aboutsummaryrefslogtreecommitdiff
path: root/newlib/libm/ld80/s_logl.c
blob: 01e541b497380a7bc157e6b4c2665bf097888de7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
/*-
 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
 *
 * Copyright (c) 2007-2013 Bruce D. Evans
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice unmodified, this list of conditions, and the following
 *    disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

/**
 * Implementation of the natural logarithm of x for Intel 80-bit format.
 *
 * First decompose x into its base 2 representation:
 *
 *    log(x) = log(X * 2**k), where X is in [1, 2)
 *           = log(X) + k * log(2).
 *
 * Let X = X_i + e, where X_i is the center of one of the intervals
 * [-1.0/256, 1.0/256), [1.0/256, 3.0/256), .... [2.0-1.0/256, 2.0+1.0/256)
 * and X is in this interval.  Then
 *
 *    log(X) = log(X_i + e)
 *           = log(X_i * (1 + e / X_i))
 *           = log(X_i) + log(1 + e / X_i).
 *
 * The values log(X_i) are tabulated below.  Let d = e / X_i and use
 *
 *    log(1 + d) = p(d)
 *
 * where p(d) = d - 0.5*d*d + ... is a special minimax polynomial of
 * suitably high degree.
 *
 * To get sufficiently small roundoff errors, k * log(2), log(X_i), and
 * sometimes (if |k| is not large) the first term in p(d) must be evaluated
 * and added up in extra precision.  Extra precision is not needed for the
 * rest of p(d).  In the worst case when k = 0 and log(X_i) is 0, the final
 * error is controlled mainly by the error in the second term in p(d).  The
 * error in this term itself is at most 0.5 ulps from the d*d operation in
 * it.  The error in this term relative to the first term is thus at most
 * 0.5 * |-0.5| * |d| < 1.0/1024 ulps.  We aim for an accumulated error of
 * at most twice this at the point of the final rounding step.  Thus the
 * final error should be at most 0.5 + 1.0/512 = 0.5020 ulps.  Exhaustive
 * testing of a float variant of this function showed a maximum final error
 * of 0.5008 ulps.  Non-exhaustive testing of a double variant of this
 * function showed a maximum final error of 0.5078 ulps (near 1+1.0/256).
 *
 * We made the maximum of |d| (and thus the total relative error and the
 * degree of p(d)) small by using a large number of intervals.  Using
 * centers of intervals instead of endpoints reduces this maximum by a
 * factor of 2 for a given number of intervals.  p(d) is special only
 * in beginning with the Taylor coefficients 0 + 1*d, which tends to happen
 * naturally.  The most accurate minimax polynomial of a given degree might
 * be different, but then we wouldn't want it since we would have to do
 * extra work to avoid roundoff error (especially for P0*d instead of d).
 */

#ifdef DEBUG
#include <assert.h>
#include <fenv.h>
#endif

#ifdef __i386__
#include <ieeefp.h>
#endif

#include "../ld/fpmath.h"
#include "math.h"
#define	i386_SSE_GOOD
#ifndef NO_STRUCT_RETURN
#define	STRUCT_RETURN
#endif
#include "../ld/math_private.h"

#if !defined(NO_UTAB) && !defined(NO_UTABL)
#define	USE_UTAB
#endif

/*
 * Domain [-0.005280, 0.004838], range ~[-5.1736e-22, 5.1738e-22]:
 * |log(1 + d)/d - p(d)| < 2**-70.7
 */
static const double
P2 = -0.5,
P3 =  3.3333333333333359e-1,		/*  0x1555555555555a.0p-54 */
P4 = -2.5000000000004424e-1,		/* -0x1000000000031d.0p-54 */
P5 =  1.9999999992970016e-1,		/*  0x1999999972f3c7.0p-55 */
P6 = -1.6666666072191585e-1,		/* -0x15555548912c09.0p-55 */
P7 =  1.4286227413310518e-1,		/*  0x12494f9d9def91.0p-55 */
P8 = -1.2518388626763144e-1;		/* -0x1006068cc0b97c.0p-55 */

static volatile const double zero = 0;

#define	INTERVALS	128
#define	LOG2_INTERVALS	7
#define	TSIZE		(INTERVALS + 1)
#define	G(i)		(T[(i)].G)
#define	F_hi(i)		(T[(i)].F_hi)
#define	F_lo(i)		(T[(i)].F_lo)
#define	ln2_hi		F_hi(TSIZE - 1)
#define	ln2_lo		F_lo(TSIZE - 1)
#define	E(i)		(U[(i)].E)
#define	H(i)		(U[(i)].H)

