diff options
author | Peter Maydell <peter.maydell@linaro.org> | 2018-05-18 18:25:29 +0100 |
---|---|---|
committer | Peter Maydell <peter.maydell@linaro.org> | 2018-05-18 18:25:29 +0100 |
commit | 5bcf917ee37a5efbef99f091a96db54a5276becb (patch) | |
tree | 46b15d3b22e7121f4db061104c335ba2de6533be | |
parent | d32e41a1188e929cc0fb16829ce3736046951e39 (diff) | |
parent | b94f8f60bd841c5b737185cd38263e26822f77ab (diff) | |
download | qemu-5bcf917ee37a5efbef99f091a96db54a5276becb.zip qemu-5bcf917ee37a5efbef99f091a96db54a5276becb.tar.gz qemu-5bcf917ee37a5efbef99f091a96db54a5276becb.tar.bz2 |
Merge remote-tracking branch 'remotes/pmaydell/tags/pull-target-arm-20180518' into staging
target-arm queue:
* Initial part of SVE implementation (currently disabled)
* smmuv3: fix some minor Coverity issues
* add model of Xilinx ZynqMP generic DMA controller
* expose (most) Arm coprocessor/system registers to
gdb via QEMU's gdbstub, for reads only
# gpg: Signature made Fri 18 May 2018 18:18:27 BST
# gpg: using RSA key 3C2525ED14360CDE
# gpg: Good signature from "Peter Maydell <peter.maydell@linaro.org>"
# gpg: aka "Peter Maydell <pmaydell@gmail.com>"
# gpg: aka "Peter Maydell <pmaydell@chiark.greenend.org.uk>"
# Primary key fingerprint: E1A5 C593 CD41 9DE2 8E83 15CF 3C25 25ED 1436 0CDE
* remotes/pmaydell/tags/pull-target-arm-20180518: (32 commits)
target/arm: Implement SVE Permute - Extract Group
target/arm: Implement SVE Integer Wide Immediate - Predicated Group
target/arm: Implement SVE Bitwise Immediate Group
target/arm: Implement SVE Element Count Group
target/arm: Implement SVE floating-point trig select coefficient
target/arm: Implement SVE floating-point exponential accelerator
target/arm: Implement SVE Compute Vector Address Group
target/arm: Implement SVE Bitwise Shift - Unpredicated Group
target/arm: Implement SVE Stack Allocation Group
target/arm: Implement SVE Index Generation Group
target/arm: Implement SVE Integer Arithmetic - Unpredicated Group
target/arm: Implement SVE Integer Multiply-Add Group
target/arm: Implement SVE Integer Arithmetic - Unary Predicated Group
target/arm: Implement SVE bitwise shift by wide elements (predicated)
target/arm: Implement SVE bitwise shift by vector (predicated)
target/arm: Implement SVE bitwise shift by immediate (predicated)
target/arm: Implement SVE Integer Reduction Group
target/arm: Implement SVE Integer Binary Arithmetic - Predicated Group
target/arm: Implement SVE Predicate Misc Group
target/arm: Implement SVE Predicate Logical Operations Group
...
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
-rw-r--r-- | .gitignore | 1 | ||||
-rw-r--r-- | gdbstub.c | 10 | ||||
-rw-r--r-- | hw/arm/smmu-common.c | 4 | ||||
-rw-r--r-- | hw/arm/smmuv3.c | 2 | ||||
-rw-r--r-- | hw/arm/xlnx-zynqmp.c | 53 | ||||
-rw-r--r-- | hw/dma/Makefile.objs | 1 | ||||
-rw-r--r-- | hw/dma/xlnx-zdma.c | 832 | ||||
-rw-r--r-- | include/hw/arm/xlnx-zynqmp.h | 5 | ||||
-rw-r--r-- | include/hw/dma/xlnx-zdma.h | 84 | ||||
-rw-r--r-- | include/qom/cpu.h | 5 | ||||
-rw-r--r-- | target/arm/Makefile.objs | 10 | ||||
-rw-r--r-- | target/arm/cpu.c | 1 | ||||
-rw-r--r-- | target/arm/cpu.h | 37 | ||||
-rw-r--r-- | target/arm/gdbstub.c | 76 | ||||
-rw-r--r-- | target/arm/helper-sve.h | 427 | ||||
-rw-r--r-- | target/arm/helper.c | 57 | ||||
-rw-r--r-- | target/arm/helper.h | 1 | ||||
-rw-r--r-- | target/arm/sve.decode | 419 | ||||
-rw-r--r-- | target/arm/sve_helper.c | 1562 | ||||
-rw-r--r-- | target/arm/translate-a64.c | 119 | ||||
-rw-r--r-- | target/arm/translate-a64.h | 118 | ||||
-rw-r--r-- | target/arm/translate-sve.c | 2070 |
22 files changed, 5778 insertions, 116 deletions
@@ -206,3 +206,4 @@ trace-dtrace-root.h trace-dtrace-root.dtrace trace-ust-all.h trace-ust-all.c +/target/arm/decode-sve.inc.c @@ -675,6 +675,16 @@ static const char *get_feature_xml(const char *p, const char **newp, } return target_xml; } + if (cc->gdb_get_dynamic_xml) { + CPUState *cpu = first_cpu; + char *xmlname = g_strndup(p, len); + const char *xml = cc->gdb_get_dynamic_xml(cpu, xmlname); + + g_free(xmlname); + if (xml) { + return xml; + } + } for (i = 0; ; i++) { name = xml_builtin[i][0]; if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len)) diff --git a/hw/arm/smmu-common.c b/hw/arm/smmu-common.c index 01c7be8..3c5f724 100644 --- a/hw/arm/smmu-common.c +++ b/hw/arm/smmu-common.c @@ -83,9 +83,9 @@ static inline hwaddr get_table_pte_address(uint64_t pte, int granule_sz) static inline hwaddr get_block_pte_address(uint64_t pte, int level, int granule_sz, uint64_t *bsz) { - int n = (granule_sz - 3) * (4 - level) + 3; + int n = level_shift(level, granule_sz); - *bsz = 1 << n; + *bsz = 1ULL << n; return PTE_ADDRESS(pte, n); } diff --git a/hw/arm/smmuv3.c b/hw/arm/smmuv3.c index b3026de..42dc521 100644 --- a/hw/arm/smmuv3.c +++ b/hw/arm/smmuv3.c @@ -143,7 +143,7 @@ static MemTxResult smmuv3_write_eventq(SMMUv3State *s, Evt *evt) void smmuv3_record_event(SMMUv3State *s, SMMUEventInfo *info) { - Evt evt; + Evt evt = {}; MemTxResult r; if (!smmuv3_eventq_enabled(s)) { diff --git a/hw/arm/xlnx-zynqmp.c b/hw/arm/xlnx-zynqmp.c index 505253e..2045b9d 100644 --- a/hw/arm/xlnx-zynqmp.c +++ b/hw/arm/xlnx-zynqmp.c @@ -90,6 +90,24 @@ static const int spi_intr[XLNX_ZYNQMP_NUM_SPIS] = { 19, 20, }; +static const uint64_t gdma_ch_addr[XLNX_ZYNQMP_NUM_GDMA_CH] = { + 0xFD500000, 0xFD510000, 0xFD520000, 0xFD530000, + 0xFD540000, 0xFD550000, 0xFD560000, 0xFD570000 +}; + +static const int gdma_ch_intr[XLNX_ZYNQMP_NUM_GDMA_CH] = { + 124, 125, 126, 127, 128, 129, 130, 131 +}; + +static const uint64_t adma_ch_addr[XLNX_ZYNQMP_NUM_ADMA_CH] = { + 0xFFA80000, 0xFFA90000, 0xFFAA0000, 0xFFAB0000, + 0xFFAC0000, 0xFFAD0000, 0xFFAE0000, 0xFFAF0000 +}; + +static const int adma_ch_intr[XLNX_ZYNQMP_NUM_ADMA_CH] = { + 77, 78, 79, 80, 81, 82, 83, 84 +}; + typedef struct XlnxZynqMPGICRegion { int region_index; uint32_t address; @@ -197,6 +215,16 @@ static void xlnx_zynqmp_init(Object *obj) object_initialize(&s->rtc, sizeof(s->rtc), TYPE_XLNX_ZYNQMP_RTC); qdev_set_parent_bus(DEVICE(&s->rtc), sysbus_get_default()); + + for (i = 0; i < XLNX_ZYNQMP_NUM_GDMA_CH; i++) { + object_initialize(&s->gdma[i], sizeof(s->gdma[i]), TYPE_XLNX_ZDMA); + qdev_set_parent_bus(DEVICE(&s->gdma[i]), sysbus_get_default()); + } + + for (i = 0; i < XLNX_ZYNQMP_NUM_ADMA_CH; i++) { + object_initialize(&s->adma[i], sizeof(s->adma[i]), TYPE_XLNX_ZDMA); + qdev_set_parent_bus(DEVICE(&s->adma[i]), sysbus_get_default()); + } } static void xlnx_zynqmp_realize(DeviceState *dev, Error **errp) @@ -492,6 +520,31 @@ static void xlnx_zynqmp_realize(DeviceState *dev, Error **errp) } sysbus_mmio_map(SYS_BUS_DEVICE(&s->rtc), 0, RTC_ADDR); sysbus_connect_irq(SYS_BUS_DEVICE(&s->rtc), 0, gic_spi[RTC_IRQ]); + + for (i = 0; i < XLNX_ZYNQMP_NUM_GDMA_CH; i++) { + object_property_set_uint(OBJECT(&s->gdma[i]), 128, "bus-width", &err); + object_property_set_bool(OBJECT(&s->gdma[i]), true, "realized", &err); + if (err) { + error_propagate(errp, err); + return; + } + + sysbus_mmio_map(SYS_BUS_DEVICE(&s->gdma[i]), 0, gdma_ch_addr[i]); + sysbus_connect_irq(SYS_BUS_DEVICE(&s->gdma[i]), 0, + gic_spi[gdma_ch_intr[i]]); + } + + for (i = 0; i < XLNX_ZYNQMP_NUM_ADMA_CH; i++) { + object_property_set_bool(OBJECT(&s->adma[i]), true, "realized", &err); + if (err) { + error_propagate(errp, err); + return; + } + + sysbus_mmio_map(SYS_BUS_DEVICE(&s->adma[i]), 0, adma_ch_addr[i]); + sysbus_connect_irq(SYS_BUS_DEVICE(&s->adma[i]), 0, + gic_spi[adma_ch_intr[i]]); + } } static Property xlnx_zynqmp_props[] = { diff --git a/hw/dma/Makefile.objs b/hw/dma/Makefile.objs index c2afecb..79affec 100644 --- a/hw/dma/Makefile.objs +++ b/hw/dma/Makefile.objs @@ -10,6 +10,7 @@ common-obj-$(CONFIG_ETRAXFS) += etraxfs_dma.o common-obj-$(CONFIG_STP2000) += sparc32_dma.o obj-$(CONFIG_XLNX_ZYNQMP) += xlnx_dpdma.o obj-$(CONFIG_XLNX_ZYNQMP_ARM) += xlnx_dpdma.o +common-obj-$(CONFIG_XLNX_ZYNQMP_ARM) += xlnx-zdma.o obj-$(CONFIG_OMAP) += omap_dma.o soc_dma.o obj-$(CONFIG_PXA2XX) += pxa2xx_dma.o diff --git a/hw/dma/xlnx-zdma.c b/hw/dma/xlnx-zdma.c new file mode 100644 index 0000000..14d86c2 --- /dev/null +++ b/hw/dma/xlnx-zdma.c @@ -0,0 +1,832 @@ +/* + * QEMU model of the ZynqMP generic DMA + * + * Copyright (c) 2014 Xilinx Inc. + * Copyright (c) 2018 FEIMTECH AB + * + * Written by Edgar E. Iglesias <edgar.iglesias@xilinx.com>, + * Francisco Iglesias <francisco.iglesias@feimtech.se> + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to deal + * in the Software without restriction, including without limitation the rights + * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell + * copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN + * THE SOFTWARE. + */ + +#include "qemu/osdep.h" +#include "hw/dma/xlnx-zdma.h" +#include "qemu/bitops.h" +#include "qemu/log.h" +#include "qapi/error.h" + +#ifndef XLNX_ZDMA_ERR_DEBUG +#define XLNX_ZDMA_ERR_DEBUG 0 +#endif + +REG32(ZDMA_ERR_CTRL, 0x0) + FIELD(ZDMA_ERR_CTRL, APB_ERR_RES, 0, 1) +REG32(ZDMA_CH_ISR, 0x100) + FIELD(ZDMA_CH_ISR, DMA_PAUSE, 11, 1) + FIELD(ZDMA_CH_ISR, DMA_DONE, 10, 1) + FIELD(ZDMA_CH_ISR, AXI_WR_DATA, 9, 1) + FIELD(ZDMA_CH_ISR, AXI_RD_DATA, 8, 1) + FIELD(ZDMA_CH_ISR, AXI_RD_DST_DSCR, 7, 1) + FIELD(ZDMA_CH_ISR, AXI_RD_SRC_DSCR, 6, 1) + FIELD(ZDMA_CH_ISR, IRQ_DST_ACCT_ERR, 5, 1) + FIELD(ZDMA_CH_ISR, IRQ_SRC_ACCT_ERR, 4, 1) + FIELD(ZDMA_CH_ISR, BYTE_CNT_OVRFL, 3, 1) + FIELD(ZDMA_CH_ISR, DST_DSCR_DONE, 2, 1) + FIELD(ZDMA_CH_ISR, SRC_DSCR_DONE, 1, 1) + FIELD(ZDMA_CH_ISR, INV_APB, 0, 1) +REG32(ZDMA_CH_IMR, 0x104) + FIELD(ZDMA_CH_IMR, DMA_PAUSE, 11, 1) + FIELD(ZDMA_CH_IMR, DMA_DONE, 10, 1) + FIELD(ZDMA_CH_IMR, AXI_WR_DATA, 9, 1) + FIELD(ZDMA_CH_IMR, AXI_RD_DATA, 8, 1) + FIELD(ZDMA_CH_IMR, AXI_RD_DST_DSCR, 7, 1) + FIELD(ZDMA_CH_IMR, AXI_RD_SRC_DSCR, 6, 1) + FIELD(ZDMA_CH_IMR, IRQ_DST_ACCT_ERR, 5, 1) + FIELD(ZDMA_CH_IMR, IRQ_SRC_ACCT_ERR, 4, 1) + FIELD(ZDMA_CH_IMR, BYTE_CNT_OVRFL, 3, 1) + FIELD(ZDMA_CH_IMR, DST_DSCR_DONE, 2, 1) + FIELD(ZDMA_CH_IMR, SRC_DSCR_DONE, 1, 1) + FIELD(ZDMA_CH_IMR, INV_APB, 0, 1) +REG32(ZDMA_CH_IEN, 0x108) + FIELD(ZDMA_CH_IEN, DMA_PAUSE, 11, 1) + FIELD(ZDMA_CH_IEN, DMA_DONE, 10, 1) + FIELD(ZDMA_CH_IEN, AXI_WR_DATA, 9, 1) + FIELD(ZDMA_CH_IEN, AXI_RD_DATA, 8, 1) + FIELD(ZDMA_CH_IEN, AXI_RD_DST_DSCR, 7, 1) + FIELD(ZDMA_CH_IEN, AXI_RD_SRC_DSCR, 6, 1) + FIELD(ZDMA_CH_IEN, IRQ_DST_ACCT_ERR, 5, 1) + FIELD(ZDMA_CH_IEN, IRQ_SRC_ACCT_ERR, 4, 1) + FIELD(ZDMA_CH_IEN, BYTE_CNT_OVRFL, 3, 1) + FIELD(ZDMA_CH_IEN, DST_DSCR_DONE, 2, 1) + FIELD(ZDMA_CH_IEN, SRC_DSCR_DONE, 1, 1) + FIELD(ZDMA_CH_IEN, INV_APB, 0, 1) +REG32(ZDMA_CH_IDS, 0x10c) + FIELD(ZDMA_CH_IDS, DMA_PAUSE, 11, 1) + FIELD(ZDMA_CH_IDS, DMA_DONE, 10, 1) + FIELD(ZDMA_CH_IDS, AXI_WR_DATA, 9, 1) + FIELD(ZDMA_CH_IDS, AXI_RD_DATA, 8, 1) + FIELD(ZDMA_CH_IDS, AXI_RD_DST_DSCR, 7, 1) + FIELD(ZDMA_CH_IDS, AXI_RD_SRC_DSCR, 6, 1) + FIELD(ZDMA_CH_IDS, IRQ_DST_ACCT_ERR, 5, 1) + FIELD(ZDMA_CH_IDS, IRQ_SRC_ACCT_ERR, 4, 1) + FIELD(ZDMA_CH_IDS, BYTE_CNT_OVRFL, 3, 1) + FIELD(ZDMA_CH_IDS, DST_DSCR_DONE, 2, 1) + FIELD(ZDMA_CH_IDS, SRC_DSCR_DONE, 1, 1) + FIELD(ZDMA_CH_IDS, INV_APB, 0, 1) +REG32(ZDMA_CH_CTRL0, 0x110) + FIELD(ZDMA_CH_CTRL0, OVR_FETCH, 7, 1) + FIELD(ZDMA_CH_CTRL0, POINT_TYPE, 6, 1) + FIELD(ZDMA_CH_CTRL0, MODE, 4, 2) + FIELD(ZDMA_CH_CTRL0, RATE_CTRL, 3, 1) + FIELD(ZDMA_CH_CTRL0, CONT_ADDR, 2, 1) + FIELD(ZDMA_CH_CTRL0, CONT, 1, 1) +REG32(ZDMA_CH_CTRL1, 0x114) + FIELD(ZDMA_CH_CTRL1, DST_ISSUE, 5, 5) + FIELD(ZDMA_CH_CTRL1, SRC_ISSUE, 0, 5) +REG32(ZDMA_CH_FCI, 0x118) + FIELD(ZDMA_CH_FCI, PROG_CELL_CNT, 2, 2) + FIELD(ZDMA_CH_FCI, SIDE, 1, 1) + FIELD(ZDMA_CH_FCI, EN, 0, 1) +REG32(ZDMA_CH_STATUS, 0x11c) + FIELD(ZDMA_CH_STATUS, STATE, 0, 2) +REG32(ZDMA_CH_DATA_ATTR, 0x120) + FIELD(ZDMA_CH_DATA_ATTR, ARBURST, 26, 2) + FIELD(ZDMA_CH_DATA_ATTR, ARCACHE, 22, 4) + FIELD(ZDMA_CH_DATA_ATTR, ARQOS, 18, 4) + FIELD(ZDMA_CH_DATA_ATTR, ARLEN, 14, 4) + FIELD(ZDMA_CH_DATA_ATTR, AWBURST, 12, 2) + FIELD(ZDMA_CH_DATA_ATTR, AWCACHE, 8, 4) + FIELD(ZDMA_CH_DATA_ATTR, AWQOS, 4, 4) + FIELD(ZDMA_CH_DATA_ATTR, AWLEN, 0, 4) +REG32(ZDMA_CH_DSCR_ATTR, 0x124) + FIELD(ZDMA_CH_DSCR_ATTR, AXCOHRNT, 8, 1) + FIELD(ZDMA_CH_DSCR_ATTR, AXCACHE, 4, 4) + FIELD(ZDMA_CH_DSCR_ATTR, AXQOS, 0, 4) +REG32(ZDMA_CH_SRC_DSCR_WORD0, 0x128) +REG32(ZDMA_CH_SRC_DSCR_WORD1, 0x12c) + FIELD(ZDMA_CH_SRC_DSCR_WORD1, MSB, 0, 17) +REG32(ZDMA_CH_SRC_DSCR_WORD2, 0x130) + FIELD(ZDMA_CH_SRC_DSCR_WORD2, SIZE, 0, 30) +REG32(ZDMA_CH_SRC_DSCR_WORD3, 0x134) + FIELD(ZDMA_CH_SRC_DSCR_WORD3, CMD, 3, 2) + FIELD(ZDMA_CH_SRC_DSCR_WORD3, INTR, 2, 1) + FIELD(ZDMA_CH_SRC_DSCR_WORD3, TYPE, 1, 1) + FIELD(ZDMA_CH_SRC_DSCR_WORD3, COHRNT, 0, 1) +REG32(ZDMA_CH_DST_DSCR_WORD0, 0x138) +REG32(ZDMA_CH_DST_DSCR_WORD1, 0x13c) + FIELD(ZDMA_CH_DST_DSCR_WORD1, MSB, 0, 17) +REG32(ZDMA_CH_DST_DSCR_WORD2, 0x140) + FIELD(ZDMA_CH_DST_DSCR_WORD2, SIZE, 0, 30) +REG32(ZDMA_CH_DST_DSCR_WORD3, 0x144) + FIELD(ZDMA_CH_DST_DSCR_WORD3, INTR, 2, 1) + FIELD(ZDMA_CH_DST_DSCR_WORD3, TYPE, 1, 1) + FIELD(ZDMA_CH_DST_DSCR_WORD3, COHRNT, 0, 1) +REG32(ZDMA_CH_WR_ONLY_WORD0, 0x148) +REG32(ZDMA_CH_WR_ONLY_WORD1, 0x14c) +REG32(ZDMA_CH_WR_ONLY_WORD2, 0x150) +REG32(ZDMA_CH_WR_ONLY_WORD3, 0x154) +REG32(ZDMA_CH_SRC_START_LSB, 0x158) +REG32(ZDMA_CH_SRC_START_MSB, 0x15c) + FIELD(ZDMA_CH_SRC_START_MSB, ADDR, 0, 17) +REG32(ZDMA_CH_DST_START_LSB, 0x160) +REG32(ZDMA_CH_DST_START_MSB, 0x164) + FIELD(ZDMA_CH_DST_START_MSB, ADDR, 0, 17) +REG32(ZDMA_CH_RATE_CTRL, 0x18c) + FIELD(ZDMA_CH_RATE_CTRL, CNT, 0, 12) +REG32(ZDMA_CH_SRC_CUR_PYLD_LSB, 0x168) +REG32(ZDMA_CH_SRC_CUR_PYLD_MSB, 0x16c) + FIELD(ZDMA_CH_SRC_CUR_PYLD_MSB, ADDR, 0, 17) +REG32(ZDMA_CH_DST_CUR_PYLD_LSB, 0x170) +REG32(ZDMA_CH_DST_CUR_PYLD_MSB, 0x174) + FIELD(ZDMA_CH_DST_CUR_PYLD_MSB, ADDR, 0, 17) +REG32(ZDMA_CH_SRC_CUR_DSCR_LSB, 0x178) +REG32(ZDMA_CH_SRC_CUR_DSCR_MSB, 0x17c) + FIELD(ZDMA_CH_SRC_CUR_DSCR_MSB, ADDR, 0, 17) +REG32(ZDMA_CH_DST_CUR_DSCR_LSB, 0x180) +REG32(ZDMA_CH_DST_CUR_DSCR_MSB, 0x184) + FIELD(ZDMA_CH_DST_CUR_DSCR_MSB, ADDR, 0, 17) +REG32(ZDMA_CH_TOTAL_BYTE, 0x188) +REG32(ZDMA_CH_RATE_CNTL, 0x18c) + FIELD(ZDMA_CH_RATE_CNTL, CNT, 0, 12) +REG32(ZDMA_CH_IRQ_SRC_ACCT, 0x190) + FIELD(ZDMA_CH_IRQ_SRC_ACCT, CNT, 0, 8) +REG32(ZDMA_CH_IRQ_DST_ACCT, 0x194) + FIELD(ZDMA_CH_IRQ_DST_ACCT, CNT, 0, 8) +REG32(ZDMA_CH_DBG0, 0x198) + FIELD(ZDMA_CH_DBG0, CMN_BUF_FREE, 0, 9) +REG32(ZDMA_CH_DBG1, 0x19c) + FIELD(ZDMA_CH_DBG1, CMN_BUF_OCC, 0, 9) +REG32(ZDMA_CH_CTRL2, 0x200) + FIELD(ZDMA_CH_CTRL2, EN, 0, 1) + +enum { + PT_REG = 0, + PT_MEM = 1, +}; + +enum { + CMD_HALT = 1, + CMD_STOP = 2, +}; + +enum { + RW_MODE_RW = 0, + RW_MODE_WO = 1, + RW_MODE_RO = 2, +}; + +enum { + DTYPE_LINEAR = 0, + DTYPE_LINKED = 1, +}; + +enum { + AXI_BURST_FIXED = 0, + AXI_BURST_INCR = 1, +}; + +static void zdma_ch_imr_update_irq(XlnxZDMA *s) +{ + bool pending; + + pending = s->regs[R_ZDMA_CH_ISR] & ~s->regs[R_ZDMA_CH_IMR]; + + qemu_set_irq(s->irq_zdma_ch_imr, pending); +} + +static void zdma_ch_isr_postw(RegisterInfo *reg, uint64_t val64) +{ + XlnxZDMA *s = XLNX_ZDMA(reg->opaque); + zdma_ch_imr_update_irq(s); +} + +static uint64_t zdma_ch_ien_prew(RegisterInfo *reg, uint64_t val64) +{ + XlnxZDMA *s = XLNX_ZDMA(reg->opaque); + uint32_t val = val64; + + s->regs[R_ZDMA_CH_IMR] &= ~val; + zdma_ch_imr_update_irq(s); + return 0; +} + +static uint64_t zdma_ch_ids_prew(RegisterInfo *reg, uint64_t val64) +{ + XlnxZDMA *s = XLNX_ZDMA(reg->opaque); + uint32_t val = val64; + + s->regs[R_ZDMA_CH_IMR] |= val; + zdma_ch_imr_update_irq(s); + return 0; +} + +static void zdma_set_state(XlnxZDMA *s, XlnxZDMAState state) +{ + s->state = state; + ARRAY_FIELD_DP32(s->regs, ZDMA_CH_STATUS, STATE, state); + + /* Signal error if we have an error condition. */ + if (s->error) { + ARRAY_FIELD_DP32(s->regs, ZDMA_CH_STATUS, STATE, 3); + } +} + +static void zdma_src_done(XlnxZDMA *s) +{ + unsigned int cnt; + cnt = ARRAY_FIELD_EX32(s->regs, ZDMA_CH_IRQ_SRC_ACCT, CNT); + cnt++; + ARRAY_FIELD_DP32(s->regs, ZDMA_CH_IRQ_SRC_ACCT, CNT, cnt); + ARRAY_FIELD_DP32(s->regs, ZDMA_CH_ISR, SRC_DSCR_DONE, true); + + /* Did we overflow? */ + if (cnt != ARRAY_FIELD_EX32(s->regs, ZDMA_CH_IRQ_SRC_ACCT, CNT)) { + ARRAY_FIELD_DP32(s->regs, ZDMA_CH_ISR, IRQ_SRC_ACCT_ERR, true); + } + zdma_ch_imr_update_irq(s); +} + +static void zdma_dst_done(XlnxZDMA *s) +{ + unsigned int cnt; + cnt = ARRAY_FIELD_EX32(s->regs, ZDMA_CH_IRQ_DST_ACCT, CNT); + cnt++; + ARRAY_FIELD_DP32(s->regs, ZDMA_CH_IRQ_DST_ACCT, CNT, cnt); + ARRAY_FIELD_DP32(s->regs, ZDMA_CH_ISR, DST_DSCR_DONE, true); + + /* Did we overflow? */ + if (cnt != ARRAY_FIELD_EX32(s->regs, ZDMA_CH_IRQ_DST_ACCT, CNT)) { + ARRAY_FIELD_DP32(s->regs, ZDMA_CH_ISR, IRQ_DST_ACCT_ERR, true); + } + zdma_ch_imr_update_irq(s); +} + +static uint64_t zdma_get_regaddr64(XlnxZDMA *s, unsigned int basereg) +{ + uint64_t addr; + + addr = s->regs[basereg + 1]; + addr <<= 32; + addr |= s->regs[basereg]; + + return addr; +} + +static void zdma_put_regaddr64(XlnxZDMA *s, unsigned int basereg, uint64_t addr) +{ + s->regs[basereg] = addr; + s->regs[basereg + 1] = addr >> 32; +} + +static bool zdma_load_descriptor(XlnxZDMA *s, uint64_t addr, void *buf) +{ + /* ZDMA descriptors must be aligned to their own size. */ + if (addr % sizeof(XlnxZDMADescr)) { + qemu_log_mask(LOG_GUEST_ERROR, + "zdma: unaligned descriptor at %" PRIx64, + addr); + memset(buf, 0xdeadbeef, sizeof(XlnxZDMADescr)); + s->error = true; + return false; + } + + address_space_rw(s->dma_as, addr, s->attr, + buf, sizeof(XlnxZDMADescr), false); + return true; +} + +static void zdma_load_src_descriptor(XlnxZDMA *s) +{ + uint64_t src_addr; + unsigned int ptype = ARRAY_FIELD_EX32(s->regs, ZDMA_CH_CTRL0, POINT_TYPE); + + if (ptype == PT_REG) { + memcpy(&s->dsc_src, &s->regs[R_ZDMA_CH_SRC_DSCR_WORD0], + sizeof(s->dsc_src)); + return; + } + + src_addr = zdma_get_regaddr64(s, R_ZDMA_CH_SRC_CUR_DSCR_LSB); + + if (!zdma_load_descriptor(s, src_addr, &s->dsc_src)) { + ARRAY_FIELD_DP32(s->regs, ZDMA_CH_ISR, AXI_RD_SRC_DSCR, true); + } +} + +static void zdma_load_dst_descriptor(XlnxZDMA *s) +{ + uint64_t dst_addr; + unsigned int ptype = ARRAY_FIELD_EX32(s->regs, ZDMA_CH_CTRL0, POINT_TYPE); + + if (ptype == PT_REG) { + memcpy(&s->dsc_dst, &s->regs[R_ZDMA_CH_DST_DSCR_WORD0], + sizeof(s->dsc_dst)); + return; + } + + dst_addr = zdma_get_regaddr64(s, R_ZDMA_CH_DST_CUR_DSCR_LSB); + + if (!zdma_load_descriptor(s, dst_addr, &s->dsc_dst)) { + ARRAY_FIELD_DP32(s->regs, ZDMA_CH_ISR, AXI_RD_DST_DSCR, true); + } +} + +static uint64_t zdma_update_descr_addr(XlnxZDMA *s, bool type, + unsigned int basereg) +{ + uint64_t addr, next; + + if (type == DTYPE_LINEAR) { + next = zdma_get_regaddr64(s, basereg); + next += sizeof(s->dsc_dst); + zdma_put_regaddr64(s, basereg, next); + } else { + addr = zdma_get_regaddr64(s, basereg); + addr += sizeof(s->dsc_dst); + address_space_rw(s->dma_as, addr, s->attr, (void *) &next, 8, false); + zdma_put_regaddr64(s, basereg, next); + } + return next; +} + +static void zdma_write_dst(XlnxZDMA *s, uint8_t *buf, uint32_t len) +{ + uint32_t dst_size, dlen; + bool dst_intr, dst_type; + unsigned int ptype = ARRAY_FIELD_EX32(s->regs, ZDMA_CH_CTRL0, POINT_TYPE); + unsigned int rw_mode = ARRAY_FIELD_EX32(s->regs, ZDMA_CH_CTRL0, MODE); + unsigned int burst_type = ARRAY_FIELD_EX32(s->regs, ZDMA_CH_DATA_ATTR, + AWBURST); + + /* FIXED burst types are only supported in simple dma mode. */ + if (ptype != PT_REG) { + burst_type = AXI_BURST_INCR; + } + + while (len) { + dst_size = FIELD_EX32(s->dsc_dst.words[2], ZDMA_CH_DST_DSCR_WORD2, + SIZE); + dst_type = FIELD_EX32(s->dsc_dst.words[3], ZDMA_CH_DST_DSCR_WORD3, + TYPE); + if (dst_size == 0 && ptype == PT_MEM) { + uint64_t next; + next = zdma_update_descr_addr(s, dst_type, + R_ZDMA_CH_DST_CUR_DSCR_LSB); + zdma_load_descriptor(s, next, &s->dsc_dst); + dst_size = FIELD_EX32(s->dsc_dst.words[2], ZDMA_CH_DST_DSCR_WORD2, + SIZE); + dst_type = FIELD_EX32(s->dsc_dst.words[3], ZDMA_CH_DST_DSCR_WORD3, + TYPE); + } + + /* Match what hardware does by ignoring the dst_size and only using + * the src size for Simple register mode. */ + if (ptype == PT_REG && rw_mode != RW_MODE_WO) { + dst_size = len; + } + + dst_intr = FIELD_EX32(s->dsc_dst.words[3], ZDMA_CH_DST_DSCR_WORD3, + INTR); + + dlen = len > dst_size ? dst_size : len; + if (burst_type == AXI_BURST_FIXED) { + if (dlen > (s->cfg.bus_width / 8)) { + dlen = s->cfg.bus_width / 8; + } + } + + address_space_rw(s->dma_as, s->dsc_dst.addr, s->attr, buf, dlen, + true); + if (burst_type == AXI_BURST_INCR) { + s->dsc_dst.addr += dlen; + } + dst_size -= dlen; + buf += dlen; + len -= dlen; + + if (dst_size == 0 && dst_intr) { + zdma_dst_done(s); + } + + /* Write back to buffered descriptor. */ + s->dsc_dst.words[2] = FIELD_DP32(s->dsc_dst.words[2], + ZDMA_CH_DST_DSCR_WORD2, + SIZE, + dst_size); + } +} + +static void zdma_process_descr(XlnxZDMA *s) +{ + uint64_t src_addr; + uint32_t src_size, len; + unsigned int src_cmd; + bool src_intr, src_type; + unsigned int ptype = ARRAY_FIELD_EX32(s->regs, ZDMA_CH_CTRL0, POINT_TYPE); + unsigned int rw_mode = ARRAY_FIELD_EX32(s->regs, ZDMA_CH_CTRL0, MODE); + unsigned int burst_type = ARRAY_FIELD_EX32(s->regs, ZDMA_CH_DATA_ATTR, + ARBURST); + + src_addr = s->dsc_src.addr; + src_size = FIELD_EX32(s->dsc_src.words[2], ZDMA_CH_SRC_DSCR_WORD2, SIZE); + src_cmd = FIELD_EX32(s->dsc_src.words[3], ZDMA_CH_SRC_DSCR_WORD3, CMD); + src_type = FIELD_EX32(s->dsc_src.words[3], ZDMA_CH_SRC_DSCR_WORD3, TYPE); + src_intr = FIELD_EX32(s->dsc_src.words[3], ZDMA_CH_SRC_DSCR_WORD3, INTR); + + /* FIXED burst types and non-rw modes are only supported in + * simple dma mode. + */ + if (ptype != PT_REG) { + if (rw_mode != RW_MODE_RW) { + qemu_log_mask(LOG_GUEST_ERROR, + "zDMA: rw-mode=%d but not simple DMA mode.\n", + rw_mode); + } + if (burst_type != AXI_BURST_INCR) { + qemu_log_mask(LOG_GUEST_ERROR, + "zDMA: burst_type=%d but not simple DMA mode.