#include "vm.h" #include "file.h" #include "atomic.h" #include "pk.h" #include #include typedef struct { uintptr_t addr; size_t length; file_t* file; size_t offset; size_t refcnt; int prot; } vmr_t; #define MAX_VMR 32 spinlock_t vm_lock = SPINLOCK_INIT; static vmr_t vmrs[MAX_VMR]; typedef uintptr_t pte_t; static pte_t* root_page_table; static uintptr_t first_free_page; static size_t next_free_page; static size_t free_pages; static uintptr_t __page_alloc() { if (next_free_page == free_pages) return 0; uintptr_t addr = first_free_page + RISCV_PGSIZE * next_free_page++; memset((void*)addr, 0, RISCV_PGSIZE); return addr; } static vmr_t* __vmr_alloc(uintptr_t addr, size_t length, file_t* file, size_t offset, size_t refcnt, int prot) { for (vmr_t* v = vmrs; v < vmrs + MAX_VMR; v++) { if (v->refcnt == 0) { v->addr = addr; v->length = length; v->file = file; v->offset = offset; v->refcnt = refcnt; v->prot = prot; return v; } } return NULL; } static void __vmr_decref(vmr_t* v, size_t dec) { if ((v->refcnt -= dec) == 0) { if (v->file) file_decref(v->file); } } static size_t pte_ppn(pte_t pte) { return pte >> RISCV_PGSHIFT; } static pte_t ptd_create(uintptr_t ppn) { return ppn << RISCV_PGSHIFT | PTE_T | PTE_V; } static uintptr_t ppn(uintptr_t addr) { return addr >> RISCV_PGSHIFT; } static size_t pt_idx(uintptr_t addr, int level) { size_t idx = addr >> (RISCV_PGLEVEL_BITS*level + RISCV_PGSHIFT); return idx & ((1 << RISCV_PGLEVEL_BITS) - 1); } static pte_t super_pte_create(uintptr_t ppn, int kprot, int uprot, int level) { kprot &= (PROT_READ | PROT_WRITE | PROT_EXEC); uprot &= (PROT_READ | PROT_WRITE | PROT_EXEC); int perm = (kprot * PTE_SR) | (uprot * PTE_UR) | PTE_V; return (ppn << (RISCV_PGLEVEL_BITS*level + RISCV_PGSHIFT)) | perm; } static pte_t pte_create(uintptr_t ppn, int kprot, int uprot) { return super_pte_create(ppn, kprot, uprot, 0); } static __attribute__((always_inline)) pte_t* __walk_internal(uintptr_t addr, int create) { const size_t pte_per_page = RISCV_PGSIZE/sizeof(void*); pte_t* t = root_page_table; for (unsigned i = RISCV_PGLEVELS-1; i > 0; i--) { size_t idx = pt_idx(addr, i); if (!(t[idx] & PTE_V)) { if (!create) return 0; uintptr_t page = __page_alloc(); if (page == 0) return 0; t[idx] = ptd_create(ppn(page)); } else kassert(t[idx] & PTE_T); t = (pte_t*)(pte_ppn(t[idx]) << RISCV_PGSHIFT); } return &t[pt_idx(addr, 0)]; } static pte_t* __walk(uintptr_t addr) { return __walk_internal(addr, 0); } static pte_t* __walk_create(uintptr_t addr) { return __walk_internal(addr, 1); } static int __va_avail(uintptr_t vaddr) { pte_t* pte = __walk(vaddr); return pte == 0 || *pte == 0; } static uintptr_t __vm_alloc(size_t npage) { uintptr_t start = current.brk, end = current.mmap_max - npage*RISCV_PGSIZE; for (uintptr_t a = start; a <= end; a += RISCV_PGSIZE) { if (!__va_avail(a)) continue; uintptr_t first = a, last = a + (npage-1) * RISCV_PGSIZE; for (a = last; a > first && __va_avail(a); a -= RISCV_PGSIZE) ; if (a > first) continue; return a; } return 0; } static void flush_tlb() { asm volatile("sfence.vm"); } static int __handle_page_fault(uintptr_t vaddr, int prot) { uintptr_t vpn = vaddr >> RISCV_PGSHIFT; vaddr = vpn << RISCV_PGSHIFT; pte_t* pte = __walk(vaddr); if (pte == 0 || *pte == 0) return -1; else if (!