static const struct {
	float	G;			/* 1/(1 + i/128) rounded to 8/9 bits */
	float	F_hi;			/* log(1 / G_i) rounded (see below) */
	double	F_lo;			/* next 53 bits for log(1 / G_i) */
} T[TSIZE] = {
	/*
	 * ln2_hi and each F_hi(i) are rounded to a number of bits that
	 * makes F_hi(i) + dk*ln2_hi exact for all i and all dk.
	 *
	 * The last entry (for X just below 2) is used to define ln2_hi
	 * and ln2_lo, to ensure that F_hi(i) and F_lo(i) cancel exactly
	 * with dk*ln2_hi and dk*ln2_lo, respectively, when dk = -1.
	 * This is needed for accuracy when x is just below 1.  (To avoid
	 * special cases, such x are "reduced" strangely to X just below
	 * 2 and dk = -1, and then the exact cancellation is needed
	 * because any the error from any non-exactness would be too
	 * large).
	 *
	 * We want to share this table between double precision and ld80,
	 * so the relevant range of dk is the larger one of ld80
	 * ([-16445, 16383]) and the relevant exactness requirement is
	 * the stricter one of double precision.  The maximum number of
	 * bits in F_hi(i) that works is very dependent on i but has
	 * a minimum of 33.  We only need about 12 bits in F_hi(i) for
	 * it to provide enough extra precision in double precision (11
	 * more than that are required for ld80).
	 *
	 * We round F_hi(i) to 24 bits so that it can have type float,
	 * mainly to minimize the size of the table.  Using all 24 bits
	 * in a float for it automatically satisfies the above constraints.
	 */
	 { 0x800000.0p-23,  0,               0 },
	 { 0xfe0000.0p-24,  0x8080ac.0p-30, -0x14ee431dae6675.0p-84 },
	 { 0xfc0000.0p-24,  0x8102b3.0p-29, -0x1db29ee2d83718.0p-84 },
	 { 0xfa0000.0p-24,  0xc24929.0p-29,  0x1191957d173698.0p-83 },
	 { 0xf80000.0p-24,  0x820aec.0p-28,  0x13ce8888e02e79.0p-82 },
	 { 0xf60000.0p-24,  0xa33577.0p-28, -0x17a4382ce6eb7c.0p-82 },
	 { 0xf48000.0p-24,  0xbc42cb.0p-28, -0x172a21161a1076.0p-83 },
	 { 0xf30000.0p-24,  0xd57797.0p-28, -0x1e09de07cb9589.0p-82 },
	 { 0xf10000.0p-24,  0xf7518e.0p-28,  0x1ae1eec1b036c5.0p-91 },
	 { 0xef0000.0p-24,  0x8cb9df.0p-27, -0x1d7355325d560e.0p-81 },
	 { 0xed8000.0p-24,  0x999ec0.0p-27, -0x1f9f02d256d503.0p-82 },
	 { 0xec0000.0p-24,  0xa6988b.0p-27, -0x16fc0a9d12c17a.0p-83 },
	 { 0xea0000.0p-24,  0xb80698.0p-27,  0x15d581c1e8da9a.0p-81 },
	 { 0xe80000.0p-24,  0xc99af3.0p-27, -0x1535b3ba8f150b.0p-83 },
	 { 0xe70000.0p-24,  0xd273b2.0p-27,  0x163786f5251af0.0p-85 },
	 { 0xe50000.0p-24,  0xe442c0.0p-27,  0x1bc4b2368e32d5.0p-84 },
	 { 0xe38000.0p-24,  0xf1b83f.0p-27,  0x1c6090f684e676.0p-81 },
	 { 0xe20000.0p-24,  0xff448a.0p-27, -0x1890aa69ac9f42.0p-82 },
	 { 0xe08000.0p-24,  0x8673f6.0p-26,  0x1b9985194b6b00.0p-80 },
	 { 0xdf0000.0p-24,  0x8d515c.0p-26, -0x1dc08d61c6ef1e.0p-83 },
	 { 0xdd8000.0p-24,  0x943a9e.0p-26, -0x1f72a2dac729b4.0p-82 },
	 { 0xdc0000.0p-24,  0x9b2fe6.0p-26, -0x1fd4dfd3a0afb9.0p-80 },
	 { 0xda8000.0p-24,  0xa2315d.0p-26, -0x11b26121629c47.0p-82 },
	 { 0xd90000.0p-24,  0xa93f2f.0p-26,  0x1286d633e8e569.0p-81 },
	 { 0xd78000.0p-24,  0xb05988.0p-26,  0x16128eba936770.0p-84 },
	 { 0xd60000.0p-24,  0xb78094.0p-26,  0x16ead577390d32.0p-80 },
	 { 0xd50000.0p-24,  0xbc4c6c.0p-26,  0x151131ccf7c7b7.0p-81 },
	 { 0xd38000.0p-24,  0xc3890a.0p-26, -0x115e2cd714bd06.0p-80 },