\n", + burst_type); + } + burst_type = AXI_BURST_INCR; + rw_mode = RW_MODE_RW; + } + + if (rw_mode == RW_MODE_WO) { + /* In Simple DMA Write-Only, we need to push DST size bytes + * regardless of what SRC size is set to. */ + src_size = FIELD_EX32(s->dsc_dst.words[2], ZDMA_CH_DST_DSCR_WORD2, + SIZE); + memcpy(s->buf, &s->regs[R_ZDMA_CH_WR_ONLY_WORD0], s->cfg.bus_width / 8); + } + + while (src_size) { + len = src_size > ARRAY_SIZE(s->buf) ? ARRAY_SIZE(s->buf) : src_size; + if (burst_type == AXI_BURST_FIXED) { + if (len > (s->cfg.bus_width / 8)) { + len = s->cfg.bus_width / 8; + } + } + + if (rw_mode == RW_MODE_WO) { + if (len > s->cfg.bus_width / 8) { + len = s->cfg.bus_width / 8; + } + } else { + address_space_rw(s->dma_as, src_addr, s->attr, s->buf, len, + false); + if (burst_type == AXI_BURST_INCR) { + src_addr += len; + } + } + + if (rw_mode != RW_MODE_RO) { + zdma_write_dst(s, s->buf, len); + } + + s->regs[R_ZDMA_CH_TOTAL_BYTE] += len; + src_size -= len; + } + + ARRAY_FIELD_DP32(s->regs, ZDMA_CH_ISR, DMA_DONE, true); + + if (src_intr) { + zdma_src_done(s); + } + + /* Load next descriptor. */ + if (ptype == PT_REG || src_cmd == CMD_STOP) { + ARRAY_FIELD_DP32(s->regs, ZDMA_CH_CTRL2, EN, 0); + zdma_set_state(s, DISABLED); + return; + } + + if (src_cmd == CMD_HALT) { + zdma_set_state(s, PAUSED); + ARRAY_FIELD_DP32(s->regs, ZDMA_CH_ISR, DMA_PAUSE, 1); + zdma_ch_imr_update_irq(s); + return; + } + + zdma_update_descr_addr(s, src_type, R_ZDMA_CH_SRC_CUR_DSCR_LSB); +} + +static void zdma_run(XlnxZDMA *s) +{ + while (s->state == ENABLED && !s->error) { + zdma_load_src_descriptor(s); + + if (s->error) { + zdma_set_state(s, DISABLED); + } else { + zdma_process_descr(s); + } + } + + zdma_ch_imr_update_irq(s); +} + +static void zdma_update_descr_addr_from_start(XlnxZDMA *s) +{ + uint64_t src_addr, dst_addr; + + src_addr = zdma_get_regaddr64(s, R_ZDMA_CH_SRC_START_LSB); + zdma_put_regaddr64(s, R_ZDMA_CH_SRC_CUR_DSCR_LSB, src_addr); + dst_addr = zdma_get_regaddr64(s, R_ZDMA_CH_DST_START_LSB); + zdma_put_regaddr64(s, R_ZDMA_CH_DST_CUR_DSCR_LSB, dst_addr); + zdma_load_dst_descriptor(s); +} + +static void zdma_ch_ctrlx_postw(RegisterInfo *reg, uint64_t val64) +{ + XlnxZDMA *s = XLNX_ZDMA(reg->opaque); + + if (ARRAY_FIELD_EX32(s->regs, ZDMA_CH_CTRL2, EN)) { + s->error = false; + + if (s->state == PAUSED && + ARRAY_FIELD_EX32(s->regs, ZDMA_CH_CTRL0, CONT)) { + if (ARRAY_FIELD_EX32(s->regs, ZDMA_CH_CTRL0, CONT_ADDR) == 1) { + zdma_update_descr_addr_from_start(s); + } else { + bool src_type = FIELD_EX32(s->dsc_src.words[3], + ZDMA_CH_SRC_DSCR_WORD3, TYPE); + zdma_update_descr_addr(s, src_type, + R_ZDMA_CH_SRC_CUR_DSCR_LSB); + } + ARRAY_FIELD_DP32(s->regs, ZDMA_CH_CTRL0, CONT, false); + zdma_set_state(s, ENABLED); + } else if (s->state == DISABLED) { + zdma_update_descr_addr_from_start(s); + zdma_set_state(s, ENABLED); + } + } else { + /* Leave Paused state? */ + if (s->state == PAUSED && + ARRAY_FIELD_EX32(s->regs, ZDMA_CH_CTRL0, CONT)) { + zdma_set_state(s, DISABLED); + } + } + + zdma_run(s); +} + +static RegisterAccessInfo zdma_regs_info[] = { + { .name = "ZDMA_ERR_CTRL", .addr = A_ZDMA_ERR_CTRL, + .rsvd = 0xfffffffe, + },{ .name = "ZDMA_CH_ISR", .addr = A_ZDMA_CH_ISR, + .rsvd = 0xfffff000, + .w1c = 0xfff, + .post_write = zdma_ch_isr_postw, + },{ .name = "ZDMA_CH_IMR", .addr = A_ZDMA_CH_IMR, + .reset = 0xfff, + .rsvd = 0xfffff000, + .ro = 0xfff, + },{ .name = "ZDMA_CH_IEN", .addr = A_ZDMA_CH_IEN, + .rsvd = 0xfffff000, + .pre_write = zdma_ch_ien_prew, + },{ .name = "ZDMA_CH_IDS", .addr = A_ZDMA_CH_IDS, + .rsvd = 0xfffff000, + .pre_write = zdma_ch_ids_prew, + },{ .name = "ZDMA_CH_CTRL0", .addr = A_ZDMA_CH_CTRL0, + .reset = 0x80, + .rsvd = 0xffffff01, + .post_write = zdma_ch_ctrlx_postw, + },{ .name = "ZDMA_CH_CTRL1", .addr = A_ZDMA_CH_CTRL1, + .reset = 0x3ff, + .rsvd = 0xfffffc00, + },{ .name = "ZDMA_CH_FCI", .addr = A_ZDMA_CH_FCI, + .rsvd = 0xffffffc0, + },{ .name = "ZDMA_CH_STATUS", .addr = A_ZDMA_CH_STATUS, + .rsvd = 0xfffffffc, + .ro = 0x3, + },{ .name = "ZDMA_CH_DATA_ATTR", .addr = A_ZDMA_CH_DATA_ATTR, + .reset = 0x483d20f, + .rsvd = 0xf0000000, + },{ .name = "ZDMA_CH_DSCR_ATTR", .addr = A_ZDMA_CH_DSCR_ATTR, + .rsvd = 0xfffffe00, + },{ .name = "ZDMA_CH_SRC_DSCR_WORD0", .addr = A_ZDMA_CH_SRC_DSCR_WORD0, + },{ .name = "ZDMA_CH_SRC_DSCR_WORD1", .addr = A_ZDMA_CH_SRC_DSCR_WORD1, + .rsvd = 0xfffe0000, + },{ .name = "ZDMA_CH_SRC_DSCR_WORD2", .addr = A_ZDMA_CH_SRC_DSCR_WORD2, + .rsvd = 0xc0000000, + },{ .name = "ZDMA_CH_SRC_DSCR_WORD3", .addr = A_ZDMA_CH_SRC_DSCR_WORD3, + .rsvd = 0xffffffe0, + },{ .name = "ZDMA_CH_DST_DSCR_WORD0", .addr = A_ZDMA_CH_DST_DSCR_WORD0, + },{ .name = "ZDMA_CH_DST_DSCR_WORD1", .addr = A_ZDMA_CH_DST_DSCR_WORD1, + .rsvd = 0xfffe0000, + },{ .name = "ZDMA_CH_DST_DSCR_WORD2", .addr = A_ZDMA_CH_DST_DSCR_WORD2, + .rsvd = 0xc0000000, + },{ .name = "ZDMA_CH_DST_DSCR_WORD3", .addr = A_ZDMA_CH_DST_DSCR_WORD3, + .rsvd = 0xfffffffa, + },{ .name = "ZDMA_CH_WR_ONLY_WORD0", .addr = A_ZDMA_CH_WR_ONLY_WORD0, + },{ .name = "ZDMA_CH_WR_ONLY_WORD1", .addr = A_ZDMA_CH_WR_ONLY_WORD1, + },{ .name = "ZDMA_CH_WR_ONLY_WORD2", .addr = A_ZDMA_CH_WR_ONLY_WORD2, + },{ .name = "ZDMA_CH_WR_ONLY_WORD3", .addr = A_ZDMA_CH_WR_ONLY_WORD3, + },{ .name = "ZDMA_CH_SRC_START_LSB", .addr = A_ZDMA_CH_SRC_START_LSB, + },{ .name = "ZDMA_CH_SRC_START_MSB", .addr = A_ZDMA_CH_SRC_START_MSB, + .rsvd = 0xfffe0000, + },{ .name = "ZDMA_CH_DST_START_LSB", .addr = A_ZDMA_CH_DST_START_LSB, + },{ .name = "ZDMA_CH_DST_START_MSB", .addr = A_ZDMA_CH_DST_START_MSB, + .rsvd = 0xfffe0000, + },{ .name = "ZDMA_CH_SRC_CUR_PYLD_LSB", .addr = A_ZDMA_CH_SRC_CUR_PYLD_LSB, + .ro = 0xffffffff, + },{ .name = "ZDMA_CH_SRC_CUR_PYLD_MSB", .addr = A_ZDMA_CH_SRC_CUR_PYLD_MSB, + .rsvd = 0xfffe0000, + .ro = 0x1ffff, + },{ .name = "ZDMA_CH_DST_CUR_PYLD_LSB", .addr = A_ZDMA_CH_DST_CUR_PYLD_LSB, + .ro = 0xffffffff, + },{ .name = "ZDMA_CH_DST_CUR_PYLD_MSB", .addr = A_ZDMA_CH_DST_CUR_PYLD_MSB, + .rsvd = 0xfffe0000, + .ro = 0x1ffff, + },{ .name = "ZDMA_CH_SRC_CUR_DSCR_LSB", .addr = A_ZDMA_CH_SRC_CUR_DSCR_LSB, + .ro = 0xffffffff, + },{ .name = "ZDMA_CH_SRC_CUR_DSCR_MSB", .addr = A_ZDMA_CH_SRC_CUR_DSCR_MSB, + .rsvd = 0xfffe0000, + .ro = 0x1ffff, + },{ .name = "ZDMA_CH_DST_CUR_DSCR_LSB", .addr = A_ZDMA_CH_DST_CUR_DSCR_LSB, + .ro = 0xffffffff, + },{ .name = "ZDMA_CH_DST_CUR_DSCR_MSB", .addr = A_ZDMA_CH_DST_CUR_DSCR_MSB, + .rsvd = 0xfffe0000, + .ro = 0x1ffff, + },{ .name = "ZDMA_CH_TOTAL_BYTE", .addr = A_ZDMA_CH_TOTAL_BYTE, + .w1c = 0xffffffff, + },{ .name = "ZDMA_CH_RATE_CNTL", .addr = A_ZDMA_CH_RATE_CNTL, + .rsvd = 0xfffff000, + },{ .name = "ZDMA_CH_IRQ_SRC_ACCT", .addr = A_ZDMA_CH_IRQ_SRC_ACCT, + .rsvd = 0xffffff00, + .ro = 0xff, + .cor = 0xff, + },{ .name = "ZDMA_CH_IRQ_DST_ACCT", .addr = A_ZDMA_CH_IRQ_DST_ACCT, + .rsvd = 0xffffff00, + .ro = 0xff, + .cor = 0xff, + },{ .name = "ZDMA_CH_DBG0", .addr = A_ZDMA_CH_DBG0, + .rsvd = 0xfffffe00, + .ro = 0x1ff, + },{ .name = "ZDMA_CH_DBG1", .addr = A_ZDMA_CH_DBG1, + .rsvd = 0xfffffe00, + .ro = 0x1ff, + },{ .name = "ZDMA_CH_CTRL2", .addr = A_ZDMA_CH_CTRL2, + .rsvd = 0xfffffffe, + .post_write = zdma_ch_ctrlx_postw, + } +}; + +static void zdma_reset(DeviceState *dev) +{ + XlnxZDMA *s = XLNX_ZDMA(dev); + unsigned int i; + + for (i = 0; i < ARRAY_SIZE(s->regs_info); ++i) { + register_reset(&s->regs_info[i]); + } + + zdma_ch_imr_update_irq(s); +} + +static uint64_t zdma_read(void *opaque, hwaddr addr, unsigned size) +{ + XlnxZDMA *s = XLNX_ZDMA(opaque); + RegisterInfo *r = &s->regs_info[addr / 4]; + + if (!r->data) { + qemu_log("%s: Decode error: read from %" HWADDR_PRIx "\n", + object_get_canonical_path(OBJECT(s)), + addr); + ARRAY_FIELD_DP32(s->regs, ZDMA_CH_ISR, INV_APB, true); + zdma_ch_imr_update_irq(s); + return 0; + } + return register_read(r, ~0, NULL, false); +} + +static void zdma_write(void *opaque, hwaddr addr, uint64_t value, + unsigned size) +{ + XlnxZDMA *s = XLNX_ZDMA(opaque); + RegisterInfo *r = &s->regs_info[addr / 4]; + + if (!r->data) { + qemu_log("%s: Decode error: write to %" HWADDR_PRIx "=%" PRIx64 "\n", + object_get_canonical_path(OBJECT(s)), + addr, value); + ARRAY_FIELD_DP32(s->regs, ZDMA_CH_ISR, INV_APB, true); + zdma_ch_imr_update_irq(s); + return; + } + register_write(r, value, ~0, NULL, false); +} + +static const MemoryRegionOps zdma_ops = { + .read = zdma_read, + .write = zdma_write, + .endianness = DEVICE_LITTLE_ENDIAN, + .valid = { + .min_access_size = 4, + .max_access_size = 4, + }, +}; + +static void zdma_realize(DeviceState *dev, Error **errp) +{ + XlnxZDMA *s = XLNX_ZDMA(dev); + unsigned int i; + + for (i = 0; i < ARRAY_SIZE(zdma_regs_info); ++i) { + RegisterInfo *r = &s->regs_info[zdma_regs_info[i].addr / 4]; + + *r = (RegisterInfo) { + .data = (uint8_t *)&s->regs[ + zdma_regs_info[i].addr / 4], + .data_size = sizeof(uint32_t), + .access = &zdma_regs_info[i], + .opaque = s, + }; + } + + if (s->dma_mr) { + s->dma_as = g_malloc0(sizeof(AddressSpace)); + address_space_init(s->dma_as, s->dma_mr, NULL); + } else { + s->dma_as = &address_space_memory; + } + s->attr = MEMTXATTRS_UNSPECIFIED; +} + +static void zdma_init(Object *obj) +{ + XlnxZDMA *s = XLNX_ZDMA(obj); + SysBusDevice *sbd = SYS_BUS_DEVICE(obj); + + memory_region_init_io(&s->iomem, obj, &zdma_ops, s, + TYPE_XLNX_ZDMA, ZDMA_R_MAX * 4); + sysbus_init_mmio(sbd, &s->iomem); + sysbus_init_irq(sbd, &s->irq_zdma_ch_imr); + + object_property_add_link(obj, "dma", TYPE_MEMORY_REGION, + (Object **)&s->dma_mr, + qdev_prop_allow_set_link_before_realize, + OBJ_PROP_LINK_UNREF_ON_RELEASE, + &error_abort); +} + +static const VMStateDescription vmstate_zdma = { + .name = TYPE_XLNX_ZDMA, + .version_id = 1, + .minimum_version_id = 1, + .minimum_version_id_old = 1, + .fields = (VMStateField[]) { + VMSTATE_UINT32_ARRAY(regs, XlnxZDMA, ZDMA_R_MAX), + VMSTATE_UINT32(state, XlnxZDMA), + VMSTATE_UINT32_ARRAY(dsc_src.words, XlnxZDMA, 4), + VMSTATE_UINT32_ARRAY(dsc_dst.words, XlnxZDMA, 4), + VMSTATE_END_OF_LIST(), + } +}; + +static Property zdma_props[] = { + DEFINE_PROP_UINT32("bus-width", XlnxZDMA, cfg.bus_width, 64), + DEFINE_PROP_END_OF_LIST(), +}; + +static void zdma_class_init(ObjectClass *klass, void *data) +{ + DeviceClass *dc = DEVICE_CLASS(klass); + + dc->reset = zdma_reset; + dc->realize = zdma_realize; + dc->props = zdma_props; + dc->vmsd = &vmstate_zdma; +} + +static const TypeInfo zdma_info = { + .name = TYPE_XLNX_ZDMA, + .parent = TYPE_SYS_BUS_DEVICE, + .instance_size = sizeof(XlnxZDMA), + .class_init = zdma_class_init, + .instance_init = zdma_init, +}; + +static void zdma_register_types(void) +{ + type_register_static(&zdma_info); +} + +type_init(zdma_register_types) diff --git a/include/hw/arm/xlnx-zynqmp.h b/include/hw/arm/xlnx-zynqmp.h index 3b613e3..82b6ec2 100644 --- a/include/hw/arm/xlnx-zynqmp.h +++ b/include/hw/arm/xlnx-zynqmp.h @@ -27,6 +27,7 @@ #include "hw/sd/sdhci.h" #include "hw/ssi/xilinx_spips.h" #include "hw/dma/xlnx_dpdma.h" +#include "hw/dma/xlnx-zdma.h" #include "hw/display/xlnx_dp.h" #include "hw/intc/xlnx-zynqmp-ipi.h" #include "hw/timer/xlnx-zynqmp-rtc.h" @@ -41,6 +42,8 @@ #define XLNX_ZYNQMP_NUM_UARTS 2 #define XLNX_ZYNQMP_NUM_SDHCI 2 #define XLNX_ZYNQMP_NUM_SPIS 2 +#define XLNX_ZYNQMP_NUM_GDMA_CH 8 +#define XLNX_ZYNQMP_NUM_ADMA_CH 8 #define XLNX_ZYNQMP_NUM_QSPI_BUS 2 #define XLNX_ZYNQMP_NUM_QSPI_BUS_CS 2 @@ -94,6 +97,8 @@ typedef struct XlnxZynqMPState { XlnxDPDMAState dpdma; XlnxZynqMPIPI ipi; XlnxZynqMPRTC rtc; + XlnxZDMA gdma[XLNX_ZYNQMP_NUM_GDMA_CH]; + XlnxZDMA adma[XLNX_ZYNQMP_NUM_ADMA_CH]; char *boot_cpu; ARMCPU *boot_cpu_ptr; diff --git a/include/hw/dma/xlnx-zdma.h b/include/hw/dma/xlnx-zdma.h new file mode 100644 index 0000000..0b240b4 --- /dev/null +++ b/include/hw/dma/xlnx-zdma.h @@ -0,0 +1,84 @@ +/* + * QEMU model of the ZynqMP generic DMA + * + * Copyright (c) 2014 Xilinx Inc. + * Copyright (c) 2018 FEIMTECH AB + * + * Written by Edgar E. Iglesias <edgar.iglesias@xilinx.com>, + * Francisco Iglesias <francisco.iglesias@feimtech.se> + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to deal + * in the Software without restriction, including without limitation the rights + * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell + * copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN + * THE SOFTWARE. + */ + +#ifndef XLNX_ZDMA_H +#define XLNX_ZDMA_H + +#include "hw/sysbus.h" +#include "hw/register.h" +#include "sysemu/dma.h" + +#define ZDMA_R_MAX (0x204 / 4) + +typedef enum { + DISABLED = 0, + ENABLED = 1, + PAUSED = 2, +} XlnxZDMAState; + +typedef union { + struct { + uint64_t addr; + uint32_t size; + uint32_t attr; + }; + uint32_t words[4]; +} XlnxZDMADescr; + +typedef struct XlnxZDMA { + SysBusDevice parent_obj; + MemoryRegion iomem; + MemTxAttrs attr; + MemoryRegion *dma_mr; + AddressSpace *dma_as; + qemu_irq irq_zdma_ch_imr; + + struct { + uint32_t bus_width; + } cfg; + + XlnxZDMAState state; + bool error; + + XlnxZDMADescr dsc_src; + XlnxZDMADescr dsc_dst; + + uint32_t regs[ZDMA_R_MAX]; + RegisterInfo regs_info[ZDMA_R_MAX]; + + /* We don't model the common bufs. Must be at least 16 bytes + to model write only mode. */ + uint8_t buf[2048]; +} XlnxZDMA; + +#define TYPE_XLNX_ZDMA "xlnx.zdma" + +#define XLNX_ZDMA(obj) \ + OBJECT_CHECK(XlnxZDMA, (obj), TYPE_XLNX_ZDMA) + +#endif /* XLNX_ZDMA_H */ diff --git a/include/qom/cpu.h b/include/qom/cpu.h index 14e45c4..9d3afc6 100644 --- a/include/qom/cpu.h +++ b/include/qom/cpu.h @@ -132,6 +132,9 @@ struct TranslationBlock; * before the insn which triggers a watchpoint rather than after it. * @gdb_arch_name: Optional callback that returns the architecture name known * to GDB. The caller must free the returned string with g_free. + * @gdb_get_dynamic_xml: Callback to return dynamically generated XML for the + * gdb stub. Returns a pointer to the XML contents for the specified XML file + * or NULL if the CPU doesn't have a dynamically generated content for it. * @cpu_exec_enter: Callback for cpu_exec preparation. * @cpu_exec_exit: Callback for cpu_exec cleanup. * @cpu_exec_interrupt: Callback for processing interrupts in cpu_exec. @@ -198,7 +201,7 @@ typedef struct CPUClass { const struct VMStateDescription *vmsd; const char *gdb_core_xml_file; gchar * (*gdb_arch_name)(CPUState *cpu); - + const char * (*gdb_get_dynamic_xml)(CPUState *cpu, const char *xmlname); void (*cpu_exec_enter)(CPUState *cpu); void (*cpu_exec_exit)(CPUState *cpu); bool (*cpu_exec_interrupt)(CPUState *cpu, int interrupt_request); diff --git a/target/arm/Makefile.objs b/target/arm/Makefile.objs index 1297bea..11c7baf 100644 --- a/target/arm/Makefile.objs +++ b/target/arm/Makefile.objs @@ -10,3 +10,13 @@ obj-y += gdbstub.o obj-$(TARGET_AARCH64) += cpu64.o translate-a64.o helper-a64.o gdbstub64.o obj-y += crypto_helper.o obj-$(CONFIG_SOFTMMU) += arm-powerctl.o + +DECODETREE = $(SRC_PATH)/scripts/decodetree.py + +target/arm/decode-sve.inc.c: $(SRC_PATH)/target/arm/sve.decode $(DECODETREE) + $(call quiet-command,\ + $(PYTHON) $(DECODETREE) --decode disas_sve -o $@ $<,\ + "GEN", $(TARGET_DIR)$@) + +target/arm/translate-sve.o: target/arm/decode-sve.inc.c +obj-$(TARGET_AARCH64) += translate-sve.o sve_helper.o diff --git a/target/arm/cpu.c b/target/arm/cpu.c index 7939c6b..5d60893 100644 --- a/target/arm/cpu.c +++ b/target/arm/cpu.c @@ -1908,6 +1908,7 @@ static void arm_cpu_class_init(ObjectClass *oc, void *data) cc->gdb_num_core_regs = 26; cc->gdb_core_xml_file = "arm-core.xml"; cc->gdb_arch_name = arm_gdb_arch_name; + cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml; cc->gdb_stop_before_watchpoint = true; cc->debug_excp_handler = arm_debug_excp_handler; cc->debug_check_watchpoint = arm_debug_check_watchpoint; diff --git a/target/arm/cpu.h b/target/arm/cpu.h index 3b086be..8488273 100644 --- a/target/arm/cpu.h +++ b/target/arm/cpu.h @@ -133,6 +133,19 @@ enum { s<2n+1> maps to the most significant half of d<n> */ +/** + * DynamicGDBXMLInfo: + * @desc: Contains the XML descriptions. + * @num_cpregs: Number of the Coprocessor registers seen by GDB. + * @cpregs_keys: Array that contains the corresponding Key of + * a given cpreg with the same order of the cpreg in the XML description. + */ +typedef struct DynamicGDBXMLInfo { + char *desc; + int num_cpregs; + uint32_t *cpregs_keys; +} DynamicGDBXMLInfo; + /* CPU state for each instance of a generic timer (in cp15 c14) */ typedef struct ARMGenericTimer { uint64_t cval; /* Timer CompareValue register */ @@ -527,7 +540,10 @@ typedef struct CPUARMState { #ifdef TARGET_AARCH64 /* Store FFR as pregs[16] to make it easier to treat as any other. */ +#define FFR_PRED_NUM 16 ARMPredicateReg pregs[17]; + /* Scratch space for aa64 sve predicate temporary. */ + ARMPredicateReg preg_tmp; #endif uint32_t xregs[16]; @@ -535,7 +551,7 @@ typedef struct CPUARMState { int vec_len; int vec_stride; - /* scratch space when Tn are not sufficient. */ + /* Scratch space for aa32 neon expansion. */ uint32_t scratch[8]; /* There are a number of distinct float control structures: @@ -687,6 +703,8 @@ struct ARMCPU { uint64_t *cpreg_vmstate_values; int32_t cpreg_vmstate_array_len; + DynamicGDBXMLInfo dyn_xml; + /* Timers used by the generic (architected) timer */ QEMUTimer *gt_timer[NUM_GTIMERS]; /* GPIO outputs for generic timer */ @@ -868,6 +886,17 @@ hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg); int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg); +/* Dynamically generates for gdb stub an XML description of the sysregs from + * the cp_regs hashtable. Returns the registered sysregs number. + */ +int arm_gen_dynamic_xml(CPUState *cpu); + +/* Returns the dynamically generated XML for the gdb stub. + * Returns a pointer to the XML contents for the specified XML file or NULL + * if the XML name doesn't match the predefined one. + */ +const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname); + int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs, int cpuid, void *opaque); int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs, @@ -1821,10 +1850,11 @@ static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid) #define ARM_LAST_SPECIAL ARM_CP_DC_ZVA #define ARM_CP_FPU 0x1000 #define ARM_CP_SVE 0x2000 +#define ARM_CP_NO_GDB 0x4000 /* Used only as a terminator for ARMCPRegInfo lists */ #define ARM_CP_SENTINEL 0xffff /* Mask of only the flag bits in a type field */ -#define ARM_CP_FLAG_MASK 0x30ff +#define ARM_CP_FLAG_MASK 0x70ff /* Valid values for ARMCPRegInfo state field, indicating which of * the AArch32 and AArch64 execution states this register is visible in. @@ -2946,4 +2976,7 @@ static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno) return &env->vfp.zregs[regno].d[0]; } +/* Shared between translate-sve.c and sve_helper.c. */ +extern const uint64_t pred_esz_masks[4]; + #endif diff --git a/target/arm/gdbstub.c b/target/arm/gdbstub.c index 04c1208..e80cfb4 100644 --- a/target/arm/gdbstub.c +++ b/target/arm/gdbstub.c @@ -22,6 +22,11 @@ #include "cpu.h" #include "exec/gdbstub.h" +typedef struct RegisterSysregXmlParam { + CPUState *cs; + GString *s; +} RegisterSysregXmlParam; + /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect whatever the target description contains. Due to a historical mishap the FPA registers appear in between core integer regs and the CPSR. @@ -101,3 +106,74 @@ int arm_cpu_gdb_write_register(CPUState *cs, uint8_t *mem_buf, int n) /* Unknown register. */ return 0; } + +static void arm_gen_one_xml_reg_tag(GString *s, DynamicGDBXMLInfo *dyn_xml, + ARMCPRegInfo *ri, uint32_t ri_key, + int bitsize) +{ + g_string_append_printf(s, "<reg name=\"%s\"", ri->name); + g_string_append_printf(s, " bitsize=\"%d\"", bitsize); + g_string_append_printf(s, " group=\"cp_regs\"/>"); + dyn_xml->num_cpregs++; + dyn_xml->cpregs_keys[dyn_xml->num_cpregs - 1] = ri_key; +} + +static void arm_register_sysreg_for_xml(gpointer key, gpointer value, + gpointer p) +{ + uint32_t ri_key = *(uint32_t *)key; + ARMCPRegInfo *ri = value; + RegisterSysregXmlParam *param = (RegisterSysregXmlParam *)p; + GString *s = param->s; + ARMCPU *cpu = ARM_CPU(param->cs); + CPUARMState *env = &cpu->env; + DynamicGDBXMLInfo *dyn_xml = &cpu->dyn_xml; + + if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_NO_GDB))) { + if (arm_feature(env, ARM_FEATURE_AARCH64)) { + if (ri->state == ARM_CP_STATE_AA64) { + arm_gen_one_xml_reg_tag(s , dyn_xml, ri, ri_key, 64); + } + } else { + if (ri->state == ARM_CP_STATE_AA32) { + if (!arm_feature(env, ARM_FEATURE_EL3) && + (ri->secure & ARM_CP_SECSTATE_S)) { + return; + } + if (ri->type & ARM_CP_64BIT) { + arm_gen_one_xml_reg_tag(s , dyn_xml, ri, ri_key, 64); + } else { + arm_gen_one_xml_reg_tag(s , dyn_xml, ri, ri_key, 32); + } + } + } + } +} + +int arm_gen_dynamic_xml(CPUState *cs) +{ + ARMCPU *cpu = ARM_CPU(cs); + GString *s = g_string_new(NULL); + RegisterSysregXmlParam param = {cs, s}; + + cpu->dyn_xml.num_cpregs = 0; + cpu->dyn_xml.cpregs_keys = g_malloc(sizeof(uint32_t *) * + g_hash_table_size(cpu->cp_regs)); + g_string_printf(s, "<?xml version=\"1.0\"?>"); + g_string_append_printf(s, "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"); + g_string_append_printf(s, "<feature name=\"org.qemu.gdb.arm.sys.regs\">"); + g_hash_table_foreach(cpu->cp_regs, arm_register_sysreg_for_xml, ¶m); + g_string_append_printf(s, "</feature>"); + cpu->dyn_xml.desc = g_string_free(s, false); + return cpu->dyn_xml.num_cpregs; +} + +const char *arm_gdb_get_dynamic_xml(CPUState *cs, const char *xmlname) +{ + ARMCPU *cpu = ARM_CPU(cs); + + if (strcmp(xmlname, "system-registers.xml") == 0) { + return cpu->dyn_xml.desc; + } + return NULL; +} diff --git a/target/arm/helper-sve.h b/target/arm/helper-sve.h new file mode 100644 index 0000000..94f4356 --- /dev/null +++ b/target/arm/helper-sve.h @@ -0,0 +1,427 @@ +/* + * AArch64 SVE specific helper definitions + * + * Copyright (c) 2018 Linaro, Ltd + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, see <http://www.gnu.org/licenses/>. + */ + +DEF_HELPER_FLAGS_2(sve_predtest1, TCG_CALL_NO_WG, i32, i64, i64) +DEF_HELPER_FLAGS_3(sve_predtest, TCG_CALL_NO_WG, i32, ptr, ptr, i32) + +DEF_HELPER_FLAGS_3(sve_pfirst, TCG_CALL_NO_WG, i32, ptr, ptr, i32) +DEF_HELPER_FLAGS_3(sve_pnext, TCG_CALL_NO_WG, i32, ptr, ptr, i32) + +DEF_HELPER_FLAGS_5(sve_and_zpzz_b, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_and_zpzz_h, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_and_zpzz_s, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_and_zpzz_d, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) + +DEF_HELPER_FLAGS_5(sve_eor_zpzz_b, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_eor_zpzz_h, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_eor_zpzz_s, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_eor_zpzz_d, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) + +DEF_HELPER_FLAGS_5(sve_orr_zpzz_b, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_orr_zpzz_h, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_orr_zpzz_s, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_orr_zpzz_d, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) + +DEF_HELPER_FLAGS_5(sve_bic_zpzz_b, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_bic_zpzz_h, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_bic_zpzz_s, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_bic_zpzz_d, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) + +DEF_HELPER_FLAGS_5(sve_add_zpzz_b, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_add_zpzz_h, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_add_zpzz_s, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_add_zpzz_d, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) + +DEF_HELPER_FLAGS_5(sve_sub_zpzz_b, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_sub_zpzz_h, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_sub_zpzz_s, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_sub_zpzz_d, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) + +DEF_HELPER_FLAGS_5(sve_smax_zpzz_b, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_smax_zpzz_h, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_smax_zpzz_s, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_smax_zpzz_d, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) + +DEF_HELPER_FLAGS_5(sve_umax_zpzz_b, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_umax_zpzz_h, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_umax_zpzz_s, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_umax_zpzz_d, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) + +DEF_HELPER_FLAGS_5(sve_smin_zpzz_b, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_smin_zpzz_h, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_smin_zpzz_s, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_smin_zpzz_d, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) + +DEF_HELPER_FLAGS_5(sve_umin_zpzz_b, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_umin_zpzz_h, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_umin_zpzz_s, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_umin_zpzz_d, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) + +DEF_HELPER_FLAGS_5(sve_sabd_zpzz_b, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_sabd_zpzz_h, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_sabd_zpzz_s, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_sabd_zpzz_d, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) + +DEF_HELPER_FLAGS_5(sve_uabd_zpzz_b, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_uabd_zpzz_h, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_uabd_zpzz_s, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_uabd_zpzz_d, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) + +DEF_HELPER_FLAGS_5(sve_mul_zpzz_b, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_mul_zpzz_h, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_mul_zpzz_s, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_mul_zpzz_d, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) + +DEF_HELPER_FLAGS_5(sve_smulh_zpzz_b, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_smulh_zpzz_h, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_smulh_zpzz_s, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_smulh_zpzz_d, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) + +DEF_HELPER_FLAGS_5(sve_umulh_zpzz_b, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_umulh_zpzz_h, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_umulh_zpzz_s, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_umulh_zpzz_d, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) + +DEF_HELPER_FLAGS_5(sve_sdiv_zpzz_s, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_sdiv_zpzz_d, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) + +DEF_HELPER_FLAGS_5(sve_udiv_zpzz_s, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_udiv_zpzz_d, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