diff options
author | Max Filippov <jcmvbkbc@gmail.com> | 2016-11-22 10:08:02 -0800 |
---|---|---|
committer | Max Filippov <jcmvbkbc@gmail.com> | 2017-12-18 21:26:19 -0800 |
commit | 7f709ce739d46ecd6df98921a20e9dce1dcc421b (patch) | |
tree | 80a71422843bc72f459b8f0e9703fc9d503000e3 | |
parent | 2eb967c4e9898d688a75be43955bbbc2107f29f7 (diff) | |
download | qemu-7f709ce739d46ecd6df98921a20e9dce1dcc421b.zip qemu-7f709ce739d46ecd6df98921a20e9dce1dcc421b.tar.gz qemu-7f709ce739d46ecd6df98921a20e9dce1dcc421b.tar.bz2 |
target/xtensa: import libisa source
The canonical way of dealing with Xtensa instructions decoding and
encoding is through the libisa. Libisa is a configuration-independent
library with a stable interface plus generated configuration-specific
xtensa-modules.c file with implementations of decoding and encoding
functions. Libisa is MIT-licensed and originally disributed
xtensa-modules.c files are also MIT-licensed and are available as a
part of xtensa configuration overlay.
Signed-off-by: Max Filippov <jcmvbkbc@gmail.com>
-rw-r--r-- | include/hw/xtensa/xtensa-isa.h | 838 | ||||
-rw-r--r-- | target/xtensa/Makefile.objs | 1 | ||||
-rw-r--r-- | target/xtensa/xtensa-isa-internal.h | 231 | ||||
-rw-r--r-- | target/xtensa/xtensa-isa.c | 1745 | ||||
-rw-r--r-- | target/xtensa/xtensa-isa.h | 1 |
5 files changed, 2816 insertions, 0 deletions
diff --git a/include/hw/xtensa/xtensa-isa.h b/include/hw/xtensa/xtensa-isa.h new file mode 100644 index 0000000..353f82b --- /dev/null +++ b/include/hw/xtensa/xtensa-isa.h @@ -0,0 +1,838 @@ +/* Interface definition for configurable Xtensa ISA support. + * + * Copyright (c) 2001-2013 Tensilica Inc. + * + * Permission is hereby granted, free of charge, to any person obtaining + * a copy of this software and associated documentation files (the + * "Software"), to deal in the Software without restriction, including + * without limitation the rights to use, copy, modify, merge, publish, + * distribute, sublicense, and/or sell copies of the Software, and to + * permit persons to whom the Software is furnished to do so, subject to + * the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. + * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + +#ifndef XTENSA_LIBISA_H +#define XTENSA_LIBISA_H + +#include <stdint.h> + +#ifdef __cplusplus +extern "C" { +#endif + +/* + * Version number: This is intended to help support code that works with + * versions of this library from multiple Xtensa releases. + */ + +#define XTENSA_ISA_VERSION 7000 + +/* + * This file defines the interface to the Xtensa ISA library. This + * library contains most of the ISA-specific information for a + * particular Xtensa processor. For example, the set of valid + * instructions, their opcode encodings and operand fields are all + * included here. + * + * This interface basically defines a number of abstract data types. + * + * . an instruction buffer - for holding the raw instruction bits + * . ISA info - information about the ISA as a whole + * . instruction formats - instruction size and slot structure + * . opcodes - information about individual instructions + * . operands - information about register and immediate instruction operands + * . stateOperands - information about processor state instruction operands + * . interfaceOperands - information about interface instruction operands + * . register files - register file information + * . processor states - internal processor state information + * . system registers - "special registers" and "user registers" + * . interfaces - TIE interfaces that are external to the processor + * . functional units - TIE shared functions + * + * The interface defines a set of functions to access each data type. + * With the exception of the instruction buffer, the internal + * representations of the data structures are hidden. All accesses must + * be made through the functions defined here. + */ + +typedef struct xtensa_isa_opaque { int unused; } *xtensa_isa; + + +/* + * Most of the Xtensa ISA entities (e.g., opcodes, regfiles, etc.) are + * represented here using sequential integers beginning with 0. The + * specific values are only fixed for a particular instantiation of an + * xtensa_isa structure, so these values should only be used + * internally. + */ + +typedef int xtensa_opcode; +typedef int xtensa_format; +typedef int xtensa_regfile; +typedef int xtensa_state; +typedef int xtensa_sysreg; +typedef int xtensa_interface; +typedef int xtensa_funcUnit; + + +/* Define a unique value for undefined items. */ + +#define XTENSA_UNDEFINED -1 + + +/* + * Overview of using this interface to decode/encode instructions: + * + * Each Xtensa instruction is associated with a particular instruction + * format, where the format defines a fixed number of slots for + * operations. The formats for the core Xtensa ISA have only one slot, + * but FLIX instructions may have multiple slots. Within each slot, + * there is a single opcode and some number of associated operands. + * + * The encoding and decoding functions operate on instruction buffers, + * not on the raw bytes of the instructions. The same instruction + * buffer data structure is used for both entire instructions and + * individual slots in those instructions -- the contents of a slot need + * to be extracted from or inserted into the buffer for the instruction + * as a whole. + * + * Decoding an instruction involves first finding the format, which + * identifies the number of slots, and then decoding each slot + * separately. A slot is decoded by finding the opcode and then using + * the opcode to determine how many operands there are. For example: + * + * xtensa_insnbuf_from_chars + * xtensa_format_decode + * for each slot { + * xtensa_format_get_slot + * xtensa_opcode_decode + * for each operand { + * xtensa_operand_get_field + * xtensa_operand_decode + * } + * } + * + * Encoding an instruction is roughly the same procedure in reverse: + * + * xtensa_format_encode + * for each slot { + * xtensa_opcode_encode + * for each operand { + * xtensa_operand_encode + * xtensa_operand_set_field + * } + * xtensa_format_set_slot + * } + * xtensa_insnbuf_to_chars + */ + + +/* Error handling. */ + +/* + * Error codes. The code for the most recent error condition can be + * retrieved with the "errno" function. For any result other than + * xtensa_isa_ok, an error message containing additional information + * about the problem can be retrieved using the "error_msg" function. + * The error messages are stored in an internal buffer, which should + * not be freed and may be overwritten by subsequent operations. + */ + +typedef enum xtensa_isa_status_enum { + xtensa_isa_ok = 0, + xtensa_isa_bad_format, + xtensa_isa_bad_slot, + xtensa_isa_bad_opcode, + xtensa_isa_bad_operand, + xtensa_isa_bad_field, + xtensa_isa_bad_iclass, + xtensa_isa_bad_regfile, + xtensa_isa_bad_sysreg, + xtensa_isa_bad_state, + xtensa_isa_bad_interface, + xtensa_isa_bad_funcUnit, + xtensa_isa_wrong_slot, + xtensa_isa_no_field, + xtensa_isa_out_of_memory, + xtensa_isa_buffer_overflow, + xtensa_isa_internal_error, + xtensa_isa_bad_value +} xtensa_isa_status; + +xtensa_isa_status xtensa_isa_errno(xtensa_isa isa); + +char *xtensa_isa_error_msg(xtensa_isa isa); + + + +/* Instruction buffers. */ + +typedef uint32_t xtensa_insnbuf_word; +typedef xtensa_insnbuf_word *xtensa_insnbuf; + + +/* Get the size in "insnbuf_words" of the xtensa_insnbuf array. */ + +int xtensa_insnbuf_size(xtensa_isa isa); + + +/* Allocate an xtensa_insnbuf of the right size. */ + +xtensa_insnbuf xtensa_insnbuf_alloc(xtensa_isa isa); + + +/* Release an xtensa_insnbuf. */ + +void xtensa_insnbuf_free(xtensa_isa isa, xtensa_insnbuf buf); + + +/* + * Conversion between raw memory (char arrays) and our internal + * instruction representation. This is complicated by the Xtensa ISA's + * variable instruction lengths. When converting to chars, the buffer + * must contain a valid instruction so we know how many bytes to copy; + * thus, the "to_chars" function returns the number of bytes copied or + * XTENSA_UNDEFINED on error. The "from_chars" function first reads the + * minimal number of bytes required to decode the instruction length and + * then proceeds to copy the entire instruction into the buffer; if the + * memory does not contain a valid instruction, it copies the maximum + * number of bytes required for the longest Xtensa instruction. The + * "num_chars" argument may be used to limit the number of bytes that + * can be read or written. Otherwise, if "num_chars" is zero, the + * functions may read or write past the end of the code. + */ + +int xtensa_insnbuf_to_chars(xtensa_isa isa, const xtensa_insnbuf insn, + unsigned char *cp, int num_chars); + +void xtensa_insnbuf_from_chars(xtensa_isa isa, xtensa_insnbuf insn, + const unsigned char *cp, int num_chars); + + + +/* ISA information. */ + +/* Initialize the ISA information. */ + +xtensa_isa xtensa_isa_init(void *xtensa_modules, xtensa_isa_status *errno_p, + char **error_msg_p); + + +/* Deallocate an xtensa_isa structure. */ + +void xtensa_isa_free(xtensa_isa isa); + + +/* Get the maximum instruction size in bytes. */ + +int xtensa_isa_maxlength(xtensa_isa isa); + + +/* + * Decode the length in bytes of an instruction in raw memory (not an + * insnbuf). This function reads only the minimal number of bytes + * required to decode the instruction length. Returns + * XTENSA_UNDEFINED on error. + */ + +int xtensa_isa_length_from_chars(xtensa_isa isa, const unsigned char *cp); + + +/* + * Get the number of stages in the processor's pipeline. The pipeline + * stage values returned by other functions in this library will range + * from 0 to N-1, where N is the value returned by this function. + * Note that the stage numbers used here may not correspond to the + * actual processor hardware, e.g., the hardware may have additional + * stages before stage 0. Returns XTENSA_UNDEFINED on error. + */ + +int xtensa_isa_num_pipe_stages(xtensa_isa isa); + + +/* Get the