	 { 0xd20000.0p-24,  0xcad2d7.0p-26, -0x1847f406ebd3b0.0p-82 },
	 { 0xd10000.0p-24,  0xcfb620.0p-26,  0x1c2259904d6866.0p-81 },
	 { 0xcf8000.0p-24,  0xd71653.0p-26,  0x1ece57a8d5ae55.0p-80 },
	 { 0xce0000.0p-24,  0xde843a.0p-26, -0x1f109d4bc45954.0p-81 },
	 { 0xcd0000.0p-24,  0xe37fde.0p-26,  0x1bc03dc271a74d.0p-81 },
	 { 0xcb8000.0p-24,  0xeb050c.0p-26, -0x1bf2badc0df842.0p-85 },
	 { 0xca0000.0p-24,  0xf29878.0p-26, -0x18efededd89fbe.0p-87 },
	 { 0xc90000.0p-24,  0xf7ad6f.0p-26,  0x1373ff977baa69.0p-81 },
	 { 0xc80000.0p-24,  0xfcc8e3.0p-26,  0x196766f2fb3283.0p-80 },
	 { 0xc68000.0p-24,  0x823f30.0p-25,  0x19bd076f7c434e.0p-79 },
	 { 0xc58000.0p-24,  0x84d52c.0p-25, -0x1a327257af0f46.0p-79 },
	 { 0xc40000.0p-24,  0x88bc74.0p-25,  0x113f23def19c5a.0p-81 },
	 { 0xc30000.0p-24,  0x8b5ae6.0p-25,  0x1759f6e6b37de9.0p-79 },
	 { 0xc20000.0p-24,  0x8dfccb.0p-25,  0x1ad35ca6ed5148.0p-81 },
	 { 0xc10000.0p-24,  0x90a22b.0p-25,  0x1a1d71a87deba4.0p-79 },
	 { 0xbf8000.0p-24,  0x94a0d8.0p-25, -0x139e5210c2b731.0p-80 },
	 { 0xbe8000.0p-24,  0x974f16.0p-25, -0x18f6ebcff3ed73.0p-81 },
	 { 0xbd8000.0p-24,  0x9a00f1.0p-25, -0x1aa268be39aab7.0p-79 },
	 { 0xbc8000.0p-24,  0x9cb672.0p-25, -0x14c8815839c566.0p-79 },
	 { 0xbb0000.0p-24,  0xa0cda1.0p-25,  0x1eaf46390dbb24.0p-81 },
	 { 0xba0000.0p-24,  0xa38c6e.0p-25,  0x138e20d831f698.0p-81 },
	 { 0xb90000.0p-24,  0xa64f05.0p-25, -0x1e8d3c41123616.0p-82 },
	 { 0xb80000.0p-24,  0xa91570.0p-25,  0x1ce28f5f3840b2.0p-80 },
	 { 0xb70000.0p-24,  0xabdfbb.0p-25, -0x186e5c0a424234.0p-79 },
	 { 0xb60000.0p-24,  0xaeadef.0p-25, -0x14d41a0b2a08a4.0p-83 },
	 { 0xb50000.0p-24,  0xb18018.0p-25,  0x16755892770634.0p-79 },
	 { 0xb40000.0p-24,  0xb45642.0p-25, -0x16395ebe59b152.0p-82 },
	 { 0xb30000.0p-24,  0xb73077.0p-25,  0x1abc65c8595f09.0p-80 },
	 { 0xb20000.0p-24,  0xba0ec4.0p-25, -0x1273089d3dad89.0p-79 },
	 { 0xb10000.0p-24,  0xbcf133.0p-25,  0x10f9f67b1f4bbf.0p-79 },
	 { 0xb00000.0p-24,  0xbfd7d2.0p-25, -0x109fab90486409.0p-80 },
	 { 0xaf0000.0p-24,  0xc2c2ac.0p-25, -0x1124680aa43333.0p-79 },
	 { 0xae8000.0p-24,  0xc439b3.0p-25, -0x1f360cc4710fc0.0p-80 },
	 { 0xad8000.0p-24,  0xc72afd.0p-25, -0x132d91f21d89c9.0p-80 },
	 { 0xac8000.0p-24,  0xca20a2.0p-25, -0x16bf9b4d1f8da8.0p-79 },
	 { 0xab8000.0p-24,  0xcd1aae.0p-25,  0x19deb5ce6a6a87.0p-81 },
	 { 0xaa8000.0p-24,  0xd0192f.0p-25,  0x1a29fb48f7d3cb.0p-79 },
	 { 0xaa0000.0p-24,  0xd19a20.0p-25,  0x1127d3c6457f9d.0p-81 },
	 { 0xa90000.0p-24,  0xd49f6a.0p-25, -0x1ba930e486a0ac.0p-81 },
	 { 0xa80000.0p-24,  0xd7a94b.0p-25, -0x1b6e645f31549e.0p-79 },
	 { 0xa70000.0p-24,  0xdab7d0.0p-25,  0x1118a425494b61.0p-80 },
	 { 0xa68000.0p-24,  0xdc40d5.0p-25,  0x1966f24d29d3a3.0p-80 },
	 { 0xa58000.0p-24,  0xdf566d.0p-25, -0x1d8e52eb2248f1.0p-82 },
	 { 0xa48000.0p-24,  0xe270ce.0p-25, -0x1ee370f96e6b68.0p-80 },
	 { 0xa40000.0p-24,  0xe3ffce.0p-25,  0x1d155324911f57.0p-80 },
	 { 0xa30000.0p-24,  0xe72179.0p-25, -0x1fe6e2f2f867d9.0p-80 },
	 { 0xa20000.0p-24,  0xea4812.0p-25,  0x1b7be9add7f4d4.0p-80 },
	 { 0xa18000.0p-24,  0xebdd3d.0p-25,  0x1b3cfb3f7511dd.0p-79 },
	 { 0xa08000.0p-24,  0xef0b5b.0p-25, -0x1220de1f730190.0p-79 },
	 { 0xa00000.0p-24,  0xf0a451.0p-25, -0x176364c9ac81cd.0p-80 },