) + +DEF_HELPER_FLAGS_5(sve_asr_zpzz_b, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_asr_zpzz_h, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_asr_zpzz_s, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_asr_zpzz_d, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) + +DEF_HELPER_FLAGS_5(sve_lsr_zpzz_b, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_lsr_zpzz_h, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_lsr_zpzz_s, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_lsr_zpzz_d, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) + +DEF_HELPER_FLAGS_5(sve_lsl_zpzz_b, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_lsl_zpzz_h, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_lsl_zpzz_s, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_lsl_zpzz_d, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) + +DEF_HELPER_FLAGS_5(sve_asr_zpzw_b, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_asr_zpzw_h, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_asr_zpzw_s, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) + +DEF_HELPER_FLAGS_5(sve_lsr_zpzw_b, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_lsr_zpzw_h, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_lsr_zpzw_s, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) + +DEF_HELPER_FLAGS_5(sve_lsl_zpzw_b, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_lsl_zpzw_h, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_lsl_zpzw_s, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) + +DEF_HELPER_FLAGS_3(sve_orv_b, TCG_CALL_NO_RWG, i64, ptr, ptr, i32) +DEF_HELPER_FLAGS_3(sve_orv_h, TCG_CALL_NO_RWG, i64, ptr, ptr, i32) +DEF_HELPER_FLAGS_3(sve_orv_s, TCG_CALL_NO_RWG, i64, ptr, ptr, i32) +DEF_HELPER_FLAGS_3(sve_orv_d, TCG_CALL_NO_RWG, i64, ptr, ptr, i32) + +DEF_HELPER_FLAGS_3(sve_eorv_b, TCG_CALL_NO_RWG, i64, ptr, ptr, i32) +DEF_HELPER_FLAGS_3(sve_eorv_h, TCG_CALL_NO_RWG, i64, ptr, ptr, i32) +DEF_HELPER_FLAGS_3(sve_eorv_s, TCG_CALL_NO_RWG, i64, ptr, ptr, i32) +DEF_HELPER_FLAGS_3(sve_eorv_d, TCG_CALL_NO_RWG, i64, ptr, ptr, i32) + +DEF_HELPER_FLAGS_3(sve_andv_b, TCG_CALL_NO_RWG, i64, ptr, ptr, i32) +DEF_HELPER_FLAGS_3(sve_andv_h, TCG_CALL_NO_RWG, i64, ptr, ptr, i32) +DEF_HELPER_FLAGS_3(sve_andv_s, TCG_CALL_NO_RWG, i64, ptr, ptr, i32) +DEF_HELPER_FLAGS_3(sve_andv_d, TCG_CALL_NO_RWG, i64, ptr, ptr, i32) + +DEF_HELPER_FLAGS_3(sve_saddv_b, TCG_CALL_NO_RWG, i64, ptr, ptr, i32) +DEF_HELPER_FLAGS_3(sve_saddv_h, TCG_CALL_NO_RWG, i64, ptr, ptr, i32) +DEF_HELPER_FLAGS_3(sve_saddv_s, TCG_CALL_NO_RWG, i64, ptr, ptr, i32) + +DEF_HELPER_FLAGS_3(sve_uaddv_b, TCG_CALL_NO_RWG, i64, ptr, ptr, i32) +DEF_HELPER_FLAGS_3(sve_uaddv_h, TCG_CALL_NO_RWG, i64, ptr, ptr, i32) +DEF_HELPER_FLAGS_3(sve_uaddv_s, TCG_CALL_NO_RWG, i64, ptr, ptr, i32) +DEF_HELPER_FLAGS_3(sve_uaddv_d, TCG_CALL_NO_RWG, i64, ptr, ptr, i32) + +DEF_HELPER_FLAGS_3(sve_smaxv_b, TCG_CALL_NO_RWG, i64, ptr, ptr, i32) +DEF_HELPER_FLAGS_3(sve_smaxv_h, TCG_CALL_NO_RWG, i64, ptr, ptr, i32) +DEF_HELPER_FLAGS_3(sve_smaxv_s, TCG_CALL_NO_RWG, i64, ptr, ptr, i32) +DEF_HELPER_FLAGS_3(sve_smaxv_d, TCG_CALL_NO_RWG, i64, ptr, ptr, i32) + +DEF_HELPER_FLAGS_3(sve_umaxv_b, TCG_CALL_NO_RWG, i64, ptr, ptr, i32) +DEF_HELPER_FLAGS_3(sve_umaxv_h, TCG_CALL_NO_RWG, i64, ptr, ptr, i32) +DEF_HELPER_FLAGS_3(sve_umaxv_s, TCG_CALL_NO_RWG, i64, ptr, ptr, i32) +DEF_HELPER_FLAGS_3(sve_umaxv_d, TCG_CALL_NO_RWG, i64, ptr, ptr, i32) + +DEF_HELPER_FLAGS_3(sve_sminv_b, TCG_CALL_NO_RWG, i64, ptr, ptr, i32) +DEF_HELPER_FLAGS_3(sve_sminv_h, TCG_CALL_NO_RWG, i64, ptr, ptr, i32) +DEF_HELPER_FLAGS_3(sve_sminv_s, TCG_CALL_NO_RWG, i64, ptr, ptr, i32) +DEF_HELPER_FLAGS_3(sve_sminv_d, TCG_CALL_NO_RWG, i64, ptr, ptr, i32) + +DEF_HELPER_FLAGS_3(sve_uminv_b, TCG_CALL_NO_RWG, i64, ptr, ptr, i32) +DEF_HELPER_FLAGS_3(sve_uminv_h, TCG_CALL_NO_RWG, i64, ptr, ptr, i32) +DEF_HELPER_FLAGS_3(sve_uminv_s, TCG_CALL_NO_RWG, i64, ptr, ptr, i32) +DEF_HELPER_FLAGS_3(sve_uminv_d, TCG_CALL_NO_RWG, i64, ptr, ptr, i32) + +DEF_HELPER_FLAGS_3(sve_clr_b, TCG_CALL_NO_RWG, void, ptr, ptr, i32) +DEF_HELPER_FLAGS_3(sve_clr_h, TCG_CALL_NO_RWG, void, ptr, ptr, i32) +DEF_HELPER_FLAGS_3(sve_clr_s, TCG_CALL_NO_RWG, void, ptr, ptr, i32) +DEF_HELPER_FLAGS_3(sve_clr_d, TCG_CALL_NO_RWG, void, ptr, ptr, i32) + +DEF_HELPER_FLAGS_4(sve_asr_zpzi_b, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_4(sve_asr_zpzi_h, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_4(sve_asr_zpzi_s, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_4(sve_asr_zpzi_d, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) + +DEF_HELPER_FLAGS_4(sve_lsr_zpzi_b, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_4(sve_lsr_zpzi_h, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_4(sve_lsr_zpzi_s, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_4(sve_lsr_zpzi_d, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) + +DEF_HELPER_FLAGS_4(sve_lsl_zpzi_b, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_4(sve_lsl_zpzi_h, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_4(sve_lsl_zpzi_s, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_4(sve_lsl_zpzi_d, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) + +DEF_HELPER_FLAGS_4(sve_asrd_b, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_4(sve_asrd_h, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_4(sve_asrd_s, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_4(sve_asrd_d, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) + +DEF_HELPER_FLAGS_4(sve_cls_b, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_4(sve_cls_h, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_4(sve_cls_s, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_4(sve_cls_d, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) + +DEF_HELPER_FLAGS_4(sve_clz_b, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_4(sve_clz_h, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_4(sve_clz_s, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_4(sve_clz_d, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) + +DEF_HELPER_FLAGS_4(sve_cnt_zpz_b, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_4(sve_cnt_zpz_h, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_4(sve_cnt_zpz_s, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_4(sve_cnt_zpz_d, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) + +DEF_HELPER_FLAGS_4(sve_cnot_b, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_4(sve_cnot_h, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_4(sve_cnot_s, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_4(sve_cnot_d, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) + +DEF_HELPER_FLAGS_4(sve_fabs_h, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_4(sve_fabs_s, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_4(sve_fabs_d, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) + +DEF_HELPER_FLAGS_4(sve_fneg_h, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_4(sve_fneg_s, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_4(sve_fneg_d, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) + +DEF_HELPER_FLAGS_4(sve_not_zpz_b, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_4(sve_not_zpz_h, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_4(sve_not_zpz_s, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_4(sve_not_zpz_d, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) + +DEF_HELPER_FLAGS_4(sve_sxtb_h, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_4(sve_sxtb_s, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_4(sve_sxtb_d, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) + +DEF_HELPER_FLAGS_4(sve_uxtb_h, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_4(sve_uxtb_s, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_4(sve_uxtb_d, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) + +DEF_HELPER_FLAGS_4(sve_sxth_s, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_4(sve_sxth_d, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) + +DEF_HELPER_FLAGS_4(sve_uxth_s, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_4(sve_uxth_d, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) + +DEF_HELPER_FLAGS_4(sve_sxtw_d, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_4(sve_uxtw_d, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) + +DEF_HELPER_FLAGS_4(sve_abs_b, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_4(sve_abs_h, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_4(sve_abs_s, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_4(sve_abs_d, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) + +DEF_HELPER_FLAGS_4(sve_neg_b, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_4(sve_neg_h, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_4(sve_neg_s, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_4(sve_neg_d, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) + +DEF_HELPER_FLAGS_6(sve_mla_b, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_6(sve_mla_h, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_6(sve_mla_s, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_6(sve_mla_d, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, ptr, i32) + +DEF_HELPER_FLAGS_6(sve_mls_b, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_6(sve_mls_h, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_6(sve_mls_s, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_6(sve_mls_d, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, ptr, i32) + +DEF_HELPER_FLAGS_4(sve_index_b, TCG_CALL_NO_RWG, void, ptr, i32, i32, i32) +DEF_HELPER_FLAGS_4(sve_index_h, TCG_CALL_NO_RWG, void, ptr, i32, i32, i32) +DEF_HELPER_FLAGS_4(sve_index_s, TCG_CALL_NO_RWG, void, ptr, i32, i32, i32) +DEF_HELPER_FLAGS_4(sve_index_d, TCG_CALL_NO_RWG, void, ptr, i64, i64, i32) + +DEF_HELPER_FLAGS_4(sve_asr_zzw_b, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_4(sve_asr_zzw_h, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_4(sve_asr_zzw_s, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) + +DEF_HELPER_FLAGS_4(sve_lsr_zzw_b, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_4(sve_lsr_zzw_h, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_4(sve_lsr_zzw_s, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) + +DEF_HELPER_FLAGS_4(sve_lsl_zzw_b, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_4(sve_lsl_zzw_h, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_4(sve_lsl_zzw_s, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) + +DEF_HELPER_FLAGS_4(sve_adr_p32, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_4(sve_adr_p64, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_4(sve_adr_s32, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_4(sve_adr_u32, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) + +DEF_HELPER_FLAGS_3(sve_fexpa_h, TCG_CALL_NO_RWG, void, ptr, ptr, i32) +DEF_HELPER_FLAGS_3(sve_fexpa_s, TCG_CALL_NO_RWG, void, ptr, ptr, i32) +DEF_HELPER_FLAGS_3(sve_fexpa_d, TCG_CALL_NO_RWG, void, ptr, ptr, i32) + +DEF_HELPER_FLAGS_4(sve_ftssel_h, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_4(sve_ftssel_s, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_4(sve_ftssel_d, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) + +DEF_HELPER_FLAGS_4(sve_sqaddi_b, TCG_CALL_NO_RWG, void, ptr, ptr, s32, i32) +DEF_HELPER_FLAGS_4(sve_sqaddi_h, TCG_CALL_NO_RWG, void, ptr, ptr, s32, i32) +DEF_HELPER_FLAGS_4(sve_sqaddi_s, TCG_CALL_NO_RWG, void, ptr, ptr, s64, i32) +DEF_HELPER_FLAGS_4(sve_sqaddi_d, TCG_CALL_NO_RWG, void, ptr, ptr, s64, i32) + +DEF_HELPER_FLAGS_4(sve_uqaddi_b, TCG_CALL_NO_RWG, void, ptr, ptr, s32, i32) +DEF_HELPER_FLAGS_4(sve_uqaddi_h, TCG_CALL_NO_RWG, void, ptr, ptr, s32, i32) +DEF_HELPER_FLAGS_4(sve_uqaddi_s, TCG_CALL_NO_RWG, void, ptr, ptr, s64, i32) +DEF_HELPER_FLAGS_4(sve_uqaddi_d, TCG_CALL_NO_RWG, void, ptr, ptr, i64, i32) +DEF_HELPER_FLAGS_4(sve_uqsubi_d, TCG_CALL_NO_RWG, void, ptr, ptr, i64, i32) + +DEF_HELPER_FLAGS_5(sve_cpy_m_b, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i64, i32) +DEF_HELPER_FLAGS_5(sve_cpy_m_h, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i64, i32) +DEF_HELPER_FLAGS_5(sve_cpy_m_s, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i64, i32) +DEF_HELPER_FLAGS_5(sve_cpy_m_d, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i64, i32) + +DEF_HELPER_FLAGS_4(sve_cpy_z_b, TCG_CALL_NO_RWG, void, ptr, ptr, i64, i32) +DEF_HELPER_FLAGS_4(sve_cpy_z_h, TCG_CALL_NO_RWG, void, ptr, ptr, i64, i32) +DEF_HELPER_FLAGS_4(sve_cpy_z_s, TCG_CALL_NO_RWG, void, ptr, ptr, i64, i32) +DEF_HELPER_FLAGS_4(sve_cpy_z_d, TCG_CALL_NO_RWG, void, ptr, ptr, i64, i32) + +DEF_HELPER_FLAGS_4(sve_ext, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32) + +DEF_HELPER_FLAGS_5(sve_and_pppp, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_bic_pppp, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_eor_pppp, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_sel_pppp, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_orr_pppp, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_orn_pppp, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_nor_pppp, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, ptr, i32) +DEF_HELPER_FLAGS_5(sve_nand_pppp, TCG_CALL_NO_RWG, + void, ptr, ptr, ptr, ptr, i32) diff --git a/target/arm/helper.c b/target/arm/helper.c index db8bbe5..c0f7399 100644 --- a/target/arm/helper.c +++ b/target/arm/helper.c @@ -215,6 +215,29 @@ static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, } } +static int arm_gdb_get_sysreg(CPUARMState *env, uint8_t *buf, int reg) +{ + ARMCPU *cpu = arm_env_get_cpu(env); + const ARMCPRegInfo *ri; + uint32_t key; + + key = cpu->dyn_xml.cpregs_keys[reg]; + ri = get_arm_cp_reginfo(cpu->cp_regs, key); + if (ri) { + if (cpreg_field_is_64bit(ri)) { + return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri)); + } else { + return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri)); + } + } + return 0; +} + +static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg) +{ + return 0; +} + static bool raw_accessors_invalid(const ARMCPRegInfo *ri) { /* Return true if the regdef would cause an assertion if you called @@ -690,12 +713,12 @@ static const ARMCPRegInfo cp_reginfo[] = { * the secure register to be properly reset and migrated. There is also no * v8 EL1 version of the register so the non-secure instance stands alone. */ - { .name = "FCSEIDR(NS)", + { .name = "FCSEIDR", .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, - { .name = "FCSEIDR(S)", + { .name = "FCSEIDR_S", .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), @@ -711,7 +734,7 @@ static const ARMCPRegInfo cp_reginfo[] = { .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, - { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32, + { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), @@ -1981,7 +2004,7 @@ static const ARMCPRegInfo generic_timer_cp_reginfo[] = { cp15.c14_timer[GTIMER_PHYS].ctl), .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, }, - { .name = "CNTP_CTL(S)", + { .name = "CNTP_CTL_S", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, .secure = ARM_CP_SECSTATE_S, .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, @@ -2020,7 +2043,7 @@ static const ARMCPRegInfo generic_timer_cp_reginfo[] = { .accessfn = gt_ptimer_access, .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, }, - { .name = "CNTP_TVAL(S)", + { .name = "CNTP_TVAL_S", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, .secure = ARM_CP_SECSTATE_S, .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, @@ -2074,7 +2097,7 @@ static const ARMCPRegInfo generic_timer_cp_reginfo[] = { .accessfn = gt_ptimer_access, .writefn = gt_phys_cval_write, .raw_writefn = raw_write, }, - { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2, + { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, .secure = ARM_CP_SECSTATE_S, .access = PL1_RW | PL0_R, .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, @@ -5488,6 +5511,9 @@ void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 19, "arm-vfp.xml", 0); } + gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg, + arm_gen_dynamic_xml(cs), + "system-registers.xml", 0); } /* Sort alphabetically by type name, except for "any". */ @@ -5577,7 +5603,8 @@ CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp) static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, void *opaque, int state, int secstate, - int crm, int opc1, int opc2) + int crm, int opc1, int opc2, + const char *name) { /* Private utility function for define_one_arm_cp_reg_with_opaque(): * add a single reginfo struct to the hash table. @@ -5587,6 +5614,7 @@ static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; + r2->name = g_strdup(name); /* Reset the secure state to the specific incoming state. This is * necessary as the register may have been defined with both states. */ @@ -5678,7 +5706,7 @@ static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, if (((r->crm == CP_ANY) && crm != 0) || ((r->opc1 == CP_ANY) && opc1 != 0) || ((r->opc2 == CP_ANY) && opc2 != 0)) { - r2->type |= ARM_CP_ALIAS; + r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; } /* Check that raw accesses are either forbidden or handled. Note that @@ -5818,19 +5846,24 @@ void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, /* Under AArch32 CP registers can be common * (same for secure and non-secure world) or banked. */ + char *name; + switch (r->secure) { case ARM_CP_SECSTATE_S: case ARM_CP_SECSTATE_NS: add_cpreg_to_hashtable(cpu, r, opaque, state, - r->secure, crm, opc1, opc2); + r->secure, crm, opc1, opc2, + r->name); break; default: + name = g_strdup_printf("%s_S", r->name); add_cpreg_to_hashtable(cpu, r, opaque, state, ARM_CP_SECSTATE_S, - crm, opc1, opc2); + crm, opc1, opc2, name); + g_free(name); add_cpreg_to_hashtable(cpu, r, opaque, state, ARM_CP_SECSTATE_NS, - crm, opc1, opc2); + crm, opc1, opc2, r->name); break; } } else { @@ -5838,7 +5871,7 @@ void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, * of AArch32 */ add_cpreg_to_hashtable(cpu, r, opaque, state, ARM_CP_SECSTATE_NS, - crm, opc1, opc2); + crm, opc1, opc2, r->name); } } } diff --git a/target/arm/helper.h b/target/arm/helper.h index 047f3bc..0c6a144 100644 --- a/target/arm/helper.h +++ b/target/arm/helper.h @@ -603,4 +603,5 @@ DEF_HELPER_FLAGS_5(gvec_fcmlad, TCG_CALL_NO_RWG, #ifdef TARGET_AARCH64 #include "helper-a64.h" +#include "helper-sve.h" #endif diff --git a/target/arm/sve.decode b/target/arm/sve.decode new file mode 100644 index 0000000..4761d19 --- /dev/null +++ b/target/arm/sve.decode @@ -0,0 +1,419 @@ +# AArch64 SVE instruction descriptions +# +# Copyright (c) 2017 Linaro, Ltd +# +# This library is free software; you can redistribute it and/or +# modify it under the terms of the GNU Lesser General Public +# License as published by the Free Software Foundation; either +# version 2 of the License, or (at your option) any later version. +# +# This library is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU +# Lesser General Public License for more details. +# +# You should have received a copy of the GNU Lesser General Public +# License along with this library; if not, see <http://www.gnu.org/licenses/>. + +# +# This file is processed by scripts/decodetree.py +# + +########################################################################### +# Named fields. These are primarily for disjoint fields. + +%imm4_16_p1 16:4 !function=plus1 +%imm6_22_5 22:1 5:5 +%imm8_16_10 16:5 10:3 +%imm9_16_10 16:s6 10:3 + +# A combination of tsz:imm3 -- extract esize. +%tszimm_esz 22:2 5:5 !function=tszimm_esz +# A combination of tsz:imm3 -- extract (2 * esize) - (tsz:imm3) +%tszimm_shr 22:2 5:5 !function=tszimm_shr +# A combination of tsz:imm3 -- extract (tsz:imm3) - esize +%tszimm_shl 22:2 5:5 !function=tszimm_shl + +# Similarly for the tszh/tszl pair at 22/16 for zzi +%tszimm16_esz 22:2 16:5 !function=tszimm_esz +%tszimm16_shr 22:2 16:5 !function=tszimm_shr +%tszimm16_shl 22:2 16:5 !function=tszimm_shl + +# Signed 8-bit immediate, optionally shifted left by 8. +%sh8_i8s 5:9 !function=expand_imm_sh8s + +# Either a copy of rd (at bit 0), or a different source +# as propagated via the MOVPRFX instruction. +%reg_movprfx 0:5 + +########################################################################### +# Named attribute sets. These are used to make nice(er) names +# when creating helpers common to those for the individual +# instruction patterns. + +&rr_esz rd rn esz +&rri rd rn imm +&rr_dbm rd rn dbm +&rrri rd rn rm imm +&rri_esz rd rn imm esz +&rrr_esz rd rn rm esz +&rpr_esz rd pg rn esz +&rprr_s rd pg rn rm s +&rprr_esz rd pg rn rm esz +&rprrr_esz rd pg rn rm ra esz +&rpri_esz rd pg rn imm esz +&ptrue rd esz pat s +&incdec_cnt rd pat esz imm d u +&incdec2_cnt rd rn pat esz imm d u + +########################################################################### +# Named instruction formats. These are generally used to +# reduce the amount of duplication between instruction patterns. + +# Two operand with unused vector element size +@pd_pn_e0 ........ ........ ....... rn:4 . rd:4 &rr_esz esz=0 + +# Two operand +@pd_pn ........ esz:2 .. .... ....... rn:4 . rd:4 &rr_esz +@rd_rn ........ esz:2 ...... ...... rn:5 rd:5 &rr_esz + +# Three operand with unused vector element size +@rd_rn_rm_e0 ........ ... rm:5 ... ... rn:5 rd:5 &rrr_esz esz=0 + +# Three predicate operand, with governing predicate, flag setting +@pd_pg_pn_pm_s ........ . s:1 .. rm:4 .. pg:4 . rn:4 . rd:4 &rprr_s + +# Three operand, vector element size +@rd_rn_rm ........ esz:2 . rm:5 ... ... rn:5 rd:5 &rrr_esz + +# Three operand with "memory" size, aka immediate left shift +@rd_rn_msz_rm ........ ... rm:5 .... imm:2 rn:5 rd:5 &rrri + +# Two register operand, with governing predicate, vector element size +@rdn_pg_rm ........ esz:2 ... ... ... pg:3 rm:5 rd:5 \ + &rprr_esz rn=%reg_movprfx +@rdm_pg_rn ........ esz:2 ... ... ... pg:3 rn:5 rd:5 \ + &rprr_esz rm=%reg_movprfx + +# Three register operand, with governing predicate, vector element size +@rda_pg_rn_rm ........ esz:2 . rm:5 ... pg:3 rn:5 rd:5 \ + &rprrr_esz ra=%reg_movprfx +@rdn_pg_ra_rm ........ esz:2 . rm:5 ... pg:3 ra:5 rd:5 \ + &rprrr_esz rn=%reg_movprfx + +# One register operand, with governing predicate, vector element size +@rd_pg_rn ........ esz:2 ... ... ... pg:3 rn:5 rd:5 &rpr_esz + +# Two register operands with a 6-bit signed immediate. +@rd_rn_i6 ........ ... rn:5 ..... imm:s6 rd:5 &rri + +# Two register operand, one immediate operand, with predicate, +# element size encoded as TSZHL. User must fill in imm. +@rdn_pg_tszimm ........ .. ... ... ... pg:3 ..... rd:5 \ + &rpri_esz rn=%reg_movprfx esz=%tszimm_esz + +# Similarly without predicate. +@rd_rn_tszimm ........ .. ... ... ...... rn:5 rd:5 \ + &rri_esz esz=%tszimm16_esz + +# Two register operand, one immediate operand, with 4-bit predicate. +# User must fill in imm. +@rdn_pg4 ........ esz:2 .. pg:4 ... ........ rd:5 \ + &rpri_esz rn=%reg_movprfx + +# Two register operand, one encoded bitmask. +@rdn_dbm ........ .. .... dbm:13 rd:5 \ + &rr_dbm rn=%reg_movprfx + +# Basic Load/Store with 9-bit immediate offset +@pd_rn_i9 ........ ........ ...... rn:5 . rd:4 \ + &rri imm=%imm9_16_10 +@rd_rn_i9 ........ ........ ...... rn:5 rd:5 \ + &rri imm=%imm9_16_10 + +# One register, pattern, and uint4+1. +# User must fill in U and D. +@incdec_cnt ........ esz:2 .. .... ...... pat:5 rd:5 \ + &incdec_cnt imm=%imm4_16_p1 +@incdec2_cnt ........ esz:2 .. .... ...... pat:5 rd:5 \ + &incdec2_cnt imm=%imm4_16_p1 rn=%reg_movprfx + +########################################################################### +# Instruction patterns. Grouped according to the SVE encodingindex.xhtml. + +### SVE Integer Arithmetic - Binary Predicated Group + +# SVE bitwise logical vector operations (predicated) +ORR_zpzz 00000100 .. 011 000 000 ... ..... ..... @rdn_pg_rm +EOR_zpzz 00000100 .. 011 001 000 ... ..... ..... @rdn_pg_rm +AND_zpzz 00000100 .. 011 010 000 ... ..... ..... @rdn_pg_rm +BIC_zpzz 00000100 .. 011 011 000 ... ..... ..... @rdn_pg_rm + +# SVE integer add/subtract vectors (predicated) +ADD_zpzz 00000100 .. 000 000 000 ... ..... ..... @rdn_pg_rm +SUB_zpzz 00000100 .. 000 001 000 ... ..... ..... @rdn_pg_rm +SUB_zpzz 00000100 .. 000 011 000 ... ..... ..... @rdm_pg_rn # SUBR + +# SVE integer min/max/difference (predicated) +SMAX_zpzz 00000100 .. 