number of various entities that are defined for this processor. */ + +int xtensa_isa_num_formats(xtensa_isa isa); + +int xtensa_isa_num_opcodes(xtensa_isa isa); + +int xtensa_isa_num_regfiles(xtensa_isa isa); + +int xtensa_isa_num_states(xtensa_isa isa); + +int xtensa_isa_num_sysregs(xtensa_isa isa); + +int xtensa_isa_num_interfaces(xtensa_isa isa); + +int xtensa_isa_num_funcUnits(xtensa_isa isa); + + + +/* Instruction formats. */ + +/* Get the name of a format. Returns null on error. */ + +const char *xtensa_format_name(xtensa_isa isa, xtensa_format fmt); + + +/* + * Given a format name, return the format number. Returns + * XTENSA_UNDEFINED if the name is not a valid format. + */ + +xtensa_format xtensa_format_lookup(xtensa_isa isa, const char *fmtname); + + +/* + * Decode the instruction format from a binary instruction buffer. + * Returns XTENSA_UNDEFINED if the format is not recognized. + */ + +xtensa_format xtensa_format_decode(xtensa_isa isa, const xtensa_insnbuf insn); + + +/* + * Set the instruction format field(s) in a binary instruction buffer. + * All the other fields are set to zero. Returns non-zero on error. + */ + +int xtensa_format_encode(xtensa_isa isa, xtensa_format fmt, + xtensa_insnbuf insn); + + +/* + * Find the length (in bytes) of an instruction. Returns + * XTENSA_UNDEFINED on error. + */ + +int xtensa_format_length(xtensa_isa isa, xtensa_format fmt); + + +/* + * Get the number of slots in an instruction. Returns XTENSA_UNDEFINED + * on error. + */ + +int xtensa_format_num_slots(xtensa_isa isa, xtensa_format fmt); + + +/* + * Get the opcode for a no-op in a particular slot. + * Returns XTENSA_UNDEFINED on error. + */ + +xtensa_opcode xtensa_format_slot_nop_opcode(xtensa_isa isa, xtensa_format fmt, + int slot); + + +/* + * Get the bits for a specified slot out of an insnbuf for the + * instruction as a whole and put them into an insnbuf for that one + * slot, and do the opposite to set a slot. Return non-zero on error. + */ + +int xtensa_format_get_slot(xtensa_isa isa, xtensa_format fmt, int slot, + const xtensa_insnbuf insn, xtensa_insnbuf slotbuf); + +int xtensa_format_set_slot(xtensa_isa isa, xtensa_format fmt, int slot, + xtensa_insnbuf insn, const xtensa_insnbuf slotbuf); + + + +/* Opcode information. */ + +/* + * Translate a mnemonic name to an opcode. Returns XTENSA_UNDEFINED if + * the name is not a valid opcode mnemonic. + */ + +xtensa_opcode xtensa_opcode_lookup(xtensa_isa isa, const char *opname); + + +/* + * Decode the opcode for one instruction slot from a binary instruction + * buffer. Returns the opcode or XTENSA_UNDEFINED if the opcode is + * illegal. + */ + +xtensa_opcode xtensa_opcode_decode(xtensa_isa isa, xtensa_format fmt, int slot, + const xtensa_insnbuf slotbuf); + + +/* + * Set the opcode field(s) for an instruction slot. All other fields + * in the slot are set to zero. Returns non-zero if the opcode cannot + * be encoded. + */ + +int xtensa_opcode_encode(xtensa_isa isa, xtensa_format fmt, int slot, + xtensa_insnbuf slotbuf, xtensa_opcode opc); + + +/* Get the mnemonic name for an opcode. Returns null on error. */ + +const char *xtensa_opcode_name(xtensa_isa isa, xtensa_opcode opc); + + +/* Check various properties of opcodes. These functions return 0 if + * the condition is false, 1 if the condition is true, and + * XTENSA_UNDEFINED on error. The instructions are classified as + * follows: + * + * branch: conditional branch; may fall through to next instruction (B*) + * jump: unconditional branch (J, JX, RET*, RF*) + * loop: zero-overhead loop (LOOP*) + * call: unconditional call; control returns to next instruction (CALL*) + * + * For the opcodes that affect control flow in some way, the branch + * target may be specified by an immediate operand or it may be an + * address stored in a register. You can distinguish these by + * checking if the instruction has a PC-relative immediate + * operand. + */ + +int xtensa_opcode_is_branch(xtensa_isa isa, xtensa_opcode opc); + +int xtensa_opcode_is_jump(xtensa_isa isa, xtensa_opcode opc); + +int xtensa_opcode_is_loop(xtensa_isa isa, xtensa_opcode opc); + +int xtensa_opcode_is_call(xtensa_isa isa, xtensa_opcode opc); + + +/* + * Find the number of ordinary operands, state operands, and interface + * operands for an instruction. These return XTENSA_UNDEFINED on + * error. + */ + +int xtensa_opcode_num_operands(xtensa_isa isa, xtensa_opcode opc); + +int xtensa_opcode_num_stateOperands(xtensa_isa isa, xtensa_opcode opc); + +int xtensa_opcode_num_interfaceOperands(xtensa_isa isa, xtensa_opcode opc); + + +/* + * Get functional unit usage requirements for an opcode. Each "use" + * is identified by a <functional unit, pipeline stage> pair. The + * "num_funcUnit_uses" function returns the number of these "uses" or + * XTENSA_UNDEFINED on error. The "funcUnit_use" function returns + * a pointer to a "use" pair or null on error. + */ + +typedef struct xtensa_funcUnit_use_struct { + xtensa_funcUnit unit; + int stage; +} xtensa_funcUnit_use; + +int xtensa_opcode_num_funcUnit_uses(xtensa_isa isa, xtensa_opcode opc); + +xtensa_funcUnit_use *xtensa_opcode_funcUnit_use(xtensa_isa isa, + xtensa_opcode opc, int u); + + + +/* Operand information. */ + +/* Get the name of an operand. Returns null on error. */ + +const char *xtensa_operand_name(xtensa_isa isa, xtensa_opcode opc, int opnd); + + +/* + * Some operands are "invisible", i.e., not explicitly specified in + * assembly language. When assembling an instruction, you need not set + * the values of invisible operands, since they are either hardwired or + * derived from other field values. The values of invisible operands + * can be examined in the same way as other operands, but remember that + * an invisible operand may get its value from another visible one, so + * the entire instruction must be available before examining the + * invisible operand values. This function returns 1 if an operand is + * visible, 0 if it is invisible, or XTENSA_UNDEFINED on error. Note + * that whether an operand is visible is orthogonal to whether it is + * "implicit", i.e., whether it is encoded in a field in the + * instruction. + */ + +int xtensa_operand_is_visible(xtensa_isa isa, xtensa_opcode opc, int opnd); + + +/* + * Check if an operand is an input ('i'), output ('o'), or inout ('m') + * operand. Note: The output operand of a conditional assignment + * (e.g., movnez) appears here as an inout ('m') even if it is declared + * in the TIE code as an output ('o'); this allows the compiler to + * properly handle register allocation for conditional assignments. + * Returns 0 on error. + */ + +char xtensa_operand_inout(xtensa_isa isa, xtensa_opcode opc, int opnd); + + +/* + * Get and set the raw (encoded) value of the field for the specified + * operand. The "set" function does not check if the value fits in the + * field; that is done by the "encode" function below. Both of these + * functions return non-zero on error, e.g., if the field is not defined + * for the specified slot. + */ + +int xtensa_operand_get_field(xtensa_isa isa, xtensa_opcode opc, int opnd, + xtensa_format fmt, int slot, + const xtensa_insnbuf slotbuf, uint32_t *valp); + +int xtensa_operand_set_field(xtensa_isa isa, xtensa_opcode opc, int opnd, + xtensa_format fmt, int slot, + xtensa_insnbuf slotbuf, uint32_t val); + + +/* + * Encode and decode operands. The raw bits in the operand field may + * be encoded in a variety of different ways. These functions hide + * the details of that encoding. The result values are returned through + * the argument pointer. The return value is non-zero on error. + */ + +int xtensa_operand_encode(xtensa_isa isa, xtensa_opcode opc, int opnd, + uint32_t *valp); + +int xtensa_operand_decode(xtensa_isa isa, xtensa_opcode opc, int opnd, + uint32_t *valp); + + +/* + * An operand may be either a register operand or an immediate of some + * sort (e.g., PC-relative or not). The "is_register" function returns + * 0 if the operand is an immediate, 1 if it is a register, and + * XTENSA_UNDEFINED on error. The "regfile" function returns the + * regfile for a register operand, or XTENSA_UNDEFINED on error. + */ + +int xtensa_operand_is_register(xtensa_isa isa, xtensa_opcode opc, int opnd); + +xtensa_regfile xtensa_operand_regfile(xtensa_isa isa, xtensa_opcode opc, + int opnd); + + +/* + * Register operands may span multiple consecutive registers, e.g., a + * 64-bit data type may occupy two 32-bit registers. Only the first + * register is encoded in the operand field. This function specifies + * the number of consecutive registers occupied by this operand. For + * non-register operands, the return value is undefined. Returns + * XTENSA_UNDEFINED on error. + */ + +int xtensa_operand_num_regs(xtensa_isa isa, xtensa_opcode opc, int opnd); + + +/* + * Some register operands do not completely identify the register being + * accessed. For example, the operand value may be added to an internal + * state value. By definition, this implies that the corresponding + * regfile is not allocatable. Unknown registers should generally be + * treated with worst-case assumptions. The function returns 0 if the + * register value is unknown, 1 if known, and XTENSA_UNDEFINED on + * error. + */ + +int xtensa_operand_is_known_reg(xtensa_isa isa, xtensa_opcode opc, int opnd); + + +/* + * Check if an immediate operand is PC-relative. Returns 0 for register + * operands and non-PC-relative immediates, 1 for PC-relative + * immediates, and XTENSA_UNDEFINED on error. + */ + +int xtensa_operand_is_PCrelative(xtensa_isa isa, xtensa_opcode opc, int opnd); + + +/* + * For PC-relative offset operands, the interpretation of the offset may + * vary between opcodes, e.g., is it relative to the current PC or that + * of the next instruction? The following functions are defined to + * perform PC-relative relocations and to undo them (as in the + * disassembler). The "do_reloc" function takes the desired address + * value and the PC of the current instruction