	 { 0x9f0000.0p-24,  0xf3da16.0p-25,  0x1eed6b9aafac8d.0p-81 },
	 { 0x9e8000.0p-24,  0xf576e9.0p-25,  0x1d593218675af2.0p-79 },
	 { 0x9d8000.0p-24,  0xf8b47c.0p-25, -0x13e8eb7da053e0.0p-84 },
	 { 0x9d0000.0p-24,  0xfa553f.0p-25,  0x1c063259bcade0.0p-79 },
	 { 0x9c0000.0p-24,  0xfd9ac5.0p-25,  0x1ef491085fa3c1.0p-79 },
	 { 0x9b8000.0p-24,  0xff3f8c.0p-25,  0x1d607a7c2b8c53.0p-79 },
	 { 0x9a8000.0p-24,  0x814697.0p-24, -0x12ad3817004f3f.0p-78 },
	 { 0x9a0000.0p-24,  0x821b06.0p-24, -0x189fc53117f9e5.0p-81 },
	 { 0x990000.0p-24,  0x83c5f8.0p-24,  0x14cf15a048907b.0p-79 },
	 { 0x988000.0p-24,  0x849c7d.0p-24,  0x1cbb1d35fb8287.0p-78 },
	 { 0x978000.0p-24,  0x864ba6.0p-24,  0x1128639b814f9c.0p-78 },
	 { 0x970000.0p-24,  0x87244c.0p-24,  0x184733853300f0.0p-79 },
	 { 0x968000.0p-24,  0x87fdaa.0p-24,  0x109d23aef77dd6.0p-80 },
	 { 0x958000.0p-24,  0x89b293.0p-24, -0x1a81ef367a59de.0p-78 },
	 { 0x950000.0p-24,  0x8a8e20.0p-24, -0x121ad3dbb2f452.0p-78 },
	 { 0x948000.0p-24,  0x8b6a6a.0p-24, -0x1cfb981628af72.0p-79 },
	 { 0x938000.0p-24,  0x8d253a.0p-24, -0x1d21730ea76cfe.0p-79 },
	 { 0x930000.0p-24,  0x8e03c2.0p-24,  0x135cc00e566f77.0p-78 },
	 { 0x928000.0p-24,  0x8ee30d.0p-24, -0x10fcb5df257a26.0p-80 },
	 { 0x918000.0p-24,  0x90a3ee.0p-24, -0x16e171b15433d7.0p-79 },
	 { 0x910000.0p-24,  0x918587.0p-24, -0x1d050da07f3237.0p-79 },
	 { 0x908000.0p-24,  0x9267e7.0p-24,  0x1be03669a5268d.0p-79 },
	 { 0x8f8000.0p-24,  0x942f04.0p-24,  0x10b28e0e26c337.0p-79 },
	 { 0x8f0000.0p-24,  0x9513c3.0p-24,  0x1a1d820da57cf3.0p-78 },
	 { 0x8e8000.0p-24,  0x95f950.0p-24, -0x19ef8f13ae3cf1.0p-79 },
	 { 0x8e0000.0p-24,  0x96dfab.0p-24, -0x109e417a6e507c.0p-78 },
	 { 0x8d0000.0p-24,  0x98aed2.0p-24,  0x10d01a2c5b0e98.0p-79 },
	 { 0x8c8000.0p-24,  0x9997a2.0p-24, -0x1d6a50d4b61ea7.0p-78 },
	 { 0x8c0000.0p-24,  0x9a8145.0p-24,  0x1b3b190b83f952.0p-78 },
	 { 0x8b8000.0p-24,  0x9b6bbf.0p-24,  0x13a69fad7e7abe.0p-78 },
	 { 0x8b0000.0p-24,  0x9c5711.0p-24, -0x11cd12316f576b.0p-78 },
	 { 0x8a8000.0p-24,  0x9d433b.0p-24,  0x1c95c444b807a2.0p-79 },
	 { 0x898000.0p-24,  0x9f1e22.0p-24, -0x1b9c224ea698c3.0p-79 },
	 { 0x890000.0p-24,  0xa00ce1.0p-24,  0x125ca93186cf0f.0p-81 },
	 { 0x888000.0p-24,  0xa0fc80.0p-24, -0x1ee38a7bc228b3.0p-79 },
	 { 0x880000.0p-24,  0xa1ed00.0p-24, -0x1a0db876613d20.0p-78 },
	 { 0x878000.0p-24,  0xa2de62.0p-24,  0x193224e8516c01.0p-79 },
	 { 0x870000.0p-24,  0xa3d0a9.0p-24,  0x1fa28b4d2541ad.0p-79 },
	 { 0x868000.0p-24,  0xa4c3d6.0p-24,  0x1c1b5760fb4572.0p-78 },
	 { 0x858000.0p-24,  0xa6acea.0p-24,  0x1fed5d0f65949c.0p-80 },
	 { 0x850000.0p-24,  0xa7a2d4.0p-24,  0x1ad270c9d74936.0p-80 },
	 { 0x848000.0p-24,  0xa899ab.0p-24,  0x199ff15ce53266.0p-79 },
	 { 0x840000.0p-24,  0xa99171.0p-24,  0x1a19e15ccc45d2.0p-79 },
	 { 0x838000.0p-24,  0xaa8a28.0p-24, -0x121a14ec532b36.0p-80 },
	 { 0x830000.0p-24,  0xab83d1.0p-24,  0x1aee319980bff3.0p-79 },
	 { 0x828000.0p-24,  0xac7e6f.0p-24, -0x18ffd9e3900346.0p-80 },
	 { 0x820000.0p-24,  0xad7a03.0p-24, -0x1e4db102ce29f8.0p-80 },
	 { 0x818000.0p-24,  0xae768f.0p-24,  0x17c35c55a04a83.0p-81 },
	 { 0x810000.0p-24,  0xaf7415.0p-24,  0x1448324047019b.0p-78 },
	 { 0x808000.0p-24,  0xb07298.0p-24, -0x1750ee3915a198.0p-78 },
	 { 0x800000.0p-24,  0xb17218.0p-24, -0x105c610ca86c39.0p-81 },
};

