// See LICENSE for license details. #include "pk.h" #include "fp.h" #include "config.h" static fp_state_t fp_state; #ifdef PK_ENABLE_FP_EMULATION #include "softfloat.h" #include #define noisy 0 static void set_fp_reg(unsigned int which, unsigned int dp, uint64_t val); static uint64_t get_fp_reg(unsigned int which, unsigned int dp); static inline void validate_address(trapframe_t* tf, long addr, int size, int store) { } int emulate_fp(trapframe_t* tf) { if (have_fp) { if (!(read_csr(status) & SR_EF)) init_fp(tf); fp_state.fsr = get_fp_state(fp_state.fpr); } if(noisy) printk("FPU emulation at pc %lx, insn %x\n",tf->epc,(uint32_t)tf->insn); #define RS1 ((tf->insn >> 15) & 0x1F) #define RS2 ((tf->insn >> 20) & 0x1F) #define RS3 ((tf->insn >> 27) & 0x1F) #define RD ((tf->insn >> 7) & 0x1F) #define RM ((tf->insn >> 12) & 0x7) int32_t imm = (int32_t)tf->insn >> 20; int32_t bimm = RD | imm >> 5 << 5; #define XRS1 (tf->gpr[RS1]) #define XRS2 (tf->gpr[RS2]) #define XRDR (tf->gpr[RD]) uint64_t frs1d = fp_state.fpr[RS1]; uint64_t frs2d = fp_state.fpr[RS2]; uint64_t frs3d = fp_state.fpr[RS3]; uint32_t frs1s = get_fp_reg(RS1, 0); uint32_t frs2s = get_fp_reg(RS2, 0); uint32_t frs3s = get_fp_reg(RS3, 0); long effective_address_load = XRS1 + imm; long effective_address_store = XRS1 + bimm; softfloat_exceptionFlags = 0; softfloat_roundingMode = (RM == 7) ? ((fp_state.fsr >> 5) & 7) : RM; #define IS_INSN(x) ((tf->insn & MASK_ ## x) == MATCH_ ## x) int do_writeback = 0; int writeback_dp; uint64_t writeback_value; #define DO_WRITEBACK(dp, value) \ do { do_writeback = 1; writeback_dp = (dp); writeback_value = (value); } \ while(0) if(IS_INSN(FLW)) { validate_address(tf, effective_address_load, 4, 0); DO_WRITEBACK(0, *(uint32_t*)effective_address_load); } else if(IS_INSN(FLD)) { validate_address(tf, effective_address_load, 8, 0); DO_WRITEBACK(1, *(uint64_t*)effective_address_load); } else if(IS_INSN(FSW)) { validate_address(tf, effective_address_store, 4, 1); *(uint32_t*)effective_address_store = frs2s; } else if(IS_INSN(FSD)) { validate_address(tf, effective_address_store, 8, 1); *(uint64_t*)effective_address_store = frs2d; } else if(IS_INSN(FMV_X_S)) XRDR = frs1s; else if(IS_INSN(FMV_X_D)) XRDR = frs1d; else if(IS_INSN(FMV_S_X)) DO_WRITEBACK(0, XRS1); else if(IS_INSN(FMV_D_X)) DO_WRITEBACK(1, XRS1); else if(IS_INSN(FSGNJ_S)) DO_WRITEBACK(0, (frs1s &~ (uint32_t)INT32_MIN) | (frs2s & (uint32_t)INT32_MIN)); else if(IS_INSN(FSGNJ_D)) DO_WRITEBACK(1, (frs1d &~ INT64_MIN) | (frs2d & INT64_MIN)); else if(IS_INSN(FSGNJN_S)) DO_WRITEBACK(0, (frs1s &~ (uint32_t)INT32_MIN) | ((~frs2s) & (uint32_t)INT32_MIN)); else