and sets the value to the + * corresponding PC-relative offset (which can then be encoded and + * stored into the operand field). The "undo_reloc" function takes the + * unencoded offset value and the current PC and sets the value to the + * appropriate address. The return values are non-zero on error. Note + * that these functions do not replace the encode/decode functions; the + * operands must be encoded/decoded separately and the encode functions + * are responsible for detecting invalid operand values. + */ + +int xtensa_operand_do_reloc(xtensa_isa isa, xtensa_opcode opc, int opnd, + uint32_t *valp, uint32_t pc); + +int xtensa_operand_undo_reloc(xtensa_isa isa, xtensa_opcode opc, int opnd, + uint32_t *valp, uint32_t pc); + + + +/* State Operands. */ + +/* + * Get the state accessed by a state operand. Returns XTENSA_UNDEFINED + * on error. + */ + +xtensa_state xtensa_stateOperand_state(xtensa_isa isa, xtensa_opcode opc, + int stOp); + + +/* + * Check if a state operand is an input ('i'), output ('o'), or inout + * ('m') operand. Returns 0 on error. + */ + +char xtensa_stateOperand_inout(xtensa_isa isa, xtensa_opcode opc, int stOp); + + + +/* Interface Operands. */ + +/* + * Get the external interface accessed by an interface operand. + * Returns XTENSA_UNDEFINED on error. + */ + +xtensa_interface xtensa_interfaceOperand_interface(xtensa_isa isa, + xtensa_opcode opc, + int ifOp); + + + +/* Register Files. */ + +/* + * Regfiles include both "real" regfiles and "views", where a view + * allows a group of adjacent registers in a real "parent" regfile to be + * viewed as a single register. A regfile view has all the same + * properties as its parent except for its (long) name, bit width, number + * of entries, and default ctype. You can use the parent function to + * distinguish these two classes. + */ + +/* + * Look up a regfile by either its name or its abbreviated "short name". + * Returns XTENSA_UNDEFINED on error. The "lookup_shortname" function + * ignores "view" regfiles since they always have the same shortname as + * their parents. + */ + +xtensa_regfile xtensa_regfile_lookup(xtensa_isa isa, const char *name); + +xtensa_regfile xtensa_regfile_lookup_shortname(xtensa_isa isa, + const char *shortname); + + +/* + * Get the name or abbreviated "short name" of a regfile. + * Returns null on error. + */ + +const char *xtensa_regfile_name(xtensa_isa isa, xtensa_regfile rf); + +const char *xtensa_regfile_shortname(xtensa_isa isa, xtensa_regfile rf); + + +/* + * Get the parent regfile of a "view" regfile. If the regfile is not a + * view, the result is the same as the input parameter. Returns + * XTENSA_UNDEFINED on error. + */ + +xtensa_regfile xtensa_regfile_view_parent(xtensa_isa isa, xtensa_regfile rf); + + +/* + * Get the bit width of a regfile or regfile view. + * Returns XTENSA_UNDEFINED on error. + */ + +int xtensa_regfile_num_bits(xtensa_isa isa, xtensa_regfile rf); + + +/* + * Get the number of regfile entries. Returns XTENSA_UNDEFINED on + * error. + */ + +int xtensa_regfile_num_entries(xtensa_isa isa, xtensa_regfile rf); + + + +/* Processor States. */ + +/* Look up a state by name. Returns XTENSA_UNDEFINED on error. */ + +xtensa_state xtensa_state_lookup(xtensa_isa isa, const char *name); + + +/* Get the name for a processor state. Returns null on error. */ + +const char *xtensa_state_name(xtensa_isa isa, xtensa_state st); + + +/* + * Get the bit width for a processor state. + * Returns XTENSA_UNDEFINED on error. + */ + +int xtensa_state_num_bits(xtensa_isa isa, xtensa_state st); + + +/* + * Check if a state is exported from the processor core. Returns 0 if + * the condition is false, 1 if the condition is true, and + * XTENSA_UNDEFINED on error. + */ + +int xtensa_state_is_exported(xtensa_isa isa, xtensa_state st); + + +/* + * Check for a "shared_or" state. Returns 0 if the condition is false, + * 1 if the condition is true, and XTENSA_UNDEFINED on error. + */ + +int xtensa_state_is_shared_or(xtensa_isa isa, xtensa_state st); + + + +/* Sysregs ("special registers" and "user registers"). */ + +/* + * Look up a register by its number and whether it is a "user register" + * or a "special register". Returns XTENSA_UNDEFINED if the sysreg does + * not exist. + */ + +xtensa_sysreg xtensa_sysreg_lookup(xtensa_isa isa, int num, int is_user); + + +/* + * Check if there exists a sysreg with a given name. + * If not, this function returns XTENSA_UNDEFINED. + */ + +xtensa_sysreg xtensa_sysreg_lookup_name(xtensa_isa isa, const char *name); + + +/* Get the name of a sysreg. Returns null on error. */ + +const char *xtensa_sysreg_name(xtensa_isa isa, xtensa_sysreg sysreg); + + +/* Get the register number. Returns XTENSA_UNDEFINED on error. */ + +int xtensa_sysreg_number(xtensa_isa isa, xtensa_sysreg sysreg); + + +/* + * Check if a sysreg is a "special register" or a "user register". + * Returns 0 for special registers, 1 for user registers and + * XTENSA_UNDEFINED on error. + */ + +int xtensa_sysreg_is_user(xtensa_isa isa, xtensa_sysreg sysreg); + + + +/* Interfaces. */ + +/* + * Find an interface by name. The return value is XTENSA_UNDEFINED if + * the specified interface is not found. + */ + +xtensa_interface xtensa_interface_lookup(xtensa_isa isa, const char *ifname); + + +/* Get the name of an interface. Returns null on error. */ + +const char *xtensa_interface_name(xtensa_isa isa, xtensa_interface intf); + + +/* + * Get the bit width for an interface. + * Returns XTENSA_UNDEFINED on error. + */ + +int xtensa_interface_num_bits(xtensa_isa isa, xtensa_interface intf); + + +/* + * Check if an interface is an input ('i') or output ('o') with respect + * to the Xtensa processor core. Returns 0 on error. + */ + +char xtensa_interface_inout(xtensa_isa isa, xtensa_interface intf); + + +/* + * Check if accessing an interface has potential side effects. + * Currently "data" interfaces have side effects and "control" + * interfaces do not. Returns 1 if there are side effects, 0 if not, + * and XTENSA_UNDEFINED on error. + */ + +int xtensa_interface_has_side_effect(xtensa_isa isa, xtensa_interface intf); + + +/* + * Some interfaces may be related such that accessing one interface + * has side effects on a set of related interfaces. The interfaces + * are partitioned into equivalence classes of related interfaces, and + * each class is assigned a unique identifier number. This function + * returns the class identifier for an interface, or XTENSA_UNDEFINED + * on error. These identifiers can be compared to determine if two + * interfaces are related; the specific values of the identifiers have + * no particular meaning otherwise. + */ + +int xtensa_interface_class_id(xtensa_isa isa, xtensa_interface intf); + + +/* Functional Units. */ + +/* + * Find a functional unit by name. The return value is XTENSA_UNDEFINED if + * the specified unit is not found. + */ + +xtensa_funcUnit xtensa_funcUnit_lookup(xtensa_isa isa, const char *fname); + + +/* Get the name of a functional unit. Returns null on error. */ + +const char *xtensa_funcUnit_name(xtensa_isa isa, xtensa_funcUnit fun); + + +/* + * Functional units may be replicated. See how many instances of a + * particular function unit exist. Returns XTENSA_UNDEFINED on error. + */ + +int xtensa_funcUnit_num_copies(xtensa_isa isa, xtensa_funcUnit fun); + + +#ifdef __cplusplus +} +#endif +#endif /* XTENSA_LIBISA_H */ diff --git a/target/xtensa/Makefile.objs b/target/xtensa/Makefile.objs index 481de91..0429706 100644 --- a/target/xtensa/Makefile.objs +++ b/target/xtensa/Makefile.objs @@ -3,5 +3,6 @@ obj-y += core-dc232b.o obj-y += core-dc233c.o obj-y += core-fsf.o obj-$(CONFIG_SOFTMMU) += monitor.o +obj-y += xtensa-isa.o obj-y += translate.o op_helper.o helper.o cpu.o obj-y += gdbstub.o diff --git a/target/xtensa/xtensa-isa-internal.h b/target/xtensa/xtensa-isa-internal.h new file mode 100644 index 0000000..c29295f --- /dev/null +++ b/target/xtensa/xtensa-isa-internal.h @@ -0,0 +1,231 @@ +/* Internal definitions for the Xtensa ISA library. + * + * Copyright (c) 2004-2011 Tensilica Inc. + * + * Permission is hereby granted, free of charge, to any person obtaining + * a copy of this software and associated documentation files (the + * "Software"), to deal in the Software without restriction, including + * without limitation the rights to use, copy, modify, merge, publish, + * distribute, sublicense, and/or sell copies of the Software, and to + * permit persons to whom the Software is furnished to do so, subject to + * the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. + * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + +#ifndef XTENSA_ISA_INTERNAL_H +#define XTENSA_ISA_INTERNAL_H + +#ifndef uint32 +#define uint32 uint32_t +#endif + +/* Flags. */ + +#define XTENSA_OPERAND_IS_REGISTER 0x00000001 +#define XTENSA_OPERAND_IS_PCRELATIVE 0x00000002 +#define XTENSA_OPERAND_IS_INVISIBLE 0x00000004 +#define XTENSA_OPERAND_IS_UNKNOWN 0x00000008 + +#define XTENSA_OPCODE_IS_BRANCH 0x00000001 +#define XTENSA_OPCODE_IS_JUMP 0x00000002 +#define XTENSA_OPCODE_IS_LOOP 0x00000004 +#define XTENSA_OPCODE_IS_CALL 0x00000008 + +#define XTENSA_STATE_IS_EXPORTED 0x00000001 +#define XTENSA_STATE_IS_SHARED_OR 0x00000002 + +#define XTENSA_INTERFACE_HAS_SIDE_EFFECT 0x00000001 + +/* Function pointer typedefs */ +typedef void (*xtensa_format_encode_fn)(xtensa_insnbuf); +typedef void (*xtensa_get_slot_fn)(const xtensa_insnbuf, xtensa_insnbuf); +typedef void (*xtensa_set_slot_fn)(xtensa_insnbuf, const xtensa_insnbuf); +typedef int (*xtensa_opcode_decode_fn)(const xtensa_insnbuf); +typedef uint32_t (*xtensa_get_field_fn)(const xtensa_insnbuf); +typedef void (*xtensa_set_field_fn)(xtensa_insnbuf, uint32_t); +typedef int (*xtensa_immed_decode_fn)(uint32_t *); +typedef int (*xtensa_immed_encode_fn)(uint32_t *); +typedef int (*xtensa_do_reloc_fn)(uint32_t *, uint32_t); +typedef int (*xtensa_undo_reloc_fn)(uint32_t *, uint32_t); +typedef void (*xtensa_opcode_encode_fn)(xtensa_insnbuf); +typedef int (*xtensa_format_decode_fn)(const xtensa_insnbuf); +typedef int (*xtensa_length_decode_fn)(const unsigned char *); + +typedef struct xtensa_format_internal_struct { + const char *name; /* Instruction format name. */ + int length; /* Instruction length in bytes. */ + xtensa_format_encode_fn encode_fn; + int num_slots; + int *slot_id; /* Array[num_slots] of slot IDs. */ +} xtensa_format_internal; + +typedef struct xtensa_slot_internal_struct { + const char *name; /* Not necessarily unique. */ + const char *format; + int position; + xtensa_get_slot_fn get_fn; + xtensa_set_slot_fn set_fn; + xtensa_get_field_fn *get_field_fns; /* Array[field_id]. */ + xtensa_set_field_fn *set_field_fns; /* Array[field_id]. */ + xtensa_opcode_decode_fn opcode_decode_fn; + const char *nop_name; +} xtensa_slot_internal; + +typedef struct xtensa_operand_internal_struct { + const char *name; + int field_id; + xtensa_regfile regfile; /* Register file. */ + int num_regs; /* Usually 1; 2 for reg pairs, etc. */ + uint32_t flags; /* See XTENSA_OPERAND_* flags. */ + xtensa_immed_encode_fn encode; /* Encode the operand value. */ + xtensa_immed_decode_fn decode; /* Decode the value from the field. */ + xtensa_do_reloc_fn do_reloc; /* Perform a PC-relative reloc. */ + xtensa_undo_reloc_fn undo_reloc; /* Undo a PC-relative relocation. */ +} xtensa_operand_internal; + +typedef struct xtensa_arg_internal_struct { + union { + int operand_id; /* For normal operands. */ + xtensa_state state; /* For stateOperands. */ + } u; + char inout; /* Direction: 'i', 'o', or 'm'. */ +} xtensa_arg_internal; + +typedef struct xtensa_iclass_internal_struct { + int num_operands; /* Size of "operands" array. */ + xtensa_arg_internal *operands; /* Array[num_operands]. */ + + int num_stateOperands; /* Size of "stateOperands" array. */ + xtensa_arg_internal *stateOperands; /* Array[num_stateOperands]. */ + + int num_interfaceOperands; /* Size of "interfaceOperands". */ + xtensa_interface *interfaceOperands; /* Array[num_interfaceOperands]. */ +} xtensa_iclass_internal; + +typedef struct xtensa_opcode_internal_struct { + const char *name; /* Opcode mnemonic. */ + int iclass_id; /* Iclass for this opcode. */ + uint32_t flags; /* See XTENSA_OPCODE_* flags. */ + xtensa_opcode_encode_fn *encode_fns; /* Array[slot_id]. */ + int num_funcUnit_uses; /* Number of funcUnit_use entries. */ + xtensa_funcUnit_use *funcUnit_uses; /* Array[num_funcUnit_uses]. */ +} xtensa_opcode_internal; + +typedef struct xtensa_regfile_internal_struct { + const char *name; /* Full name of the regfile. */ + const char *shortname; /* Abbreviated name. */ + xtensa_regfile parent; /* View parent (or identity). */ + int num_bits; /* Width of the registers. */ + int num_entries; /* Number of registers. */ +} xtensa_regfile_internal; + +typedef struct xtensa_interface_internal_struct { + const char *name; /* Interface name. */ + int num_bits; /* Width of the interface. */ + uint32_t flags; /* See XTENSA_INTERFACE_* flags. */ + int class_id; /* Class of related interfaces. */ + char inout; /* "i" or "o". */ +} xtensa_interface_internal; + +typedef struct xtensa_funcUnit_internal_struct { + const char *name; /* Functional unit name. */ + int num_copies; /* Number of instances. */ +} xtensa_funcUnit_internal; + +typedef struct xtensa_state_internal_struct { + const char *name; /* State name. */ + int num_bits; /* Number of state bits. */ + uint32_t flags; /* See XTENSA_STATE_* flags. */ +} xtensa_state_internal; + +typedef struct xtensa_sysreg_internal_struct { + const char *name; /* Register name. */ + int number; /* Register number. */ + int is_user; /* Non-zero if a "user register". */ +} xtensa_sysreg_internal; + +typedef struct xtensa_lookup_entry_struct { + const char *key; + union { + xtensa_opcode opcode; /* Internal opcode number. */ + xtensa_sysreg sysreg; /* Internal sysreg number. */ + xtensa_state state; /* Internal state number. */ + xtensa_interface intf; /* Internal interface number. */ + xtensa_funcUnit fun; /* Internal funcUnit number. */ + } u; +} xtensa_lookup_entry; + +typedef struct xtensa_isa_internal_struct { + int is_big_endian; /* Endianness. */ + int insn_size; /* Maximum length in bytes. */ + int insnbuf_size; /* Number of insnbuf_words. */ + + int num_formats; + xtensa_format_internal *formats; + xtensa_format_decode_fn format_decode_fn; + xtensa_length_decode_fn length_decode_fn; + + int num_slots; + xtensa_slot_internal *slots; + + int num_fields; + + int num_operands; + xtensa_operand_internal *operands; + + int num_iclasses; + xtensa_iclass_internal *iclasses; + + int num_opcodes; + xtensa_opcode_internal *opcodes; + xtensa_lookup_entry *opname_lookup_table; + + int num_regfiles; + xtensa_regfile_internal *regfiles; + + int num_states; + xtensa_state_internal *states; + xtensa_lookup_entry *state_lookup_table; + + int num_sysregs; + xtensa_sysreg_internal *sysregs; + xtensa_lookup_entry *sysreg_lookup_table; + + /* + * The current Xtensa ISA only supports 256 of each kind of sysreg so + * we can get away with implementing lookups with tables indexed by + * the register numbers. If we ever allow larger sysreg numbers, this + * may have to be reimplemented. The first entry in the following + * arrays corresponds to "special" registers and the second to "user" + * registers. + */ + int max_sysreg_num[2]; + xtensa_sysreg *sysreg_table[2]; + + int num_interfaces; + xtensa_interface_internal *interfaces; + xtensa_lookup_entry *interface_lookup_table; + + int num_funcUnits; + xtensa_funcUnit_internal *funcUnits; + xtensa_lookup_entry *funcUnit_lookup_table; + + int num_stages; /* Number of pipe stages. */ +} xtensa_isa_internal; + +int xtensa_isa_name_compare(const void *, const void *); + +extern xtensa_isa_status xtisa_errno; +extern char xtisa_error_msg[]; + +#endif /* !XTENSA_ISA_INTERNAL_H */ diff --git a/target/xtensa/xtensa-isa.c b/target/xtensa/xtensa-isa.c new file mode 100644 index 0000000..e0076a6 --- /dev/null +++ b/target/xtensa/xtensa-isa.c @@ -0,0 +1,1745 @@ +/* Configurable Xtensa ISA support. + * + * Copyright (c) 2001-2011 Tensilica Inc. + * + * Permission is hereby granted, free of charge, to any person obtaining + * a copy of this software and associated documentation files (the + * "Software"), to deal in the Software without restriction, including + * without limitation the rights to use, copy, modify, merge, publish, + * distribute, sublicense, and/or sell copies of the Software, and to + * permit persons to whom the Software is furnished to do so, subject to + * the following conditions: + * + * The above copyright notice and this permission notice shall be included + * in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. + * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY + * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, + * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE + * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + +#include <stdio.h> +#include <stdlib.h> +#include <string.h> +#include "xtensa-isa.h" +#include "xtensa-isa-internal.h" + +xtensa_isa_status xtisa_errno; +char xtisa_error_msg[1024]; + + +xtensa_isa_status xtensa_isa_errno(xtensa_isa isa __attribute__ ((unused))) +{ + return xtisa_errno; +} + + +char *xtensa_isa_error_msg(xtensa_isa isa __attribute__ ((unused))) +{ + return xtisa_error_msg; +} + + +#define CHECK_ALLOC(MEM, ERRVAL) \ + do { \ + if ((MEM) == 0) { \ + xtisa_errno = xtensa_isa_out_of_memory; \ + strcpy(xtisa_error_msg, "out of memory"); \ + return ERRVAL; \ + } \ + } while (0) + +#define CHECK_ALLOC_FOR_INIT(MEM, ERRVAL, ERRNO_P, ERROR_MSG_P) \ + do { \ + if ((MEM) == 0) { \ + xtisa_errno = xtensa_isa_out_of_memory; \ + strcpy(xtisa_error_msg, "out of memory"); \ + if (ERRNO_P) { \ + *(ERRNO_P) = xtisa_errno; \ + } \ + if (ERROR_MSG_P) { \ + *(ERROR_MSG_P) = xtisa_error_msg; \ + } \ + return ERRVAL; \ + } \ + } while (0) + + +/* Instruction buffers. */ + +int xtensa_insnbuf_size(xtensa_isa isa) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + return intisa->insnbuf_size; +} + + +xtensa_insnbuf xtensa_insnbuf_alloc(xtensa_isa isa) +{ + xtensa_insnbuf result = (xtensa_insnbuf) + malloc(xtensa_insnbuf_size(isa) * sizeof(xtensa_insnbuf_word)); + + CHECK_ALLOC(result, 0); + return result; +} + + +void xtensa_insnbuf_free(xtensa_isa isa __attribute__ ((unused)), + xtensa_insnbuf buf) +{ + free(buf); +} + + +/* + * Given <byte_index>, the index of a byte in a xtensa_insnbuf, our + * internal representation of a xtensa instruction word, return the index of + * its word and the bit index of its low order byte in the xtensa_insnbuf. + */ + +static inline int byte_to_word_index(int byte_index) +{ + return byte_index / sizeof(xtensa_insnbuf_word); +} + + +static inline int byte_to_bit_index(int byte_index) +{ + return (byte_index & 0x3) * 8; +} + + +/* + * Copy an instruction in the 32-bit words pointed at by "insn" to + * characters pointed at by "cp". This is more complicated than you + * might think because we want 16-bit instructions in bytes 2 & 3 for + * big-endian configurations. This function allows us to specify + * which byte in "insn" to start with and which way to increment, + * allowing trivial implementation for both big- and little-endian + * configurations....and it seems to make pretty good code for + * both. + */ + +int xtensa_insnbuf_to_chars(xtensa_isa isa, + const xtensa_insnbuf insn, + unsigned char *cp, + int num_chars) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + int insn_size = xtensa_isa_maxlength(isa); + int fence_post, start, increment, i, byte_count; + xtensa_format fmt; + + if (num_chars == 0) { + num_chars = insn_size; + } + + if (intisa->is_big_endian) { + start = insn_size - 1; + increment = -1; + } else { + start = 0; + increment = 1; + } + + /* + * Find the instruction format. Do nothing if the buffer does not contain + * a valid instruction since we need to know how many bytes to copy. + */ + fmt = xtensa_format_decode(isa, insn); + if (fmt == XTENSA_UNDEFINED) { + return