001 000 000 ... ..... ..... @rdn_pg_rm +UMAX_zpzz 00000100 .. 001 001 000 ... ..... ..... @rdn_pg_rm +SMIN_zpzz 00000100 .. 001 010 000 ... ..... ..... @rdn_pg_rm +UMIN_zpzz 00000100 .. 001 011 000 ... ..... ..... @rdn_pg_rm +SABD_zpzz 00000100 .. 001 100 000 ... ..... ..... @rdn_pg_rm +UABD_zpzz 00000100 .. 001 101 000 ... ..... ..... @rdn_pg_rm + +# SVE integer multiply/divide (predicated) +MUL_zpzz 00000100 .. 010 000 000 ... ..... ..... @rdn_pg_rm +SMULH_zpzz 00000100 .. 010 010 000 ... ..... ..... @rdn_pg_rm +UMULH_zpzz 00000100 .. 010 011 000 ... ..... ..... @rdn_pg_rm +# Note that divide requires size >= 2; below 2 is unallocated. +SDIV_zpzz 00000100 .. 010 100 000 ... ..... ..... @rdn_pg_rm +UDIV_zpzz 00000100 .. 010 101 000 ... ..... ..... @rdn_pg_rm +SDIV_zpzz 00000100 .. 010 110 000 ... ..... ..... @rdm_pg_rn # SDIVR +UDIV_zpzz 00000100 .. 010 111 000 ... ..... ..... @rdm_pg_rn # UDIVR + +### SVE Integer Reduction Group + +# SVE bitwise logical reduction (predicated) +ORV 00000100 .. 011 000 001 ... ..... ..... @rd_pg_rn +EORV 00000100 .. 011 001 001 ... ..... ..... @rd_pg_rn +ANDV 00000100 .. 011 010 001 ... ..... ..... @rd_pg_rn + +# SVE integer add reduction (predicated) +# Note that saddv requires size != 3. +UADDV 00000100 .. 000 001 001 ... ..... ..... @rd_pg_rn +SADDV 00000100 .. 000 000 001 ... ..... ..... @rd_pg_rn + +# SVE integer min/max reduction (predicated) +SMAXV 00000100 .. 001 000 001 ... ..... ..... @rd_pg_rn +UMAXV 00000100 .. 001 001 001 ... ..... ..... @rd_pg_rn +SMINV 00000100 .. 001 010 001 ... ..... ..... @rd_pg_rn +UMINV 00000100 .. 001 011 001 ... ..... ..... @rd_pg_rn + +### SVE Shift by Immediate - Predicated Group + +# SVE bitwise shift by immediate (predicated) +ASR_zpzi 00000100 .. 000 000 100 ... .. ... ..... \ + @rdn_pg_tszimm imm=%tszimm_shr +LSR_zpzi 00000100 .. 000 001 100 ... .. ... ..... \ + @rdn_pg_tszimm imm=%tszimm_shr +LSL_zpzi 00000100 .. 000 011 100 ... .. ... ..... \ + @rdn_pg_tszimm imm=%tszimm_shl +ASRD 00000100 .. 000 100 100 ... .. ... ..... \ + @rdn_pg_tszimm imm=%tszimm_shr + +# SVE bitwise shift by vector (predicated) +ASR_zpzz 00000100 .. 010 000 100 ... ..... ..... @rdn_pg_rm +LSR_zpzz 00000100 .. 010 001 100 ... ..... ..... @rdn_pg_rm +LSL_zpzz 00000100 .. 010 011 100 ... ..... ..... @rdn_pg_rm +ASR_zpzz 00000100 .. 010 100 100 ... ..... ..... @rdm_pg_rn # ASRR +LSR_zpzz 00000100 .. 010 101 100 ... ..... ..... @rdm_pg_rn # LSRR +LSL_zpzz 00000100 .. 010 111 100 ... ..... ..... @rdm_pg_rn # LSLR + +# SVE bitwise shift by wide elements (predicated) +# Note these require size != 3. +ASR_zpzw 00000100 .. 011 000 100 ... ..... ..... @rdn_pg_rm +LSR_zpzw 00000100 .. 011 001 100 ... ..... ..... @rdn_pg_rm +LSL_zpzw 00000100 .. 011 011 100 ... ..... ..... @rdn_pg_rm + +### SVE Integer Arithmetic - Unary Predicated Group + +# SVE unary bit operations (predicated) +# Note esz != 0 for FABS and FNEG. +CLS 00000100 .. 011 000 101 ... ..... ..... @rd_pg_rn +CLZ 00000100 .. 011 001 101 ... ..... ..... @rd_pg_rn +CNT_zpz 00000100 .. 011 010 101 ... ..... ..... @rd_pg_rn +CNOT 00000100 .. 011 011 101 ... ..... ..... @rd_pg_rn +NOT_zpz 00000100 .. 011 110 101 ... ..... ..... @rd_pg_rn +FABS 00000100 .. 011 100 101 ... ..... ..... @rd_pg_rn +FNEG 00000100 .. 011 101 101 ... ..... ..... @rd_pg_rn + +# SVE integer unary operations (predicated) +# Note esz > original size for extensions. +ABS 00000100 .. 010 110 101 ... ..... ..... @rd_pg_rn +NEG 00000100 .. 010 111 101 ... ..... ..... @rd_pg_rn +SXTB 00000100 .. 010 000 101 ... ..... ..... @rd_pg_rn +UXTB 00000100 .. 010 001 101 ... ..... ..... @rd_pg_rn +SXTH 00000100 .. 010 010 101 ... ..... ..... @rd_pg_rn +UXTH 00000100 .. 010 011 101 ... ..... ..... @rd_pg_rn +SXTW 00000100 .. 010 100 101 ... ..... ..... @rd_pg_rn +UXTW 00000100 .. 010 101 101 ... ..... ..... @rd_pg_rn + +### SVE Integer Multiply-Add Group + +# SVE integer multiply-add writing addend (predicated) +MLA 00000100 .. 0 ..... 010 ... ..... ..... @rda_pg_rn_rm +MLS 00000100 .. 0 ..... 011 ... ..... ..... @rda_pg_rn_rm + +# SVE integer multiply-add writing multiplicand (predicated) +MLA 00000100 .. 0 ..... 110 ... ..... ..... @rdn_pg_ra_rm # MAD +MLS 00000100 .. 0 ..... 111 ... ..... ..... @rdn_pg_ra_rm # MSB + +### SVE Integer Arithmetic - Unpredicated Group + +# SVE integer add/subtract vectors (unpredicated) +ADD_zzz 00000100 .. 1 ..... 000 000 ..... ..... @rd_rn_rm +SUB_zzz 00000100 .. 1 ..... 000 001 ..... ..... @rd_rn_rm +SQADD_zzz 00000100 .. 1 ..... 000 100 ..... ..... @rd_rn_rm +UQADD_zzz 00000100 .. 1 ..... 000 101 ..... ..... @rd_rn_rm +SQSUB_zzz 00000100 .. 1 ..... 000 110 ..... ..... @rd_rn_rm +UQSUB_zzz 00000100 .. 1 ..... 000 111 ..... ..... @rd_rn_rm + +### SVE Logical - Unpredicated Group + +# SVE bitwise logical operations (unpredicated) +AND_zzz 00000100 00 1 ..... 001 100 ..... ..... @rd_rn_rm_e0 +ORR_zzz 00000100 01 1 ..... 001 100 ..... ..... @rd_rn_rm_e0 +EOR_zzz 00000100 10 1 ..... 001 100 ..... ..... @rd_rn_rm_e0 +BIC_zzz 00000100 11 1 ..... 001 100 ..... ..... @rd_rn_rm_e0 + +### SVE Index Generation Group + +# SVE index generation (immediate start, immediate increment) +INDEX_ii 00000100 esz:2 1 imm2:s5 010000 imm1:s5 rd:5 + +# SVE index generation (immediate start, register increment) +INDEX_ir 00000100 esz:2 1 rm:5 010010 imm:s5 rd:5 + +# SVE index generation (register start, immediate increment) +INDEX_ri 00000100 esz:2 1 imm:s5 010001 rn:5 rd:5 + +# SVE index generation (register start, register increment) +INDEX_rr 00000100 .. 1 ..... 010011 ..... ..... @rd_rn_rm + +### SVE Stack Allocation Group + +# SVE stack frame adjustment +ADDVL 00000100 001 ..... 01010 ...... ..... @rd_rn_i6 +ADDPL 00000100 011 ..... 01010 ...... ..... @rd_rn_i6 + +# SVE stack frame size +RDVL 00000100 101 11111 01010 imm:s6 rd:5 + +### SVE Bitwise Shift - Unpredicated Group + +# SVE bitwise shift by immediate (unpredicated) +ASR_zzi 00000100 .. 1 ..... 1001 00 ..... ..... \ + @rd_rn_tszimm imm=%tszimm16_shr +LSR_zzi 00000100 .. 1 ..... 1001 01 ..... ..... \ + @rd_rn_tszimm imm=%tszimm16_shr +LSL_zzi 00000100 .. 1 ..... 1001 11 ..... ..... \ + @rd_rn_tszimm imm=%tszimm16_shl + +# SVE bitwise shift by wide elements (unpredicated) +# Note esz != 3 +ASR_zzw 00000100 .. 1 ..... 1000 00 ..... ..... @rd_rn_rm +LSR_zzw 00000100 .. 1 ..... 1000 01 ..... ..... @rd_rn_rm +LSL_zzw 00000100 .. 1 ..... 1000 11 ..... ..... @rd_rn_rm + +### SVE Compute Vector Address Group + +# SVE vector address generation +ADR_s32 00000100 00 1 ..... 1010 .. ..... ..... @rd_rn_msz_rm +ADR_u32 00000100 01 1 ..... 1010 .. ..... ..... @rd_rn_msz_rm +ADR_p32 00000100 10 1 ..... 1010 .. ..... ..... @rd_rn_msz_rm +ADR_p64 00000100 11 1 ..... 1010 .. ..... ..... @rd_rn_msz_rm + +### SVE Integer Misc - Unpredicated Group + +# SVE floating-point exponential accelerator +# Note esz != 0 +FEXPA 00000100 .. 1 00000 101110 ..... ..... @rd_rn + +# SVE floating-point trig select coefficient +# Note esz != 0 +FTSSEL 00000100 .. 1 ..... 101100 ..... ..... @rd_rn_rm + +### SVE Element Count Group + +# SVE element count +CNT_r 00000100 .. 10 .... 1110 0 0 ..... ..... @incdec_cnt d=0 u=1 + +# SVE inc/dec register by element count +INCDEC_r 00000100 .. 11 .... 1110 0 d:1 ..... ..... @incdec_cnt u=1 + +# SVE saturating inc/dec register by element count +SINCDEC_r_32 00000100 .. 10 .... 1111 d:1 u:1 ..... ..... @incdec_cnt +SINCDEC_r_64 00000100 .. 11 .... 1111 d:1 u:1 ..... ..... @incdec_cnt + +# SVE inc/dec vector by element count +# Note this requires esz != 0. +INCDEC_v 00000100 .. 1 1 .... 1100 0 d:1 ..... ..... @incdec2_cnt u=1 + +# SVE saturating inc/dec vector by element count +# Note these require esz != 0. +SINCDEC_v 00000100 .. 1 0 .... 1100 d:1 u:1 ..... ..... @incdec2_cnt + +### SVE Bitwise Immediate Group + +# SVE bitwise logical with immediate (unpredicated) +ORR_zzi 00000101 00 0000 ............. ..... @rdn_dbm +EOR_zzi 00000101 01 0000 ............. ..... @rdn_dbm +AND_zzi 00000101 10 0000 ............. ..... @rdn_dbm + +# SVE broadcast bitmask immediate +DUPM 00000101 11 0000 dbm:13 rd:5 + +### SVE Integer Wide Immediate - Predicated Group + +# SVE copy floating-point immediate (predicated) +FCPY 00000101 .. 01 .... 110 imm:8 ..... @rdn_pg4 + +# SVE copy integer immediate (predicated) +CPY_m_i 00000101 .. 01 .... 01 . ........ ..... @rdn_pg4 imm=%sh8_i8s +CPY_z_i 00000101 .. 01 .... 00 . ........ ..... @rdn_pg4 imm=%sh8_i8s + +### SVE Permute - Extract Group + +# SVE extract vector (immediate offset) +EXT 00000101 001 ..... 000 ... rm:5 rd:5 \ + &rrri rn=%reg_movprfx imm=%imm8_16_10 + +### SVE Predicate Logical Operations Group + +# SVE predicate logical operations +AND_pppp 00100101 0. 00 .... 01 .... 0 .... 0 .... @pd_pg_pn_pm_s +BIC_pppp 00100101 0. 00 .... 01 .... 0 .... 1 .... @pd_pg_pn_pm_s +EOR_pppp 00100101 0. 00 .... 01 .... 1 .... 0 .... @pd_pg_pn_pm_s +SEL_pppp 00100101 0. 00 .... 01 .... 1 .... 1 .... @pd_pg_pn_pm_s +ORR_pppp 00100101 1. 00 .... 01 .... 0 .... 0 .... @pd_pg_pn_pm_s +ORN_pppp 00100101 1. 00 .... 01 .... 0 .... 1 .... @pd_pg_pn_pm_s +NOR_pppp 00100101 1. 00 .... 01 .... 1 .... 0 .... @pd_pg_pn_pm_s +NAND_pppp 00100101 1. 00 .... 01 .... 1 .... 1 .... @pd_pg_pn_pm_s + +### SVE Predicate Misc Group + +# SVE predicate test +PTEST 00100101 01 010000 11 pg:4 0 rn:4 0 0000 + +# SVE predicate initialize +PTRUE 00100101 esz:2 01100 s:1 111000 pat:5 0 rd:4 + +# SVE initialize FFR +SETFFR 00100101 0010 1100 1001 0000 0000 0000 + +# SVE zero predicate register +PFALSE 00100101 0001 1000 1110 0100 0000 rd:4 + +# SVE predicate read from FFR (predicated) +RDFFR_p 00100101 0 s:1 0110001111000 pg:4 0 rd:4 + +# SVE predicate read from FFR (unpredicated) +RDFFR 00100101 0001 1001 1111 0000 0000 rd:4 + +# SVE FFR write from predicate (WRFFR) +WRFFR 00100101 0010 1000 1001 000 rn:4 00000 + +# SVE predicate first active +PFIRST 00100101 01 011 000 11000 00 .... 0 .... @pd_pn_e0 + +# SVE predicate next active +PNEXT 00100101 .. 011 001 11000 10 .... 0 .... @pd_pn + +### SVE Memory - 32-bit Gather and Unsized Contiguous Group + +# SVE load predicate register +LDR_pri 10000101 10 ...... 000 ... ..... 0 .... @pd_rn_i9 + +# SVE load vector register +LDR_zri 10000101 10 ...... 010 ... ..... ..... @rd_rn_i9 diff --git a/target/arm/sve_helper.c b/target/arm/sve_helper.c new file mode 100644 index 0000000..b825e44 --- /dev/null +++ b/target/arm/sve_helper.c @@ -0,0 +1,1562 @@ +/* + * ARM SVE Operations + * + * Copyright (c) 2018 Linaro, Ltd. + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, see <http://www.gnu.org/licenses/>. + */ + +#include "qemu/osdep.h" +#include "cpu.h" +#include "exec/exec-all.h" +#include "exec/cpu_ldst.h" +#include "exec/helper-proto.h" +#include "tcg/tcg-gvec-desc.h" +#include "fpu/softfloat.h" + + +/* Note that vector data is stored in host-endian 64-bit chunks, + so addressing units smaller than that needs a host-endian fixup. */ +#ifdef HOST_WORDS_BIGENDIAN +#define H1(x) ((x) ^ 7) +#define H1_2(x) ((x) ^ 6) +#define H1_4(x) ((x) ^ 4) +#define H2(x) ((x) ^ 3) +#define H4(x) ((x) ^ 1) +#else +#define H1(x) (x) +#define H1_2(x) (x) +#define H1_4(x) (x) +#define H2(x) (x) +#define H4(x) (x) +#endif + +/* Return a value for NZCV as per the ARM PredTest pseudofunction. + * + * The return value has bit 31 set if N is set, bit 1 set if Z is clear, + * and bit 0 set if C is set. Compare the definitions of these variables + * within CPUARMState. + */ + +/* For no G bits set, NZCV = C. */ +#define PREDTEST_INIT 1 + +/* This is an iterative function, called for each Pd and Pg word + * moving forward. + */ +static uint32_t iter_predtest_fwd(uint64_t d, uint64_t g, uint32_t flags) +{ + if (likely(g)) { + /* Compute N from first D & G. + Use bit 2 to signal first G bit seen. */ + if (!(flags & 4)) { + flags |= ((d & (g & -g)) != 0) << 31; + flags |= 4; + } + + /* Accumulate Z from each D & G. */ + flags |= ((d & g) != 0) << 1; + + /* Compute C from last !(D & G). Replace previous. */ + flags = deposit32(flags, 0, 1, (d & pow2floor(g)) == 0); + } + return flags; +} + +/* The same for a single word predicate. */ +uint32_t HELPER(sve_predtest1)(uint64_t d, uint64_t g) +{ + return iter_predtest_fwd(d, g, PREDTEST_INIT); +} + +/* The same for a multi-word predicate. */ +uint32_t HELPER(sve_predtest)(void *vd, void *vg, uint32_t words) +{ + uint32_t flags = PREDTEST_INIT; + uint64_t *d = vd, *g = vg; + uintptr_t i = 0; + + do { + flags = iter_predtest_fwd(d[i], g[i], flags); + } while (++i < words); + + return flags; +} + +/* Expand active predicate bits to bytes, for byte elements. + * for (i = 0; i < 256; ++i) { + * unsigned long m = 0; + * for (j = 0; j < 8; j++) { + * if ((i >> j) & 1) { + * m |= 0xfful << (j << 3); + * } + * } + * printf("0x%016lx,\n", m); + * } + */ +static inline uint64_t expand_pred_b(uint8_t byte) +{ + static const uint64_t word[256] = { + 0x0000000000000000, 0x00000000000000ff, 0x000000000000ff00, + 0x000000000000ffff, 0x0000000000ff0000, 0x0000000000ff00ff, + 0x0000000000ffff00, 0x0000000000ffffff, 0x00000000ff000000, + 0x00000000ff0000ff, 0x00000000ff00ff00, 0x00000000ff00ffff, + 0x00000000ffff0000, 0x00000000ffff00ff, 0x00000000ffffff00, + 0x00000000ffffffff, 0x000000ff00000000, 0x000000ff000000ff, + 0x000000ff0000ff00, 0x000000ff0000ffff, 0x000000ff00ff0000, + 0x000000ff00ff00ff, 0x000000ff00ffff00, 0x000000ff00ffffff, + 0x000000ffff000000, 0x000000ffff0000ff, 0x000000ffff00ff00, + 0x000000ffff00ffff, 0x000000ffffff0000, 0x000000ffffff00ff, + 0x000000ffffffff00, 0x000000ffffffffff, 0x0000ff0000000000, + 0x0000ff00000000ff, 0x0000ff000000ff00, 0x0000ff000000ffff, + 0x0000ff0000ff0000, 0x0000ff0000ff00ff, 0x0000ff0000ffff00, + 0x0000ff0000ffffff, 0x0000ff00ff000000, 0x0000ff00ff0000ff, + 0x0000ff00ff00ff00, 0x0000ff00ff00ffff, 0x0000ff00ffff0000, + 0x0000ff00ffff00ff, 0x0000ff00ffffff00, 0x0000ff00ffffffff, + 0x0000ffff00000000, 0x0000ffff000000ff, 0x0000ffff0000ff00, + 0x0000ffff0000ffff, 0x0000ffff00ff0000, 0x0000ffff00ff00ff, + 0x0000ffff00ffff00, 0x0000ffff00ffffff, 0x0000ffffff000000, + 0x0000ffffff0000ff, 0x0000ffffff00ff00, 0x0000ffffff00ffff, + 0x0000ffffffff0000, 0x0000ffffffff00ff, 0x0000ffffffffff00, + 0x0000ffffffffffff, 0x00ff000000000000, 0x00ff0000000000ff, + 0x00ff00000000ff00, 0x00ff00000000ffff, 0x00ff000000ff0000, + 0x00ff000000ff00ff, 0x00ff000000ffff00, 0x00ff000000ffffff, + 0x00ff0000ff000000, 0x00ff0000ff0000ff, 0x00ff0000ff00ff00, + 0x00ff0000ff00ffff, 0x00ff0000ffff0000, 0x00ff0000ffff00ff, + 0x00ff0000ffffff00, 0x00ff0000ffffffff, 0x00ff00ff00000000, + 0x00ff00ff000000ff, 0x00ff00ff0000ff00, 0x00ff00ff0000ffff, + 0x00ff00ff00ff0000, 0x00ff00ff00ff00ff, 0x00ff00ff00ffff00, + 0x00ff00ff00ffffff, 0x00ff00ffff000000, 0x00ff00ffff0000ff, + 0x00ff00ffff00ff00, 0x00ff00ffff00ffff, 0x00ff00ffffff0000, + 0x00ff00ffffff00ff, 0x00ff00ffffffff00, 0x00ff00ffffffffff, + 0x00ffff0000000000, 0x00ffff00000000ff, 0x00ffff000000ff00, + 0x00ffff000000ffff, 0x00ffff0000ff0000, 0x00ffff0000ff00ff, + 0x00ffff0000ffff00, 0x00ffff0000ffffff, 0x00ffff00ff000000, + 0x00ffff00ff0000ff, 0x00ffff00ff00ff00, 0x00ffff00ff00ffff, + 0x00ffff00ffff0000, 0x00ffff00ffff00ff, 0x00ffff00ffffff00, + 0x00ffff00ffffffff, 0x00ffffff00000000, 0x00ffffff000000ff, + 0x00ffffff0000ff00, 0x00ffffff0000ffff, 0x00ffffff00ff0000, + 0x00ffffff00ff00ff, 0x00ffffff00ffff00, 0x00ffffff00ffffff, + 0x00ffffffff000000, 0x00ffffffff0000ff, 0x00ffffffff00ff00, + 0x00ffffffff00ffff, 0x00ffffffffff0000, 0x00ffffffffff00ff, + 0x00ffffffffffff00, 0x00ffffffffffffff, 0xff00000000000000, + 0xff000000000000ff, 0xff0000000000ff00, 0xff0000000000ffff, + 0xff00000000ff0000, 0xff00000000ff00ff, 0xff00000000ffff00, + 0xff00000000ffffff, 0xff000000ff000000, 0xff000000ff0000ff, + 0xff000000ff00ff00, 0xff000000ff00ffff, 0xff000000ffff0000, + 0xff000000ffff00ff, 0xff000000ffffff00, 0xff000000ffffffff, + 0xff0000ff00000000, 0xff0000ff000000ff, 0xff0000ff0000ff00, + 0xff0000ff0000ffff, 0xff0000ff00ff0000, 0xff0000ff00ff00ff, + 0xff0000ff00ffff00, 0xff0000ff00ffffff, 0xff0000ffff000000, + 0xff0000ffff0000ff, 0xff0000ffff00ff00, 0xff0000ffff00ffff, + 0xff0000ffffff0000, 0xff0000ffffff00ff, 0xff0000ffffffff00, + 0xff0000ffffffffff, 0xff00ff0000000000, 0xff00ff00000000ff, + 0xff00ff000000ff00, 0xff00ff000000ffff, 0xff00ff0000ff0000, + 0xff00ff0000ff00ff, 0xff00ff0000ffff00, 0xff00ff0000ffffff, + 0xff00ff00ff000000, 0xff00ff00ff0000ff, 0xff00ff00ff00ff00, + 0xff00ff00ff00ffff, 0xff00ff00ffff0000, 0xff00ff00ffff00ff, + 0xff00ff00ffffff00, 0xff00ff00ffffffff, 0xff00ffff00000000, + 0xff00ffff000000ff, 0xff00ffff0000ff00, 0xff00ffff0000ffff, + 0xff00ffff00ff0000, 0xff00ffff00ff00ff, 0xff00ffff00ffff00, + 0xff00ffff00ffffff, 0xff00ffffff000000, 0xff00ffffff0000ff, + 0xff00ffffff00ff00, 0xff00ffffff00ffff, 0xff00ffffffff0000, + 0xff00ffffffff00ff, 0xff00ffffffffff00, 0xff00ffffffffffff, + 0xffff000000000000, 0xffff0000000000ff, 0xffff00000000ff00, + 0xffff00000000ffff, 0xffff000000ff0000, 0xffff000000ff00ff, + 0xffff000000ffff00, 0xffff000000ffffff, 0xffff0000ff000000, + 0xffff0000ff0000ff, 0xffff0000ff00ff00, 0xffff0000ff00ffff, + 0xffff0000ffff0000, 0xffff0000ffff00ff, 0xffff0000ffffff00, + 0xffff0000ffffffff, 0xffff00ff00000000, 0xffff00ff000000ff, + 0xffff00ff0000ff00, 0xffff00ff0000ffff, 0xffff00ff00ff0000, + 0xffff00ff00ff00ff, 0xffff00ff00ffff00, 0xffff00ff00ffffff, + 0xffff00ffff000000, 0xffff00ffff0000ff, 0xffff00ffff00ff00, + 0xffff00ffff00ffff, 0xffff00ffffff0000, 0xffff00ffffff00ff, + 0xffff00ffffffff00, 0xffff00ffffffffff, 0xffffff0000000000, + 0xffffff00000000ff, 0xffffff000000ff00, 0xffffff000000ffff, + 0xffffff0000ff0000, 0xffffff0000ff00ff, 0xffffff0000ffff00, + 0xffffff0000ffffff, 0xffffff00ff000000, 0xffffff00ff0000ff, + 0xffffff00ff00ff00, 0xffffff00ff00ffff, 0xffffff00ffff0000, + 0xffffff00ffff00ff, 0xffffff00ffffff00, 0xffffff00ffffffff, + 0xffffffff00000000, 0xffffffff000000ff, 0xffffffff0000ff00, + 0xffffffff0000ffff, 0xffffffff00ff0000, 0xffffffff00ff00ff, + 0xffffffff00ffff00, 0xffffffff00ffffff, 0xffffffffff000000, + 0xffffffffff0000ff, 0xffffffffff00ff00, 0xffffffffff00ffff, + 0xffffffffffff0000, 0xffffffffffff00ff, 0xffffffffffffff00, + 0xffffffffffffffff, + }; + return word[byte]; +} + +/* Similarly for half-word elements. + * for (i = 0; i < 256; ++i) { + * unsigned long m = 0; + * if (i & 0xaa) { + * continue; + * } + * for (j = 0; j < 8; j += 2) { + * if ((i >> j) & 1) { + * m |= 0xfffful << (j << 3); + * } + * } + * printf("[0x%x] = 0x%016lx,\n", i, m); + * } + */ +static inline uint64_t expand_pred_h(uint8_t byte) +{ + static const uint64_t word[] = { + [0x01] = 0x000000000000ffff, [0x04] = 0x00000000ffff0000, + [0x05] = 0x00000000ffffffff, [0x10] = 0x0000ffff00000000, + [0x11] = 0x0000ffff0000ffff, [0x14] = 0x0000ffffffff0000, + [0x15] = 0x0000ffffffffffff, [0x40] = 0xffff000000000000, + [0x41] = 0xffff00000000ffff, [0x44] = 0xffff0000ffff0000, + [0x45] = 0xffff0000ffffffff, [0x50] = 0xffffffff00000000, + [0x51] = 0xffffffff0000ffff, [0x54] = 0xffffffffffff0000, + [0x55] = 0xffffffffffffffff, + }; + return word[byte & 0x55]; +} + +/* Similarly for single word elements. */ +static inline uint64_t expand_pred_s(uint8_t byte) +{ + static const uint64_t word[] = { + [0x01] = 0x00000000ffffffffull, + [0x10] = 0xffffffff00000000ull, + [0x11] = 0xffffffffffffffffull, + }; + return word[byte & 0x11]; +} + +#define LOGICAL_PPPP(NAME, FUNC) \ +void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \ +{ \ + uintptr_t opr_sz = simd_oprsz(desc); \ + uint64_t *d = vd, *n = vn, *m = vm, *g = vg; \ + uintptr_t i; \ + for (i = 0; i < opr_sz / 8; ++i) { \ + d[i] = FUNC(n[i], m[i], g[i]); \ + } \ +} + +#define DO_AND(N, M, G) (((N) & (M)) & (G)) +#define DO_BIC(N, M, G) (((N) & ~(M)) & (G)) +#define DO_EOR(N, M, G) (((N) ^ (M)) & (G)) +#define DO_ORR(N, M, G) (((N) | (M)) & (G)) +#define DO_ORN(N, M, G) (((N) | ~(M)) & (G)) +#define DO_NOR(N, M, G) (~((N) | (M)) & (G)) +#define DO_NAND(N, M, G) (~((N) & (M)) & (G)) +#define DO_SEL(N, M, G) (((N) & (G)) | ((M) & ~(G))) + +LOGICAL_PPPP(sve_and_pppp, DO_AND) +LOGICAL_PPPP(sve_bic_pppp, DO_BIC) +LOGICAL_PPPP(sve_eor_pppp, DO_EOR) +LOGICAL_PPPP(sve_sel_pppp, DO_SEL) +LOGICAL_PPPP(sve_orr_pppp, DO_ORR) +LOGICAL_PPPP(sve_orn_pppp, DO_ORN) +LOGICAL_PPPP(sve_nor_pppp, DO_NOR) +LOGICAL_PPPP(sve_nand_pppp, DO_NAND) + +#undef DO_AND +#undef DO_BIC +#undef DO_EOR +#undef DO_ORR +#undef DO_ORN +#undef DO_NOR +#undef DO_NAND +#undef DO_SEL +#undef LOGICAL_PPPP + +/* Fully general three-operand expander, controlled by a predicate. + * This is complicated by the host-endian storage of the register file. + */ +/* ??? I don't expect the compiler could ever vectorize this itself. + * With some tables we can convert bit masks to byte masks, and with + * extra care wrt byte/word ordering we could use gcc generic vectors + * and do 16 bytes at a time. + */ +#define DO_ZPZZ(NAME, TYPE, H, OP) \ +void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \ +{ \ + intptr_t i, opr_sz = simd_oprsz(desc); \ + for (i = 0; i < opr_sz; ) { \ + uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \ + do { \ + if (pg & 1) { \ + TYPE nn = *(TYPE *)(vn + H(i)); \ + TYPE mm = *(TYPE *)(vm + H(i)); \ + *(TYPE *)(vd + H(i)) = OP(nn, mm); \ + } \ + i += sizeof(TYPE), pg >>= sizeof(TYPE); \ + } while (i & 15); \ + } \ +} + +/* Similarly, specialized for 64-bit operands. */ +#define DO_ZPZZ_D(NAME, TYPE, OP) \ +void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \ +{ \ + intptr_t i, opr_sz = simd_oprsz(desc) / 8; \ + TYPE *d = vd, *n = vn, *m = vm; \ + uint8_t *pg = vg; \ + for (i = 0; i < opr_sz; i += 1) { \ + if (pg[H1(i)] & 1) { \ + TYPE nn = n[i], mm = m[i]; \ + d[i] = OP(nn, mm); \ + } \ + } \ +} + +#define DO_AND(N, M) (N & M) +#define DO_EOR(N, M) (N ^ M) +#define DO_ORR(N, M) (N | M) +#define DO_BIC(N, M) (N & ~M) +#define DO_ADD(N, M) (N + M) +#define DO_SUB(N, M) (N - M) +#define DO_MAX(N, M) ((N) >= (M) ? (N) : (M)) +#define DO_MIN(N, M) ((N) >= (M) ? (M) : (N)) +#define DO_ABD(N, M) ((N) >= (M) ? (N) - (M) : (M) - (N)) +#define DO_MUL(N, M) (N * M) +#define DO_DIV(N, M) (M ? N / M : 0) + +DO_ZPZZ(sve_and_zpzz_b, uint8_t, H1, DO_AND) +DO_ZPZZ(sve_and_zpzz_h, uint16_t, H1_2, DO_AND) +DO_ZPZZ(sve_and_zpzz_s, uint32_t, H1_4, DO_AND) +DO_ZPZZ_D(sve_and_zpzz_d, uint64_t, DO_AND) + +DO_ZPZZ(sve_orr_zpzz_b, uint8_t, H1, DO_ORR) +DO_ZPZZ(sve_orr_zpzz_h, uint16_t, H1_2, DO_ORR) +DO_ZPZZ(sve_orr_zpzz_s, uint32_t, H1_4, DO_ORR) +DO_ZPZZ_D(sve_orr_zpzz_d, uint64_t, DO_ORR) + +DO_ZPZZ(sve_eor_zpzz_b, uint8_t, H1, DO_EOR) +DO_ZPZZ(sve_eor_zpzz_h, uint16_t, H1_2, DO_EOR) +DO_ZPZZ(sve_eor_zpzz_s, uint32_t, H1_4, DO_EOR) +DO_ZPZZ_D(sve_eor_zpzz_d, uint64_t, DO_EOR) + +DO_ZPZZ(sve_bic_zpzz_b, uint8_t, H1, DO_BIC) +DO_ZPZZ(sve_bic_zpzz_h, uint16_t, H1_2, DO_BIC) +DO_ZPZZ(sve_bic_zpzz_s, uint32_t, H1_4, DO_BIC) +DO_ZPZZ_D(sve_bic_zpzz_d, uint64_t, DO_BIC) + +DO_ZPZZ(sve_add_zpzz_b, uint8_t, H1, DO_ADD) +DO_ZPZZ(sve_add_zpzz_h, uint16_t, H1_2, DO_ADD) +DO_ZPZZ(sve_add_zpzz_s, uint32_t, H1_4, DO_ADD) +DO_ZPZZ_D(sve_add_zpzz_d, uint64_t, DO_ADD) + +DO_ZPZZ(sve_sub_zpzz_b, uint8_t, H1, DO_SUB) +DO_ZPZZ(sve_sub_zpzz_h, uint16_t, H1_2, DO_SUB) +DO_ZPZZ(sve_sub_zpzz_s, uint32_t, H1_4, DO_SUB) +DO_ZPZZ_D(sve_sub_zpzz_d, uint64_t, DO_SUB) + +DO_ZPZZ(sve_smax_zpzz_b, int8_t, H1, DO_MAX) +DO_ZPZZ(sve_smax_zpzz_h, int16_t, H1_2, DO_MAX) +DO_ZPZZ(sve_smax_zpzz_s, int32_t, H1_4, DO_MAX) +DO_ZPZZ_D(sve_smax_zpzz_d, int64_t, DO_MAX) + +DO_ZPZZ(sve_umax_zpzz_b, uint8_t, H1, DO_MAX) +DO_ZPZZ(sve_umax_zpzz_h, uint16_t, H1_2, DO_MAX) +DO_ZPZZ(sve_umax_zpzz_s, uint32_t, H1_4, DO_MAX) +DO_ZPZZ_D(sve_umax_zpzz_d, uint64_t, DO_MAX) + +DO_ZPZZ(sve_smin_zpzz_b, int8_t, H1, DO_MIN) +DO_ZPZZ(sve_smin_zpzz_h, int16_t, H1_2, DO_MIN) +DO_ZPZZ(sve_smin_zpzz_s, int32_t, H1_4, DO_MIN) +DO_ZPZZ_D(sve_smin_zpzz_d, int64_t, DO_MIN) + +DO_ZPZZ(sve_umin_zpzz_b, uint8_t, H1, DO_MIN) +DO_ZPZZ(sve_umin_zpzz_h, uint16_t, H1_2, DO_MIN) +DO_ZPZZ(sve_umin_zpzz_s, uint32_t, H1_4, DO_MIN) +DO_ZPZZ_D(sve_umin_zpzz_d, uint64_t, DO_MIN) + +DO_ZPZZ(sve_sabd_zpzz_b, int8_t, H1, DO_ABD) +DO_ZPZZ(sve_sabd_zpzz_h, int16_t, H1_2, DO_ABD) +DO_ZPZZ(sve_sabd_zpzz_s, int32_t, H1_4, DO_ABD) +DO_ZPZZ_D(sve_sabd_zpzz_d, int64_t, DO_ABD) + +DO_ZPZZ(sve_uabd_zpzz_b, uint8_t, H1, DO_ABD) +DO_ZPZZ(sve_uabd_zpzz_h, uint16_t, H1_2, DO_ABD) +DO_ZPZZ(sve_uabd_zpzz_s, uint32_t, H1_4, DO_ABD) +DO_ZPZZ_D(sve_uabd_zpzz_d, uint64_t, DO_ABD) + +/* Because