(*pte & PTE_V)) { kassert(vaddr < current.stack_top && vaddr >= current.user_min); uintptr_t ppn = vpn; vmr_t* v = (vmr_t*)*pte; *pte = pte_create(ppn, PROT_READ|PROT_WRITE, 0); flush_tlb(); if (v->file) { size_t flen = MIN(RISCV_PGSIZE, v->length - (vaddr - v->addr)); ssize_t ret = file_pread(v->file, (void*)vaddr, flen, vaddr - v->addr + v->offset); kassert(ret > 0); if (ret < RISCV_PGSIZE) memset((void*)vaddr + ret, 0, RISCV_PGSIZE - ret); } else memset((void*)vaddr, 0, RISCV_PGSIZE); __vmr_decref(v, 1); *pte = pte_create(ppn, v->prot, v->prot); } pte_t perms = pte_create(0, prot, prot); if ((*pte & perms) != perms) return -1; flush_tlb(); return 0; } int handle_page_fault(uintptr_t vaddr, int prot) { spinlock_lock(&vm_lock); int ret = __handle_page_fault(vaddr, prot); spinlock_unlock(&vm_lock); return ret; } static void __do_munmap(uintptr_t addr, size_t len) { for (uintptr_t a = addr; a < addr + len; a += RISCV_PGSIZE) { pte_t* pte = __walk(a); if (pte == 0 || *pte == 0) continue; if (!(*pte & PTE_V)) __vmr_decref((vmr_t*)*pte, 1); *pte = 0; } flush_tlb(); // TODO: shootdown } uintptr_t __do_mmap(uintptr_t addr, size_t length, int prot, int flags, file_t* f, off_t offset) { size_t npage = (length-1)/RISCV_PGSIZE+1; if (flags & MAP_FIXED) { if ((addr & (RISCV_PGSIZE-1)) || addr < current.user_min || addr + length > current.stack_top || addr + length < addr) return (uintptr_t)-1; } else if ((addr = __vm_alloc(npage)) == 0) return (uintptr_t)-1; vmr_t* v = __vmr_alloc(addr, length, f, offset, npage, prot); if (!v) return (uintptr_t)-1; for (uintptr_t a = addr; a < addr + length; a += RISCV_PGSIZE) { pte_t* pte = __walk_create(a); kassert(pte); if (*pte) __do_munmap(a, RISCV_PGSIZE); *pte = (pte_t)v; } if (f) file_incref(f); if (!have_vm || (flags & MAP_POPULATE)) for (uintptr_t a = addr; a < addr + length; a += RISCV_PGSIZE) kassert(__handle_page_fault(a, prot) == 0); return addr; } int do_munmap(uintptr_t addr, size_t length) { if ((addr & (RISCV_PGSIZE-1)) || addr < current.user_min || addr + length > current.stack_top || addr + length < addr) return -EINVAL; spinlock_lock(&vm_lock); __do_munmap(addr, length); spinlock_unlock(&vm_lock); return 0; } uintptr_t do_mmap(uintptr_t addr, size_t length, int prot, int flags, int fd, off_t offset) { if (!(flags & MAP_PRIVATE) || length == 0 || (offset & (RISCV_PGSIZE-1))) return -EINVAL; file_t* f = NULL; if (!(flags & MAP_ANONYMOUS) && (f = file_get(fd)) == NULL) return -EBADF; spinlock_lock(&vm_lock); addr = __do_mmap(addr, length, prot, flags, f, offset); if (addr < current.brk_max) current.brk_max = addr; spinlock_unlock(&vm_lock); if (f) file_decref(f); return addr; } uintptr_t __do_brk(size_t addr) { uintptr_t newbrk = addr; if (addr < current.brk_min) newbrk = current.brk_min; else if (addr > current.brk_max) newbrk = current.brk_max; if (current.brk == 0) current.brk = ROUNDUP(current.brk_min, RISCV_PGSIZE); uintptr_t newbrk_page = ROUNDUP(newbrk, RISCV_PGSIZE); if (current.brk > newbrk_page) __do_munmap(newbrk_page, current.brk - newbrk_page); else if (current.brk < newbrk_page) kassert(__do_mmap(current.brk, newbrk_page - current.brk, -1, MAP_FIXED|MAP_PRIVATE|MAP_ANONYMOUS, 0, 0) == current.brk); current.brk = newbrk_page; return newbrk; } uintptr_t do_brk(size_t addr) { spinlock_lock(&vm_lock); addr = __do_brk(addr); spinlock_unlock(&vm_lock); return addr; } uintptr_t do_mremap(uintptr_t addr, size_t old_size, size_t new_size, int flags) { uintptr_t res = -1; if (((addr | old_size | new_size) & (RISCV_PGSIZE-1)) || (flags & MREMAP_FIXED)) return -EINVAL; spinlock_lock(&vm_lock); for (size_t i = 0; i < MAX_VMR; i++) { if (vmrs[i].refcnt && addr == vmrs[i].addr && old_size == vmrs[i].length) { size_t old_npage = (vmrs[i].length-1)/RISCV_PGSIZE+1; size_t new_npage = (new_size-1)/RISCV_PGSIZE+1; if (new_size < old_size) __do_munmap(addr + new_size, old_size - new_size); else if (new_size > old_size) __do_mmap(addr + old_size, new_size - old_size, vmrs[i].prot, 0, vmrs[i].file, vmrs[i].offset + new_size - old_size); __vmr_decref(&vmrs[i], old_npage - new_npage); res = addr; } } spinlock_unlock(&vm_lock); return res; } uintptr_t do_mprotect(uintptr_t addr, size_t length, int prot) { uintptr_t res = 0; if ((addr) & (RISCV_PGSIZE-1)) return -EINVAL; spinlock_lock(&vm_lock); for (uintptr_t a = addr; a < addr + length; a += RISCV_PGSIZE) { pte_t* pte = __walk(a); if (pte == 0 || *pte == 0) { res = -ENOMEM; break; } if(!(*pte & PTE_V)){ vmr_t* v = (vmr_t*)*pte; if((v->prot ^ prot) & ~v->prot){ //TODO:look at file to find perms res = -EACCES; break; } v->prot = prot; }else{ pte_t perms = pte_create(0, 0, prot); if ((*pte & perms) != perms){ //TODO:look at file to find perms res = -EACCES; break; } pte_t permset = (*pte & ~(PTE_UR | PTE_UW | PTE_UX)) | perms; *pte = permset; } } spinlock_unlock(&vm_lock); return res; } static void __map_kernel_range(uintptr_t paddr, size_t len, int prot) { pte_t perms = pte_create(0, prot, 0); for (uintptr_t a = paddr; a < paddr + len; a += RISCV_PGSIZE) { pte_t* pte = __walk_create(a); kassert(pte); *pte = a | perms; } } void populate_mapping(const void* start, size_t size, int prot) { uintptr_t a0 = ROUNDDOWN((uintptr_t)start, RISCV_PGSIZE); for (uintptr_t a = a0; a < (uintptr_t)start+size; a += RISCV_PGSIZE) { atomic_t* atom = (atomic_t*)(a & -sizeof(atomic_t)); if (prot & PROT_WRITE) atomic_add(atom, 0); else atomic_read(atom); } } void vm_init() { extern char _end; current.user_min = ROUNDUP((uintptr_t)&_end, RISCV_PGSIZE); current.brk_min = current.user_min; current.brk = 0; uint32_t mem_mb = *(volatile uint32_t*)0; if (mem_mb == 0) { current.stack_bottom = 0; current.stack_top = 0; current.brk_max = 0; current.mmap_max = 0; } else { uintptr_t max_addr = (uintptr_t)mem_mb << 20; size_t mem_pages = max_addr >> RISCV_PGSHIFT; const size_t min_free_pages = 2*RISCV_PGLEVELS; const size_t min_stack_pages = 8; const size_t max_stack_pages = 1024; kassert(mem_pages > min_free_pages + min_stack_pages); free_pages = MAX(mem_pages >> (RISCV_PGLEVEL_BITS-1), min_free_pages); size_t stack_pages = CLAMP(mem_pages/32, min_stack_pages, max_stack_pages); first_free_page = max_addr - free_pages * RISCV_PGSIZE; uintptr_t root_page_table_paddr = __page_alloc(); kassert(root_page_table_paddr); root_page_table = (pte_t*)root_page_table_paddr; __map_kernel_range(0, current.user_min, PROT_READ|PROT_WRITE|PROT_EXEC); int vm_field = sizeof(long) == 4 ? VM_SV32 : VM_SV43; if (have_vm) { #if 0 write_csr(sptbr, root_page_table_paddr); set_csr(mstatus, vm_field << __builtin_ctz(MSTATUS_VM)); #endif have_vm = (clear_csr(mstatus, MSTATUS_VM) & MSTATUS_VM) != VM_MBARE; } size_t stack_size = RISCV_PGSIZE * stack_pages; current.stack_top = MIN(first_free_page, 0x80000000); // for RV32 sanity uintptr_t stack_bot = current.stack_top - stack_size; if (have_vm) { __map_kernel_range(first_free_page, free_pages * RISCV_PGSIZE, PROT_READ|PROT_WRITE); kassert(__do_mmap(stack_bot, stack_size, -1, MAP_FIXED|MAP_PRIVATE|MAP_ANONYMOUS, 0, 0) == stack_bot); set_csr(mstatus, vm_field); } current.stack_bottom = stack_bot; stack_bot -= RISCV_PGSIZE; // guard page current.mmap_max = current.brk_max = stack_bot; } }