diff options
author | Daniel P. Berrangé <berrange@redhat.com> | 2019-08-23 17:09:24 +0100 |
---|---|---|
committer | Daniel P. Berrangé <berrange@redhat.com> | 2019-09-05 14:27:06 +0100 |
commit | 336a7451e8803c21a2da6e7d1eca8cfb8e8b219a (patch) | |
tree | 62b2745dc8a2549652a4aa92c157f0e1b85b8411 /HACKING.rst | |
parent | 500efcfcf0fe2e0dae1d25637a13435ce7b6e421 (diff) | |
download | qemu-336a7451e8803c21a2da6e7d1eca8cfb8e8b219a.zip qemu-336a7451e8803c21a2da6e7d1eca8cfb8e8b219a.tar.gz qemu-336a7451e8803c21a2da6e7d1eca8cfb8e8b219a.tar.bz2 |
docs: convert README, CODING_STYLE and HACKING to RST syntax
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Daniel P. Berrangé <berrange@redhat.com>
Diffstat (limited to 'HACKING.rst')
-rw-r--r-- | HACKING.rst | 300 |
1 files changed, 300 insertions, 0 deletions
diff --git a/HACKING.rst b/HACKING.rst new file mode 100644 index 0000000..668fc42 --- /dev/null +++ b/HACKING.rst @@ -0,0 +1,300 @@ +============ +QEMU Hacking +============ + +.. contents:: Table of Contents + +Preprocessor +============ + +Variadic macros +--------------- + +For variadic macros, stick with this C99-like syntax: + +.. code-block:: c + + #define DPRINTF(fmt, ...) \ + do { printf("IRQ: " fmt, ## __VA_ARGS__); } while (0) + +Include directives +------------------ + +Order include directives as follows: + +.. code-block:: c + + #include "qemu/osdep.h" /* Always first... */ + #include <...> /* then system headers... */ + #include "..." /* and finally QEMU headers. */ + +The "qemu/osdep.h" header contains preprocessor macros that affect the behavior +of core system headers like <stdint.h>. It must be the first include so that +core system headers included by external libraries get the preprocessor macros +that QEMU depends on. + +Do not include "qemu/osdep.h" from header files since the .c file will have +already included it. + +C types +======= + +It should be common sense to use the right type, but we have collected +a few useful guidelines here. + +Scalars +------- + +If you're using "int" or "long", odds are good that there's a better type. +If a variable is counting something, it should be declared with an +unsigned type. + +If it's host memory-size related, size_t should be a good choice (use +ssize_t only if required). Guest RAM memory offsets must use ram_addr_t, +but only for RAM, it may not cover whole guest address space. + +If it's file-size related, use off_t. +If it's file-offset related (i.e., signed), use off_t. +If it's just counting small numbers use "unsigned int"; +(on all but oddball embedded systems, you can assume that that +type is at least four bytes wide). + +In the event that you require a specific width, use a standard type +like int32_t, uint32_t, uint64_t, etc. The specific types are +mandatory for VMState fields. + +Don't use Linux kernel internal types like u32, __u32 or __le32. + +Use hwaddr for guest physical addresses except pcibus_t +for PCI addresses. In addition, ram_addr_t is a QEMU internal address +space that maps guest RAM physical addresses into an intermediate +address space that can map to host virtual address spaces. Generally +speaking, the size of guest memory can always fit into ram_addr_t but +it would not be correct to store an actual guest physical address in a +ram_addr_t. + +For CPU virtual addresses there are several possible types. +vaddr is the best type to use to hold a CPU virtual address in +target-independent code. It is guaranteed to be large enough to hold a +virtual address for any target, and it does not change size from target +to target. It is always unsigned. +target_ulong is a type the size of a virtual address on the CPU; this means +it may be 32 or 64 bits depending on which target is being built. It should +therefore be used only in target-specific code, and in some +performance-critical built-per-target core code such as the TLB code. +There is also a signed version, target_long. +abi_ulong is for the ``*``-user targets, and represents a type the size of +'void ``*``' in that target's ABI. (This may not be the same as the size of a +full CPU virtual address in the case of target ABIs which use 32 bit pointers +on 64 bit CPUs, like sparc32plus.) Definitions of structures that must match +the target's ABI must use this type for anything that on the target is defined +to be an 'unsigned long' or a pointer type. +There is also a signed version, abi_long. + +Of course, take all of the above with a grain of salt. If you're about +to use some system interface that requires a type like size_t, pid_t or +off_t, use matching types for any corresponding variables. + +Also, if you try to use e.g., "unsigned int" as a type, and that +conflicts with the signedness of a related variable, sometimes +it's best just to use the *wrong* type, if "pulling the thread" +and fixing all related variables would be too invasive. + +Finally, while using descriptive types is important, be careful not to +go overboard. If whatever you're doing causes warnings, or requires +casts, then reconsider or ask for help. + +Pointers +-------- + +Ensure that all of your pointers are "const-correct". +Unless a pointer is used to modify the pointed-to storage, +give it the "const" attribute. That way, the reader knows +up-front that this is a read-only pointer. Perhaps more +importantly, if we're diligent about this, when you see a non-const +pointer, you're guaranteed that it is used to modify the storage +it points to, or it is aliased to another pointer that is. + +Typedefs +-------- + +Typedefs are used to eliminate the redundant 'struct' keyword, since type +names have a different style than other identifiers ("CamelCase" versus +"snake_case"). Each named struct type should have a CamelCase name and a +corresponding typedef. + +Since certain C compilers choke on duplicated typedefs, you should avoid +them and declare a typedef only in one header file. For common types, +you can use "include/qemu/typedefs.h" for example. However, as a matter +of convenience it is also perfectly fine to use forward struct +definitions instead of typedefs in headers and function prototypes; this +avoids problems with duplicated typedefs and reduces the need to include +headers from other headers. + +Reserved namespaces in C and POSIX +---------------------------------- + +Underscore capital, double underscore, and underscore 't' suffixes