mask = ((cache->num_sets - 1) << cache->blksize_shift);
+ cache->tag_mask = ~(cache->set_mask | blk_mask);
+ return cache;
+}
+
+static int get_invalid_block(Cache *cache, uint64_t set)
+{
+ int i;
+
+ for (i = 0; i < cache->assoc; i++) {
+ if (!cache->sets[set].blocks[i].valid) {
+ return i;
+ }
+ }
+
+ return -1;
+}
+
+static int get_replaced_block(Cache *cache)
+{
+ return g_rand_int_range(rng, 0, cache->assoc);
+}
+
+static bool in_cache(Cache *cache, uint64_t addr)
+{
+ int i;
+ uint64_t tag, set;
+
+ tag = extract_tag(cache, addr);
+ set = extract_set(cache, addr);
+
+ for (i = 0; i < cache->assoc; i++) {
+ if (cache->sets[set].blocks[i].tag == tag &&
+ cache->sets[set].blocks[i].valid) {
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/**
+ * access_cache(): Simulate a cache access
+ * @cache: The cache under simulation
+ * @addr: The address of the requested memory location
+ *
+ * Returns true if the requsted data is hit in the cache and false when missed.
+ * The cache is updated on miss for the next access.
+ */
+static bool access_cache(Cache *cache, uint64_t addr)
+{
+ uint64_t tag, set;
+ int replaced_blk;
+
+ if (in_cache(cache, addr)) {
+ return true;
+ }
+
+ tag = extract_tag(cache, addr);
+ set = extract_set(cache, addr);
+
+ replaced_blk = get_invalid_block(cache, set);
+
+ if (replaced_blk == -1) {
+ replaced_blk = get_replaced_block(cache);
+ }
+
+ cache->sets[set].blocks[replaced_blk].tag = tag;
+ cache->sets[set].blocks[replaced_blk].valid = true;
+
+ return false;
+}
+
+static void vcpu_mem_access(unsigned int vcpu_index, qemu_plugin_meminfo_t info,
+ uint64_t vaddr, void *userdata)
+{
+ uint64_t effective_addr;
+ struct qemu_plugin_hwaddr *hwaddr;
+ InsnData *insn;
+
+ g_mutex_lock(&mtx);
+ hwaddr = qemu_plugin_get_hwaddr(info, vaddr);
+ if (hwaddr && qemu_plugin_hwaddr_is_io(hwaddr)) {
+ g_mutex_unlock(&mtx);
+ return;
+ }
+
+ effective_addr = hwaddr ? qemu_plugin_hwaddr_phys_addr(hwaddr) : vaddr;
+
+ if (!access_cache(dcache, effective_addr)) {
+ insn = (InsnData *) userdata;
+ insn->dmisses++;
+ dmisses++;
+ }
+ dmem_accesses++;
+ g_mutex_unlock(&mtx);
+}
+
+static void vcpu_insn_exec(unsigned int vcpu_index, void *userdata)
+{
+ uint64_t insn_addr;
+ InsnData *insn;
+
+ g_mutex_lock(&mtx);
+ insn_addr = ((InsnData *) userdata)->addr;
+
+ if (!access_cache(icache, insn_addr)) {
+ insn = (InsnData *) userdata;
+ insn->imisses++;
+ imisses++;
+ }
+ imem_accesses++;
+ g_mutex_unlock(&mtx);
+}
+
+static void vcpu_tb_trans(qemu_plugin_id_t id, struct qemu_plugin_tb *tb)
+{
+ size_t n_insns;
+ size_t i;
+ InsnData *data;
+
+ n_insns = qemu_plugin_tb_n_insns(tb);
+ for (i = 0; i < n_insns; i++) {
+ struct qemu_plugin_insn *insn = qemu_plugin_tb_get_insn(tb, i);
+ uint64_t effective_addr;
+
+ if (sys) {
+ effective_addr = (uint64_t) qemu_plugin_insn_haddr(insn);
+ } else {
+ effective_addr = (uint64_t) qemu_plugin_insn_vaddr(insn);
+ }
+
+ /*
+ * Instructions might get translated multiple times, we do not create
+ * new entries for those instructions. Instead, we fetch the same
+ * entry from the hash table and register it for the callback again.