#ifdef USE_UTAB
static const struct {
	float	H;			/* 1 + i/INTERVALS (exact) */
	float	E;			/* H(i) * G(i) - 1 (exact) */
} U[TSIZE] = {
	 { 0x800000.0p-23,  0 },
	 { 0x810000.0p-23, -0x800000.0p-37 },
	 { 0x820000.0p-23, -0x800000.0p-35 },
	 { 0x830000.0p-23, -0x900000.0p-34 },
	 { 0x840000.0p-23, -0x800000.0p-33 },
	 { 0x850000.0p-23, -0xc80000.0p-33 },
	 { 0x860000.0p-23, -0xa00000.0p-36 },
	 { 0x870000.0p-23,  0x940000.0p-33 },
	 { 0x880000.0p-23,  0x800000.0p-35 },
	 { 0x890000.0p-23, -0xc80000.0p-34 },
	 { 0x8a0000.0p-23,  0xe00000.0p-36 },
	 { 0x8b0000.0p-23,  0x900000.0p-33 },
	 { 0x8c0000.0p-23, -0x800000.0p-35 },
	 { 0x8d0000.0p-23, -0xe00000.0p-33 },
	 { 0x8e0000.0p-23,  0x880000.0p-33 },
	 { 0x8f0000.0p-23, -0xa80000.0p-34 },
	 { 0x900000.0p-23, -0x800000.0p-35 },
	 { 0x910000.0p-23,  0x800000.0p-37 },
	 { 0x920000.0p-23,  0x900000.0p-35 },
	 { 0x930000.0p-23,  0xd00000.0p-35 },
	 { 0x940000.0p-23,  0xe00000.0p-35 },
	 { 0x950000.0p-23,  0xc00000.0p-35 },
	 { 0x960000.0p-23,  0xe00000.0p-36 },
	 { 0x970000.0p-23, -0x800000.0p-38 },
	 { 0x980000.0p-23, -0xc00000.0p-35 },
	 { 0x990000.0p-23, -0xd00000.0p-34 },
	 { 0x9a0000.0p-23,  0x880000.0p-33 },
	 { 0x9b0000.0p-23,  0xe80000.0p-35 },
	 { 0x9c0000.0p-23, -0x800000.0p-35 },
	 { 0x9d0000.0p-23,  0xb40000.0p-33 },
	 { 0x9e0000.0p-23,  0x880000.0p-34 },
	 { 0x9f0000.0p-23, -0xe00000.0p-35 },
	 { 0xa00000.0p-23,  0x800000.0p-33 },
	 { 0xa10000.0p-23, -0x900000.0p-36 },
	 { 0xa20000.0p-23, -0xb00000.0p-33 },
	 { 0xa30000.0p-23, -0xa00000.0p-36 },
	 { 0xa40000.0p-23,  0x800000.0p-33 },
	 { 0xa50000.0p-23, -0xf80000.0p-35 },
	 { 0xa60000.0p-23,  0x880000.0p-34 },
	 { 0xa70000.0p-23, -0x900000.0p-33 },
	 { 0xa80000.0p-23, -0x800000.0p-35 },
	 { 0xa90000.0p-23,  0x900000.0p-34 },
	 { 0xaa0000.0p-23,  0xa80000.0p-33 },
	 { 0xab0000.0p-23, -0xac0000.0p-34 },
	 { 0xac0000.0p-23, -0x800000.0p-37 },
	 { 0xad0000.0p-23,  0xf80000.0p-35 },
	 { 0xae0000.0p-23,  0xf80000.0p-34 },
	 { 0xaf0000.0p-23, -0xac0000.0p-33 },
	 { 0xb00000.0p-23, -0x800000.0p-33 },
	 { 0xb10000.0p-23, -0xb80000.0p-34 },
	 { 0xb20000.0p-23, -0x800000.0p-34 },
	 { 0xb30000.0p-23, -0xb00000.0p-35 },
	 { 0xb40000.0p-23, -0x800000.0p-35 },
	 { 0xb50000.0p-23, -0xe00000.0p-36 },
	 { 0xb60000.0p-23, -0x800000.0p-35 },
	 { 0xb70000.0p-23, -0xb00000.0p-35 },
	 { 0xb80000.0p-23, -0x800000.0p-34 },
	 { 0xb90000.0p-23, -0xb80000.0p-34 },
	 { 0xba0000.0p-23, -0x800000.0p-33 },
	 { 0xbb0000.0p-23, -0xac0000.0p-33 },
	 { 0xbc0000.0p-23,  0x980000.0p-33 },
	 { 0xbd0000.0p-23,  0xbc0000.0p-34 },
	 { 0xbe0000.0p-23,  0xe00000.0p-36 },