should be +avoided. + +Low level memory management +=========================== + +Use of the malloc/free/realloc/calloc/valloc/memalign/posix_memalign +APIs is not allowed in the QEMU codebase. Instead of these routines, +use the GLib memory allocation routines g_malloc/g_malloc0/g_new/ +g_new0/g_realloc/g_free or QEMU's qemu_memalign/qemu_blockalign/qemu_vfree +APIs. + +Please note that g_malloc will exit on allocation failure, so there +is no need to test for failure (as you would have to with malloc). +Calling g_malloc with a zero size is valid and will return NULL. + +Prefer g_new(T, n) instead of g_malloc(sizeof(T) ``*`` n) for the following +reasons: + +* It catches multiplication overflowing size_t; +* It returns T ``*`` instead of void ``*``, letting compiler catch more type errors. + +Declarations like + +.. code-block:: c + + T *v = g_malloc(sizeof(*v)) + +are acceptable, though. + +Memory allocated by qemu_memalign or qemu_blockalign must be freed with +qemu_vfree, since breaking this will cause problems on Win32. + +String manipulation +=================== + +Do not use the strncpy function. As mentioned in the man page, it does *not* +guarantee a NULL-terminated buffer, which makes it extremely dangerous to use. +It also zeros trailing destination bytes out to the specified length. Instead, +use this similar function when possible, but note its different signature: + +.. code-block:: c + + void pstrcpy(char *dest, int dest_buf_size, const char *src) + +Don't use strcat because it can't check for buffer overflows, but: + +.. code-block:: c + + char *pstrcat(char *buf, int buf_size, const char *s) + +The same limitation exists with sprintf and vsprintf, so use snprintf and +vsnprintf. + +QEMU provides other useful string functions: + +.. code-block:: c + + int strstart(const char *str, const char *val, const char **ptr) + int stristart(const char *str, const char *val, const char **ptr) + int qemu_strnlen(const char *s, int max_len) + +There are also replacement character processing macros for isxyz and toxyz, +so instead of e.g. isalnum you should use qemu_isalnum. + +Because of the memory management rules, you must use g_strdup/g_strndup +instead of plain strdup/strndup. + +Printf-style functions +====================== + +Whenever you add a new printf-style function, i.e., one with a format +string argument and following "..." in its prototype, be sure to use +gcc's printf attribute directive in the prototype. + +This makes it so gcc's -Wformat and -Wformat-security options can do +their jobs and cross-check format strings with the number and types +of arguments. + +C standard, implementation defined and undefined behaviors +========================================================== + +C code in QEMU should be written to the C99 language specification. A copy +of the final version of the C99 standard with corrigenda TC1, TC2, and TC3 +included, formatted as a draft, can be downloaded from: + + `<http://www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf>`_ + +The C language specification defines regions of undefined behavior and +implementation defined behavior (to give compiler authors enough leeway to +produce better code). In general, code in QEMU should follow the language +specification and avoid both undefined and implementation defined +constructs. ("It works fine on the gcc I tested it with" is not a valid +argument...) However there are a few areas where we allow ourselves to +assume certain behaviors because in practice all the platforms we care about +behave in the same way and writing strictly conformant code would be +painful. These are: + +* you may assume that integers are 2s complement representation +* you may assume that right shift of a signed integer duplicates + the sign bit (ie it is an arithmetic shift, not a logical shift) + +In addition, QEMU assumes that the compiler does not use the latitude +given in C99 and C11 to treat aspects of signed '<<' as undefined, as +documented in the GNU Compiler Collection manual starting at version 4.0. + +Error handling and reporting +============================ + +Reporting errors to the human user +---------------------------------- + +Do not use printf(), fprintf() or monitor_printf(). Instead, use +error_report() or error_vreport() from error-report.h. This ensures the +error is reported in the right place (current monitor or stderr), and in +a uniform format. + +Use error_printf() & friends to print additional information. + +error_report() prints the current location. In certain common cases +like command line parsing, the current location is tracked +automatically. To manipulate it manually, use the loc_``*``() from +error-report.h. + +Propagating errors +------------------ + +An error can't always be reported to the user right where it's detected, +but often needs to be propagated up the call chain to a place that can +handle it. This can be done in various ways. + +The most flexible one is Error objects. See error.h for usage +information. + +Use the simplest suitable method to communicate success / failure to +callers. Stick to common methods: non-negative on success / -1 on +error, non-negative / -errno, non-null / null, or Error objects. + +Example: when a function returns a non-null pointer on success, and it +can fail only in one way (as far as the caller is concerned), returning +null on failure is just fine, and certainly simpler and a lot easier on +the eyes than propagating an Error object through an Error ``*````*`` parameter. + +Example: when a function's callers need to report details on failure +only the function really knows, use Error ``*````*``, and set suitable errors. + +Do not report an error to the user when you're also returning an error +for somebody else to handle. Leave the reporting to the place that +consumes the error returned. + +Handling errors +--------------- + +Calling exit() is fine when handling configuration errors during +startup. It's problematic during normal operation. In particular, +monitor commands should never exit(). + +Do not call exit() or abort() to handle an error that can be triggered +by the guest (e.g., some unimplemented corner case in guest code +translation or device emulation). Guests should not be able to +terminate QEMU. + +Note that &error_fatal is just another way to exit(1), and &error_abort +is just another way to abort(). |