+ */
+ g_mutex_lock(&mtx);
+ data = g_hash_table_lookup(miss_ht, GUINT_TO_POINTER(effective_addr));
+ if (data == NULL) {
+ data = g_new0(InsnData, 1);
+ data->disas_str = qemu_plugin_insn_disas(insn);
+ data->symbol = qemu_plugin_insn_symbol(insn);
+ data->addr = effective_addr;
+ g_hash_table_insert(miss_ht, GUINT_TO_POINTER(effective_addr),
+ (gpointer) data);
+ }
+ g_mutex_unlock(&mtx);
+
+ qemu_plugin_register_vcpu_mem_cb(insn, vcpu_mem_access,
+ QEMU_PLUGIN_CB_NO_REGS,
+ rw, data);
+
+ qemu_plugin_register_vcpu_insn_exec_cb(insn, vcpu_insn_exec,
+ QEMU_PLUGIN_CB_NO_REGS, data);
+ }
+}
+
+static void insn_free(gpointer data)
+{
+ InsnData *insn = (InsnData *) data;
+ g_free(insn->disas_str);
+ g_free(insn);
+}
+
+static void cache_free(Cache *cache)
+{
+ for (int i = 0; i < cache->num_sets; i++) {
+ g_free(cache->sets[i].blocks);
+ }
+
+ g_free(cache->sets);
+ g_free(cache);
+}
+
+static int dcmp(gconstpointer a, gconstpointer b)
+{
+ InsnData *insn_a = (InsnData *) a;
+ InsnData *insn_b = (InsnData *) b;
+
+ return insn_a->dmisses < insn_b->dmisses ? 1 : -1;
+}
+
+static int icmp(gconstpointer a, gconstpointer b)
+{
+ InsnData *insn_a = (InsnData *) a;
+ InsnData *insn_b = (InsnData *) b;
+
+ return insn_a->imisses < insn_b->imisses ? 1 : -1;
+}
+
+static void log_stats()
+{
+ g_autoptr(GString) rep = g_string_new("");
+ g_string_append_printf(rep,
+ "Data accesses: %lu, Misses: %lu\nMiss rate: %lf%%\n\n",
+ dmem_accesses,
+ dmisses,
+ ((double) dmisses / (double) dmem_accesses) * 100.0);
+
+ g_string_append_printf(rep,
+ "Instruction accesses: %lu, Misses: %lu\nMiss rate: %lf%%\n\n",
+ imem_accesses,
+ imisses,
+ ((double) imisses / (double) imem_accesses) * 100.0);
+
+ qemu_plugin_outs(rep->str);
+}
+
+static void log_top_insns()
+{
+ int i;
+ GList *curr, *miss_insns;
+ InsnData *insn;
+
+ miss_insns = g_hash_table_get_values(miss_ht);
+ miss_insns = g_list_sort(miss_insns, dcmp);
+ g_autoptr(GString) rep = g_string_new("");
+ g_string_append_printf(rep, "%s", "address, data misses, instruction\n");
+
+ for (curr = miss_insns, i = 0; curr && i < limit; i++, curr = curr->next) {
+ insn = (InsnData *) curr->data;
+ g_string_append_printf(rep, "0x%" PRIx64, insn->addr);
+ if (insn->symbol) {
+ g_string_append_printf(rep, " (%s)", insn->symbol);
+ }
+ g_string_append_printf(rep, ", %ld, %s\n", insn->dmisses,
+ insn->disas_str);
+ }
+
+ miss_insns = g_list_sort(miss_insns, icmp);
+ g_string_append_printf(rep, "%s", "\naddress, fetch misses, instruction\n");
+
+ for (curr = miss_insns, i = 0; curr && i < limit; i++, curr = curr->next) {
+ insn = (InsnData *) curr->data;
+ g_string_append_printf(rep, "0x%" PRIx64, insn->addr);
+ if (insn->symbol) {
+ g_string_append_printf(rep, " (%s)", insn->symbol);
+ }
+ g_string_append_printf(rep, ", %ld, %s\n", insn->imisses,
+ insn->disas_str);
+ }
+
+ qemu_plugin_outs(rep->str);
+ g_list_free(miss_insns);
+}
+
+static void plugin_exit(qemu_plugin_id_t id, void *p)
+{
+ log_stats();
+ log_top_insns();
+
+ cache_free(dcache);
+ cache_free(icache);
+
+ g_hash_table_destroy(miss_ht);
+}
+
+QEMU_PLUGIN_EXPORT
+int qemu_plugin_install(qemu_plugin_id_t id, const qemu_info_t *info,
+ int argc, char **argv)
+{
+ int i;
+ int iassoc, iblksize, icachesize;
+ int dassoc, dblksize, dcachesize;
+
+ limit = 32;
+ sys = info->system_emulation;
+
+ dassoc = 8;
+ dblksize = 64;
+ dcachesize = dblksize * dassoc * 32;
+
+ iassoc = 8;
+ iblksize = 64;
+ icachesize = iblksize * iassoc * 32;
+
+
+ for (i = 0; i < argc; i++) {
+ char *opt = argv[i];
+ if (g_str_has_prefix(opt, "limit=")) {
+ limit = g_ascii_strtoll(opt + 6, NULL, 10);
+ } else {
+ fprintf(stderr, "option parsing failed: %s\n", opt);
+ return -1;
+ }
+ }
+
+ dcache = cache_init(dblksize, dassoc, dcachesize);
+ icache = cache_init(iblksize, iassoc, icachesize);
+
+ rng = g_rand_new();
+
+ qemu_plugin_register_vcpu_tb_trans_cb(id, vcpu_tb_trans);
+ qemu_plugin_register_atexit_cb(id, plugin_exit, NULL);
+
+ miss_ht = g_hash_table_new_full(NULL, g_direct_equal, NULL, insn_free);
+
+ return 0;
+}