	 { 0xbf0000.0p-23, -0xb80000.0p-35 },
	 { 0xc00000.0p-23, -0x800000.0p-33 },
	 { 0xc10000.0p-23,  0xa80000.0p-33 },
	 { 0xc20000.0p-23,  0x900000.0p-34 },
	 { 0xc30000.0p-23, -0x800000.0p-35 },
	 { 0xc40000.0p-23, -0x900000.0p-33 },
	 { 0xc50000.0p-23,  0x820000.0p-33 },
	 { 0xc60000.0p-23,  0x800000.0p-38 },
	 { 0xc70000.0p-23, -0x820000.0p-33 },
	 { 0xc80000.0p-23,  0x800000.0p-33 },
	 { 0xc90000.0p-23, -0xa00000.0p-36 },
	 { 0xca0000.0p-23, -0xb00000.0p-33 },
	 { 0xcb0000.0p-23,  0x840000.0p-34 },
	 { 0xcc0000.0p-23, -0xd00000.0p-34 },
	 { 0xcd0000.0p-23,  0x800000.0p-33 },
	 { 0xce0000.0p-23, -0xe00000.0p-35 },
	 { 0xcf0000.0p-23,  0xa60000.0p-33 },
	 { 0xd00000.0p-23, -0x800000.0p-35 },
	 { 0xd10000.0p-23,  0xb40000.0p-33 },
	 { 0xd20000.0p-23, -0x800000.0p-35 },
	 { 0xd30000.0p-23,  0xaa0000.0p-33 },
	 { 0xd40000.0p-23, -0xe00000.0p-35 },
	 { 0xd50000.0p-23,  0x880000.0p-33 },
	 { 0xd60000.0p-23, -0xd00000.0p-34 },
	 { 0xd70000.0p-23,  0x9c0000.0p-34 },
	 { 0xd80000.0p-23, -0xb00000.0p-33 },
	 { 0xd90000.0p-23, -0x800000.0p-38 },
	 { 0xda0000.0p-23,  0xa40000.0p-33 },
	 { 0xdb0000.0p-23, -0xdc0000.0p-34 },
	 { 0xdc0000.0p-23,  0xc00000.0p-35 },
	 { 0xdd0000.0p-23,  0xca0000.0p-33 },
	 { 0xde0000.0p-23, -0xb80000.0p-34 },
	 { 0xdf0000.0p-23,  0xd00000.0p-35 },
	 { 0xe00000.0p-23,  0xc00000.0p-33 },
	 { 0xe10000.0p-23, -0xf40000.0p-34 },
	 { 0xe20000.0p-23,  0x800000.0p-37 },
	 { 0xe30000.0p-23,  0x860000.0p-33 },
	 { 0xe40000.0p-23, -0xc80000.0p-33 },
	 { 0xe50000.0p-23, -0xa80000.0p-34 },
	 { 0xe60000.0p-23,  0xe00000.0p-36 },
	 { 0xe70000.0p-23,  0x880000.0p-33 },
	 { 0xe80000.0p-23, -0xe00000.0p-33 },
	 { 0xe90000.0p-23, -0xfc0000.0p-34 },
	 { 0xea0000.0p-23, -0x800000.0p-35 },
	 { 0xeb0000.0p-23,  0xe80000.0p-35 },
	 { 0xec0000.0p-23,  0x900000.0p-33 },
	 { 0xed0000.0p-23,  0xe20000.0p-33 },
	 { 0xee0000.0p-23, -0xac0000.0p-33 },
	 { 0xef0000.0p-23, -0xc80000.0p-34 },
	 { 0xf00000.0p-23, -0x800000.0p-35 },
	 { 0xf10000.0p-23,  0x800000.0p-35 },
	 { 0xf20000.0p-23,  0xb80000.0p-34 },
	 { 0xf30000.0p-23,  0x940000.0p-33 },
	 { 0xf40000.0p-23,  0xc80000.0p-33 },
	 { 0xf50000.0p-23, -0xf20000.0p-33 },
	 { 0xf60000.0p-23, -0xc80000.0p-33 },
	 { 0xf70000.0p-23, -0xa20000.0p-33 },
	 { 0xf80000.0p-23, -0x800000.0p-33 },
	 { 0xf90000.0p-23, -0xc40000.0p-34 },
	 { 0xfa0000.0p-23, -0x900000.0p-34 },
	 { 0xfb0000.0p-23, -0xc80000.0p-35 },
	 { 0xfc0000.0p-23, -0x800000.0p-35 },
	 { 0xfd0000.0p-23, -0x900000.0p-36 },
	 { 0xfe0000.0p-23, -0x800000.0p-37 },
	 { 0xff0000.0p-23, -0x800000.0p-39 },
	 { 0x800000.0p-22,  0 },
};
#endif /* USE_UTAB */