the computation type is at least twice as large as required, + these work for both signed and unsigned source types. */ +static inline uint8_t do_mulh_b(int32_t n, int32_t m) +{ + return (n * m) >> 8; +} + +static inline uint16_t do_mulh_h(int32_t n, int32_t m) +{ + return (n * m) >> 16; +} + +static inline uint32_t do_mulh_s(int64_t n, int64_t m) +{ + return (n * m) >> 32; +} + +static inline uint64_t do_smulh_d(uint64_t n, uint64_t m) +{ + uint64_t lo, hi; + muls64(&lo, &hi, n, m); + return hi; +} + +static inline uint64_t do_umulh_d(uint64_t n, uint64_t m) +{ + uint64_t lo, hi; + mulu64(&lo, &hi, n, m); + return hi; +} + +DO_ZPZZ(sve_mul_zpzz_b, uint8_t, H1, DO_MUL) +DO_ZPZZ(sve_mul_zpzz_h, uint16_t, H1_2, DO_MUL) +DO_ZPZZ(sve_mul_zpzz_s, uint32_t, H1_4, DO_MUL) +DO_ZPZZ_D(sve_mul_zpzz_d, uint64_t, DO_MUL) + +DO_ZPZZ(sve_smulh_zpzz_b, int8_t, H1, do_mulh_b) +DO_ZPZZ(sve_smulh_zpzz_h, int16_t, H1_2, do_mulh_h) +DO_ZPZZ(sve_smulh_zpzz_s, int32_t, H1_4, do_mulh_s) +DO_ZPZZ_D(sve_smulh_zpzz_d, uint64_t, do_smulh_d) + +DO_ZPZZ(sve_umulh_zpzz_b, uint8_t, H1, do_mulh_b) +DO_ZPZZ(sve_umulh_zpzz_h, uint16_t, H1_2, do_mulh_h) +DO_ZPZZ(sve_umulh_zpzz_s, uint32_t, H1_4, do_mulh_s) +DO_ZPZZ_D(sve_umulh_zpzz_d, uint64_t, do_umulh_d) + +DO_ZPZZ(sve_sdiv_zpzz_s, int32_t, H1_4, DO_DIV) +DO_ZPZZ_D(sve_sdiv_zpzz_d, int64_t, DO_DIV) + +DO_ZPZZ(sve_udiv_zpzz_s, uint32_t, H1_4, DO_DIV) +DO_ZPZZ_D(sve_udiv_zpzz_d, uint64_t, DO_DIV) + +/* Note that all bits of the shift are significant + and not modulo the element size. */ +#define DO_ASR(N, M) (N >> MIN(M, sizeof(N) * 8 - 1)) +#define DO_LSR(N, M) (M < sizeof(N) * 8 ? N >> M : 0) +#define DO_LSL(N, M) (M < sizeof(N) * 8 ? N << M : 0) + +DO_ZPZZ(sve_asr_zpzz_b, int8_t, H1, DO_ASR) +DO_ZPZZ(sve_lsr_zpzz_b, uint8_t, H1_2, DO_LSR) +DO_ZPZZ(sve_lsl_zpzz_b, uint8_t, H1_4, DO_LSL) + +DO_ZPZZ(sve_asr_zpzz_h, int16_t, H1, DO_ASR) +DO_ZPZZ(sve_lsr_zpzz_h, uint16_t, H1_2, DO_LSR) +DO_ZPZZ(sve_lsl_zpzz_h, uint16_t, H1_4, DO_LSL) + +DO_ZPZZ(sve_asr_zpzz_s, int32_t, H1, DO_ASR) +DO_ZPZZ(sve_lsr_zpzz_s, uint32_t, H1_2, DO_LSR) +DO_ZPZZ(sve_lsl_zpzz_s, uint32_t, H1_4, DO_LSL) + +DO_ZPZZ_D(sve_asr_zpzz_d, int64_t, DO_ASR) +DO_ZPZZ_D(sve_lsr_zpzz_d, uint64_t, DO_LSR) +DO_ZPZZ_D(sve_lsl_zpzz_d, uint64_t, DO_LSL) + +#undef DO_ZPZZ +#undef DO_ZPZZ_D + +/* Three-operand expander, controlled by a predicate, in which the + * third operand is "wide". That is, for D = N op M, the same 64-bit + * value of M is used with all of the narrower values of N. + */ +#define DO_ZPZW(NAME, TYPE, TYPEW, H, OP) \ +void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \ +{ \ + intptr_t i, opr_sz = simd_oprsz(desc); \ + for (i = 0; i < opr_sz; ) { \ + uint8_t pg = *(uint8_t *)(vg + H1(i >> 3)); \ + TYPEW mm = *(TYPEW *)(vm + i); \ + do { \ + if (pg & 1) { \ + TYPE nn = *(TYPE *)(vn + H(i)); \ + *(TYPE *)(vd + H(i)) = OP(nn, mm); \ + } \ + i += sizeof(TYPE), pg >>= sizeof(TYPE); \ + } while (i & 7); \ + } \ +} + +DO_ZPZW(sve_asr_zpzw_b, int8_t, uint64_t, H1, DO_ASR) +DO_ZPZW(sve_lsr_zpzw_b, uint8_t, uint64_t, H1, DO_LSR) +DO_ZPZW(sve_lsl_zpzw_b, uint8_t, uint64_t, H1, DO_LSL) + +DO_ZPZW(sve_asr_zpzw_h, int16_t, uint64_t, H1_2, DO_ASR) +DO_ZPZW(sve_lsr_zpzw_h, uint16_t, uint64_t, H1_2, DO_LSR) +DO_ZPZW(sve_lsl_zpzw_h, uint16_t, uint64_t, H1_2, DO_LSL) + +DO_ZPZW(sve_asr_zpzw_s, int32_t, uint64_t, H1_4, DO_ASR) +DO_ZPZW(sve_lsr_zpzw_s, uint32_t, uint64_t, H1_4, DO_LSR) +DO_ZPZW(sve_lsl_zpzw_s, uint32_t, uint64_t, H1_4, DO_LSL) + +#undef DO_ZPZW + +/* Fully general two-operand expander, controlled by a predicate. + */ +#define DO_ZPZ(NAME, TYPE, H, OP) \ +void HELPER(NAME)(void *vd, void *vn, void *vg, uint32_t desc) \ +{ \ + intptr_t i, opr_sz = simd_oprsz(desc); \ + for (i = 0; i < opr_sz; ) { \ + uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \ + do { \ + if (pg & 1) { \ + TYPE nn = *(TYPE *)(vn + H(i)); \ + *(TYPE *)(vd + H(i)) = OP(nn); \ + } \ + i += sizeof(TYPE), pg >>= sizeof(TYPE); \ + } while (i & 15); \ + } \ +} + +/* Similarly, specialized for 64-bit operands. */ +#define DO_ZPZ_D(NAME, TYPE, OP) \ +void HELPER(NAME)(void *vd, void *vn, void *vg, uint32_t desc) \ +{ \ + intptr_t i, opr_sz = simd_oprsz(desc) / 8; \ + TYPE *d = vd, *n = vn; \ + uint8_t *pg = vg; \ + for (i = 0; i < opr_sz; i += 1) { \ + if (pg[H1(i)] & 1) { \ + TYPE nn = n[i]; \ + d[i] = OP(nn); \ + } \ + } \ +} + +#define DO_CLS_B(N) (clrsb32(N) - 24) +#define DO_CLS_H(N) (clrsb32(N) - 16) + +DO_ZPZ(sve_cls_b, int8_t, H1, DO_CLS_B) +DO_ZPZ(sve_cls_h, int16_t, H1_2, DO_CLS_H) +DO_ZPZ(sve_cls_s, int32_t, H1_4, clrsb32) +DO_ZPZ_D(sve_cls_d, int64_t, clrsb64) + +#define DO_CLZ_B(N) (clz32(N) - 24) +#define DO_CLZ_H(N) (clz32(N) - 16) + +DO_ZPZ(sve_clz_b, uint8_t, H1, DO_CLZ_B) +DO_ZPZ(sve_clz_h, uint16_t, H1_2, DO_CLZ_H) +DO_ZPZ(sve_clz_s, uint32_t, H1_4, clz32) +DO_ZPZ_D(sve_clz_d, uint64_t, clz64) + +DO_ZPZ(sve_cnt_zpz_b, uint8_t, H1, ctpop8) +DO_ZPZ(sve_cnt_zpz_h, uint16_t, H1_2, ctpop16) +DO_ZPZ(sve_cnt_zpz_s, uint32_t, H1_4, ctpop32) +DO_ZPZ_D(sve_cnt_zpz_d, uint64_t, ctpop64) + +#define DO_CNOT(N) (N == 0) + +DO_ZPZ(sve_cnot_b, uint8_t, H1, DO_CNOT) +DO_ZPZ(sve_cnot_h, uint16_t, H1_2, DO_CNOT) +DO_ZPZ(sve_cnot_s, uint32_t, H1_4, DO_CNOT) +DO_ZPZ_D(sve_cnot_d, uint64_t, DO_CNOT) + +#define DO_FABS(N) (N & ((__typeof(N))-1 >> 1)) + +DO_ZPZ(sve_fabs_h, uint16_t, H1_2, DO_FABS) +DO_ZPZ(sve_fabs_s, uint32_t, H1_4, DO_FABS) +DO_ZPZ_D(sve_fabs_d, uint64_t, DO_FABS) + +#define DO_FNEG(N) (N ^ ~((__typeof(N))-1 >> 1)) + +DO_ZPZ(sve_fneg_h, uint16_t, H1_2, DO_FNEG) +DO_ZPZ(sve_fneg_s, uint32_t, H1_4, DO_FNEG) +DO_ZPZ_D(sve_fneg_d, uint64_t, DO_FNEG) + +#define DO_NOT(N) (~N) + +DO_ZPZ(sve_not_zpz_b, uint8_t, H1, DO_NOT) +DO_ZPZ(sve_not_zpz_h, uint16_t, H1_2, DO_NOT) +DO_ZPZ(sve_not_zpz_s, uint32_t, H1_4, DO_NOT) +DO_ZPZ_D(sve_not_zpz_d, uint64_t, DO_NOT) + +#define DO_SXTB(N) ((int8_t)N) +#define DO_SXTH(N) ((int16_t)N) +#define DO_SXTS(N) ((int32_t)N) +#define DO_UXTB(N) ((uint8_t)N) +#define DO_UXTH(N) ((uint16_t)N) +#define DO_UXTS(N) ((uint32_t)N) + +DO_ZPZ(sve_sxtb_h, uint16_t, H1_2, DO_SXTB) +DO_ZPZ(sve_sxtb_s, uint32_t, H1_4, DO_SXTB) +DO_ZPZ(sve_sxth_s, uint32_t, H1_4, DO_SXTH) +DO_ZPZ_D(sve_sxtb_d, uint64_t, DO_SXTB) +DO_ZPZ_D(sve_sxth_d, uint64_t, DO_SXTH) +DO_ZPZ_D(sve_sxtw_d, uint64_t, DO_SXTS) + +DO_ZPZ(sve_uxtb_h, uint16_t, H1_2, DO_UXTB) +DO_ZPZ(sve_uxtb_s, uint32_t, H1_4, DO_UXTB) +DO_ZPZ(sve_uxth_s, uint32_t, H1_4, DO_UXTH) +DO_ZPZ_D(sve_uxtb_d, uint64_t, DO_UXTB) +DO_ZPZ_D(sve_uxth_d, uint64_t, DO_UXTH) +DO_ZPZ_D(sve_uxtw_d, uint64_t, DO_UXTS) + +#define DO_ABS(N) (N < 0 ? -N : N) + +DO_ZPZ(sve_abs_b, int8_t, H1, DO_ABS) +DO_ZPZ(sve_abs_h, int16_t, H1_2, DO_ABS) +DO_ZPZ(sve_abs_s, int32_t, H1_4, DO_ABS) +DO_ZPZ_D(sve_abs_d, int64_t, DO_ABS) + +#define DO_NEG(N) (-N) + +DO_ZPZ(sve_neg_b, uint8_t, H1, DO_NEG) +DO_ZPZ(sve_neg_h, uint16_t, H1_2, DO_NEG) +DO_ZPZ(sve_neg_s, uint32_t, H1_4, DO_NEG) +DO_ZPZ_D(sve_neg_d, uint64_t, DO_NEG) + +/* Three-operand expander, unpredicated, in which the third operand is "wide". + */ +#define DO_ZZW(NAME, TYPE, TYPEW, H, OP) \ +void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \ +{ \ + intptr_t i, opr_sz = simd_oprsz(desc); \ + for (i = 0; i < opr_sz; ) { \ + TYPEW mm = *(TYPEW *)(vm + i); \ + do { \ + TYPE nn = *(TYPE *)(vn + H(i)); \ + *(TYPE *)(vd + H(i)) = OP(nn, mm); \ + i += sizeof(TYPE); \ + } while (i & 7); \ + } \ +} + +DO_ZZW(sve_asr_zzw_b, int8_t, uint64_t, H1, DO_ASR) +DO_ZZW(sve_lsr_zzw_b, uint8_t, uint64_t, H1, DO_LSR) +DO_ZZW(sve_lsl_zzw_b, uint8_t, uint64_t, H1, DO_LSL) + +DO_ZZW(sve_asr_zzw_h, int16_t, uint64_t, H1_2, DO_ASR) +DO_ZZW(sve_lsr_zzw_h, uint16_t, uint64_t, H1_2, DO_LSR) +DO_ZZW(sve_lsl_zzw_h, uint16_t, uint64_t, H1_2, DO_LSL) + +DO_ZZW(sve_asr_zzw_s, int32_t, uint64_t, H1_4, DO_ASR) +DO_ZZW(sve_lsr_zzw_s, uint32_t, uint64_t, H1_4, DO_LSR) +DO_ZZW(sve_lsl_zzw_s, uint32_t, uint64_t, H1_4, DO_LSL) + +#undef DO_ZZW + +#undef DO_CLS_B +#undef DO_CLS_H +#undef DO_CLZ_B +#undef DO_CLZ_H +#undef DO_CNOT +#undef DO_FABS +#undef DO_FNEG +#undef DO_ABS +#undef DO_NEG +#undef DO_ZPZ +#undef DO_ZPZ_D + +/* Two-operand reduction expander, controlled by a predicate. + * The difference between TYPERED and TYPERET has to do with + * sign-extension. E.g. for SMAX, TYPERED must be signed, + * but TYPERET must be unsigned so that e.g. a 32-bit value + * is not sign-extended to the ABI uint64_t return type. + */ +/* ??? If we were to vectorize this by hand the reduction ordering + * would change. For integer operands, this is perfectly fine. + */ +#define DO_VPZ(NAME, TYPEELT, TYPERED, TYPERET, H, INIT, OP) \ +uint64_t HELPER(NAME)(void *vn, void *vg, uint32_t desc) \ +{ \ + intptr_t i, opr_sz = simd_oprsz(desc); \ + TYPERED ret = INIT; \ + for (i = 0; i < opr_sz; ) { \ + uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \ + do { \ + if (pg & 1) { \ + TYPEELT nn = *(TYPEELT *)(vn + H(i)); \ + ret = OP(ret, nn); \ + } \ + i += sizeof(TYPEELT), pg >>= sizeof(TYPEELT); \ + } while (i & 15); \ + } \ + return (TYPERET)ret; \ +} + +#define DO_VPZ_D(NAME, TYPEE, TYPER, INIT, OP) \ +uint64_t HELPER(NAME)(void *vn, void *vg, uint32_t desc) \ +{ \ + intptr_t i, opr_sz = simd_oprsz(desc) / 8; \ + TYPEE *n = vn; \ + uint8_t *pg = vg; \ + TYPER ret = INIT; \ + for (i = 0; i < opr_sz; i += 1) { \ + if (pg[H1(i)] & 1) { \ + TYPEE nn = n[i]; \ + ret = OP(ret, nn); \ + } \ + } \ + return ret; \ +} + +DO_VPZ(sve_orv_b, uint8_t, uint8_t, uint8_t, H1, 0, DO_ORR) +DO_VPZ(sve_orv_h, uint16_t, uint16_t, uint16_t, H1_2, 0, DO_ORR) +DO_VPZ(sve_orv_s, uint32_t, uint32_t, uint32_t, H1_4, 0, DO_ORR) +DO_VPZ_D(sve_orv_d, uint64_t, uint64_t, 0, DO_ORR) + +DO_VPZ(sve_eorv_b, uint8_t, uint8_t, uint8_t, H1, 0, DO_EOR) +DO_VPZ(sve_eorv_h, uint16_t, uint16_t, uint16_t, H1_2, 0, DO_EOR) +DO_VPZ(sve_eorv_s, uint32_t, uint32_t, uint32_t, H1_4, 0, DO_EOR) +DO_VPZ_D(sve_eorv_d, uint64_t, uint64_t, 0, DO_EOR) + +DO_VPZ(sve_andv_b, uint8_t, uint8_t, uint8_t, H1, -1, DO_AND) +DO_VPZ(sve_andv_h, uint16_t, uint16_t, uint16_t, H1_2, -1, DO_AND) +DO_VPZ(sve_andv_s, uint32_t, uint32_t, uint32_t, H1_4, -1, DO_AND) +DO_VPZ_D(sve_andv_d, uint64_t, uint64_t, -1, DO_AND) + +DO_VPZ(sve_saddv_b, int8_t, uint64_t, uint64_t, H1, 0, DO_ADD) +DO_VPZ(sve_saddv_h, int16_t, uint64_t, uint64_t, H1_2, 0, DO_ADD) +DO_VPZ(sve_saddv_s, int32_t, uint64_t, uint64_t, H1_4, 0, DO_ADD) + +DO_VPZ(sve_uaddv_b, uint8_t, uint64_t, uint64_t, H1, 0, DO_ADD) +DO_VPZ(sve_uaddv_h, uint16_t, uint64_t, uint64_t, H1_2, 0, DO_ADD) +DO_VPZ(sve_uaddv_s, uint32_t, uint64_t, uint64_t, H1_4, 0, DO_ADD) +DO_VPZ_D(sve_uaddv_d, uint64_t, uint64_t, 0, DO_ADD) + +DO_VPZ(sve_smaxv_b, int8_t, int8_t, uint8_t, H1, INT8_MIN, DO_MAX) +DO_VPZ(sve_smaxv_h, int16_t, int16_t, uint16_t, H1_2, INT16_MIN, DO_MAX) +DO_VPZ(sve_smaxv_s, int32_t, int32_t, uint32_t, H1_4, INT32_MIN, DO_MAX) +DO_VPZ_D(sve_smaxv_d, int64_t, int64_t, INT64_MIN, DO_MAX) + +DO_VPZ(sve_umaxv_b, uint8_t, uint8_t, uint8_t, H1, 0, DO_MAX) +DO_VPZ(sve_umaxv_h, uint16_t, uint16_t, uint16_t, H1_2, 0, DO_MAX) +DO_VPZ(sve_umaxv_s, uint32_t, uint32_t, uint32_t, H1_4, 0, DO_MAX) +DO_VPZ_D(sve_umaxv_d, uint64_t, uint64_t, 0, DO_MAX) + +DO_VPZ(sve_sminv_b, int8_t, int8_t, uint8_t, H1, INT8_MAX, DO_MIN) +DO_VPZ(sve_sminv_h, int16_t, int16_t, uint16_t, H1_2, INT16_MAX, DO_MIN) +DO_VPZ(sve_sminv_s, int32_t, int32_t, uint32_t, H1_4, INT32_MAX, DO_MIN) +DO_VPZ_D(sve_sminv_d, int64_t, int64_t, INT64_MAX, DO_MIN) + +DO_VPZ(sve_uminv_b, uint8_t, uint8_t, uint8_t, H1, -1, DO_MIN) +DO_VPZ(sve_uminv_h, uint16_t, uint16_t, uint16_t, H1_2, -1, DO_MIN) +DO_VPZ(sve_uminv_s, uint32_t, uint32_t, uint32_t, H1_4, -1, DO_MIN) +DO_VPZ_D(sve_uminv_d, uint64_t, uint64_t, -1, DO_MIN) + +#undef DO_VPZ +#undef DO_VPZ_D + +#undef DO_AND +#undef DO_ORR +#undef DO_EOR +#undef DO_BIC +#undef DO_ADD +#undef DO_SUB +#undef DO_MAX +#undef DO_MIN +#undef DO_ABD +#undef DO_MUL +#undef DO_DIV +#undef DO_ASR +#undef DO_LSR +#undef DO_LSL + +/* Similar to the ARM LastActiveElement pseudocode function, except the + result is multiplied by the element size. This includes the not found + indication; e.g. not found for esz=3 is -8. */ +static intptr_t last_active_element(uint64_t *g, intptr_t words, intptr_t esz) +{ + uint64_t mask = pred_esz_masks[esz]; + intptr_t i = words; + + do { + uint64_t this_g = g[--i] & mask; + if (this_g) { + return i * 64 + (63 - clz64(this_g)); + } + } while (i > 0); + return (intptr_t)-1 << esz; +} + +uint32_t HELPER(sve_pfirst)(void *vd, void *vg, uint32_t words) +{ + uint32_t flags = PREDTEST_INIT; + uint64_t *d = vd, *g = vg; + intptr_t i = 0; + + do { + uint64_t this_d = d[i]; + uint64_t this_g = g[i]; + + if (this_g) { + if (!(flags & 4)) { + /* Set in D the first bit of G. */ + this_d |= this_g & -this_g; + d[i] = this_d; + } + flags = iter_predtest_fwd(this_d, this_g, flags); + } + } while (++i < words); + + return flags; +} + +uint32_t HELPER(sve_pnext)(void *vd, void *vg, uint32_t pred_desc) +{ + intptr_t words = extract32(pred_desc, 0, SIMD_OPRSZ_BITS); + intptr_t esz = extract32(pred_desc, SIMD_DATA_SHIFT, 2); + uint32_t flags = PREDTEST_INIT; + uint64_t *d = vd, *g = vg, esz_mask; + intptr_t i, next; + + next = last_active_element(vd, words, esz) + (1 << esz); + esz_mask = pred_esz_masks[esz]; + + /* Similar to the pseudocode for pnext, but scaled by ESZ + so that we find the correct bit. */ + if (next < words * 64) { + uint64_t mask = -1; + + if (next & 63) { + mask = ~((1ull << (next & 63)) - 1); + next &= -64; + } + do { + uint64_t this_g = g[next / 64] & esz_mask & mask; + if (this_g != 0) { + next = (next & -64) + ctz64(this_g); + break; + } + next += 64; + mask = -1; + } while (next < words * 64); + } + + i = 0; + do { + uint64_t this_d = 0; + if (i == next / 64) { + this_d = 1ull << (next & 63); + } + d[i] = this_d; + flags = iter_predtest_fwd(this_d, g[i] & esz_mask, flags); + } while (++i < words); + + return flags; +} + +/* Store zero into every active element of Zd. We will use this for two + * and three-operand predicated instructions for which logic dictates a + * zero result. In particular, logical shift by element size, which is + * otherwise undefined on the host. + * + * For element sizes smaller than uint64_t, we use tables to expand + * the N bits of the controlling predicate to a byte mask, and clear + * those bytes. + */ +void HELPER(sve_clr_b)(void *vd, void *vg, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc) / 8; + uint64_t *d = vd; + uint8_t *pg = vg; + for (i = 0; i < opr_sz; i += 1) { + d[i] &= ~expand_pred_b(pg[H1(i)]); + } +} + +void HELPER(sve_clr_h)(void *vd, void *vg, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc) / 8; + uint64_t *d = vd; + uint8_t *pg = vg; + for (i = 0; i < opr_sz; i += 1) { + d[i] &= ~expand_pred_h(pg[H1(i)]); + } +} + +void HELPER(sve_clr_s)(void *vd, void *vg, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc) / 8; + uint64_t *d = vd; + uint8_t *pg = vg; + for (i = 0; i < opr_sz; i += 1) { + d[i] &= ~expand_pred_s(pg[H1(i)]); + } +} + +void HELPER(sve_clr_d)(void *vd, void *vg, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc) / 8; + uint64_t *d = vd; + uint8_t *pg = vg; + for (i = 0; i < opr_sz; i += 1) { + if (pg[H1(i)] & 1) { + d[i] = 0; + } + } +} + +/* Three-operand expander, immediate operand, controlled by a predicate. + */ +#define DO_ZPZI(NAME, TYPE, H, OP) \ +void HELPER(NAME)(void *vd, void *vn, void *vg, uint32_t desc) \ +{ \ + intptr_t i, opr_sz = simd_oprsz(desc); \ + TYPE imm = simd_data(desc); \ + for (i = 0; i < opr_sz; ) { \ + uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \ + do { \ + if (pg & 1) { \ + TYPE nn = *(TYPE *)(vn + H(i)); \ + *(TYPE *)(vd + H(i)) = OP(nn, imm); \ + } \ + i += sizeof(TYPE), pg >>= sizeof(TYPE); \ + } while (i & 15); \ + } \ +} + +/* Similarly, specialized for 64-bit operands. */ +#define DO_ZPZI_D(NAME, TYPE, OP) \ +void HELPER(NAME)(void *vd, void *vn, void *vg, uint32_t desc) \ +{ \ + intptr_t i, opr_sz = simd_oprsz(desc) / 8; \ + TYPE *d = vd, *n = vn; \ + TYPE imm = simd_data(desc); \ + uint8_t *pg = vg; \ + for (i = 0; i < opr_sz; i += 1) { \ + if (pg[H1(i)] & 1) { \ + TYPE nn = n[i]; \ + d[i] = OP(nn, imm); \ + } \ + } \ +} + +#define DO_SHR(N, M) (N >> M) +#define DO_SHL(N, M) (N << M) + +/* Arithmetic shift right for division. This rounds negative numbers + toward zero as per signed division. Therefore before shifting, + when N is negative, add 2**M-1. */ +#define DO_ASRD(N, M) ((N + (N < 0 ? ((__typeof(N))1 << M) - 1 : 0)) >> M) + +DO_ZPZI(sve_asr_zpzi_b, int8_t, H1, DO_SHR) +DO_ZPZI(sve_asr_zpzi_h, int16_t, H1_2, DO_SHR) +DO_ZPZI(sve_asr_zpzi_s, int32_t, H1_4, DO_SHR) +DO_ZPZI_D(sve_asr_zpzi_d, int64_t, DO_SHR) + +DO_ZPZI(sve_lsr_zpzi_b, uint8_t, H1, DO_SHR) +DO_ZPZI(sve_lsr_zpzi_h, uint16_t, H1_2, DO_SHR) +DO_ZPZI(sve_lsr_zpzi_s, uint32_t, H1_4, DO_SHR) +DO_ZPZI_D(sve_lsr_zpzi_d, uint64_t, DO_SHR) + +DO_ZPZI(sve_lsl_zpzi_b, uint8_t, H1, DO_SHL) +DO_ZPZI(sve_lsl_zpzi_h, uint16_t, H1_2, DO_SHL) +DO_ZPZI(sve_lsl_zpzi_s, uint32_t, H1_4, DO_SHL) +DO_ZPZI_D(sve_lsl_zpzi_d, uint64_t, DO_SHL) + +DO_ZPZI(sve_asrd_b, int8_t, H1, DO_ASRD) +DO_ZPZI(sve_asrd_h, int16_t, H1_2, DO_ASRD) +DO_ZPZI(sve_asrd_s, int32_t, H1_4, DO_ASRD) +DO_ZPZI_D(sve_asrd_d, int64_t, DO_ASRD) + +#undef DO_SHR +#undef DO_SHL +#undef DO_ASRD +#undef DO_ZPZI +#undef DO_ZPZI_D + +/* Fully general four-operand expander, controlled by a predicate. + */ +#define DO_ZPZZZ(NAME, TYPE, H, OP) \ +void HELPER(NAME)(void *vd, void *va, void *vn, void *vm, \ + void *vg, uint32_t desc) \ +{ \ + intptr_t i, opr_sz = simd_oprsz(desc); \ + for (i = 0; i < opr_sz; ) { \ + uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \ + do { \ + if (pg & 1) { \ + TYPE nn = *(TYPE *)(vn + H(i)); \ + TYPE mm = *(TYPE *)(vm + H(i)); \ + TYPE aa = *(TYPE *)(va + H(i)); \ + *(TYPE *)(vd + H(i)) = OP(aa, nn, mm); \ + } \ + i += sizeof(TYPE), pg >>= sizeof(TYPE); \ + } while (i & 15); \ + } \ +} + +/* Similarly, specialized for 64-bit operands. */ +#define DO_ZPZZZ_D(NAME, TYPE, OP) \ +void HELPER(NAME)(void *vd, void *va, void *vn, void *vm, \ + void *vg, uint32_t desc) \ +{ \ + intptr_t i, opr_sz = simd_oprsz(desc) / 8; \ + TYPE *d = vd, *a = va, *n = vn, *m = vm; \ + uint8_t *pg = vg; \ + for (i = 0; i < opr_sz; i += 1) { \ + if (pg[H1(i)] & 1) { \ + TYPE aa = a[i], nn = n[i], mm = m[i]; \ + d[i] = OP(aa, nn, mm); \ + } \ + } \ +} + +#define DO_MLA(A, N, M) (A + N * M) +#define DO_MLS(A, N, M) (A - N * M) + +DO_ZPZZZ(sve_mla_b, uint8_t, H1, DO_MLA) +DO_ZPZZZ(sve_mls_b, uint8_t, H1, DO_MLS) + +DO_ZPZZZ(sve_mla_h, uint16_t, H1_2, DO_MLA) +DO_ZPZZZ(sve_mls_h, uint16_t, H1_2, DO_MLS) + +DO_ZPZZZ(sve_mla_s, uint32_t, H1_4, DO_MLA) +DO_ZPZZZ(sve_mls_s, uint32_t, H1_4, DO_MLS) + +DO_ZPZZZ_D(sve_mla_d, uint64_t, DO_MLA) +DO_ZPZZZ_D(sve_mls_d, uint64_t, DO_MLS) + +#undef DO_MLA +#undef DO_MLS +#undef DO_ZPZZZ +#undef DO_ZPZZZ_D + +void HELPER(sve_index_b)(void *vd, uint32_t start, + uint32_t incr, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc); + uint8_t *d = vd; + for (i = 0; i < opr_sz; i += 1) { + d[H1(i)] = start + i * incr; + } +} + +void HELPER(sve_index_h)(void *vd, uint32_t start, + uint32_t incr, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc) / 2; + uint16_t *d = vd; + for (i = 0; i < opr_sz; i += 1) { + d[H2(i)] = start + i * incr; + } +} + +void HELPER(sve_index_s)(void *vd, uint32_t start, + uint32_t incr, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc) / 4; + uint32_t *d = vd; + for (i = 0; i < opr_sz; i += 1) { + d[H4(i)] = start + i * incr; + } +} + +void HELPER(sve_index_d)(void *vd, uint64_t start, + uint64_t incr, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc) / 8; + uint64_t *d = vd; + for (i = 0; i < opr_sz; i += 1) { + d[i] = start + i * incr; + } +} + +void HELPER(sve_adr_p32)(void *vd, void *vn, void *vm, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc) / 4; + uint32_t sh = simd_data(desc); + uint32_t *d = vd, *n = vn, *m = vm; + for (i = 0; i < opr_sz; i += 1) { + d[i] = n[i] + (m[i] << sh); + } +} + +void HELPER(sve_adr_p64)(void *vd, void *vn, void *vm, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc) / 8; + uint64_t sh = simd_data(desc); + uint64_t *d = vd, *n = vn, *m = vm; + for (i = 0; i < opr_sz; i += 1) { + d[i] = n[i] + (m[i] << sh); + } +} + +void HELPER(sve_adr_s32)(void *vd, void *vn, void *vm, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc) / 8; + uint64_t sh = simd_data(desc); + uint64_t *d = vd, *n = vn, *m = vm; + for (i = 0; i < opr_sz; i += 1) { + d[i] = n[i] + ((uint64_t)(int32_t)m[i] << sh); + } +} + +void HELPER(sve_adr_u32)(void *vd, void *vn, void *vm, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc) / 8; + uint64_t sh = simd_data(desc); + uint64_t *d = vd, *n = vn, *m = vm; + for (i = 0; i < opr_sz; i += 1) { + d[i] = n[i] + ((uint64_t)(uint32_t)m[i] << sh); + } +} + +void HELPER(sve_fexpa_h)(void *vd, void *vn, uint32_t desc) +{ + /* These constants are cut-and-paste directly from the ARM pseudocode. */ + static const uint16_t coeff[] = { + 0x0000, 0x0016, 0x002d, 0x0045, 0x005d, 0x0075, 0x008e, 0x00a8, + 0x00c2, 0x00dc, 0x00f8, 0x0114, 0x0130, 0x014d, 0x016b, 0x0189, + 0x01a8, 0x01c8, 0x01e8, 0x0209, 0x022b, 0x024e, 0x0271, 0x0295, + 0x02ba, 0x02e0, 0x0306, 0x032e, 0x0356, 0x037f, 0x03a9, 0x03d4, + }; + intptr_t i, opr_sz = simd_oprsz(desc) / 2; + uint16_t *d = vd, *n = vn; + + for (i = 0; i < opr_sz; i++) { + uint16_t nn = n[i]; + intptr_t idx = extract32(nn, 0, 5); + uint16_t exp = extract32(nn, 5, 5); + d[i] = coeff[idx] | (exp << 10); + } +} + +void HELPER(sve_fexpa_s)(void *vd, void *vn, uint32_t desc) +{ + /* These constants are cut-and-paste directly from the ARM pseudocode. */ + static const uint32_t coeff[] = { + 0x000000, 0x0164d2, 0x02cd87, 0x043a29, + 0x05aac3, 0x071f62, 0x08980f, 0x0a14d5, + 0x0b95c2, 0x0d1adf, 0x0ea43a, 0x1031dc, + 0x11c3d3, 0x135a2b, 0x14f4f0, 0x16942d, + 0x1837f0, 0x19e046, 0x1b8d3a, 0x1d3eda, + 0x1ef532, 0x20b051, 0x227043, 0x243516, + 0x25fed7, 0x27cd94, 0x29a15b, 0x2b7a3a, + 0x2d583f, 0x2f3b79, 0x3123f6, 0x3311c4, + 0x3504f3, 0x36fd92, 0x38fbaf, 0x3aff5b, + 0x3d08a4, 0x3f179a, 0x412c4d, 0x4346cd, + 0x45672a, 0x478d75, 0x49b9be, 0x4bec15, + 0x4e248c, 0x506334, 0x52a81e, 0x54f35b, + 0x5744fd, 0x599d16, 0x5bfbb8, 0x5e60f5, + 0x60ccdf, 0x633f89, 0x65b907, 0x68396a, + 0x6ac0c7, 0x6d4f30, 0x6fe4ba, 0x728177, + 0x75257d, 0x77d0df, 0x7a83b3, 0x7d3e0c, + }; + intptr_t i, opr_sz = simd_oprsz(desc) / 4; + uint32_t *d = vd, *n = vn; + + for (i = 0; i < opr_sz; i++) { + uint32_t nn = n[i]; + intptr_t idx = extract32(nn, 0, 6); + uint32_t exp = extract32(nn, 6, 8); + d[i] = coeff[idx] | (exp << 23); + } +} + +void HELPER(sve_fexpa_d)(void *vd, void *vn, uint32_t desc) +{ + /* These constants are cut-and-paste directly from the ARM pseudocode. */ + static const uint64_t coeff[] = { + 0x0000000000000ull, 0x02C9A3E778061ull, 0x059B0D3158574ull, + 0x0874518759BC8ull, 0x0B5586CF9890Full, 0x0E3EC32D3D1A2ull, + 0x11301D0125B51ull, 0x1429AAEA92DE0ull, 0x172B83C7D517Bull, + 0x1A35BEB6FCB75ull, 0x1D4873168B9AAull, 0x2063B88628CD6ull, + 0x2387A6E756238ull, 0x26B4565E27CDDull, 0x29E9DF51FDEE1ull, + 0x2D285A6E4030Bull, 0x306FE0A31B715ull, 0x33C08B26416FFull, + 0x371A7373AA9CBull, 0x3A7DB34E59FF7ull, 0x3DEA64C123422ull, + 0x4160A21F72E2Aull, 0x44E086061892Dull, 0x486A2B5C13CD0ull, + 0x4BFDAD5362A27ull, 0x4F9B2769D2CA7ull, 0x5342B569D4F82ull, + 0x56F4736B527DAull, 0x5AB07DD485429ull, 0x5E76F15AD2148ull, + 0x6247EB03A5585ull, 0x6623882552225ull, 0x6A09E667F3BCDull, + 0x6DFB23C651A2Full, 0x71F75E8EC5F74ull, 0x75FEB564267C9ull, + 0x7A11473EB0187ull, 0x7E2F336CF4E62ull, 0x82589994CCE13ull, + 0x868D99B4492EDull, 0x8ACE5422AA0DBull, 0x8F1AE99157736ull, + 0x93737B0CDC5E5ull, 0x97D829FDE4E50ull, 0x9C49182A3F090ull, + 0xA0C667B5DE565ull, 0xA5503B23E255Dull, 0xA9E6B5579FDBFull, + 0xAE89F995AD3ADull, 0xB33A2B84F15FBull, 0xB7F76F2FB5E47ull, + 0xBCC1E904BC1D2ull, 0xC199BDD85529Cull, 0xC67F12E57D14Bull, + 0xCB720DCEF9069ull, 0xD072D4A07897Cull, 0xD5818DCFBA487ull, + 0xDA9E603DB3285ull, 0xDFC97337B9B5Full, 0xE502EE78B3FF6ull, + 0xEA4AFA2A490DAull, 