if(IS_INSN(FSGNJN_D)) DO_WRITEBACK(1, (frs1d &~ INT64_MIN) | ((~frs2d) & INT64_MIN)); else if(IS_INSN(FSGNJX_S)) DO_WRITEBACK(0, frs1s ^ (frs2s & (uint32_t)INT32_MIN)); else if(IS_INSN(FSGNJX_D)) DO_WRITEBACK(1, frs1d ^ (frs2d & INT64_MIN)); else if(IS_INSN(FEQ_S)) XRDR = f32_eq(frs1s, frs2s); else if(IS_INSN(FEQ_D)) XRDR = f64_eq(frs1d, frs2d); else if(IS_INSN(FLE_S)) XRDR = f32_eq(frs1s, frs2s) || f32_lt(frs1s, frs2s); else if(IS_INSN(FLE_D)) XRDR = f64_eq(frs1d, frs2d) || f64_lt(frs1s, frs2s); else if(IS_INSN(FLT_S)) XRDR = f32_lt(frs1s, frs2s); else if(IS_INSN(FLT_D)) XRDR = f64_lt(frs1d, frs2d); else if(IS_INSN(FCVT_S_W)) DO_WRITEBACK(0, i64_to_f32((int64_t)(int32_t)XRS1)); else if(IS_INSN(FCVT_S_L)) DO_WRITEBACK(0, i64_to_f32(XRS1)); else if(IS_INSN(FCVT_S_D)) DO_WRITEBACK(0, f64_to_f32(frs1d)); else if(IS_INSN(FCVT_D_W)) DO_WRITEBACK(1, i64_to_f64((int64_t)(int32_t)XRS1)); else if(IS_INSN(FCVT_D_L)) DO_WRITEBACK(1, i64_to_f64(XRS1)); else if(IS_INSN(FCVT_D_S)) DO_WRITEBACK(1, f32_to_f64(frs1s)); else if(IS_INSN(FCVT_S_WU)) DO_WRITEBACK(0, ui64_to_f32((uint64_t)(uint32_t)XRS1)); else if(IS_INSN(FCVT_S_LU)) DO_WRITEBACK(0, ui64_to_f32(XRS1)); else if(IS_INSN(FCVT_D_WU)) DO_WRITEBACK(1, ui64_to_f64((uint64_t)(uint32_t)XRS1)); else if(IS_INSN(FCVT_D_LU)) DO_WRITEBACK(1, ui64_to_f64(XRS1)); else if(IS_INSN(FADD_S)) DO_WRITEBACK(0, f32_mulAdd(frs1s, 0x3f800000, frs2s)); else if(IS_INSN(FADD_D)) DO_WRITEBACK(1, f64_mulAdd(frs1d, 0x3ff0000000000000LL, frs2d)); else if(IS_INSN(FSUB_S)) DO_WRITEBACK(0, f32_mulAdd(frs1s, 0x3f800000, frs2s ^ (uint32_t)INT32_MIN)); else if(IS_INSN(FSUB_D)) DO_WRITEBACK(1, f64_mulAdd(frs1d, 0x3ff0000000000000LL, frs2d ^ INT64_MIN)); else if(IS_INSN(FMUL_S)) DO_WRITEBACK(0, f32_mulAdd(frs1s, frs2s, 0)); else if(IS_INSN(FMUL_D)) DO_WRITEBACK(1, f64_mulAdd(frs1d, frs2d, 0)); else if(IS_INSN(FMADD_S)) DO_WRITEBACK(0, f32_mulAdd(frs1s, frs2s, frs3s)); else if(IS_INSN(FMADD_D)) DO_WRITEBACK(1, f64_mulAdd(frs1d, frs2d, frs3d)); else if(IS_INSN(FMSUB_S)) DO_WRITEBACK(0, f32_mulAdd(frs1s, frs2s, frs3s ^ (uint32_t)INT32_MIN)); else if(IS_INSN(FMSUB_D)) DO_WRITEBACK(1, f64_mulAdd(frs1d, frs2d, frs3d ^ INT64_MIN)); else if(IS_INSN(FNMADD_S)) DO_WRITEBACK(0, f32_mulAdd(frs1s, frs2s, frs3s) ^ (uint32_t)INT32_MIN); else if(IS_INSN(FNMADD_D)) DO_WRITEBACK(1, f64_mulAdd(frs1d, frs2d, frs3d) ^ INT64_MIN); else if(IS_INSN(FNMSUB_S)) DO_WRITEBACK(0, f32_mulAdd(frs1s, frs2s, frs3s ^ (uint32_t)INT32_MIN) ^ (uint32_t)INT32_MIN); else if(IS_INSN(FNMSUB_D)) DO_WRITEBACK(1, f64_mulAdd(frs1d, frs2d, frs3d ^ INT64_MIN) ^ INT64_MIN); else