#ifdef STRUCT_RETURN
#define	RETURN1(rp, v) do {	\
	(rp)->hi = (v);		\
	(rp)->lo_set = 0;	\
	return;			\
} while (0)

#define	RETURN2(rp, h, l) do {	\
	(rp)->hi = (h);		\
	(rp)->lo = (l);		\
	(rp)->lo_set = 1;	\
	return;			\
} while (0)

struct ld {
	long double hi;
	long double lo;
	int	lo_set;
};
#else
#define	RETURN1(rp, v)	RETURNF(v)
#define	RETURN2(rp, h, l)	RETURNI((h) + (l))
#endif

#ifdef STRUCT_RETURN
static inline __always_inline void
k_logl(long double x, struct ld *rp)
#else
long double
logl(long double x)
#endif
{
	long double d, dk, val_hi, val_lo, z;
	uint64_t ix, lx;
	int i, k;
	uint16_t hx;

	EXTRACT_LDBL80_WORDS(hx, lx, x);
	k = -16383;
#if 0 /* Hard to do efficiently.  Don't do it until we support all modes. */
	if (x == 1)
		RETURN1(rp, 0);		/* log(1) = +0 in all rounding modes */
#endif
	if (hx == 0 || hx >= 0x8000) {	/* zero, negative or subnormal? */
		if (((hx & 0x7fff) | lx) == 0)
			RETURN1(rp, -1 / zero);	/* log(+-0) = -Inf */
		if (hx != 0)
			/* log(neg or [pseudo-]NaN) = qNaN: */
			RETURN1(rp, (x - x) / zero);
		x *= 0x1.0p65;		/* subnormal; scale up x */
					/* including pseudo-subnormals */
		EXTRACT_LDBL80_WORDS(hx, lx, x);
		k = -16383 - 65;
	} else if (hx >= 0x7fff || (lx & 0x8000000000000000ULL) == 0)
		RETURN1(rp, x + x);	/* log(Inf or NaN) = Inf or qNaN */
					/* log(pseudo-Inf) = qNaN */
					/* log(pseudo-NaN) = qNaN */
					/* log(unnormal) = qNaN */
#ifndef STRUCT_RETURN
	ENTERI();
#endif
	k += hx;
	ix = lx & 0x7fffffffffffffffULL;
	dk = k;

	/* Scale x to be in [1, 2). */
	SET_LDBL_EXPSIGN(x, 0x3fff);

	/* 0 <= i <= INTERVALS: */
#define	L2I	(64 - LOG2_INTERVALS)
	i = (ix + (1LL << (L2I - 2))) >> (L2I - 1);