0xEFA1BEE615A27ull, 0xF50765B6E4540ull, + 0xFA7C1819E90D8ull, + }; + intptr_t i, opr_sz = simd_oprsz(desc) / 8; + uint64_t *d = vd, *n = vn; + + for (i = 0; i < opr_sz; i++) { + uint64_t nn = n[i]; + intptr_t idx = extract32(nn, 0, 6); + uint64_t exp = extract32(nn, 6, 11); + d[i] = coeff[idx] | (exp << 52); + } +} + +void HELPER(sve_ftssel_h)(void *vd, void *vn, void *vm, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc) / 2; + uint16_t *d = vd, *n = vn, *m = vm; + for (i = 0; i < opr_sz; i += 1) { + uint16_t nn = n[i]; + uint16_t mm = m[i]; + if (mm & 1) { + nn = float16_one; + } + d[i] = nn ^ (mm & 2) << 14; + } +} + +void HELPER(sve_ftssel_s)(void *vd, void *vn, void *vm, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc) / 4; + uint32_t *d = vd, *n = vn, *m = vm; + for (i = 0; i < opr_sz; i += 1) { + uint32_t nn = n[i]; + uint32_t mm = m[i]; + if (mm & 1) { + nn = float32_one; + } + d[i] = nn ^ (mm & 2) << 30; + } +} + +void HELPER(sve_ftssel_d)(void *vd, void *vn, void *vm, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc) / 8; + uint64_t *d = vd, *n = vn, *m = vm; + for (i = 0; i < opr_sz; i += 1) { + uint64_t nn = n[i]; + uint64_t mm = m[i]; + if (mm & 1) { + nn = float64_one; + } + d[i] = nn ^ (mm & 2) << 62; + } +} + +/* + * Signed saturating addition with scalar operand. + */ + +void HELPER(sve_sqaddi_b)(void *d, void *a, int32_t b, uint32_t desc) +{ + intptr_t i, oprsz = simd_oprsz(desc); + + for (i = 0; i < oprsz; i += sizeof(int8_t)) { + int r = *(int8_t *)(a + i) + b; + if (r > INT8_MAX) { + r = INT8_MAX; + } else if (r < INT8_MIN) { + r = INT8_MIN; + } + *(int8_t *)(d + i) = r; + } +} + +void HELPER(sve_sqaddi_h)(void *d, void *a, int32_t b, uint32_t desc) +{ + intptr_t i, oprsz = simd_oprsz(desc); + + for (i = 0; i < oprsz; i += sizeof(int16_t)) { + int r = *(int16_t *)(a + i) + b; + if (r > INT16_MAX) { + r = INT16_MAX; + } else if (r < INT16_MIN) { + r = INT16_MIN; + } + *(int16_t *)(d + i) = r; + } +} + +void HELPER(sve_sqaddi_s)(void *d, void *a, int64_t b, uint32_t desc) +{ + intptr_t i, oprsz = simd_oprsz(desc); + + for (i = 0; i < oprsz; i += sizeof(int32_t)) { + int64_t r = *(int32_t *)(a + i) + b; + if (r > INT32_MAX) { + r = INT32_MAX; + } else if (r < INT32_MIN) { + r = INT32_MIN; + } + *(int32_t *)(d + i) = r; + } +} + +void HELPER(sve_sqaddi_d)(void *d, void *a, int64_t b, uint32_t desc) +{ + intptr_t i, oprsz = simd_oprsz(desc); + + for (i = 0; i < oprsz; i += sizeof(int64_t)) { + int64_t ai = *(int64_t *)(a + i); + int64_t r = ai + b; + if (((r ^ ai) & ~(ai ^ b)) < 0) { + /* Signed overflow. */ + r = (r < 0 ? INT64_MAX : INT64_MIN); + } + *(int64_t *)(d + i) = r; + } +} + +/* + * Unsigned saturating addition with scalar operand. + */ + +void HELPER(sve_uqaddi_b)(void *d, void *a, int32_t b, uint32_t desc) +{ + intptr_t i, oprsz = simd_oprsz(desc); + + for (i = 0; i < oprsz; i += sizeof(uint8_t)) { + int r = *(uint8_t *)(a + i) + b; + if (r > UINT8_MAX) { + r = UINT8_MAX; + } else if (r < 0) { + r = 0; + } + *(uint8_t *)(d + i) = r; + } +} + +void HELPER(sve_uqaddi_h)(void *d, void *a, int32_t b, uint32_t desc) +{ + intptr_t i, oprsz = simd_oprsz(desc); + + for (i = 0; i < oprsz; i += sizeof(uint16_t)) { + int r = *(uint16_t *)(a + i) + b; + if (r > UINT16_MAX) { + r = UINT16_MAX; + } else if (r < 0) { + r = 0; + } + *(uint16_t *)(d + i) = r; + } +} + +void HELPER(sve_uqaddi_s)(void *d, void *a, int64_t b, uint32_t desc) +{ + intptr_t i, oprsz = simd_oprsz(desc); + + for (i = 0; i < oprsz; i += sizeof(uint32_t)) { + int64_t r = *(uint32_t *)(a + i) + b; + if (r > UINT32_MAX) { + r = UINT32_MAX; + } else if (r < 0) { + r = 0; + } + *(uint32_t *)(d + i) = r; + } +} + +void HELPER(sve_uqaddi_d)(void *d, void *a, uint64_t b, uint32_t desc) +{ + intptr_t i, oprsz = simd_oprsz(desc); + + for (i = 0; i < oprsz; i += sizeof(uint64_t)) { + uint64_t r = *(uint64_t *)(a + i) + b; + if (r < b) { + r = UINT64_MAX; + } + *(uint64_t *)(d + i) = r; + } +} + +void HELPER(sve_uqsubi_d)(void *d, void *a, uint64_t b, uint32_t desc) +{ + intptr_t i, oprsz = simd_oprsz(desc); + + for (i = 0; i < oprsz; i += sizeof(uint64_t)) { + uint64_t ai = *(uint64_t *)(a + i); + *(uint64_t *)(d + i) = (ai < b ? 0 : ai - b); + } +} + +/* Two operand predicated copy immediate with merge. All valid immediates + * can fit within 17 signed bits in the simd_data field. + */ +void HELPER(sve_cpy_m_b)(void *vd, void *vn, void *vg, + uint64_t mm, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc) / 8; + uint64_t *d = vd, *n = vn; + uint8_t *pg = vg; + + mm = dup_const(MO_8, mm); + for (i = 0; i < opr_sz; i += 1) { + uint64_t nn = n[i]; + uint64_t pp = expand_pred_b(pg[H1(i)]); + d[i] = (mm & pp) | (nn & ~pp); + } +} + +void HELPER(sve_cpy_m_h)(void *vd, void *vn, void *vg, + uint64_t mm, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc) / 8; + uint64_t *d = vd, *n = vn; + uint8_t *pg = vg; + + mm = dup_const(MO_16, mm); + for (i = 0; i < opr_sz; i += 1) { + uint64_t nn = n[i]; + uint64_t pp = expand_pred_h(pg[H1(i)]); + d[i] = (mm & pp) | (nn & ~pp); + } +} + +void HELPER(sve_cpy_m_s)(void *vd, void *vn, void *vg, + uint64_t mm, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc) / 8; + uint64_t *d = vd, *n = vn; + uint8_t *pg = vg; + + mm = dup_const(MO_32, mm); + for (i = 0; i < opr_sz; i += 1) { + uint64_t nn = n[i]; + uint64_t pp = expand_pred_s(pg[H1(i)]); + d[i] = (mm & pp) | (nn & ~pp); + } +} + +void HELPER(sve_cpy_m_d)(void *vd, void *vn, void *vg, + uint64_t mm, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc) / 8; + uint64_t *d = vd, *n = vn; + uint8_t *pg = vg; + + for (i = 0; i < opr_sz; i += 1) { + uint64_t nn = n[i]; + d[i] = (pg[H1(i)] & 1 ? mm : nn); + } +} + +void HELPER(sve_cpy_z_b)(void *vd, void *vg, uint64_t val, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc) / 8; + uint64_t *d = vd; + uint8_t *pg = vg; + + val = dup_const(MO_8, val); + for (i = 0; i < opr_sz; i += 1) { + d[i] = val & expand_pred_b(pg[H1(i)]); + } +} + +void HELPER(sve_cpy_z_h)(void *vd, void *vg, uint64_t val, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc) / 8; + uint64_t *d = vd; + uint8_t *pg = vg; + + val = dup_const(MO_16, val); + for (i = 0; i < opr_sz; i += 1) { + d[i] = val & expand_pred_h(pg[H1(i)]); + } +} + +void HELPER(sve_cpy_z_s)(void *vd, void *vg, uint64_t val, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc) / 8; + uint64_t *d = vd; + uint8_t *pg = vg; + + val = dup_const(MO_32, val); + for (i = 0; i < opr_sz; i += 1) { + d[i] = val & expand_pred_s(pg[H1(i)]); + } +} + +void HELPER(sve_cpy_z_d)(void *vd, void *vg, uint64_t val, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc) / 8; + uint64_t *d = vd; + uint8_t *pg = vg; + + for (i = 0; i < opr_sz; i += 1) { + d[i] = (pg[H1(i)] & 1 ? val : 0); + } +} + +/* Big-endian hosts need to frob the byte indicies. If the copy + * happens to be 8-byte aligned, then no frobbing necessary. + */ +static void swap_memmove(void *vd, void *vs, size_t n) +{ + uintptr_t d = (uintptr_t)vd; + uintptr_t s = (uintptr_t)vs; + uintptr_t o = (d | s | n) & 7; + size_t i; + +#ifndef HOST_WORDS_BIGENDIAN + o = 0; +#endif + switch (o) { + case 0: + memmove(vd, vs, n); + break; + + case 4: + if (d < s || d >= s + n) { + for (i = 0; i < n; i += 4) { + *(uint32_t *)H1_4(d + i) = *(uint32_t *)H1_4(s + i); + } + } else { + for (i = n; i > 0; ) { + i -= 4; + *(uint32_t *)H1_4(d + i) = *(uint32_t *)H1_4(s + i); + } + } + break; + + case 2: + case 6: + if (d < s || d >= s + n) { + for (i = 0; i < n; i += 2) { + *(uint16_t *)H1_2(d + i) = *(uint16_t *)H1_2(s + i); + } + } else { + for (i = n; i > 0; ) { + i -= 2; + *(uint16_t *)H1_2(d + i) = *(uint16_t *)H1_2(s + i); + } + } + break; + + default: + if (d < s || d >= s + n) { + for (i = 0; i < n; i++) { + *(uint8_t *)H1(d + i) = *(uint8_t *)H1(s + i); + } + } else { + for (i = n; i > 0; ) { + i -= 1; + *(uint8_t *)H1(d + i) = *(uint8_t *)H1(s + i); + } + } + break; + } +} + +void HELPER(sve_ext)(void *vd, void *vn, void *vm, uint32_t desc) +{ + intptr_t opr_sz = simd_oprsz(desc); + size_t n_ofs = simd_data(desc); + size_t n_siz = opr_sz - n_ofs; + + if (vd != vm) { + swap_memmove(vd, vn + n_ofs, n_siz); + swap_memmove(vd + n_siz, vm, n_ofs); + } else if (vd != vn) { + swap_memmove(vd + n_siz, vd, n_ofs); + swap_memmove(vd, vn + n_ofs, n_siz); + } else { + /* vd == vn == vm. Need temp space. */ + ARMVectorReg tmp; + swap_memmove(&tmp, vm, n_ofs); + swap_memmove(vd, vd + n_ofs, n_siz); + memcpy(vd + n_siz, &tmp, n_ofs); + } +} diff --git a/target/arm/translate-a64.c b/target/arm/translate-a64.c index d8284678..b32332c 100644 --- a/target/arm/translate-a64.c +++ b/target/arm/translate-a64.c @@ -36,13 +36,13 @@ #include "exec/log.h" #include "trace-tcg.h" +#include "translate-a64.h" static TCGv_i64 cpu_X[32]; static TCGv_i64 cpu_pc; /* Load/store exclusive handling */ static TCGv_i64 cpu_exclusive_high; -static TCGv_i64 cpu_reg(DisasContext *s, int reg); static const char *regnames[] = { "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", @@ -86,13 +86,6 @@ typedef void CryptoThreeOpIntFn(TCGv_ptr, TCGv_ptr, TCGv_i32); typedef void CryptoThreeOpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr); typedef void AtomicThreeOpFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGArg, TCGMemOp); -/* Note that the gvec expanders operate on offsets + sizes. */ -typedef void GVecGen2Fn(unsigned, uint32_t, uint32_t, uint32_t, uint32_t); -typedef void GVecGen2iFn(unsigned, uint32_t, uint32_t, int64_t, - uint32_t, uint32_t); -typedef void GVecGen3Fn(unsigned, uint32_t, uint32_t, - uint32_t, uint32_t, uint32_t); - /* initialize TCG globals. */ void a64_translate_init(void) { @@ -405,22 +398,13 @@ static inline void gen_goto_tb(DisasContext *s, int n, uint64_t dest) } } -static void unallocated_encoding(DisasContext *s) +void unallocated_encoding(DisasContext *s) { /* Unallocated and reserved encodings are uncategorized */ gen_exception_insn(s, 4, EXCP_UDEF, syn_uncategorized(), default_exception_el(s)); } -#define unsupported_encoding(s, insn) \ - do { \ - qemu_log_mask(LOG_UNIMP, \ - "%s:%d: unsupported instruction encoding 0x%08x " \ - "at pc=%016" PRIx64 "\n", \ - __FILE__, __LINE__, insn, s->pc - 4); \ - unallocated_encoding(s); \ - } while (0) - static void init_tmp_a64_array(DisasContext *s) { #ifdef CONFIG_DEBUG_TCG @@ -438,13 +422,13 @@ static void free_tmp_a64(DisasContext *s) init_tmp_a64_array(s); } -static TCGv_i64 new_tmp_a64(DisasContext *s) +TCGv_i64 new_tmp_a64(DisasContext *s) { assert(s->tmp_a64_count < TMP_A64_MAX); return s->tmp_a64[s->tmp_a64_count++] = tcg_temp_new_i64(); } -static TCGv_i64 new_tmp_a64_zero(DisasContext *s) +TCGv_i64 new_tmp_a64_zero(DisasContext *s) { TCGv_i64 t = new_tmp_a64(s); tcg_gen_movi_i64(t, 0); @@ -466,7 +450,7 @@ static TCGv_i64 new_tmp_a64_zero(DisasContext *s) * to cpu_X[31] and ZR accesses to a temporary which can be discarded. * This is the point of the _sp forms. */ -static TCGv_i64 cpu_reg(DisasContext *s, int reg) +TCGv_i64 cpu_reg(DisasContext *s, int reg) { if (reg == 31) { return new_tmp_a64_zero(s); @@ -476,7 +460,7 @@ static TCGv_i64 cpu_reg(DisasContext *s, int reg) } /* register access for when 31 == SP */ -static TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) +TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) { return cpu_X[reg]; } @@ -485,7 +469,7 @@ static TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) * representing the register contents. This TCGv is an auto-freed * temporary so it need not be explicitly freed, and may be modified. */ -static TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) +TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) { TCGv_i64 v = new_tmp_a64(s); if (reg != 31) { @@ -500,7 +484,7 @@ static TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) return v; } -static TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) +TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) { TCGv_i64 v = new_tmp_a64(s); if (sf) { @@ -511,72 +495,6 @@ static TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) return v; } -/* We should have at some point before trying to access an FP register - * done the necessary access check, so assert that - * (a) we did the check and - * (b) we didn't then just plough ahead anyway if it failed. - * Print the instruction pattern in the abort message so we can figure - * out what we need to fix if a user encounters this problem in the wild. - */ -static inline void assert_fp_access_checked(DisasContext *s) -{ -#ifdef CONFIG_DEBUG_TCG - if (unlikely(!s->fp_access_checked || s->fp_excp_el)) { - fprintf(stderr, "target-arm: FP access check missing for " - "instruction 0x%08x\n", s->insn); - abort(); - } -#endif -} - -/* Return the offset into CPUARMState of an element of specified - * size, 'element' places in from the least significant end of - * the FP/vector register Qn. - */ -static inline int vec_reg_offset(DisasContext *s, int regno, - int element, TCGMemOp size) -{ - int offs = 0; -#ifdef HOST_WORDS_BIGENDIAN - /* This is complicated slightly because vfp.zregs[n].d[0] is - * still the low half and vfp.zregs[n].d[1] the high half - * of the 128 bit vector, even on big endian systems. - * Calculate the offset assuming a fully bigendian 128 bits, - * then XOR to account for the order of the two 64 bit halves. - */ - offs += (16 - ((element + 1) * (1 << size))); - offs ^= 8; -#else - offs += element * (1 << size); -#endif - offs += offsetof(CPUARMState, vfp.zregs[regno]); - assert_fp_access_checked(s); - return offs; -} - -/* Return the offset info CPUARMState of the "whole" vector register Qn. */ -static inline int vec_full_reg_offset(DisasContext *s, int regno) -{ - assert_fp_access_checked(s); - return offsetof(CPUARMState, vfp.zregs[regno]); -} - -/* Return a newly allocated pointer to the vector register. */ -static TCGv_ptr vec_full_reg_ptr(DisasContext *s, int regno) -{ - TCGv_ptr ret = tcg_temp_new_ptr(); - tcg_gen_addi_ptr(ret, cpu_env, vec_full_reg_offset(s, regno)); - return ret; -} - -/* Return the byte size of the "whole" vector register, VL / 8. */ -static inline int vec_full_reg_size(DisasContext *s) -{ - /* FIXME SVE: We should put the composite ZCR_EL* value into tb->flags. - In the meantime this is just the AdvSIMD length of 128. */ - return 128 / 8; -} - /* Return the offset into CPUARMState of a slice (from * the least significant end) of FP register Qn (ie * Dn, Sn, Hn or Bn). @@ -641,7 +559,7 @@ static void clear_vec_high(DisasContext *s, bool is_q, int rd) } } -static void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) +void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) { unsigned ofs = fp_reg_offset(s, reg, MO_64); @@ -658,7 +576,7 @@ static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) tcg_temp_free_i64(tmp); } -static TCGv_ptr get_fpstatus_ptr(bool is_f16) +TCGv_ptr get_fpstatus_ptr(bool is_f16) { TCGv_ptr statusptr = tcg_temp_new_ptr(); int offset; @@ -1246,14 +1164,14 @@ static inline bool fp_access_check(DisasContext *s) /* Check that SVE access is enabled. If it is, return true. * If not, emit code to generate an appropriate exception and return false. */ -static inline bool sve_access_check(DisasContext *s) +bool sve_access_check(DisasContext *s) { if (s->sve_excp_el) { gen_exception_insn(s, 4, EXCP_UDEF, syn_sve_access_trap(), s->sve_excp_el); return false; } - return true; + return fp_access_check(s); } /* @@ -3419,8 +3337,8 @@ static inline uint64_t bitmask64(unsigned int length) * value (ie should cause a guest UNDEF exception), and true if they are * valid, in which case the decoded bit pattern is written to result. */ -static bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, - unsigned int imms, unsigned int immr) +bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, + unsigned int imms, unsigned int immr) { uint64_t mask; unsigned e, levels, s, r; @@ -5650,7 +5568,7 @@ static void disas_fp_3src(DisasContext *s, uint32_t insn) * the range 01....1xx to 10....0xx, and the most significant 4 bits of * the mantissa; see VFPExpandImm() in the v8 ARM ARM. */ -static uint64_t vfp_expand_imm(int size, uint8_t imm8) +uint64_t vfp_expand_imm(int size, uint8_t imm8) { uint64_t imm; @@ -13758,9 +13676,14 @@ static void disas_a64_insn(CPUARMState *env, DisasContext *s) s->fp_access_checked = false; switch (extract32(insn, 25, 4)) { - case 0x0: case 0x1: case 0x2: case 0x3: /* UNALLOCATED */ + case 0x0: case 0x1: case 0x3: /* UNALLOCATED */ unallocated_encoding(s); break; + case 0x2: + if (!arm_dc_feature(s, ARM_FEATURE_SVE) || !disas_sve(s, insn)) { + unallocated_encoding(s); + } + break; case 0x8: case 0x9: /* Data processing - immediate */ disas_data_proc_imm(s, insn); break; diff --git a/target/arm/translate-a64.h b/target/arm/translate-a64.h new file mode 100644 index 0000000..dd9c09f --- /dev/null +++ b/target/arm/translate-a64.h @@ -0,0 +1,118 @@ +/* + * AArch64 translation, common definitions. + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, see <http://www.gnu.org/licenses/>. + */ + +#ifndef TARGET_ARM_TRANSLATE_A64_H +#define TARGET_ARM_TRANSLATE_A64_H + +void unallocated_encoding(DisasContext *s); + +#define unsupported_encoding(s, insn) \ + do { \ + qemu_log_mask(LOG_UNIMP, \ + "%s:%d: unsupported instruction encoding 0x%08x " \ + "at pc=%016" PRIx64 "\n", \ + __FILE__, __LINE__, insn, s->pc - 4); \ + unallocated_encoding(s); \ + } while (0) + +TCGv_i64 new_tmp_a64(DisasContext *s); +TCGv_i64 new_tmp_a64_zero(DisasContext *s); +TCGv_i64 cpu_reg(DisasContext *s, int reg); +TCGv_i64 cpu_reg_sp(DisasContext *s, int reg); +TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf); +TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf); +void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v); +TCGv_ptr get_fpstatus_ptr(bool); +bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, + unsigned int imms, unsigned int immr); +uint64_t vfp_expand_imm(int size, uint8_t imm8); +bool sve_access_check(DisasContext *s); + +/* We should have at some point before trying to access an FP register + * done the necessary access check, so assert that + * (a) we did the check and + * (b) we didn't then just plough ahead anyway if it failed. + * Print the instruction pattern in the abort message so we can figure + * out what we need to fix if a user encounters this problem in the wild. + */ +static inline void assert_fp_access_checked(DisasContext *s) +{ +#ifdef CONFIG_DEBUG_TCG + if (unlikely(!s->fp_access_checked || s->fp_excp_el)) { + fprintf(stderr, "target-arm: FP access check missing for " + "instruction 0x%08x\n", s->insn); + abort(); + } +#endif +} + +/* Return the offset into CPUARMState of an element of specified + * size, 'element' places in from the least significant end of + * the FP/vector register Qn. + */ +static inline int vec_reg_offset(DisasContext *s, int regno, + int element, TCGMemOp size) +{ + int offs = 0; +#ifdef HOST_WORDS_BIGENDIAN + /* This is complicated slightly because vfp.zregs[n].d[0] is + * still the low half and vfp.zregs[n].d[1] the high half + * of the 128 bit vector, even on big endian systems. + * Calculate the offset assuming a fully bigendian 128 bits, + * then XOR to account for the order of the two 64 bit halves. + */ + offs += (16 - ((element + 1) * (1 << size))); + offs ^= 8; +#else + offs += element * (1 << size); +#endif + offs += offsetof(CPUARMState, vfp.zregs[regno]); + assert_fp_access_checked(s); + return offs; +} + +/* Return the offset info CPUARMState of the "whole" vector register Qn. */ +static inline int vec_full_reg_offset(DisasContext *s, int regno) +{ + assert_fp_access_checked(s); + return offsetof(CPUARMState, vfp.zregs[regno]); +} + +/* Return a newly allocated pointer to the vector register. */ +static inline TCGv_ptr vec_full_reg_ptr(DisasContext *s, int regno) +{ + TCGv_ptr ret = tcg_temp_new_ptr(); + tcg_gen_addi_ptr(ret, cpu_env, vec_full_reg_offset(s, regno)); + return ret; +} + +/* Return the byte size of the "whole" vector register, VL / 8. */ +static inline int vec_full_reg_size(DisasContext *s) +{ + return s->sve_len; +} + +bool disas_sve(DisasContext *, uint32_t); + +/* Note that the gvec expanders operate on offsets + sizes. */ +typedef void GVecGen2Fn(unsigned, uint32_t, uint32_t, uint32_t, uint32_t); +typedef void GVecGen2iFn(unsigned, uint32_t, uint32_t, int64_t, + uint32_t, uint32_t); +typedef void GVecGen3Fn(unsigned, uint32_t, uint32_t, + uint32_t, uint32_t, uint32_t); + +#endif /* TARGET_ARM_TRANSLATE_A64_H */ diff --git a/target/arm/translate-sve.c b/target/arm/translate-sve.c new file mode 100644 index 0000000..c48d4b5 --- /dev/null +++ b/target/arm/translate-sve.c @@ -0,0 +1,2070 @@ +/* + * AArch64 SVE translation + * + * Copyright (c) 2018 Linaro, Ltd + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, see <http://www.gnu.org/licenses/>. + */ + +#include "qemu/osdep.h" +#include "cpu.h" +#include "exec/exec-all.h" +#include "tcg-op.h" +#include "tcg-op-gvec.h" +#include "tcg-gvec-desc.h" +#include "qemu/log.h" +#include "arm_ldst.h" +#include "translate.h" +#include "internals.h" +#include "exec/helper-proto.h" +#include "exec/helper-gen.h" +#include "exec/log.h" +#include "trace-tcg.h" +#include "translate-a64.h" + +/* + * Helpers for extracting complex instruction fields. + */ + +/* See e.g. ASR (immediate, predicated). + * Returns -1 for unallocated encoding; diagnose later. + */ +static int tszimm_esz(int x) +{ + x >>= 3; /* discard imm3 */ + return 31 - clz32(x); +} + +static int tszimm_shr(int x) +{ + return (16 << tszimm_esz(x)) - x; +} + +/* See e.g. LSL (immediate, predicated). */ +static int tszimm_shl(int x) +{ + return x - (8 << tszimm_esz(x)); +} + +static inline int plus1(int x) +{ + return x + 1; +} + +/* The SH bit is in bit 8. Extract the low 8 and shift. */ +static inline int expand_imm_sh8s(int x) +{ + return (int8_t)x << (x & 0x100 ? 