XTENSA_UNDEFINED; + } + + byte_count = xtensa_format_length(isa, fmt); + if (byte_count == XTENSA_UNDEFINED) { + return XTENSA_UNDEFINED; + } + + if (byte_count > num_chars) { + xtisa_errno = xtensa_isa_buffer_overflow; + strcpy(xtisa_error_msg, "output buffer too small for instruction"); + return XTENSA_UNDEFINED; + } + + fence_post = start + (byte_count * increment); + + for (i = start; i != fence_post; i += increment, ++cp) { + int word_inx = byte_to_word_index(i); + int bit_inx = byte_to_bit_index(i); + + *cp = (insn[word_inx] >> bit_inx) & 0xff; + } + + return byte_count; +} + + +/* + * Inward conversion from byte stream to xtensa_insnbuf. See + * xtensa_insnbuf_to_chars for a discussion of why this is complicated + * by endianness. + */ + +void xtensa_insnbuf_from_chars(xtensa_isa isa, + xtensa_insnbuf insn, + const unsigned char *cp, + int num_chars) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + int max_size, insn_size, fence_post, start, increment, i; + + max_size = xtensa_isa_maxlength(isa); + + /* Decode the instruction length so we know how many bytes to read. */ + insn_size = (intisa->length_decode_fn)(cp); + if (insn_size == XTENSA_UNDEFINED) { + /* + * This should never happen when the byte stream contains a + * valid instruction. Just read the maximum number of bytes.... + */ + insn_size = max_size; + } + + if (num_chars == 0 || num_chars > insn_size) { + num_chars = insn_size; + } + + if (intisa->is_big_endian) { + start = max_size - 1; + increment = -1; + } else { + start = 0; + increment = 1; + } + + fence_post = start + (num_chars * increment); + memset(insn, 0, xtensa_insnbuf_size(isa) * sizeof(xtensa_insnbuf_word)); + + for (i = start; i != fence_post; i += increment, ++cp) { + int word_inx = byte_to_word_index(i); + int bit_inx = byte_to_bit_index(i); + + insn[word_inx] |= (*cp & 0xff) << bit_inx; + } +} + + +/* ISA information. */ + +xtensa_isa xtensa_isa_init(void *xtensa_modules, xtensa_isa_status *errno_p, + char **error_msg_p) +{ + xtensa_isa_internal *isa = xtensa_modules; + int n, is_user; + + /* Set up the opcode name lookup table. */ + isa->opname_lookup_table = + malloc(isa->num_opcodes * sizeof(xtensa_lookup_entry)); + CHECK_ALLOC_FOR_INIT(isa->opname_lookup_table, NULL, errno_p, error_msg_p); + for (n = 0; n < isa->num_opcodes; n++) { + isa->opname_lookup_table[n].key = isa->opcodes[n].name; + isa->opname_lookup_table[n].u.opcode = n; + } + qsort(isa->opname_lookup_table, isa->num_opcodes, + sizeof(xtensa_lookup_entry), xtensa_isa_name_compare); + + /* Set up the state name lookup table. */ + isa->state_lookup_table = + malloc(isa->num_states * sizeof(xtensa_lookup_entry)); + CHECK_ALLOC_FOR_INIT(isa->state_lookup_table, NULL, errno_p, error_msg_p); + for (n = 0; n < isa->num_states; n++) { + isa->state_lookup_table[n].key = isa->states[n].name; + isa->state_lookup_table[n].u.state = n; + } + qsort(isa->state_lookup_table, isa->num_states, + sizeof(xtensa_lookup_entry), xtensa_isa_name_compare); + + /* Set up the sysreg name lookup table. */ + isa->sysreg_lookup_table = + malloc(isa->num_sysregs * sizeof(xtensa_lookup_entry)); + CHECK_ALLOC_FOR_INIT(isa->sysreg_lookup_table, NULL, errno_p, error_msg_p); + for (n = 0; n < isa->num_sysregs; n++) { + isa->sysreg_lookup_table[n].key = isa->sysregs[n].name; + isa->sysreg_lookup_table[n].u.sysreg = n; + } + qsort(isa->sysreg_lookup_table, isa->num_sysregs, + sizeof(xtensa_lookup_entry), xtensa_isa_name_compare); + + /* Set up the user & system sysreg number tables. */ + for (is_user = 0; is_user < 2; is_user++) { + isa->sysreg_table[is_user] = + malloc((isa->max_sysreg_num[is_user] + 1) * sizeof(xtensa_sysreg)); + CHECK_ALLOC_FOR_INIT(isa->sysreg_table[is_user], NULL, + errno_p, error_msg_p); + + for (n = 0; n <= isa->max_sysreg_num[is_user]; n++) { + isa->sysreg_table[is_user][n] = XTENSA_UNDEFINED; + } + } + for (n = 0; n < isa->num_sysregs; n++) { + xtensa_sysreg_internal *sreg = &isa->sysregs[n]; + is_user = sreg->is_user; + + if (sreg->number >= 0) { + isa->sysreg_table[is_user][sreg->number] = n; + } + } + + /* Set up the interface lookup table. */ + isa->interface_lookup_table = + malloc(isa->num_interfaces * sizeof(xtensa_lookup_entry)); + CHECK_ALLOC_FOR_INIT(isa->interface_lookup_table, NULL, errno_p, + error_msg_p); + for (n = 0; n < isa->num_interfaces; n++) { + isa->interface_lookup_table[n].key = isa->interfaces[n].name; + isa->interface_lookup_table[n].u.intf = n; + } + qsort(isa->interface_lookup_table, isa->num_interfaces, + sizeof(xtensa_lookup_entry), xtensa_isa_name_compare); + + /* Set up the funcUnit lookup table. */ + isa->funcUnit_lookup_table = + malloc(isa->num_funcUnits * sizeof(xtensa_lookup_entry)); + CHECK_ALLOC_FOR_INIT(isa->funcUnit_lookup_table, NULL, errno_p, + error_msg_p); + for (n = 0; n < isa->num_funcUnits; n++) { + isa->funcUnit_lookup_table[n].key = isa->funcUnits[n].name; + isa->funcUnit_lookup_table[n].u.fun = n; + } + qsort(isa->funcUnit_lookup_table, isa->num_funcUnits, + sizeof(xtensa_lookup_entry), xtensa_isa_name_compare); + + isa->insnbuf_size = ((isa->insn_size + sizeof(xtensa_insnbuf_word) - 1) / + sizeof(xtensa_insnbuf_word)); + isa->num_stages = XTENSA_UNDEFINED; + + return (xtensa_isa)isa; +} + + +void xtensa_isa_free(xtensa_isa isa) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + int n; + + /* + * With this version of the code, the xtensa_isa structure is not + * dynamically allocated, so this function is not essential. Free + * the memory allocated by xtensa_isa_init and restore the xtensa_isa + * structure to its initial state. + */ + + if (intisa->opname_lookup_table) { + free(intisa->opname_lookup_table); + intisa->opname_lookup_table = 0; + } + + if (intisa->state_lookup_table) { + free(intisa->state_lookup_table); + intisa->state_lookup_table = 0; + } + + if (intisa->sysreg_lookup_table) { + free(intisa->sysreg_lookup_table); + intisa->sysreg_lookup_table = 0; + } + for (n = 0; n < 2; n++) { + if (intisa->sysreg_table[n]) { + free(intisa->sysreg_table[n]); + intisa->sysreg_table[n] = 0; + } + } + + if (intisa->interface_lookup_table) { + free(intisa->interface_lookup_table); + intisa->interface_lookup_table = 0; + } + + if (intisa->funcUnit_lookup_table) { + free(intisa->funcUnit_lookup_table); + intisa->funcUnit_lookup_table = 0; + } +} + + +int xtensa_isa_name_compare(const void *v1, const void *v2) +{ + xtensa_lookup_entry *e1 = (xtensa_lookup_entry *)v1; + xtensa_lookup_entry *e2 = (xtensa_lookup_entry *)v2; + + return strcasecmp(e1->key, e2->key); +} + + +int xtensa_isa_maxlength(xtensa_isa isa) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + return intisa->insn_size; +} + + +int xtensa_isa_length_from_chars(xtensa_isa isa, const unsigned char *cp) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + return (intisa->length_decode_fn)(cp); +} + + +int xtensa_isa_num_pipe_stages(xtensa_isa isa) +{ + xtensa_opcode opcode; + xtensa_funcUnit_use *use; + int num_opcodes, num_uses; + int i, stage, max_stage; + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + + /* Only compute the value once. */ + if (intisa->num_stages != XTENSA_UNDEFINED) { + return intisa->num_stages; + } + + max_stage = -1; + + num_opcodes = xtensa_isa_num_opcodes(isa); + for (opcode = 0; opcode < num_opcodes; opcode++) { + num_uses = xtensa_opcode_num_funcUnit_uses(isa, opcode); + for (i = 0; i < num_uses; i++) { + use = xtensa_opcode_funcUnit_use(isa, opcode, i); + stage = use->stage; + if (stage > max_stage) { + max_stage = stage; + } + } + } + + intisa->num_stages = max_stage + 1; + return intisa->num_states; +} + + +int xtensa_isa_num_formats(xtensa_isa isa) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + return intisa->num_formats; +} + + +int xtensa_isa_num_opcodes(xtensa_isa isa) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + return intisa->num_opcodes; +} + + +int xtensa_isa_num_regfiles(xtensa_isa isa) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + return intisa->num_regfiles; +} + + +int xtensa_isa_num_states(xtensa_isa isa) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + return intisa->num_states; +} + + +int xtensa_isa_num_sysregs(xtensa_isa isa) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + return intisa->num_sysregs; +} + + +int xtensa_isa_num_interfaces(xtensa_isa isa) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + return intisa->num_interfaces; +} + + +int xtensa_isa_num_funcUnits(xtensa_isa isa) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + return intisa->num_funcUnits; +} + + +/* Instruction formats. */ + + +#define CHECK_FORMAT(INTISA, FMT, ERRVAL) \ + do { \ + if ((FMT) < 0 || (FMT) >= (INTISA)->num_formats) { \ + xtisa_errno = xtensa_isa_bad_format; \ + strcpy(xtisa_error_msg, "invalid format specifier"); \ + return ERRVAL; \ + } \ + } while (0) + + +#define CHECK_SLOT(INTISA, FMT, SLOT, ERRVAL) \ + do { \ + if ((SLOT) < 0 || (SLOT) >= (INTISA)->formats[FMT].num_slots) { \ + xtisa_errno = xtensa_isa_bad_slot; \ + strcpy(xtisa_error_msg, "invalid slot specifier"); \ + return ERRVAL; \ + } \ + } while (0) + + +const char *xtensa_format_name(xtensa_isa isa, xtensa_format fmt) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + + CHECK_FORMAT(intisa, fmt, NULL); + return intisa->formats[fmt].name; +} + + +xtensa_format xtensa_format_lookup(xtensa_isa isa, const char *fmtname) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + int fmt; + + if (!fmtname || !