if(IS_INSN(FDIV_S)) DO_WRITEBACK(0, f32_div(frs1s, frs2s)); else if(IS_INSN(FDIV_D)) DO_WRITEBACK(1, f64_div(frs1d, frs2d)); else if(IS_INSN(FSQRT_S)) DO_WRITEBACK(0, f32_sqrt(frs1s)); else if(IS_INSN(FSQRT_D)) DO_WRITEBACK(1, f64_sqrt(frs1d)); else if(IS_INSN(FCVT_W_S)) XRDR = f32_to_i32(frs1s, softfloat_roundingMode, true); else if(IS_INSN(FCVT_W_D)) XRDR = f64_to_i32(frs1d, softfloat_roundingMode, true); else if(IS_INSN(FCVT_L_S)) XRDR = f32_to_i64(frs1s, softfloat_roundingMode, true); else if(IS_INSN(FCVT_L_D)) XRDR = f64_to_i64(frs1d, softfloat_roundingMode, true); else if(IS_INSN(FCVT_WU_S)) XRDR = f32_to_ui32(frs1s, softfloat_roundingMode, true); else if(IS_INSN(FCVT_WU_D)) XRDR = f64_to_ui32(frs1d, softfloat_roundingMode, true); else if(IS_INSN(FCVT_LU_S)) XRDR = f32_to_ui64(frs1s, softfloat_roundingMode, true); else if(IS_INSN(FCVT_LU_D)) XRDR = f64_to_ui64(frs1d, softfloat_roundingMode, true); else if(IS_INSN(FCLASS_S)) XRDR = f32_classify(frs1s); else if(IS_INSN(FCLASS_D)) XRDR = f64_classify(frs1s); else return -1; if(do_writeback) set_fp_reg(RD, writeback_dp, writeback_value); if(have_fp) put_fp_state(fp_state.fpr,fp_state.fsr); return 0; } #define STR(x) XSTR(x) #define XSTR(x) #x #define PUT_FP_REG(which, type, val) asm("fmv." STR(type) ".x f" STR(which) ",%0" : : "r"(val)) #define GET_FP_REG(which, type, val) asm("fmv.x." STR(type) " %0,f" STR(which) : "=r"(val)) #define LOAD_FP_REG(which, type, val) asm("fl" STR(type) " f" STR(which) ",%0" : : "m"(val)) #define STORE_FP_REG(which, type, val) asm("fs" STR(type) " f" STR(which) ",%0" : "=m"(val) : : "memory") static void __attribute__((noinline)) set_fp_reg(unsigned int which, unsigned int dp, uint64_t val) { if (noisy) printk("fpr%c[%x] <= %lx\n", dp ? 'd' : 's', which, val); if(dp || !have_fp) fp_state.fpr[which] = val; else { // to set an SP value, move the SP value into the FPU // then move it back out as a DP value. OK to clobber $f0 // because we'll restore it later. PUT_FP_REG(0,s,val); STORE_FP_REG(0,d,fp_state.fpr[which]); } } static uint64_t __attribute__((noinline)) get_fp_reg(unsigned int which, unsigned int dp) { uint64_t val; if(dp || !have_fp) val = fp_state.fpr[which]; else { // to get an SP value, move the DP value into the FPU // then move it back out as an SP value. OK to clobber $f0 // because we'll restore it later. LOAD_FP_REG(0,d,fp_state.fpr[which]); GET_FP_REG(0,s,val); } if (noisy) printk("fpr%c[%x] => %lx\n", dp ? 'd' : 's', which, val); return val; } #endif void init_fp(trapframe_t* tf) { tf->sr |= SR_EF; set_csr(status, SR_EF); put_fp_state(fp_state.fpr,fp_state.fsr); }