8 : 0); +} + +/* + * Include the generated decoder. + */ + +#include "decode-sve.inc.c" + +/* + * Implement all of the translator functions referenced by the decoder. + */ + +/* Return the offset info CPUARMState of the predicate vector register Pn. + * Note for this purpose, FFR is P16. + */ +static inline int pred_full_reg_offset(DisasContext *s, int regno) +{ + return offsetof(CPUARMState, vfp.pregs[regno]); +} + +/* Return the byte size of the whole predicate register, VL / 64. */ +static inline int pred_full_reg_size(DisasContext *s) +{ + return s->sve_len >> 3; +} + +/* Round up the size of a register to a size allowed by + * the tcg vector infrastructure. Any operation which uses this + * size may assume that the bits above pred_full_reg_size are zero, + * and must leave them the same way. + * + * Note that this is not needed for the vector registers as they + * are always properly sized for tcg vectors. + */ +static int size_for_gvec(int size) +{ + if (size <= 8) { + return 8; + } else { + return QEMU_ALIGN_UP(size, 16); + } +} + +static int pred_gvec_reg_size(DisasContext *s) +{ + return size_for_gvec(pred_full_reg_size(s)); +} + +/* Invoke a vector expander on two Zregs. */ +static bool do_vector2_z(DisasContext *s, GVecGen2Fn *gvec_fn, + int esz, int rd, int rn) +{ + if (sve_access_check(s)) { + unsigned vsz = vec_full_reg_size(s); + gvec_fn(esz, vec_full_reg_offset(s, rd), + vec_full_reg_offset(s, rn), vsz, vsz); + } + return true; +} + +/* Invoke a vector expander on three Zregs. */ +static bool do_vector3_z(DisasContext *s, GVecGen3Fn *gvec_fn, + int esz, int rd, int rn, int rm) +{ + if (sve_access_check(s)) { + unsigned vsz = vec_full_reg_size(s); + gvec_fn(esz, vec_full_reg_offset(s, rd), + vec_full_reg_offset(s, rn), + vec_full_reg_offset(s, rm), vsz, vsz); + } + return true; +} + +/* Invoke a vector move on two Zregs. */ +static bool do_mov_z(DisasContext *s, int rd, int rn) +{ + return do_vector2_z(s, tcg_gen_gvec_mov, 0, rd, rn); +} + +/* Initialize a Zreg with replications of a 64-bit immediate. */ +static void do_dupi_z(DisasContext *s, int rd, uint64_t word) +{ + unsigned vsz = vec_full_reg_size(s); + tcg_gen_gvec_dup64i(vec_full_reg_offset(s, rd), vsz, vsz, word); +} + +/* Invoke a vector expander on two Pregs. */ +static bool do_vector2_p(DisasContext *s, GVecGen2Fn *gvec_fn, + int esz, int rd, int rn) +{ + if (sve_access_check(s)) { + unsigned psz = pred_gvec_reg_size(s); + gvec_fn(esz, pred_full_reg_offset(s, rd), + pred_full_reg_offset(s, rn), psz, psz); + } + return true; +} + +/* Invoke a vector expander on three Pregs. */ +static bool do_vector3_p(DisasContext *s, GVecGen3Fn *gvec_fn, + int esz, int rd, int rn, int rm) +{ + if (sve_access_check(s)) { + unsigned psz = pred_gvec_reg_size(s); + gvec_fn(esz, pred_full_reg_offset(s, rd), + pred_full_reg_offset(s, rn), + pred_full_reg_offset(s, rm), psz, psz); + } + return true; +} + +/* Invoke a vector operation on four Pregs. */ +static bool do_vecop4_p(DisasContext *s, const GVecGen4 *gvec_op, + int rd, int rn, int rm, int rg) +{ + if (sve_access_check(s)) { + unsigned psz = pred_gvec_reg_size(s); + tcg_gen_gvec_4(pred_full_reg_offset(s, rd), + pred_full_reg_offset(s, rn), + pred_full_reg_offset(s, rm), + pred_full_reg_offset(s, rg), + psz, psz, gvec_op); + } + return true; +} + +/* Invoke a vector move on two Pregs. */ +static bool do_mov_p(DisasContext *s, int rd, int rn) +{ + return do_vector2_p(s, tcg_gen_gvec_mov, 0, rd, rn); +} + +/* Set the cpu flags as per a return from an SVE helper. */ +static void do_pred_flags(TCGv_i32 t) +{ + tcg_gen_mov_i32(cpu_NF, t); + tcg_gen_andi_i32(cpu_ZF, t, 2); + tcg_gen_andi_i32(cpu_CF, t, 1); + tcg_gen_movi_i32(cpu_VF, 0); +} + +/* Subroutines computing the ARM PredTest psuedofunction. */ +static void do_predtest1(TCGv_i64 d, TCGv_i64 g) +{ + TCGv_i32 t = tcg_temp_new_i32(); + + gen_helper_sve_predtest1(t, d, g); + do_pred_flags(t); + tcg_temp_free_i32(t); +} + +static void do_predtest(DisasContext *s, int dofs, int gofs, int words) +{ + TCGv_ptr dptr = tcg_temp_new_ptr(); + TCGv_ptr gptr = tcg_temp_new_ptr(); + TCGv_i32 t; + + tcg_gen_addi_ptr(dptr, cpu_env, dofs); + tcg_gen_addi_ptr(gptr, cpu_env, gofs); + t = tcg_const_i32(words); + + gen_helper_sve_predtest(t, dptr, gptr, t); + tcg_temp_free_ptr(dptr); + tcg_temp_free_ptr(gptr); + + do_pred_flags(t); + tcg_temp_free_i32(t); +} + +/* For each element size, the bits within a predicate word that are active. */ +const uint64_t pred_esz_masks[4] = { + 0xffffffffffffffffull, 0x5555555555555555ull, + 0x1111111111111111ull, 0x0101010101010101ull +}; + +/* + *** SVE Logical - Unpredicated Group + */ + +static bool trans_AND_zzz(DisasContext *s, arg_rrr_esz *a, uint32_t insn) +{ + return do_vector3_z(s, tcg_gen_gvec_and, 0, a->rd, a->rn, a->rm); +} + +static bool trans_ORR_zzz(DisasContext *s, arg_rrr_esz *a, uint32_t insn) +{ + if (a->rn == a->rm) { /* MOV */ + return do_mov_z(s, a->rd, a->rn); + } else { + return do_vector3_z(s, tcg_gen_gvec_or, 0, a->rd, a->rn, a->rm); + } +} + +static bool trans_EOR_zzz(DisasContext *s, arg_rrr_esz *a, uint32_t insn) +{ + return do_vector3_z(s, tcg_gen_gvec_xor, 0, a->rd, a->rn, a->rm); +} + +static bool trans_BIC_zzz(DisasContext *s, arg_rrr_esz *a, uint32_t insn) +{ + return do_vector3_z(s, tcg_gen_gvec_andc, 0, a->rd, a->rn, a->rm); +} + +/* + *** SVE Integer Arithmetic - Unpredicated Group + */ + +static bool trans_ADD_zzz(DisasContext *s, arg_rrr_esz *a, uint32_t insn) +{ + return do_vector3_z(s, tcg_gen_gvec_add, a->esz, a->rd, a->rn, a->rm); +} + +static bool trans_SUB_zzz(DisasContext *s, arg_rrr_esz *a, uint32_t insn) +{ + return do_vector3_z(s, tcg_gen_gvec_sub, a->esz, a->rd, a->rn, a->rm); +} + +static bool trans_SQADD_zzz(DisasContext *s, arg_rrr_esz *a, uint32_t insn) +{ + return do_vector3_z(s, tcg_gen_gvec_ssadd, a->esz, a->rd, a->rn, a->rm); +} + +static bool trans_SQSUB_zzz(DisasContext *s, arg_rrr_esz *a, uint32_t insn) +{ + return do_vector3_z(s, tcg_gen_gvec_sssub, a->esz, a->rd, a->rn, a->rm); +} + +static bool trans_UQADD_zzz(DisasContext *s, arg_rrr_esz *a, uint32_t insn) +{ + return do_vector3_z(s, tcg_gen_gvec_usadd, a->esz, a->rd, a->rn, a->rm); +} + +static bool trans_UQSUB_zzz(DisasContext *s, arg_rrr_esz *a, uint32_t insn) +{ + return do_vector3_z(s, tcg_gen_gvec_ussub, a->esz, a->rd, a->rn, a->rm); +} + +/* + *** SVE Integer Arithmetic - Binary Predicated Group + */ + +static bool do_zpzz_ool(DisasContext *s, arg_rprr_esz *a, gen_helper_gvec_4 *fn) +{ + unsigned vsz = vec_full_reg_size(s); + if (fn == NULL) { + return false; + } + if (sve_access_check(s)) { + tcg_gen_gvec_4_ool(vec_full_reg_offset(s, a->rd), + vec_full_reg_offset(s, a->rn), + vec_full_reg_offset(s, a->rm), + pred_full_reg_offset(s, a->pg), + vsz, vsz, 0, fn); + } + return true; +} + +#define DO_ZPZZ(NAME, name) \ +static bool trans_##NAME##_zpzz(DisasContext *s, arg_rprr_esz *a, \ + uint32_t insn) \ +{ \ + static gen_helper_gvec_4 * const fns[4] = { \ + gen_helper_sve_##name##_zpzz_b, gen_helper_sve_##name##_zpzz_h, \ + gen_helper_sve_##name##_zpzz_s, gen_helper_sve_##name##_zpzz_d, \ + }; \ + return do_zpzz_ool(s, a, fns[a->esz]); \ +} + +DO_ZPZZ(AND, and) +DO_ZPZZ(EOR, eor) +DO_ZPZZ(ORR, orr) +DO_ZPZZ(BIC, bic) + +DO_ZPZZ(ADD, add) +DO_ZPZZ(SUB, sub) + +DO_ZPZZ(SMAX, smax) +DO_ZPZZ(UMAX, umax) +DO_ZPZZ(SMIN, smin) +DO_ZPZZ(UMIN, umin) +DO_ZPZZ(SABD, sabd) +DO_ZPZZ(UABD, uabd) + +DO_ZPZZ(MUL, mul) +DO_ZPZZ(SMULH, smulh) +DO_ZPZZ(UMULH, umulh) + +DO_ZPZZ(ASR, asr) +DO_ZPZZ(LSR, lsr) +DO_ZPZZ(LSL, lsl) + +static bool trans_SDIV_zpzz(DisasContext *s, arg_rprr_esz *a, uint32_t insn) +{ + static gen_helper_gvec_4 * const fns[4] = { + NULL, NULL, gen_helper_sve_sdiv_zpzz_s, gen_helper_sve_sdiv_zpzz_d + }; + return do_zpzz_ool(s, a, fns[a->esz]); +} + +static bool trans_UDIV_zpzz(DisasContext *s, arg_rprr_esz *a, uint32_t insn) +{ + static gen_helper_gvec_4 * const fns[4] = { + NULL, NULL, gen_helper_sve_udiv_zpzz_s, gen_helper_sve_udiv_zpzz_d + }; + return do_zpzz_ool(s, a, fns[a->esz]); +} + +#undef DO_ZPZZ + +/* + *** SVE Integer Arithmetic - Unary Predicated Group + */ + +static bool do_zpz_ool(DisasContext *s, arg_rpr_esz *a, gen_helper_gvec_3 *fn) +{ + if (fn == NULL) { + return false; + } + if (sve_access_check(s)) { + unsigned vsz = vec_full_reg_size(s); + tcg_gen_gvec_3_ool(vec_full_reg_offset(s, a->rd), + vec_full_reg_offset(s, a->rn), + pred_full_reg_offset(s, a->pg), + vsz, vsz, 0, fn); + } + return true; +} + +#define DO_ZPZ(NAME, name) \ +static bool trans_##NAME(DisasContext *s, arg_rpr_esz *a, uint32_t insn) \ +{ \ + static gen_helper_gvec_3 * const fns[4] = { \ + gen_helper_sve_##name##_b, gen_helper_sve_##name##_h, \ + gen_helper_sve_##name##_s, gen_helper_sve_##name##_d, \ + }; \ + return do_zpz_ool(s, a, fns[a->esz]); \ +} + +DO_ZPZ(CLS, cls) +DO_ZPZ(CLZ, clz) +DO_ZPZ(CNT_zpz, cnt_zpz) +DO_ZPZ(CNOT, cnot) +DO_ZPZ(NOT_zpz, not_zpz) +DO_ZPZ(ABS, abs) +DO_ZPZ(NEG, neg) + +static bool trans_FABS(DisasContext *s, arg_rpr_esz *a, uint32_t insn) +{ + static gen_helper_gvec_3 * const fns[4] = { + NULL, + gen_helper_sve_fabs_h, + gen_helper_sve_fabs_s, + gen_helper_sve_fabs_d + }; + return do_zpz_ool(s, a, fns[a->esz]); +} + +static bool trans_FNEG(DisasContext *s, arg_rpr_esz *a, uint32_t insn) +{ + static gen_helper_gvec_3 * const fns[4] = { + NULL, + gen_helper_sve_fneg_h, + gen_helper_sve_fneg_s, + gen_helper_sve_fneg_d + }; + return do_zpz_ool(s, a, fns[a->esz]); +} + +static bool trans_SXTB(DisasContext *s, arg_rpr_esz *a, uint32_t insn) +{ + static gen_helper_gvec_3 * const fns[4] = { + NULL, + gen_helper_sve_sxtb_h, + gen_helper_sve_sxtb_s, + gen_helper_sve_sxtb_d + }; + return do_zpz_ool(s, a, fns[a->esz]); +} + +static bool trans_UXTB(DisasContext *s, arg_rpr_esz *a, uint32_t insn) +{ + static gen_helper_gvec_3 * const fns[4] = { + NULL, + gen_helper_sve_uxtb_h, + gen_helper_sve_uxtb_s, + gen_helper_sve_uxtb_d + }; + return do_zpz_ool(s, a, fns[a->esz]); +} + +static bool trans_SXTH(DisasContext *s, arg_rpr_esz *a, uint32_t insn) +{ + static gen_helper_gvec_3 * const fns[4] = { + NULL, NULL, + gen_helper_sve_sxth_s, + gen_helper_sve_sxth_d + }; + return do_zpz_ool(s, a, fns[a->esz]); +} + +static bool trans_UXTH(DisasContext *s, arg_rpr_esz *a, uint32_t insn) +{ + static gen_helper_gvec_3 * const fns[4] = { + NULL, NULL, + gen_helper_sve_uxth_s, + gen_helper_sve_uxth_d + }; + return do_zpz_ool(s, a, fns[a->esz]); +} + +static bool trans_SXTW(DisasContext *s, arg_rpr_esz *a, uint32_t insn) +{ + return do_zpz_ool(s, a, a->esz == 3 ? gen_helper_sve_sxtw_d : NULL); +} + +static bool trans_UXTW(DisasContext *s, arg_rpr_esz *a, uint32_t insn) +{ + return do_zpz_ool(s, a, a->esz == 3 ? gen_helper_sve_uxtw_d : NULL); +} + +#undef DO_ZPZ + +/* + *** SVE Integer Reduction Group + */ + +typedef void gen_helper_gvec_reduc(TCGv_i64, TCGv_ptr, TCGv_ptr, TCGv_i32); +static bool do_vpz_ool(DisasContext *s, arg_rpr_esz *a, + gen_helper_gvec_reduc *fn) +{ + unsigned vsz = vec_full_reg_size(s); + TCGv_ptr t_zn, t_pg; + TCGv_i32 desc; + TCGv_i64 temp; + + if (fn == NULL) { + return false; + } + if (!sve_access_check(s)) { + return true; + } + + desc = tcg_const_i32(simd_desc(vsz, vsz, 0)); + temp = tcg_temp_new_i64(); + t_zn = tcg_temp_new_ptr(); + t_pg = tcg_temp_new_ptr(); + + tcg_gen_addi_ptr(t_zn, cpu_env, vec_full_reg_offset(s, a->rn)); + tcg_gen_addi_ptr(t_pg, cpu_env, pred_full_reg_offset(s, a->pg)); + fn(temp, t_zn, t_pg, desc); + tcg_temp_free_ptr(t_zn); + tcg_temp_free_ptr(t_pg); + tcg_temp_free_i32(desc); + + write_fp_dreg(s, a->rd, temp); + tcg_temp_free_i64(temp); + return true; +} + +#define DO_VPZ(NAME, name) \ +static bool trans_##NAME(DisasContext *s, arg_rpr_esz *a, uint32_t insn) \ +{ \ + static gen_helper_gvec_reduc * const fns[4] = { \ + gen_helper_sve_##name##_b, gen_helper_sve_##name##_h, \ + gen_helper_sve_##name##_s, gen_helper_sve_##name##_d, \ + }; \ + return do_vpz_ool(s, a, fns[a->esz]); \ +} + +DO_VPZ(ORV, orv) +DO_VPZ(ANDV, andv) +DO_VPZ(EORV, eorv) + +DO_VPZ(UADDV, uaddv) +DO_VPZ(SMAXV, smaxv) +DO_VPZ(UMAXV, umaxv) +DO_VPZ(SMINV, sminv) +DO_VPZ(UMINV, uminv) + +static bool trans_SADDV(DisasContext *s, arg_rpr_esz *a, uint32_t insn) +{ + static gen_helper_gvec_reduc * const fns[4] = { + gen_helper_sve_saddv_b, gen_helper_sve_saddv_h, + gen_helper_sve_saddv_s, NULL + }; + return do_vpz_ool(s, a, fns[a->esz]); +} + +#undef DO_VPZ + +/* + *** SVE Shift by Immediate - Predicated Group + */ + +/* Store zero into every active element of Zd. We will use this for two + * and three-operand predicated instructions for which logic dictates a + * zero result. + */ +static bool do_clr_zp(DisasContext *s, int rd, int pg, int esz) +{ + static gen_helper_gvec_2 * const fns[4] = { + gen_helper_sve_clr_b, gen_helper_sve_clr_h, + gen_helper_sve_clr_s, gen_helper_sve_clr_d, + }; + if (sve_access_check(s)) { + unsigned vsz = vec_full_reg_size(s); + tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd), + pred_full_reg_offset(s, pg), + vsz, vsz, 0, fns[esz]); + } + return true; +} + +static bool do_zpzi_ool(DisasContext *s, arg_rpri_esz *a, + gen_helper_gvec_3 *fn) +{ + if (sve_access_check(s)) { + unsigned vsz = vec_full_reg_size(s); + tcg_gen_gvec_3_ool(vec_full_reg_offset(s, a->rd), + vec_full_reg_offset(s, a->rn), + pred_full_reg_offset(s, a->pg), + vsz, vsz, a->imm, fn); + } + return true; +} + +static bool trans_ASR_zpzi(DisasContext *s, arg_rpri_esz *a, uint32_t insn) +{ + static gen_helper_gvec_3 * const fns[4] = { + gen_helper_sve_asr_zpzi_b, gen_helper_sve_asr_zpzi_h, + gen_helper_sve_asr_zpzi_s, gen_helper_sve_asr_zpzi_d, + }; + if (a->esz < 0) { + /* Invalid tsz encoding -- see tszimm_esz. */ + return false; + } + /* Shift by element size is architecturally valid. For + arithmetic right-shift, it's the same as by one less. */ + a->imm = MIN(a->imm, (8 << a->esz) - 1); + return do_zpzi_ool(s, a, fns[a->esz]); +} + +static bool trans_LSR_zpzi(DisasContext *s, arg_rpri_esz *a, uint32_t insn) +{ + static gen_helper_gvec_3 * const fns[4] = { + gen_helper_sve_lsr_zpzi_b, gen_helper_sve_lsr_zpzi_h, + gen_helper_sve_lsr_zpzi_s, gen_helper_sve_lsr_zpzi_d, + }; + if (a->esz < 0) { + return false; + } + /* Shift by element size is architecturally valid. + For logical shifts, it is a zeroing operation. */ + if (a->imm >= (8 << a->esz)) { + return do_clr_zp(s, a->rd, a->pg, a->esz); + } else { + return do_zpzi_ool(s, a, fns[a->esz]); + } +} + +static bool trans_LSL_zpzi(DisasContext *s, arg_rpri_esz *a, uint32_t insn) +{ + static gen_helper_gvec_3 * const fns[4] = { + gen_helper_sve_lsl_zpzi_b, gen_helper_sve_lsl_zpzi_h, + gen_helper_sve_lsl_zpzi_s, gen_helper_sve_lsl_zpzi_d, + }; + if (a->esz < 0) { + return false; + } + /* Shift by element size is architecturally valid. + For logical shifts, it is a zeroing operation. */ + if (a->imm >= (8 << a->esz)) { + return do_clr_zp(s, a->rd, a->pg, a->esz); + } else { + return do_zpzi_ool(s, a, fns[a->esz]); + } +} + +static bool trans_ASRD(DisasContext *s, arg_rpri_esz *a, uint32_t insn) +{ + static gen_helper_gvec_3 * const fns[4] = { + gen_helper_sve_asrd_b, gen_helper_sve_asrd_h, + gen_helper_sve_asrd_s, gen_helper_sve_asrd_d, + }; + if (a->esz < 0) { + return false; + } + /* Shift by element size is architecturally valid. For arithmetic + right shift for division, it is a zeroing operation. */ + if (a->imm >= (8 << a->esz)) { + return do_clr_zp(s, a->rd, a->pg, a->esz); + } else { + return do_zpzi_ool(s, a, fns[a->esz]); + } +} + +/* + *** SVE Bitwise Shift - Predicated Group + */ + +#define DO_ZPZW(NAME, name) \ +static bool trans_##NAME##_zpzw(DisasContext *s, arg_rprr_esz *a, \ + uint32_t insn) \ +{ \ + static gen_helper_gvec_4 * const fns[3] = { \ + gen_helper_sve_##name##_zpzw_b, gen_helper_sve_##name##_zpzw_h, \ + gen_helper_sve_##name##_zpzw_s, \ + }; \ + if (a->esz < 0 || a->esz >= 3) { \ + return false; \ + } \ + return do_zpzz_ool(s, a, fns[a->esz]); \ +} + +DO_ZPZW(ASR, asr) +DO_ZPZW(LSR, lsr) +DO_ZPZW(LSL, lsl) + +#undef DO_ZPZW + +/* + *** SVE Bitwise Shift - Unpredicated Group + */ + +static bool do_shift_imm(DisasContext *s, arg_rri_esz *a, bool asr, + void (*gvec_fn)(unsigned, uint32_t, uint32_t, + int64_t, uint32_t, uint32_t)) +{ + if (a->esz < 0) { + /* Invalid tsz encoding -- see tszimm_esz. */ + return false; + } + if (sve_access_check(s)) { + unsigned vsz = vec_full_reg_size(s); + /* Shift by element size is architecturally valid. For + arithmetic right-shift, it's the same as by one less. + Otherwise it is a zeroing operation. */ + if (a->imm >= 8 << a->esz) { + if (asr) { + a->imm = (8 << a->esz) - 1; + } else { + do_dupi_z(s, a->rd, 0); + return true; + } + } + gvec_fn(a->esz, vec_full_reg_offset(s, a->rd), + vec_full_reg_offset(s, a->rn), a->imm, vsz, vsz); + } + return true; +} + +static bool trans_ASR_zzi(DisasContext *s, arg_rri_esz *a, uint32_t insn) +{ + return do_shift_imm(s, a, true, tcg_gen_gvec_sari); +} + +static bool trans_LSR_zzi(DisasContext *s, arg_rri_esz *a, uint32_t insn) +{ + return do_shift_imm(s, a, false, tcg_gen_gvec_shri); +} + +static bool trans_LSL_zzi(DisasContext *s, arg_rri_esz *a, uint32_t insn) +{ + return do_shift_imm(s, a, false, tcg_gen_gvec_shli); +} + +static bool do_zzw_ool(DisasContext *s, arg_rrr_esz *a, gen_helper_gvec_3 *fn) +{ + if (fn == NULL) { + return false; + } + if (sve_access_check(s)) { + unsigned vsz = vec_full_reg_size(s); + tcg_gen_gvec_3_ool(vec_full_reg_offset(s, a->rd), + vec_full_reg_offset(s, a->rn), + vec_full_reg_offset(s, a->rm), + vsz, vsz, 0, fn); + } + return true; +} + +#define DO_ZZW(NAME, name) \ +static bool trans_##NAME##_zzw(DisasContext *s, arg_rrr_esz *a, \ + uint32_t insn) \ +{ \ + static gen_helper_gvec_3 * const fns[4] = { \ + gen_helper_sve_##name##_zzw_b, gen_helper_sve_##name##_zzw_h, \ + gen_helper_sve_##name##_zzw_s, NULL \ + }; \ + return do_zzw_ool(s, a, fns[a->esz]); \ +} + +DO_ZZW(ASR, asr) +DO_ZZW(LSR, lsr) +DO_ZZW(LSL, lsl) + +#undef DO_ZZW + +/* + *** SVE Integer Multiply-Add Group + */ + +static bool do_zpzzz_ool(DisasContext *s, arg_rprrr_esz *a, + gen_helper_gvec_5 *fn) +{ + if (sve_access_check(s)) { + unsigned vsz = vec_full_reg_size(s); + tcg_gen_gvec_5_ool(vec_full_reg_offset(s, a->rd), + vec_full_reg_offset(s, a->ra), + vec_full_reg_offset(s, a->rn), + vec_full_reg_offset(s, a->rm), + pred_full_reg_offset(s, a->pg), + vsz, vsz, 0, fn); + } + return true; +} + +#define DO_ZPZZZ(NAME, name) \ +static bool trans_##NAME(DisasContext *s, arg_rprrr_esz *a, uint32_t insn) \ +{ \ + static gen_helper_gvec_5 * const fns[4] = { \ + gen_helper_sve_##name##_b, gen_helper_sve_##name##_h, \ + gen_helper_sve_##name##_s, gen_helper_sve_##name##_d, \ + }; \ + return do_zpzzz_ool(s, a, fns[a->esz]); \ +} + +DO_ZPZZZ(MLA, mla) +DO_ZPZZZ(MLS, mls) + +#undef DO_ZPZZZ + +/* + *** SVE Index Generation Group + */ + +static void do_index(DisasContext *s, int esz, int rd, + TCGv_i64 start, TCGv_i64 incr) +{ + unsigned vsz = vec_full_reg_size(s); + TCGv_i32 desc = tcg_const_i32(simd_desc(vsz, vsz, 0)); + TCGv_ptr t_zd = tcg_temp_new_ptr(); + + tcg_gen_addi_ptr(t_zd, cpu_env, vec_full_reg_offset(s, rd)); + if (esz == 3) { + gen_helper_sve_index_d(t_zd, start, incr, desc); + } else { + typedef void index_fn(TCGv_ptr, TCGv_i32, TCGv_i32, TCGv_i32); + static index_fn * const fns[3] = { + gen_helper_sve_index_b, + gen_helper_sve_index_h, + gen_helper_sve_index_s, + }; + TCGv_i32 s32 = tcg_temp_new_i32(); + TCGv_i32 i32 = tcg_temp_new_i32(); + + tcg_gen_extrl_i64_i32(s32, start); + tcg_gen_extrl_i64_i32(i32, incr); + fns[esz](t_zd, s32, i32, desc); + + tcg_temp_free_i32(s32); + tcg_temp_free_i32(i32); + } + tcg_temp_free_ptr(t_zd); + tcg_temp_free_i32(desc); +} + +static bool trans_INDEX_ii(DisasContext *s, arg_INDEX_ii *a, uint32_t insn) +{ + if (sve_access_check(s)) { + TCGv_i64 start = tcg_const_i64(a->imm1); + TCGv_i64 incr = tcg_const_i64(a->imm2); + do_index(s, a->esz, a->rd, start, incr); + tcg_temp_free_i64(start); + tcg_temp_free_i64(incr); + } + return true; +} + +static bool trans_INDEX_ir(DisasContext *s, arg_INDEX_ir *a, uint32_t insn) +{ + if (sve_access_check(s)) { + TCGv_i64 start = tcg_const_i64(a->imm); + TCGv_i64 incr = cpu_reg(s, a->rm); + do_index(s, a->esz, a->rd, start, incr); + tcg_temp_free_i64(start); + } + return true; +} + +static bool trans_INDEX_ri(DisasContext *s, arg_INDEX_ri *a, uint32_t insn) +{ + if (sve_access_check(s)) { + TCGv_i64 start = cpu_reg(s, a->rn); + TCGv_i64 incr = tcg_const_i64(a->imm); + do_index(s, a->esz, a->rd, start, incr); + tcg_temp_free_i64(incr); + } + return true; +} + +static bool trans_INDEX_rr(DisasContext *s, arg_INDEX_rr *a, uint32_t insn) +{ + if (sve_access_check(s)) { + TCGv_i64 start = cpu_reg(s, a->rn); + TCGv_i64 incr = cpu_reg(s, a->rm); + do_index(s, a->esz, a->rd, start, incr); + } + return true; +} + +/* + *** SVE Stack Allocation Group + */ + +static bool trans_ADDVL(DisasContext *s, arg_ADDVL *a, uint32_t insn) +{ + TCGv_i64 rd = cpu_reg_sp(s, a->rd); + TCGv_i64 rn = cpu_reg_sp(s, a->rn); + tcg_gen_addi_i64(rd, rn, a->imm * vec_full_reg_size(s)); + return true; +} + +static bool trans_ADDPL(DisasContext *s, arg_ADDPL *a, uint32_t insn) +{ + TCGv_i64 rd = cpu_reg_sp(s, a->rd); + TCGv_i64 rn = cpu_reg_sp(s, a->rn); + tcg_gen_addi_i64(rd, rn, a->imm * pred_full_reg_size(s)); + return true; +} + +static bool trans_RDVL(DisasContext *s, arg_RDVL *a, uint32_t insn) +{ + TCGv_i64 reg = cpu_reg(s, a->rd); + tcg_gen_movi_i64(reg, a->imm * vec_full_reg_size(s)); + return true; +} + +/* + *** SVE Compute Vector Address Group + */ + +static bool do_adr(DisasContext *s, arg_rrri *a, gen_helper_gvec_3 *fn) +{ + if (sve_access_check(s)) { + unsigned vsz = vec_full_reg_size(s); + tcg_gen_gvec_3_ool(vec_full_reg_offset(s, a->rd), + vec_full_reg_offset(s, a->rn), + vec_full_reg_offset(s, a->rm), + vsz, vsz, a->imm, fn); + } + return true; +} + +static bool trans_ADR_p32(DisasContext *s, arg_rrri *a, uint32_t insn) +{ + return do_adr(s, a, gen_helper_sve_adr_p32); +} + +static bool trans_ADR_p64(DisasContext *s, arg_rrri *a, uint32_t insn) +{ + return do_adr(s, a, gen_helper_sve_adr_p64); +} + +static bool trans_ADR_s32(DisasContext *s, arg_rrri *a, uint32_t insn) +{ + return do_adr(s, a, gen_helper_sve_adr_s32); +} + +static bool trans_ADR_u32(DisasContext *s, arg_rrri *a, uint32_t insn) +{ + return do_adr(s, a, gen_helper_sve_adr_u32); +} + +/* + *** SVE Integer Misc - Unpredicated Group + */ + +static bool trans_FEXPA(DisasContext *s, arg_rr_esz *a, uint32_t insn) +{ + static gen_helper_gvec_2 * const fns[4] = { + NULL, + gen_helper_sve_fexpa_h, + gen_helper_sve_fexpa_s, + gen_helper_sve_fexpa_d, + }; + if (a->esz == 0) { + return false; + } + if (sve_access_check(s)) { + unsigned vsz = vec_full_reg_size(s); + tcg_gen_gvec_2_ool(vec_full_reg_offset(s, a->rd), + vec_full_reg_offset(s, a->rn), + vsz, vsz, 0, fns[a->esz]); + } + return true; +} + +static bool trans_FTSSEL(DisasContext *s, arg_rrr_esz *a, uint32_t insn) +{ + static gen_helper_gvec_3 * const fns[4] = { + NULL, + gen_helper_sve_ftssel_h, + gen_helper_sve_ftssel_s, + gen_helper_sve_ftssel_d, + }; + if (a->esz == 0) { + return false; + } + if (sve_access_check(s)) { + unsigned vsz = vec_full_reg_size(s); + tcg_gen_gvec_3_ool(vec_full_reg_offset(s, a->rd), + vec_full_reg_offset(s, a->rn), + vec_full_reg_offset(s, a->rm), + vsz, vsz, 0, fns[a->esz]); + } + return true; +} + +/* + *** SVE Predicate Logical Operations Group + */ + +static bool do_pppp_flags(DisasContext *s, arg_rprr_s *a, + const GVecGen4 *gvec_op) +{ + if (!sve_access_check(s)) { + return true; + } + + unsigned psz = pred_gvec_reg_size(s); + int dofs = pred_full_reg_offset(s, a->rd); + int nofs = pred_full_reg_offset(s, a->rn); + int mofs = pred_full_reg_offset(s, a->rm); + int gofs = pred_full_reg_offset(s, a->pg); + + if (psz == 8) { + /* Do the operation and the flags generation in temps. */ + TCGv_i64 pd = tcg_temp_new_i64(); + TCGv_i64 pn = tcg_temp_new_i64(); + TCGv_i64 pm = tcg_temp_new_i64(); + TCGv_i64 pg = tcg_temp_new_i64(); + + tcg_gen_ld_i64(pn, cpu_env, nofs); + tcg_gen_ld_i64(pm, cpu_env, mofs); + tcg_gen_ld_i64(pg, cpu_env, gofs); + + gvec_op->fni8(pd, pn, pm, pg); + tcg_gen_st_i64(pd, cpu_env, dofs); + + do_predtest1(pd, pg); + + tcg_temp_free_i64(pd); + tcg_temp_free_i64(pn); + tcg_temp_free_i64(pm); + tcg_temp_free_i64(pg); + } else { + /* The operation and flags generation is large. The computation + * of the flags depends on the original contents of the guarding + * predicate. If the destination overwrites the guarding predicate, + * then the easiest way to get this right is to save a copy. + */ + int tofs = gofs; + if (a->rd == a->pg) { + tofs = offsetof(CPUARMState, vfp.preg_tmp); + tcg_gen_gvec_mov(0, tofs, gofs, psz, psz); + } + + tcg_gen_gvec_4(dofs, nofs, mofs, gofs, psz, psz, gvec_op); + do_predtest(s, dofs, tofs, psz / 8); + } + return true; +} + +static void gen_and_pg_i64(TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg) +{ + tcg_gen_and_i64(pd, pn, pm); + tcg_gen_and_i64(pd, pd, pg); +} + +static void gen_and_pg_vec(unsigned vece, TCGv_vec pd, TCGv_vec pn, + TCGv_vec pm, TCGv_vec pg) +{ + tcg_gen_and_vec(vece, pd, pn, pm); + tcg_gen_and_vec(vece, pd, pd, pg); +} + +static bool trans_AND_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn) +{ + static const GVecGen4 op = { + .fni8 = gen_and_pg_i64, + .fniv = gen_and_pg_vec, + .fno = gen_helper_sve_and_pppp, + .prefer_i64 = TCG_TARGET_REG_BITS == 64, + }; + if (a->s) { + return do_pppp_flags(s, a, &op); + } else if (a->rn == a->rm) { + if (a->pg == a->rn) { + return do_mov_p(s, a->rd, a->rn); + } else { + return do_vector3_p(s, tcg_gen_gvec_and, 0, a->rd, a->rn, a->pg); + } + } else if (a->pg == a->rn || a->pg == a->rm) { + return do_vector3_p(s, tcg_gen_gvec_and, 0, a->rd, a->rn, a->rm); + } else { + return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg); + } +} + +static void gen_bic_pg_i64(TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg) +{ + tcg_gen_andc_i64(pd, pn, pm); + tcg_gen_and_i64(pd, pd, pg); +} + +static void gen_bic_pg_vec(unsigned vece, TCGv_vec pd, TCGv_vec pn, + TCGv_vec pm, TCGv_vec pg) +{ + tcg_gen_andc_vec(vece, pd, pn, pm); + tcg_gen_and_vec(vece, pd, pd, pg); +} + +static bool trans_BIC_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn) +{ + static const GVecGen4 op = { + .fni8 = gen_bic_pg_i64, + .fniv = gen_bic_pg_vec, + .fno = gen_helper_sve_bic_pppp, + .prefer_i64 = TCG_TARGET_REG_BITS == 64, + }; + if (a->s) { + return do_pppp_flags(s, a, &op); + } else if (a->pg == a->rn) { + return do_vector3_p(s, tcg_gen_gvec_andc, 0, a->rd, a->rn, a->rm); + } else { + return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg); + } +} + +static void gen_eor_pg_i64(TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg) +{ + tcg_gen_xor_i64(pd, pn, pm); + tcg_gen_and_i64(pd, pd, pg); +} + +static void gen_eor_pg_vec(unsigned vece, TCGv_vec pd, TCGv_vec pn, + TCGv_vec pm, TCGv_vec pg) +{ + tcg_gen_xor_vec(vece, pd, pn, pm); + tcg_gen_and_vec(vece, pd, pd, pg); +} + +static bool trans_EOR_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn) +{ + static const GVecGen4 op = { + .fni8 = gen_eor_pg_i64, + .fniv = gen_eor_pg_vec, + .fno = gen_helper_sve_eor_pppp, + .prefer_i64 = TCG_TARGET_REG_BITS == 64, + }; + if (a->s) { + return do_pppp_flags(s, a, &op); + } else { + return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg); + } +} + +static void gen_sel_pg_i64(TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg) +{ + tcg_gen_and_i64(pn, pn, pg); + tcg_gen_andc_i64(pm, pm, pg); + tcg_gen_or_i64(pd, pn, pm); +} + +static void gen_sel_pg_vec(unsigned vece, TCGv_vec pd, TCGv_vec pn, + TCGv_vec pm, TCGv_vec pg) +{ + tcg_gen_and_vec(vece, pn, pn, pg); + tcg_gen_andc_vec(vece, pm, pm, pg); + tcg_gen_or_vec(vece, pd, pn, pm); +} + +static bool trans_SEL_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn) +{ + static const GVecGen4 op = { + .fni8 = gen_sel_pg_i64, + .fniv = gen_sel_pg_vec, + .fno = gen_helper_sve_sel_pppp, + .prefer_i64 = TCG_TARGET_REG_BITS == 64, + }; + if (a->s) { + return false; + } else { + return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg); + } +} + +static void gen_orr_pg_i64(TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg) +{ + tcg_gen_or_i64(pd, pn, pm); + tcg_gen_and_i64(pd, pd, pg); +} + +static void gen_orr_pg_vec(unsigned vece, TCGv_vec pd, TCGv_vec pn, + TCGv_vec pm, TCGv_vec pg) +{ + tcg_gen_or_vec(vece, pd, pn, pm); + tcg_gen_and_vec(vece, pd, pd, pg); +} + +static bool trans_ORR_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn) +{ + static const GVecGen4 op = { + .fni8 = gen_orr_pg_i64, + .fniv = gen_orr_pg_vec, + .fno = gen_helper_sve_orr_pppp, + .prefer_i64 = TCG_TARGET_REG_BITS == 64, + }; + if (a->s) { + return do_pppp_flags(s, a, &op); + } else if (a->pg == a->rn && a->rn == a->rm) { + return do_mov_p(s, a->rd, a->rn); + } else { + return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg); + } +} + +static void gen_orn_pg_i64(TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg) +{ + tcg_gen_orc_i64(pd, pn, pm); + tcg_gen_and_i64(pd, pd, pg); +} + +static void gen_orn_pg_vec(unsigned vece, TCGv_vec pd, TCGv_vec pn, + TCGv_vec pm, TCGv_vec pg) +{ + tcg_gen_orc_vec(vece, pd, pn, pm); + tcg_gen_and_vec(vece, pd, pd, pg); +} + +static bool trans_ORN_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn) +{ + static const GVecGen4 op = { + .fni8 = gen_orn_pg_i64, + .fniv = gen_orn_pg_vec, + .fno = gen_helper_sve_orn_pppp, + .prefer_i64 = TCG_TARGET_REG_BITS == 64, + }; + if (a->s) { + return do_pppp_flags(s, a, &op); + } else { + return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg); + } +} + +static void gen_nor_pg_i64(TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg) +{ + tcg_gen_or_i64(pd, pn, pm); + tcg_gen_andc_i64(pd, pg, pd); +} + +static void gen_nor_pg_vec(unsigned vece, TCGv_vec pd, TCGv_vec pn, + TCGv_vec pm, TCGv_vec pg) +{ + tcg_gen_or_vec(vece, pd, pn, pm); + tcg_gen_andc_vec(vece, pd, pg, pd); +} + +static bool trans_NOR_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn) +{ + static const GVecGen4 op = { + .fni8 = gen_nor_pg_i64, + .fniv = gen_nor_pg_vec, + .fno = gen_helper_sve_nor_pppp, + .prefer_i64 = TCG_TARGET_REG_BITS == 64, + }; + if (a->s) { + return do_pppp_flags(s, a, &op); + } else { + return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg); + } +} + +static void gen_nand_pg_i64(TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg) +{ + tcg_gen_and_i64(pd, pn, pm); + tcg_gen_andc_i64(pd, pg, pd); +} + +static void gen_nand_pg_vec(unsigned vece, TCGv_vec pd, TCGv_vec pn, + TCGv_vec pm, TCGv_vec pg) +{ + tcg_gen_and_vec(vece, pd, pn, pm); + tcg_gen_andc_vec(vece, pd, pg, pd); +} + +static bool trans_NAND_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn) +{ + static const GVecGen4 op = { + .fni8 = gen_nand_pg_i64, + .fniv = gen_nand_pg_vec, + .fno = gen_helper_sve_nand_pppp, + .prefer_i64 = TCG_TARGET_REG_BITS == 64, + }; + if (a->s) { + return do_pppp_flags(s, a, &op); + } else { + return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg); + } +} + +/* + *** SVE Predicate Misc Group + */ + +static bool trans_PTEST(DisasContext *s, arg_PTEST *a, uint32_t insn) +{ + if (sve_access_check(s)) { + int nofs = pred_full_reg_offset(s, a->rn); + int gofs = pred_full_reg_offset(s, a->pg); + int words = DIV_ROUND_UP(pred_full_reg_size(s), 8); + + if (words == 1) { + TCGv_i64 pn = tcg_temp_new_i64(); + TCGv_i64 pg = tcg_temp_new_i64(); + + tcg_gen_ld_i64(pn, cpu_env, nofs); + tcg_gen_ld_i64(pg, cpu_env, gofs); + do_predtest1(pn, pg); + + tcg_temp_free_i64(pn); + tcg_temp_free_i64(pg); + } else { + do_predtest(s, nofs, gofs, words); + } + } + return true; +} + +/* See the ARM pseudocode DecodePredCount. */ +static unsigned decode_pred_count(unsigned fullsz, int pattern, int esz) +{ + unsigned elements = fullsz >> esz; + unsigned bound; + + switch (pattern) { + case 0x0: /* POW2 */ + return pow2floor(elements); + case 0x1: /* VL1 */ + case 0x2: /* VL2 */ + case 0x3: /* VL3 */ + case 0x4: /* VL4 */ + case 0x5: /* VL5 */ + case 0x6: /* VL6 */ + case 0x7: /* VL7 */ + case 0x8: /* VL8 */ + bound = pattern; + break; + case 0x9: /* VL16 */ + case 0xa: /* VL32 */ + case 0xb: /* VL64 */ + case 0xc: /* VL128 */ + case 0xd: /* VL256 */ + bound = 16 << (pattern - 9); + break; + case 0x1d: /* MUL4 */ + return elements - elements % 4; + case 0x1e: /* MUL3 */ + return elements - elements % 3; + case 0x1f: /* ALL */ + return elements; + default: /* #uimm5 */ + return 0; + } + return elements >= bound ? bound : 0; +} + +/* This handles all of the predicate initialization instructions, + * PTRUE, PFALSE, SETFFR. For PFALSE, we will have set PAT == 32 + * so that decode_pred_count returns 0. For SETFFR, we will have + * set RD == 16 == FFR. + */ +static bool do_predset(DisasContext *s, int esz, int rd, int pat, bool setflag) +{ + if (!sve_access_check(s)) { + return true; + } + + unsigned fullsz = vec_full_reg_size(s); + unsigned ofs = pred_full_reg_offset(s, rd); + unsigned numelem, setsz, i; + uint64_t word, lastword; + TCGv_i64 t; + + numelem = decode_pred_count(fullsz, pat, esz); + + /* Determine what we must store into each bit, and how many. */ + if (numelem == 0) { + lastword = word = 0; + setsz = fullsz; + } else { + setsz = numelem << esz; + lastword = word = pred_esz_masks[esz]; + if (setsz % 64) { + lastword &= ~(-1ull << (setsz % 64)); + } + } + + t = tcg_temp_new_i64(); + if (fullsz <= 64) { + tcg_gen_movi_i64(t, lastword); + tcg_gen_st_i64(t, cpu_env, ofs); + goto done; + } + + if (word == lastword) { + unsigned maxsz = size_for_gvec(fullsz / 8); + unsigned oprsz = size_for_gvec(setsz / 8); + + if (oprsz * 8 == setsz) { + tcg_gen_gvec_dup64i(ofs, oprsz, maxsz, word); + goto done; + } + if (oprsz * 8 == setsz + 8) { + tcg_gen_gvec_dup64i(ofs, oprsz, maxsz, word); + tcg_gen_movi_i64(t, 0); + tcg_gen_st_i64(t, cpu_env, ofs + oprsz - 8); + goto done; + } + } + + setsz /= 8; + fullsz /= 8; + + tcg_gen_movi_i64(t, word); + for (i = 0; i < setsz; i += 8) { + tcg_gen_st_i64(t, cpu_env, ofs + i); + } + if (lastword != word) { + tcg_gen_movi_i64(t, lastword); + tcg_gen_st_i64(t, cpu_env, ofs + i); + i += 8; + } + if (i < fullsz) { + tcg_gen_movi_i64(t, 0); + for (; i < fullsz; i += 8) { + tcg_gen_st_i64(t, cpu_env, ofs + i); + } + } + + done: + tcg_temp_free_i64(t); + + /* PTRUES */ + if (setflag) { + tcg_gen_movi_i32(cpu_NF, -(word != 0)); + tcg_gen_movi_i32(cpu_CF, word == 0); + tcg_gen_movi_i32(cpu_VF, 0); + tcg_gen_mov_i32(cpu_ZF, cpu_NF); + } + return true; +} + +static bool trans_PTRUE(DisasContext *s, arg_PTRUE *a, uint32_t insn) +{ + return do_predset(s, a->esz, a->rd, a->pat, a->s); +} + +static bool trans_SETFFR(DisasContext *s, arg_SETFFR *a, uint32_t insn) +{ + /* Note pat == 31 is #all, to set all elements. */ + return do_predset(s, 0, FFR_PRED_NUM, 31, false); +} + +static bool trans_PFALSE(DisasContext *s, arg_PFALSE *a, uint32_t insn) +{ + /* Note pat == 32 is #unimp, to set no elements. */ + return do_predset(s, 0, a->rd, 32, false); +} + +static bool trans_RDFFR_p(DisasContext *s, arg_RDFFR_p *a, uint32_t insn) +{ + /* The path through do_pppp_flags is complicated enough to want to avoid + * duplication. Frob the arguments into the form of a predicated AND. + */ + arg_rprr_s alt_a = { + .rd = a->rd, .pg = a->pg, .s = a->s, + .rn = FFR_PRED_NUM, .rm = FFR_PRED_NUM, + }; + return trans_AND_pppp(s, &alt_a, insn); +} + +static bool trans_RDFFR(DisasContext *s, arg_RDFFR *a, uint32_t insn) +{ + return do_mov_p(s, a->rd, FFR_PRED_NUM); +} + +static bool trans_WRFFR(DisasContext *s, arg_WRFFR *a, uint32_t insn) +{ + return do_mov_p(s, FFR_PRED_NUM, a->rn); +} + +static bool do_pfirst_pnext(DisasContext *s, arg_rr_esz *a, + void (*gen_fn)(TCGv_i32, TCGv_ptr, + TCGv_ptr, TCGv_i32)) +{ + if (!sve_access_check(s)) { + return true; + } + + TCGv_ptr t_pd = tcg_temp_new_ptr(); + TCGv_ptr t_pg = tcg_temp_new_ptr(); + TCGv_i32 t; + unsigned desc; + + desc = DIV_ROUND_UP(pred_full_reg_size(s), 8); + desc = deposit32(desc, SIMD_DATA_SHIFT, 2, a->esz); + + tcg_gen_addi_ptr(t_pd, cpu_env, pred_full_reg_offset(s, a->rd)); + tcg_gen_addi_ptr(t_pg, cpu_env, pred_full_reg_offset(s, a->rn)); + t = tcg_const_i32(desc); + + gen_fn(t, t_pd, t_pg, t); + tcg_temp_free_ptr(t_pd); + tcg_temp_free_ptr(t_pg); + + do_pred_flags(t); + tcg_temp_free_i32(t); + return true; +} + +static bool trans_PFIRST(DisasContext *s, arg_rr_esz *a, uint32_t insn) +{ + return do_pfirst_pnext(s, a, gen_helper_sve_pfirst); +} + +static bool trans_PNEXT(DisasContext *s, arg_rr_esz *a, uint32_t insn) +{ + return do_pfirst_pnext(s, a, gen_helper_sve_pnext); +} + +/* + *** SVE Element Count Group + */ + +/* Perform an inline saturating addition of a 32-bit value within + * a 64-bit register. The second operand is known to be positive, + * which halves the comparisions we must perform to bound the result. + */ +static void do_sat_addsub_32(TCGv_i64 reg, TCGv_i64 val, bool u, bool d) +{ + int64_t ibound; + TCGv_i64 bound; + TCGCond cond; + + /* Use normal 64-bit arithmetic to detect 32-bit overflow. */ + if (u) { + tcg_gen_ext32u_i64(reg, reg); + } else { + tcg_gen_ext32s_i64(reg, reg); + } + if (d) { + tcg_gen_sub_i64(reg, reg, val); + ibound = (u ? 0 : INT32_MIN); + cond = TCG_COND_LT; + } else { + tcg_gen_add_i64(reg, reg, val); + ibound = (u ? UINT32_MAX : INT32_MAX); + cond = TCG_COND_GT; + } + bound = tcg_const_i64(ibound); + tcg_gen_movcond_i64(cond, reg, reg, bound, bound, reg); + tcg_temp_free_i64(bound); +} + +/* Similarly with 64-bit values. */ +static void do_sat_addsub_64(TCGv_i64 reg, TCGv_i64 val, bool u, bool d) +{ + TCGv_i64 t0 = tcg_temp_new_i64(); + TCGv_i64 t1 = tcg_temp_new_i64(); + TCGv_i64 t2; + + if (u) { + if (d) { + tcg_gen_sub_i64(t0, reg, val); + tcg_gen_movi_i64(t1, 0); + tcg_gen_movcond_i64(TCG_COND_LTU, reg, reg, val, t1, t0); + } else { + tcg_gen_add_i64(t0, reg, val); + tcg_gen_movi_i64(t1, -1); + tcg_gen_movcond_i64(TCG_COND_LTU, reg, t0, reg, t1, t0); + } + } else { + if (d) { + /* Detect signed overflow for subtraction. */ + tcg_gen_xor_i64(t0, reg, val); + tcg_gen_sub_i64(t1, reg, val); + tcg_gen_xor_i64(reg, reg, t0); + tcg_gen_and_i64(t0, t0, reg); + + /* Bound the result. */ + tcg_gen_movi_i64(reg, INT64_MIN); + t2 = tcg_const_i64(0); + tcg_gen_movcond_i64(TCG_COND_LT, reg, t0, t2, reg, t1); + } else { + /* Detect signed overflow for addition. */ + tcg_gen_xor_i64(t0, reg, val); + tcg_gen_add_i64(reg, reg, val); + tcg_gen_xor_i64(t1, reg, val); + tcg_gen_andc_i64(t0, t1, t0); + + /* Bound the result. */ + tcg_gen_movi_i64(t1, INT64_MAX); + t2 = tcg_const_i64(0); + tcg_gen_movcond_i64(TCG_COND_LT, reg, t0, t2, t1, reg); + } + tcg_temp_free_i64(t2); + } + tcg_temp_free_i64(t0); + tcg_temp_free_i64(t1); +} + +/* Similarly with a vector and a scalar operand. */ +static void do_sat_addsub_vec(DisasContext *s, int esz, int rd, int rn, + TCGv_i64 val, bool u, bool d) +{ + unsigned vsz = vec_full_reg_size(s); + TCGv_ptr dptr, nptr; + TCGv_i32 t32, desc; + TCGv_i64 t64; + + dptr = tcg_temp_new_ptr(); + nptr = tcg_temp_new_ptr(); + tcg_gen_addi_ptr(dptr, cpu_env, vec_full_reg_offset(s, rd)); + tcg_gen_addi_ptr(nptr, cpu_env, vec_full_reg_offset(s, rn)); + desc = tcg_const_i32(simd_desc(vsz, vsz, 0)); + + switch (esz) { + case MO_8: + t32 = tcg_temp_new_i32(); + tcg_gen_extrl_i64_i32(t32, val); + if (d) { + tcg_gen_neg_i32(t32, t32); + } + if (u) { + gen_helper_sve_uqaddi_b(dptr, nptr, t32, desc); + } else { + gen_helper_sve_sqaddi_b(dptr, nptr, t32, desc); + } + tcg_temp_free_i32(t32); + break; + + case MO_16: + t32 = tcg_temp_new_i32(); + tcg_gen_extrl_i64_i32(t32, val); + if (d) { + tcg_gen_neg_i32(t32, t32); + } + if (u) { + gen_helper_sve_uqaddi_h(dptr, nptr, t32, desc); + } else { + gen_helper_sve_sqaddi_h(dptr, nptr, t32, desc); + } + tcg_temp_free_i32(t32); + break; + + case MO_32: + t64 = tcg_temp_new_i64(); + if (d) { + tcg_gen_neg_i64(t64, val); + } else { + tcg_gen_mov_i64(t64, val); + } + if (u) { + gen_helper_sve_uqaddi_s(dptr, nptr, t64, desc); + } else { + gen_helper_sve_sqaddi_s(dptr, nptr, t64, desc); + } + tcg_temp_free_i64(t64); + break; + + case MO_64: + if (u) { + if (d) { + gen_helper_sve_uqsubi_d(dptr, nptr, val, desc); + } else { + gen_helper_sve_uqaddi_d(dptr, nptr, val, desc); + } + } else if (d) { + t64 = tcg_temp_new_i64(); + tcg_gen_neg_i64(t64, val); + gen_helper_sve_sqaddi_d(dptr, nptr, t64, desc); + tcg_temp_free_i64(t64); + } else { + gen_helper_sve_sqaddi_d(dptr, nptr, val, desc); + } + break; + + default: + g_assert_not_reached(); + } + + tcg_temp_free_ptr(dptr); + tcg_temp_free_ptr(nptr); + tcg_temp_free_i32(desc); +} + +static bool trans_CNT_r(DisasContext *s, arg_CNT_r *a, uint32_t insn) +{ + if (sve_access_check(s)) { + unsigned fullsz = vec_full_reg_size(s); + unsigned numelem = decode_pred_count(fullsz, a->pat, a->esz); + tcg_gen_movi_i64(cpu_reg(s, a->rd), numelem * a->imm); + } + return true; +} + +static bool trans_INCDEC_r(DisasContext *s, arg_incdec_cnt *a, uint32_t insn) +{ + if (sve_access_check(s)) { + unsigned fullsz = vec_full_reg_size(s); + unsigned numelem = decode_pred_count(fullsz, a->pat, a->esz); + int inc = numelem * a->imm * (a->d ? -1 : 1); + TCGv_i64 reg = cpu_reg(s, a->rd); + + tcg_gen_addi_i64(reg, reg, inc); + } + return true; +} + +static bool trans_SINCDEC_r_32(DisasContext *s, arg_incdec_cnt *a, + uint32_t insn) +{ + if (!sve_access_check(s)) { + return true; + } + + unsigned fullsz = vec_full_reg_size(s); + unsigned numelem = decode_pred_count(fullsz, a->pat, a->esz); + int inc = numelem * a->imm; + TCGv_i64 reg = cpu_reg(s, a->rd); + + /* Use normal 64-bit arithmetic to detect 32-bit overflow. */ + if (inc == 0) { + if (a->u) { + tcg_gen_ext32u_i64(reg, reg); + } else { + tcg_gen_ext32s_i64(reg, reg); + } + } else { + TCGv_i64 t = tcg_const_i64(inc); + do_sat_addsub_32(reg, t, a->u, a->d); + tcg_temp_free_i64(t); + } + return true; +} + +static bool trans_SINCDEC_r_64(DisasContext *s, arg_incdec_cnt *a, + uint32_t insn) +{ + if (!sve_access_check(s)) { + return true; + } + + unsigned fullsz = vec_full_reg_size(s); + unsigned numelem = decode_pred_count(fullsz, a->pat, a->esz); + int inc = numelem * a->imm; + TCGv_i64 reg = cpu_reg(s, a->rd); + + if (inc != 0) { + TCGv_i64 t = tcg_const_i64(inc); + do_sat_addsub_64(reg, t, a->u, a->d); + tcg_temp_free_i64(t); + } + return true; +} + +static bool trans_INCDEC_v(DisasContext *s, arg_incdec2_cnt *a, uint32_t insn) +{ + if (a->esz == 0) { + return false; + } + + unsigned fullsz = vec_full_reg_size(s); + unsigned numelem = decode_pred_count(fullsz, a->pat, a->esz); + int inc = numelem * a->imm; + + if (inc != 0) { + if (sve_access_check(s)) { + TCGv_i64 t = tcg_const_i64(a->d ? -inc : inc); + tcg_gen_gvec_adds(a->esz, vec_full_reg_offset(s, a->rd), + vec_full_reg_offset(s, a->rn), + t, fullsz, fullsz); + tcg_temp_free_i64(t); + } + } else { + do_mov_z(s, a->rd, a->rn); + } + return true; +} + +static bool trans_SINCDEC_v(DisasContext *s, arg_incdec2_cnt *a, + uint32_t insn) +{ + if (a->esz == 0) { + return false; + } + + unsigned fullsz = vec_full_reg_size(s); + unsigned numelem = decode_pred_count(fullsz, a->pat, a->esz); + int inc = numelem * a->imm; + + if (inc != 0) { + if (sve_access_check(s)) { + TCGv_i64 t = tcg_const_i64(inc); + do_sat_addsub_vec(s, a->esz, a->rd, a->rn, t, a->u, a->d); + tcg_temp_free_i64(t); + } + } else { + do_mov_z(s, a->rd, a->rn); + } + return true; +} + +/* + *** SVE Bitwise Immediate Group + */ + +static bool do_zz_dbm(DisasContext *s, arg_rr_dbm *a, GVecGen2iFn *gvec_fn) +{ + uint64_t imm; + if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1), + extract32(a->dbm, 0, 6), + extract32(a->dbm, 6, 6))) { + return false; + } + if (sve_access_check(s)) { + unsigned vsz = vec_full_reg_size(s); + gvec_fn(MO_64, vec_full_reg_offset(s, a->rd), + vec_full_reg_offset(s, a->rn), imm, vsz, vsz); + } + return true; +} + +static bool trans_AND_zzi(DisasContext *s, arg_rr_dbm *a, uint32_t insn) +{ + return do_zz_dbm(s, a, tcg_gen_gvec_andi); +} + +static bool trans_ORR_zzi(DisasContext *s, arg_rr_dbm *a, uint32_t insn) +{ + return do_zz_dbm(s, a, tcg_gen_gvec_ori); +} + +static bool trans_EOR_zzi(DisasContext *s, arg_rr_dbm *a, uint32_t insn) +{ + return do_zz_dbm(s, a, tcg_gen_gvec_xori); +} + +static bool trans_DUPM(DisasContext *s, arg_DUPM *a, uint32_t insn) +{ + uint64_t imm; + if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1), + extract32(a->dbm, 0, 6), + extract32(a->dbm, 6, 6))) { + return false; + } + if (sve_access_check(s)) { + do_dupi_z(s, a->rd, imm); + } + return true; +} + +/* + *** SVE Integer Wide Immediate - Predicated Group + */ + +/* Implement all merging copies. This is used for CPY (immediate), + * FCPY, CPY (scalar), CPY (SIMD&FP scalar). + */ +static void do_cpy_m(DisasContext *s, int esz, int rd, int rn, int pg, + TCGv_i64 val) +{ + typedef void gen_cpy(TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i64, TCGv_i32); + static gen_cpy * const fns[4] = { + gen_helper_sve_cpy_m_b, gen_helper_sve_cpy_m_h, + gen_helper_sve_cpy_m_s, gen_helper_sve_cpy_m_d, + }; + unsigned vsz = vec_full_reg_size(s); + TCGv_i32 desc = tcg_const_i32(simd_desc(vsz, vsz, 0)); + TCGv_ptr t_zd = tcg_temp_new_ptr(); + TCGv_ptr t_zn = tcg_temp_new_ptr(); + TCGv_ptr t_pg = tcg_temp_new_ptr(); + + tcg_gen_addi_ptr(t_zd, cpu_env, vec_full_reg_offset(s, rd)); + tcg_gen_addi_ptr(t_zn, cpu_env, vec_full_reg_offset(s, rn)); + tcg_gen_addi_ptr(t_pg, cpu_env, pred_full_reg_offset(s, pg)); + + fns[esz](t_zd, t_zn, t_pg, val, desc); + + tcg_temp_free_ptr(t_zd); + tcg_temp_free_ptr(t_zn); + tcg_temp_free_ptr(t_pg); + tcg_temp_free_i32(desc); +} + +static bool trans_FCPY(DisasContext *s, arg_FCPY *a, uint32_t insn) +{ + if (a->esz == 0) { + return false; + } + if (sve_access_check(s)) { + /* Decode the VFP immediate. */ + uint64_t imm = vfp_expand_imm(a->esz, a->imm); + TCGv_i64 t_imm = tcg_const_i64(imm); + do_cpy_m(s, a->esz, a->rd, a->rn, a->pg, t_imm); + tcg_temp_free_i64(t_imm); + } + return true; +} + +static bool trans_CPY_m_i(DisasContext *s, arg_rpri_esz *a, uint32_t insn) +{ + if (a->esz == 0 && extract32(insn, 13, 1)) { + return false; + } + if (sve_access_check(s)) { + TCGv_i64 t_imm = tcg_const_i64(a->imm); + do_cpy_m(s, a->esz, a->rd, a->rn, a->pg, t_imm); + tcg_temp_free_i64(t_imm); + } + return true; +} + +static bool trans_CPY_z_i(DisasContext *s, arg_CPY_z_i *a, uint32_t insn) +{ + static gen_helper_gvec_2i * const fns[4] = { + gen_helper_sve_cpy_z_b, gen_helper_sve_cpy_z_h, + gen_helper_sve_cpy_z_s, gen_helper_sve_cpy_z_d, + }; + + if (a->esz == 0 && extract32(insn, 13, 1)) { + return false; + } + if (sve_access_check(s)) { + unsigned vsz = vec_full_reg_size(s); + TCGv_i64 t_imm = tcg_const_i64(a->imm); + tcg_gen_gvec_2i_ool(vec_full_reg_offset(s, a->rd), + pred_full_reg_offset(s, a->pg), + t_imm, vsz, vsz, 0, fns[a->esz]); + tcg_temp_free_i64(t_imm); + } + return true; +} + +/* + *** SVE Permute Extract Group + */ + +static bool trans_EXT(DisasContext *s, arg_EXT *a, uint32_t insn) +{ + if (!sve_access_check(s)) { + return true; + } + + unsigned vsz = vec_full_reg_size(s); + unsigned n_ofs = a->imm >= vsz ? 0 : a->imm; + unsigned n_siz = vsz - n_ofs; + unsigned d = vec_full_reg_offset(s, a->rd); + unsigned n = vec_full_reg_offset(s, a->rn); + unsigned m = vec_full_reg_offset(s, a->rm); + + /* Use host vector move insns if we have appropriate sizes + * and no unfortunate overlap. + */ + if (m != d + && n_ofs == size_for_gvec(n_ofs) + && n_siz == size_for_gvec(n_siz) + && (d != n || n_siz <= n_ofs)) { + tcg_gen_gvec_mov(0, d, n + n_ofs, n_siz, n_siz); + if (n_ofs != 0) { + tcg_gen_gvec_mov(0, d + n_siz, m, n_ofs, n_ofs); + } + } else { + tcg_gen_gvec_3_ool(d, n, m, vsz, vsz, n_ofs, gen_helper_sve_ext); + } + return true; +} + +/* + *** SVE Memory - 32-bit Gather and Unsized Contiguous Group + */ + +/* Subroutine loading a vector register at VOFS of LEN bytes. + * The load should begin at the address Rn + IMM. + */ + +static void do_ldr(DisasContext *s, uint32_t vofs, uint32_t len, + int rn, int imm) +{ + uint32_t len_align = QEMU_ALIGN_DOWN(len, 8); + uint32_t len_remain = len % 8; + uint32_t nparts = len / 8 + ctpop8(len_remain); + int midx = get_mem_index(s); + TCGv_i64 addr, t0, t1; + + addr = tcg_temp_new_i64(); + t0 = tcg_temp_new_i64(); + + /* Note that unpredicated load/store of vector/predicate registers + * are defined as a stream of bytes, which equates to little-endian + * operations on larger quantities. There is no nice way to force + * a little-endian load for aarch64_be-linux-user out of line. + * + * Attempt to keep code expansion to a minimum by limiting the + * amount of unrolling done. + */ + if (nparts <= 4) { + int i; + + for (i = 0; i < len_align; i += 8) { + tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm + i); + tcg_gen_qemu_ld_i64(t0, addr, midx, MO_LEQ); + tcg_gen_st_i64(t0, cpu_env, vofs + i); + } + } else { + TCGLabel *loop = gen_new_label(); + TCGv_ptr tp, i = tcg_const_local_ptr(0); + + gen_set_label(loop); + + /* Minimize the number of local temps that must be re-read from + * the stack each iteration. Instead, re-compute values other + * than the loop counter. + */ + tp = tcg_temp_new_ptr(); + tcg_gen_addi_ptr(tp, i, imm); + tcg_gen_extu_ptr_i64(addr, tp); + tcg_gen_add_i64(addr, addr, cpu_reg_sp(s, rn)); + + tcg_gen_qemu_ld_i64(t0, addr, midx, MO_LEQ); + + tcg_gen_add_ptr(tp, cpu_env, i); + tcg_gen_addi_ptr(i, i, 8); + tcg_gen_st_i64(t0, tp, vofs); + tcg_temp_free_ptr(tp); + + tcg_gen_brcondi_ptr(TCG_COND_LTU, i, len_align, loop); + tcg_temp_free_ptr(i); + } + + /* Predicate register loads can be any multiple of 2. + * Note that we still store the entire 64-bit unit into cpu_env. + */ + if (len_remain) { + tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm + len_align); + + switch (len_remain) { + case 2: + case 4: + case 8: + tcg_gen_qemu_ld_i64(t0, addr, midx, MO_LE | ctz32(len_remain)); + break; + + case 6: + t1 = tcg_temp_new_i64(); + tcg_gen_qemu_ld_i64(t0, addr, midx, MO_LEUL); + tcg_gen_addi_i64(addr, addr, 4); + tcg_gen_qemu_ld_i64(t1, addr, midx, MO_LEUW); + tcg_gen_deposit_i64(t0, t0, t1, 32, 32); + tcg_temp_free_i64(t1); + break; + + default: + g_assert_not_reached(); + } + tcg_gen_st_i64(t0, cpu_env, vofs + len_align); + } + tcg_temp_free_i64(addr); + tcg_temp_free_i64(t0); +} + +static bool trans_LDR_zri(DisasContext *s, arg_rri *a, uint32_t insn) +{ + if (sve_access_check(s)) { + int size = vec_full_reg_size(s); + int off = vec_full_reg_offset(s, a->rd); + do_ldr(s, off, size, a->rn, a->imm * size); + } + return true; +} + +static bool trans_LDR_pri(DisasContext *s, arg_rri *a, uint32_t insn) +{ + if (sve_access_check(s)) { + int size = pred_full_reg_size(s); + int off = pred_full_reg_offset(s, a->rd); + do_ldr(s, off, size, a->rn, a->imm * size); + } + return true; +} |