*fmtname) { + xtisa_errno = xtensa_isa_bad_format; + strcpy(xtisa_error_msg, "invalid format name"); + return XTENSA_UNDEFINED; + } + + for (fmt = 0; fmt < intisa->num_formats; fmt++) { + if (strcasecmp(fmtname, intisa->formats[fmt].name) == 0) { + return fmt; + } + } + + xtisa_errno = xtensa_isa_bad_format; + sprintf(xtisa_error_msg, "format \"%s\" not recognized", fmtname); + return XTENSA_UNDEFINED; +} + + +xtensa_format xtensa_format_decode(xtensa_isa isa, const xtensa_insnbuf insn) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + xtensa_format fmt; + + fmt = (intisa->format_decode_fn)(insn); + if (fmt != XTENSA_UNDEFINED) { + return fmt; + } + + xtisa_errno = xtensa_isa_bad_format; + strcpy(xtisa_error_msg, "cannot decode instruction format"); + return XTENSA_UNDEFINED; +} + + +int xtensa_format_encode(xtensa_isa isa, xtensa_format fmt, + xtensa_insnbuf insn) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + + CHECK_FORMAT(intisa, fmt, -1); + (*intisa->formats[fmt].encode_fn)(insn); + return 0; +} + + +int xtensa_format_length(xtensa_isa isa, xtensa_format fmt) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + + CHECK_FORMAT(intisa, fmt, XTENSA_UNDEFINED); + return intisa->formats[fmt].length; +} + + +int xtensa_format_num_slots(xtensa_isa isa, xtensa_format fmt) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + + CHECK_FORMAT(intisa, fmt, XTENSA_UNDEFINED); + return intisa->formats[fmt].num_slots; +} + + +xtensa_opcode xtensa_format_slot_nop_opcode(xtensa_isa isa, xtensa_format fmt, + int slot) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + int slot_id; + + CHECK_FORMAT(intisa, fmt, XTENSA_UNDEFINED); + CHECK_SLOT(intisa, fmt, slot, XTENSA_UNDEFINED); + + slot_id = intisa->formats[fmt].slot_id[slot]; + return xtensa_opcode_lookup(isa, intisa->slots[slot_id].nop_name); +} + + +int xtensa_format_get_slot(xtensa_isa isa, xtensa_format fmt, int slot, + const xtensa_insnbuf insn, xtensa_insnbuf slotbuf) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + int slot_id; + + CHECK_FORMAT(intisa, fmt, -1); + CHECK_SLOT(intisa, fmt, slot, -1); + + slot_id = intisa->formats[fmt].slot_id[slot]; + (*intisa->slots[slot_id].get_fn)(insn, slotbuf); + return 0; +} + + +int xtensa_format_set_slot(xtensa_isa isa, xtensa_format fmt, int slot, + xtensa_insnbuf insn, const xtensa_insnbuf slotbuf) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + int slot_id; + + CHECK_FORMAT(intisa, fmt, -1); + CHECK_SLOT(intisa, fmt, slot, -1); + + slot_id = intisa->formats[fmt].slot_id[slot]; + (*intisa->slots[slot_id].set_fn)(insn, slotbuf); + return 0; +} + + +/* Opcode information. */ + + +#define CHECK_OPCODE(INTISA, OPC, ERRVAL) \ + do { \ + if ((OPC) < 0 || (OPC) >= (INTISA)->num_opcodes) { \ + xtisa_errno = xtensa_isa_bad_opcode; \ + strcpy(xtisa_error_msg, "invalid opcode specifier"); \ + return ERRVAL; \ + } \ + } while (0) + + +xtensa_opcode xtensa_opcode_lookup(xtensa_isa isa, const char *opname) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + xtensa_lookup_entry entry, *result = 0; + + if (!opname || !*opname) { + xtisa_errno = xtensa_isa_bad_opcode; + strcpy(xtisa_error_msg, "invalid opcode name"); + return XTENSA_UNDEFINED; + } + + if (intisa->num_opcodes != 0) { + entry.key = opname; + result = bsearch(&entry, intisa->opname_lookup_table, + intisa->num_opcodes, sizeof(xtensa_lookup_entry), + xtensa_isa_name_compare); + } + + if (!result) { + xtisa_errno = xtensa_isa_bad_opcode; + sprintf(xtisa_error_msg, "opcode \"%s\" not recognized", opname); + return XTENSA_UNDEFINED; + } + + return result->u.opcode; +} + + +xtensa_opcode xtensa_opcode_decode(xtensa_isa isa, xtensa_format fmt, int slot, + const xtensa_insnbuf slotbuf) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + int slot_id; + xtensa_opcode opc; + + CHECK_FORMAT(intisa, fmt, XTENSA_UNDEFINED); + CHECK_SLOT(intisa, fmt, slot, XTENSA_UNDEFINED); + + slot_id = intisa->formats[fmt].slot_id[slot]; + + opc = (intisa->slots[slot_id].opcode_decode_fn) (slotbuf); + if (opc != XTENSA_UNDEFINED) { + return opc; + } + + xtisa_errno = xtensa_isa_bad_opcode; + strcpy(xtisa_error_msg, "cannot decode opcode"); + return XTENSA_UNDEFINED; +} + + +int xtensa_opcode_encode(xtensa_isa isa, xtensa_format fmt, int slot, + xtensa_insnbuf slotbuf, xtensa_opcode opc) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + int slot_id; + xtensa_opcode_encode_fn encode_fn; + + CHECK_FORMAT(intisa, fmt, -1); + CHECK_SLOT(intisa, fmt, slot, -1); + CHECK_OPCODE(intisa, opc, -1); + + slot_id = intisa->formats[fmt].slot_id[slot]; + encode_fn = intisa->opcodes[opc].encode_fns[slot_id]; + if (!encode_fn) { + xtisa_errno = xtensa_isa_wrong_slot; + sprintf(xtisa_error_msg, + "opcode \"%s\" is not allowed in slot %d of format \"%s\"", + intisa->opcodes[opc].name, slot, intisa->formats[fmt].name); + return -1; + } + (*encode_fn)(slotbuf); + return 0; +} + + +const char *xtensa_opcode_name(xtensa_isa isa, xtensa_opcode opc) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + + CHECK_OPCODE(intisa, opc, NULL); + return intisa->opcodes[opc].name; +} + + +int xtensa_opcode_is_branch(xtensa_isa isa, xtensa_opcode opc) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + + CHECK_OPCODE(intisa, opc, XTENSA_UNDEFINED); + if ((intisa->opcodes[opc].flags & XTENSA_OPCODE_IS_BRANCH) != 0) { + return 1; + } + return 0; +} + + +int xtensa_opcode_is_jump(xtensa_isa isa, xtensa_opcode opc) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + + CHECK_OPCODE(intisa, opc, XTENSA_UNDEFINED); + if ((intisa->opcodes[opc].flags & XTENSA_OPCODE_IS_JUMP) != 0) { + return 1; + } + return 0; +} + + +int xtensa_opcode_is_loop(xtensa_isa isa, xtensa_opcode opc) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + + CHECK_OPCODE(intisa, opc, XTENSA_UNDEFINED); + if ((intisa->opcodes[opc].flags & XTENSA_OPCODE_IS_LOOP) != 0) { + return 1; + } + return 0; +} + + +int xtensa_opcode_is_call(xtensa_isa isa, xtensa_opcode opc) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + + CHECK_OPCODE(intisa, opc, XTENSA_UNDEFINED); + if ((intisa->opcodes[opc].flags & XTENSA_OPCODE_IS_CALL) != 0) { + return 1; + } + return 0; +} + + +int xtensa_opcode_num_operands(xtensa_isa isa, xtensa_opcode opc) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + int iclass_id; + + CHECK_OPCODE(intisa, opc, XTENSA_UNDEFINED); + iclass_id = intisa->opcodes[opc].iclass_id; + return intisa->iclasses[iclass_id].num_operands; +} + + +int xtensa_opcode_num_stateOperands(xtensa_isa isa, xtensa_opcode opc) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + int iclass_id; + + CHECK_OPCODE(intisa, opc, XTENSA_UNDEFINED); + iclass_id = intisa->opcodes[opc].iclass_id; + return intisa->iclasses[iclass_id].num_stateOperands; +} + + +int xtensa_opcode_num_interfaceOperands(xtensa_isa isa, xtensa_opcode opc) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + int iclass_id; + + CHECK_OPCODE(intisa, opc, XTENSA_UNDEFINED); + iclass_id = intisa->opcodes[opc].iclass_id; + return intisa->iclasses[iclass_id].num_interfaceOperands; +} + + +int xtensa_opcode_num_funcUnit_uses(xtensa_isa isa, xtensa_opcode opc) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + + CHECK_OPCODE(intisa, opc, XTENSA_UNDEFINED); + return intisa->opcodes[opc].num_funcUnit_uses; +} + + +xtensa_funcUnit_use *xtensa_opcode_funcUnit_use(xtensa_isa isa, + xtensa_opcode opc, int u) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + + CHECK_OPCODE(intisa, opc, NULL); + if (u < 0 || u >= intisa->opcodes[opc].num_funcUnit_uses) { + xtisa_errno = xtensa_isa_bad_funcUnit; + sprintf(xtisa_error_msg, "invalid functional unit use number (%d); " + "opcode \"%s\" has %d", u, intisa->opcodes[opc].name, + intisa->opcodes[opc].num_funcUnit_uses); + return NULL; + } + return &intisa->opcodes[opc].funcUnit_uses[u]; +} + + +/* Operand information. */ + + +#define CHECK_OPERAND(INTISA, OPC, ICLASS, OPND, ERRVAL) \ + do { \ + if ((OPND) < 0 || (OPND) >= (ICLASS)->num_operands) { \ + xtisa_errno = xtensa_isa_bad_operand; \ + sprintf(xtisa_error_msg, "invalid operand number (%d); " \ + "opcode \"%s\" has %d operands", (OPND), \ + (INTISA)->opcodes[(OPC)].name, (ICLASS)->num_operands); \ + return ERRVAL; \ + } \ + } while (0) + + +static xtensa_operand_internal *get_operand(xtensa_isa_internal *intisa, + xtensa_opcode opc, int opnd) +{ + xtensa_iclass_internal *iclass; + int iclass_id, operand_id; + + CHECK_OPCODE(intisa, opc, NULL); + iclass_id = intisa->opcodes[opc].iclass_id; + iclass = &intisa->iclasses[iclass_id]; + CHECK_OPERAND(intisa, opc, iclass, opnd, NULL); + operand_id = iclass->operands[opnd].u.operand_id; + return &intisa->operands[operand_id]; +} + + +const char *xtensa_operand_name(xtensa_isa isa, xtensa_opcode opc, int opnd) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + xtensa_operand_internal *intop; + + intop = get_operand(intisa, opc, opnd); + if (!intop) { + return NULL; + } + return intop->name; +} + + +int xtensa_operand_is_visible(xtensa_isa isa, xtensa_opcode opc, int opnd) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + xtensa_iclass_internal *iclass; + int iclass_id, operand_id; + xtensa_operand_internal *intop; + + CHECK_OPCODE(intisa, opc, XTENSA_UNDEFINED); + iclass_id = intisa->opcodes[opc].iclass_id; + iclass = &intisa->iclasses[iclass_id]; + CHECK_OPERAND(intisa, opc, iclass, opnd, XTENSA_UNDEFINED); + + /* Special case for "sout" operands. */ + if (iclass->operands[opnd].inout == 's') { + return 0; + } + + operand_id = iclass->operands[opnd].u.operand_id; + intop = &intisa->operands[operand_id]; + + if ((intop->flags & XTENSA_OPERAND_IS_INVISIBLE) == 0) { + return 1; + } + return 0; +} + + +char xtensa_operand_inout(xtensa_isa isa, xtensa_opcode opc, int opnd) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + xtensa_iclass_internal *iclass; + int iclass_id; + char inout; + + CHECK_OPCODE(intisa, opc, 0); + iclass_id = intisa->opcodes[opc].iclass_id; + iclass = &intisa->iclasses[iclass_id]; + CHECK_OPERAND(intisa, opc, iclass, opnd, 0); + inout = iclass->operands[opnd].inout; + + /* Special case for "sout" and "_sin" operands. */ + if (inout == 's') { + return 'o'; + } + if (inout == 't') { + return 'i'; + } + return inout; +} + + +int xtensa_operand_get_field(xtensa_isa isa, xtensa_opcode opc, int opnd, + xtensa_format fmt, int slot, + const xtensa_insnbuf slotbuf, uint32_t *valp) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + xtensa_operand_internal *intop; + int slot_id; + xtensa_get_field_fn get_fn; + + intop = get_operand(intisa, opc, opnd); + if (!intop) { + return -1; + } + + CHECK_FORMAT(intisa, fmt, -1); + CHECK_SLOT(intisa, fmt, slot, -1); + + slot_id = intisa->formats[fmt].slot_id[slot]; + if (intop->field_id == XTENSA_UNDEFINED) { + xtisa_errno = xtensa_isa_no_field; + strcpy(xtisa_error_msg, "implicit operand has no field"); + return -1; + } + get_fn = intisa->slots[slot_id].get_field_fns[intop->field_id]; + if (!get_fn) { + xtisa_errno = xtensa_isa_wrong_slot; + sprintf(xtisa_error_msg, + "operand \"%s\" does not exist in slot %d of format \"%s\"", + intop->name, slot, intisa->formats[fmt].name); + return -1; + } + *valp = (*get_fn)(slotbuf); + return 0; +} + + +int xtensa_operand_set_field(xtensa_isa isa, xtensa_opcode opc, int opnd, + xtensa_format fmt, int slot, + xtensa_insnbuf slotbuf, uint32_t val) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + xtensa_operand_internal *intop; + int slot_id; + xtensa_set_field_fn set_fn; + + intop = get_operand(intisa, opc, opnd); + if (!intop) { + return -1; + } + + CHECK_FORMAT(intisa, fmt, -1); + CHECK_SLOT(intisa, fmt, slot, -1); + + slot_id = intisa->formats[fmt].slot_id[slot]; + if (intop->field_id == XTENSA_UNDEFINED) { + xtisa_errno = xtensa_isa_no_field; + strcpy(xtisa_error_msg, "implicit operand has no field"); + return -1; + } + set_fn = intisa->slots[slot_id].set_field_fns[intop->field_id]; + if (!set_fn) { + xtisa_errno = xtensa_isa_wrong_slot; + sprintf(xtisa_error_msg, + "operand \"%s\" does not exist in slot %d of format \"%s\"", + intop->name, slot, intisa->formats[fmt].name); + return -1; + } + (*set_fn)(slotbuf, val); + return 0; +} + + +int xtensa_operand_encode(xtensa_isa isa, xtensa_opcode opc, int opnd, + uint32_t *valp) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + xtensa_operand_internal *intop; + uint32_t test_val, orig_val; + + intop = get_operand(intisa, opc, opnd); + if (!intop) { + return -1; + } + + if (!intop->encode) { + /* + * This is a default operand for a field. How can we tell if the + * value fits in the field? Write the value into the field, + * read it back, and then make sure we get the same value. + */ + static xtensa_insnbuf tmpbuf; + int slot_id; + + if (!tmpbuf) { + tmpbuf = xtensa_insnbuf_alloc(isa); + CHECK_ALLOC(tmpbuf, -1); + } + + /* + * A default operand is always associated with a field, + * but check just to be sure.... + */ + if (intop->field_id == XTENSA_UNDEFINED) { + xtisa_errno = xtensa_isa_internal_error; + strcpy(xtisa_error_msg, "operand has no field"); + return -1; + } + + /* Find some slot that includes the field. */ + for (slot_id = 0; slot_id < intisa->num_slots; slot_id++) { + xtensa_get_field_fn get_fn = + intisa->slots[slot_id].get_field_fns[intop->field_id]; + xtensa_set_field_fn set_fn = + intisa->slots[slot_id].set_field_fns[intop->field_id]; + + if (get_fn && set_fn) { + (*set_fn)(tmpbuf, *valp); + return (*get_fn)(tmpbuf) != *valp; + } + } + + /* Couldn't find any slot containing the field.... */ + xtisa_errno = xtensa_isa_no_field; + strcpy(xtisa_error_msg, "field does not exist in any slot"); + return -1; + } + + /* + * Encode the value. In some cases, the encoding function may detect + * errors, but most of the time the only way to determine if the value + * was successfully encoded is to decode it and check if it matches + * the original value. + */ + orig_val = *valp; + if ((*intop->encode)(valp) || + (test_val = *valp, (*intop->decode)(&test_val)) || + test_val != orig_val) { + xtisa_errno = xtensa_isa_bad_value; + sprintf(xtisa_error_msg, "cannot encode operand value 0x%08x", *valp); + return -1; + } + + return 0; +} + + +int xtensa_operand_decode(xtensa_isa isa, xtensa_opcode opc, int opnd, + uint32_t *valp) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + xtensa_operand_internal *intop; + + intop = get_operand(intisa, opc, opnd); + if (!intop) { + return -1; + } + + /* Use identity function for "default" operands. */ + if (!intop->decode) { + return 0; + } + + if ((*intop->decode)(valp)) { + xtisa_errno = xtensa_isa_bad_value; + sprintf(xtisa_error_msg, "cannot decode operand value 0x%08x", *valp); + return -1; + } + return 0; +} + + +int xtensa_operand_is_register(xtensa_isa isa, xtensa_opcode opc, int opnd) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + xtensa_operand_internal *intop; + + intop = get_operand(intisa, opc, opnd); + if (!intop) { + return XTENSA_UNDEFINED; + } + + if ((intop->flags & XTENSA_OPERAND_IS_REGISTER) != 0) { + return 1; + } + return 0; +} + + +xtensa_regfile xtensa_operand_regfile(xtensa_isa isa, xtensa_opcode opc, + int opnd) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + xtensa_operand_internal *intop; + + intop = get_operand(intisa, opc, opnd); + if (!intop) { + return XTENSA_UNDEFINED; + } + + return intop->regfile; +} + + +int xtensa_operand_num_regs(xtensa_isa isa, xtensa_opcode opc, int opnd) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + xtensa_operand_internal *intop; + + intop = get_operand(intisa, opc, opnd); + if (!intop) { + return XTENSA_UNDEFINED; + } + + return intop->num_regs; +} + + +int xtensa_operand_is_known_reg(xtensa_isa isa, xtensa_opcode opc, int opnd) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + xtensa_operand_internal *intop; + + intop = get_operand(intisa, opc, opnd); + if (!intop) { + return XTENSA_UNDEFINED; + } + + if ((intop->flags & XTENSA_OPERAND_IS_UNKNOWN) == 0) { + return 1; + } + return 0; +} + + +int xtensa_operand_is_PCrelative(xtensa_isa isa, xtensa_opcode opc, int opnd) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + xtensa_operand_internal *intop; + + intop = get_operand(intisa, opc, opnd); + if (!intop) { + return XTENSA_UNDEFINED; + } + + if ((intop->flags & XTENSA_OPERAND_IS_PCRELATIVE) != 0) { + return 1; + } + return 0; +} + + +int xtensa_operand_do_reloc(xtensa_isa isa, xtensa_opcode opc, int opnd, + uint32_t *valp, uint32_t pc) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + xtensa_operand_internal *intop; + + intop = get_operand(intisa, opc, opnd); + if (!intop) { + return -1; + } + + if ((intop->flags & XTENSA_OPERAND_IS_PCRELATIVE) == 0) { + return 0; + } + + if (!intop->do_reloc) { + xtisa_errno = xtensa_isa_internal_error; + strcpy(xtisa_error_msg, "operand missing do_reloc function"); + return -1; + } + + if ((*intop->do_reloc)(valp, pc)) { + xtisa_errno = xtensa_isa_bad_value; + sprintf(xtisa_error_msg, + "do_reloc failed for value 0x%08x at PC 0x%08x", *valp, pc); + return -1; + } + + return 0; +} + + +int xtensa_operand_undo_reloc(xtensa_isa isa, xtensa_opcode opc, int opnd, + uint32_t *valp, uint32_t pc) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + xtensa_operand_internal *intop; + + intop = get_operand(intisa, opc, opnd); + if (!intop) { + return -1; + } + + if ((intop->flags & XTENSA_OPERAND_IS_PCRELATIVE) == 0) { + return 0; + } + + if (!intop->undo_reloc) { + xtisa_errno = xtensa_isa_internal_error; + strcpy(xtisa_error_msg, "operand missing undo_reloc function"); + return -1; + } + + if ((*intop->undo_reloc)(valp, pc)) { + xtisa_errno = xtensa_isa_bad_value; + sprintf(xtisa_error_msg, + "undo_reloc failed for value 0x%08x at PC 0x%08x", *valp, pc); + return -1; + } + + return 0; +} + + +/* State Operands. */ + + +#define CHECK_STATE_OPERAND(INTISA, OPC, ICLASS, STOP, ERRVAL) \ + do { \ + if ((STOP) < 0 || (STOP) >= (ICLASS)->num_stateOperands) { \ + xtisa_errno = xtensa_isa_bad_operand; \ + sprintf(xtisa_error_msg, "invalid state operand number (%d); " \ + "opcode \"%s\" has %d state operands", (STOP), \ + (INTISA)->opcodes[(OPC)].name, \ + (ICLASS)->num_stateOperands); \ + return ERRVAL; \ + } \ + } while (0) + + +xtensa_state xtensa_stateOperand_state(xtensa_isa isa, xtensa_opcode opc, + int stOp) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + xtensa_iclass_internal *iclass; + int iclass_id; + + CHECK_OPCODE(intisa, opc, XTENSA_UNDEFINED); + iclass_id = intisa->opcodes[opc].iclass_id; + iclass = &intisa->iclasses[iclass_id]; + CHECK_STATE_OPERAND(intisa, opc, iclass, stOp, XTENSA_UNDEFINED); + return iclass->stateOperands[stOp].u.state; +} + + +char xtensa_stateOperand_inout(xtensa_isa isa, xtensa_opcode opc, int stOp) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + xtensa_iclass_internal *iclass; + int iclass_id; + + CHECK_OPCODE(intisa, opc, 0); + iclass_id = intisa->opcodes[opc].iclass_id; + iclass = &intisa->iclasses[iclass_id]; + CHECK_STATE_OPERAND(intisa, opc, iclass, stOp, 0); + return iclass->stateOperands[stOp].inout; +} + + +/* Interface Operands. */ + + +#define CHECK_INTERFACE_OPERAND(INTISA, OPC, ICLASS, IFOP, ERRVAL) \ + do { \ + if ((IFOP) < 0 || (IFOP) >= (ICLASS)->num_interfaceOperands) { \ + xtisa_errno = xtensa_isa_bad_operand; \ + sprintf(xtisa_error_msg, \ + "invalid interface operand number (%d); " \ + "opcode \"%s\" has %d interface operands", (IFOP), \ + (INTISA)->opcodes[(OPC)].name, \ + (ICLASS)->num_interfaceOperands); \ + return ERRVAL; \ + } \ + } while (0) + + +xtensa_interface xtensa_interfaceOperand_interface(xtensa_isa isa, + xtensa_opcode opc, + int ifOp) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + xtensa_iclass_internal *iclass; + int iclass_id; + + CHECK_OPCODE(intisa, opc, XTENSA_UNDEFINED); + iclass_id = intisa->opcodes[opc].iclass_id; + iclass = &intisa->iclasses[iclass_id]; + CHECK_INTERFACE_OPERAND(intisa, opc, iclass, ifOp, XTENSA_UNDEFINED); + return iclass->interfaceOperands[ifOp]; +} + + +/* Register Files. */ + + +#define CHECK_REGFILE(INTISA, RF, ERRVAL) \ + do { \ + if ((RF) < 0 || (RF) >= (INTISA)->num_regfiles) { \ + xtisa_errno = xtensa_isa_bad_regfile; \ + strcpy(xtisa_error_msg, "invalid regfile specifier"); \ + return ERRVAL; \ + } \ + } while (0) + + +xtensa_regfile xtensa_regfile_lookup(xtensa_isa isa, const char *name) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + int n; + + if (!name || !*name) { + xtisa_errno = xtensa_isa_bad_regfile; + strcpy(xtisa_error_msg, "invalid regfile name"); + return XTENSA_UNDEFINED; + } + + /* The expected number of regfiles is small; use a linear search. */ + for (n = 0; n < intisa->num_regfiles; n++) { + if (!strcmp(intisa->regfiles[n].name, name)) { + return n; + } + } + + xtisa_errno = xtensa_isa_bad_regfile; + sprintf(xtisa_error_msg, "regfile \"%s\" not recognized", name); + return XTENSA_UNDEFINED; +} + + +xtensa_regfile xtensa_regfile_lookup_shortname(xtensa_isa isa, + const char *shortname) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + int n; + + if (!shortname || !*shortname) { + xtisa_errno = xtensa_isa_bad_regfile; + strcpy(xtisa_error_msg, "invalid regfile shortname"); + return XTENSA_UNDEFINED; + } + + /* The expected number of regfiles is small; use a linear search. */ + for (n = 0; n < intisa->num_regfiles; n++) { + /* + * Ignore regfile views since they always have the same shortnames + * as their parents. + */ + if (intisa->regfiles[n].parent != n) { + continue; + } + if (!strcmp(intisa->regfiles[n].shortname, shortname)) { + return n; + } + } + + xtisa_errno = xtensa_isa_bad_regfile; + sprintf(xtisa_error_msg, "regfile shortname \"%s\" not recognized", + shortname); + return XTENSA_UNDEFINED; +} + + +const char *xtensa_regfile_name(xtensa_isa isa, xtensa_regfile rf) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + + CHECK_REGFILE(intisa, rf, NULL); + return intisa->regfiles[rf].name; +} + + +const char *xtensa_regfile_shortname(xtensa_isa isa, xtensa_regfile rf) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + + CHECK_REGFILE(intisa, rf, NULL); + return intisa->regfiles[rf].shortname; +} + + +xtensa_regfile xtensa_regfile_view_parent(xtensa_isa isa, xtensa_regfile rf) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + + CHECK_REGFILE(intisa, rf, XTENSA_UNDEFINED); + return intisa->regfiles[rf].parent; +} + + +int xtensa_regfile_num_bits(xtensa_isa isa, xtensa_regfile rf) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + + CHECK_REGFILE(intisa, rf, XTENSA_UNDEFINED); + return intisa->regfiles[rf].num_bits; +} + + +int xtensa_regfile_num_entries(xtensa_isa isa, xtensa_regfile rf) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + + CHECK_REGFILE(intisa, rf, XTENSA_UNDEFINED); + return intisa->regfiles[rf].num_entries; +} + + +/* Processor States. */ + + +#define CHECK_STATE(INTISA, ST, ERRVAL) \ + do { \ + if ((ST) < 0 || (ST) >= (INTISA)->num_states) { \ + xtisa_errno = xtensa_isa_bad_state; \ + strcpy(xtisa_error_msg, "invalid state specifier"); \ + return ERRVAL; \ + } \ + } while (0) + + +xtensa_state xtensa_state_lookup(xtensa_isa isa, const char *name) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + xtensa_lookup_entry entry, *result = 0; + + if (!name || !*name) { + xtisa_errno = xtensa_isa_bad_state; + strcpy(xtisa_error_msg, "invalid state name"); + return XTENSA_UNDEFINED; + } + + if (intisa->num_states != 0) { + entry.key = name; + result = bsearch(&entry, intisa->state_lookup_table, + intisa->num_states, sizeof(xtensa_lookup_entry), + xtensa_isa_name_compare); + } + + if (!result) { + xtisa_errno = xtensa_isa_bad_state; + sprintf(xtisa_error_msg, "state \"%s\" not recognized", name); + return XTENSA_UNDEFINED; + } + + return result->u.state; +} + + +const char *xtensa_state_name(xtensa_isa isa, xtensa_state st) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + + CHECK_STATE(intisa, st, NULL); + return intisa->states[st].name; +} + + +int xtensa_state_num_bits(xtensa_isa isa, xtensa_state st) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + + CHECK_STATE(intisa, st, XTENSA_UNDEFINED); + return intisa->states[st].num_bits; +} + + +int xtensa_state_is_exported(xtensa_isa isa, xtensa_state st) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + + CHECK_STATE(intisa, st, XTENSA_UNDEFINED); + if ((intisa->states[st].flags & XTENSA_STATE_IS_EXPORTED) != 0) { + return 1; + } + return 0; +} + + +int xtensa_state_is_shared_or(xtensa_isa isa, xtensa_state st) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + + CHECK_STATE(intisa, st, XTENSA_UNDEFINED); + if ((intisa->states[st].flags & XTENSA_STATE_IS_SHARED_OR) != 0) { + return 1; + } + return 0; +} + + +/* Sysregs. */ + + +#define CHECK_SYSREG(INTISA, SYSREG, ERRVAL) \ + do { \ + if ((SYSREG) < 0 || (SYSREG) >= (INTISA)->num_sysregs) { \ + xtisa_errno = xtensa_isa_bad_sysreg; \ + strcpy(xtisa_error_msg, "invalid sysreg specifier"); \ + return ERRVAL; \ + } \ + } while (0) + + +xtensa_sysreg xtensa_sysreg_lookup(xtensa_isa isa, int num, int is_user) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + + if (is_user != 0) { + is_user = 1; + } + + if (num < 0 || num > intisa->max_sysreg_num[is_user] || + intisa->sysreg_table[is_user][num] == XTENSA_UNDEFINED) { + xtisa_errno = xtensa_isa_bad_sysreg; + strcpy(xtisa_error_msg, "sysreg not recognized"); + return XTENSA_UNDEFINED; + } + + return intisa->sysreg_table[is_user][num]; +} + + +xtensa_sysreg xtensa_sysreg_lookup_name(xtensa_isa isa, const char *name) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + xtensa_lookup_entry entry, *result = 0; + + if (!name || !*name) { + xtisa_errno = xtensa_isa_bad_sysreg; + strcpy(xtisa_error_msg, "invalid sysreg name"); + return XTENSA_UNDEFINED; + } + + if (intisa->num_sysregs != 0) { + entry.key = name; + result = bsearch(&entry, intisa->sysreg_lookup_table, + intisa->num_sysregs, sizeof(xtensa_lookup_entry), + xtensa_isa_name_compare); + } + + if (!result) { + xtisa_errno = xtensa_isa_bad_sysreg; + sprintf(xtisa_error_msg, "sysreg \"%s\" not recognized", name); + return XTENSA_UNDEFINED; + } + + return result->u.sysreg; +} + + +const char *xtensa_sysreg_name(xtensa_isa isa, xtensa_sysreg sysreg) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + + CHECK_SYSREG(intisa, sysreg, NULL); + return intisa->sysregs[sysreg].name; +} + + +int xtensa_sysreg_number(xtensa_isa isa, xtensa_sysreg sysreg) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + + CHECK_SYSREG(intisa, sysreg, XTENSA_UNDEFINED); + return intisa->sysregs[sysreg].number; +} + + +int xtensa_sysreg_is_user(xtensa_isa isa, xtensa_sysreg sysreg) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + + CHECK_SYSREG(intisa, sysreg, XTENSA_UNDEFINED); + if (intisa->sysregs[sysreg].is_user) { + return 1; + } + return 0; +} + + +/* Interfaces. */ + + +#define CHECK_INTERFACE(INTISA, INTF, ERRVAL) \ + do { \ + if ((INTF) < 0 || (INTF) >= (INTISA)->num_interfaces) { \ + xtisa_errno = xtensa_isa_bad_interface; \ + strcpy(xtisa_error_msg, "invalid interface specifier"); \ + return ERRVAL; \ + } \ + } while (0) + + +xtensa_interface xtensa_interface_lookup(xtensa_isa isa, const char *ifname) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + xtensa_lookup_entry entry, *result = 0; + + if (!ifname || !*ifname) { + xtisa_errno = xtensa_isa_bad_interface; + strcpy(xtisa_error_msg, "invalid interface name"); + return XTENSA_UNDEFINED; + } + + if (intisa->num_interfaces != 0) { + entry.key = ifname; + result = bsearch(&entry, intisa->interface_lookup_table, + intisa->num_interfaces, sizeof(xtensa_lookup_entry), + xtensa_isa_name_compare); + } + + if (!result) { + xtisa_errno = xtensa_isa_bad_interface; + sprintf(xtisa_error_msg, "interface \"%s\" not recognized", ifname); + return XTENSA_UNDEFINED; + } + + return result->u.intf; +} + + +const char *xtensa_interface_name(xtensa_isa isa, xtensa_interface intf) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + + CHECK_INTERFACE(intisa, intf, NULL); + return intisa->interfaces[intf].name; +} + + +int xtensa_interface_num_bits(xtensa_isa isa, xtensa_interface intf) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + + CHECK_INTERFACE(intisa, intf, XTENSA_UNDEFINED); + return intisa->interfaces[intf].num_bits; +} + + +char xtensa_interface_inout(xtensa_isa isa, xtensa_interface intf) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + + CHECK_INTERFACE(intisa, intf, 0); + return intisa->interfaces[intf].inout; +} + + +int xtensa_interface_has_side_effect(xtensa_isa isa, xtensa_interface intf) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + + CHECK_INTERFACE(intisa, intf, XTENSA_UNDEFINED); + if ((intisa->interfaces[intf].flags & + XTENSA_INTERFACE_HAS_SIDE_EFFECT) != 0) { + return 1; + } + return 0; +} + + +int xtensa_interface_class_id(xtensa_isa isa, xtensa_interface intf) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + + CHECK_INTERFACE(intisa, intf, XTENSA_UNDEFINED); + return intisa->interfaces[intf].class_id; +} + + +/* Functional Units. */ + + +#define CHECK_FUNCUNIT(INTISA, FUN, ERRVAL) \ + do { \ + if ((FUN) < 0 || (FUN) >= (INTISA)->num_funcUnits) { \ + xtisa_errno = xtensa_isa_bad_funcUnit; \ + strcpy(xtisa_error_msg, "invalid functional unit specifier"); \ + return ERRVAL; \ + } \ + } while (0) + + +xtensa_funcUnit xtensa_funcUnit_lookup(xtensa_isa isa, const char *fname) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + xtensa_lookup_entry entry, *result = 0; + + if (!fname || !*fname) { + xtisa_errno = xtensa_isa_bad_funcUnit; + strcpy(xtisa_error_msg, "invalid functional unit name"); + return XTENSA_UNDEFINED; + } + + if (intisa->num_funcUnits != 0) { + entry.key = fname; + result = bsearch(&entry, intisa->funcUnit_lookup_table, + intisa->num_funcUnits, sizeof(xtensa_lookup_entry), + xtensa_isa_name_compare); + } + + if (!result) { + xtisa_errno = xtensa_isa_bad_funcUnit; + sprintf(xtisa_error_msg, + "functional unit \"%s\" not recognized", fname); + return XTENSA_UNDEFINED; + } + + return result->u.fun; +} + + +const char *xtensa_funcUnit_name(xtensa_isa isa, xtensa_funcUnit fun) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + + CHECK_FUNCUNIT(intisa, fun, NULL); + return intisa->funcUnits[fun].name; +} + + +int xtensa_funcUnit_num_copies(xtensa_isa isa, xtensa_funcUnit fun) +{ + xtensa_isa_internal *intisa = (xtensa_isa_internal *)isa; + + CHECK_FUNCUNIT(intisa, fun, XTENSA_UNDEFINED); + return intisa->funcUnits[fun].num_copies; +} diff --git a/target/xtensa/xtensa-isa.h b/target/xtensa/xtensa-isa.h new file mode 100644 index 0000000..d06614c --- /dev/null +++ b/target/xtensa/xtensa-isa.h @@ -0,0 +1 @@ +#include <hw/xtensa/xtensa-isa.h> |