	/*
	 * -0.005280 < d < 0.004838.  In particular, the infinite-
	 * precision |d| is <= 2**-7.  Rounding of G(i) to 8 bits
	 * ensures that d is representable without extra precision for
	 * this bound on |d| (since when this calculation is expressed
	 * as x*G(i)-1, the multiplication needs as many extra bits as
	 * G(i) has and the subtraction cancels 8 bits).  But for
	 * most i (107 cases out of 129), the infinite-precision |d|
	 * is <= 2**-8.  G(i) is rounded to 9 bits for such i to give
	 * better accuracy (this works by improving the bound on |d|,
	 * which in turn allows rounding to 9 bits in more cases).
	 * This is only important when the original x is near 1 -- it
	 * lets us avoid using a special method to give the desired
	 * accuracy for such x.
	 */
	if (0)
		d = x * G(i) - 1;
	else {
#ifdef USE_UTAB
		d = (x - H(i)) * G(i) + E(i);
#else
		long double x_hi, x_lo;
		float fx_hi;

		/*
		 * Split x into x_hi + x_lo to calculate x*G(i)-1 exactly.
		 * G(i) has at most 9 bits, so the splitting point is not
		 * critical.
		 */
		SET_FLOAT_WORD(fx_hi, (lx >> 40) | 0x3f800000);
		x_hi = fx_hi;
		x_lo = x - x_hi;
		d = x_hi * G(i) - 1 + x_lo * G(i);
#endif
	}

	/*
	 * Our algorithm depends on exact cancellation of F_lo(i) and
	 * F_hi(i) with dk*ln_2_lo and dk*ln2_hi when k is -1 and i is
	 * at the end of the table.  This and other technical complications
	 * make it difficult to avoid the double scaling in (dk*ln2) *
	 * log(base) for base != e without losing more accuracy and/or
	 * efficiency than is gained.
	 */
	z = d * d;
	val_lo = z * d * z * (z * (d * P8 + P7) + (d * P6 + P5)) +
	    (F_lo(i) + dk * ln2_lo + z * d * (d * P4 + P3)) + z * P2;
	val_hi = d;
#ifdef DEBUG
	if (fetestexcept(FE_UNDERFLOW))
		breakpoint();
#endif

	_3sumF(val_hi, val_lo, F_hi(i) + dk * ln2_hi);
	RETURN2(rp, val_hi, val_lo);
}

long double
log1pl(long double x)
{
	long double d, d_hi, d_lo, dk, f_lo, val_hi, val_lo, z;
	long double f_hi, twopminusk;
	uint64_t ix, lx;
	int i, k;
	int16_t ax, hx;

	DOPRINT_START(&x);
	EXTRACT_LDBL80_WORDS(hx, lx, x);
	if (hx < 0x3fff) {		/* x < 1, or x neg NaN */
		ax = hx & 0x7fff;
		if (ax >= 0x3fff) {	/* x <= -1, or x neg NaN */
			if (ax == 0x3fff && lx == 0x8000000000000000ULL)
				RETURNP(-1 / zero);	/* log1p(-1) = -Inf */
			/* log1p(x < 1, or x [pseudo-]NaN) = qNaN: */
			RETURNP((x - x) / (x - x));
		}
		if (ax <= 0x3fbe) {	/* |x| < 2**-64 */
			if ((int)x == 0)
				RETURNP(x);	/* x with inexact if x != 0 */
		}
		f_hi = 1;
		f_lo = x;
	} else if (hx >= 0x7fff) {	/* x +Inf or non-neg NaN */
		RETURNP(x + x);		/* log1p(Inf or NaN) = Inf or qNaN */
					/* log1p(pseudo-Inf) = qNaN */
					/* log1p(pseudo-NaN) = qNaN */
					/* log1p(unnormal) = qNaN */
	} else if (hx < 0x407f) {	/* 1 <= x < 2**128 */
		f_hi = x;
		f_lo = 1;
	} else {			/* 2**128 <= x < +Inf */
		f_hi = x;
		f_lo = 0;		/* avoid underflow of the P5 term */
	}
	ENTERI();
	x = f_hi + f_lo;
	f_lo = (f_hi - x) + f_lo;

	EXTRACT_LDBL80_WORDS(hx, lx, x);
	k = -16383;

	k += hx;
	ix = lx & 0x7fffffffffffffffULL;
	dk = k;

	SET_LDBL_EXPSIGN(x, 0x3fff);
	twopminusk = 1;
	SET_LDBL_EXPSIGN(twopminusk, 0x7ffe - (hx & 0x7fff));
	f_lo *= twopminusk;

	i = (ix + (1LL << (L2I - 2))) >> (L2I - 1);

	/*
	 * x*G(i)-1 (with a reduced x) can be represented exactly, as
	 * above, but now we need to evaluate the polynomial on d =
	 * (x+f_lo)*G(i)-1 and extra precision is needed for that.
	 * Since x+x_lo is a hi+lo decomposition and subtracting 1
	 * doesn't lose too many bits, an inexact calculation for
	 * f_lo*G(i) is good enough.
	 */
	if (0)
		d_hi = x * G(i) - 1;
	else {
#ifdef USE_UTAB
		d_hi = (x - H(i)) * G(i) + E(i);
#else
		long double x_hi, x_lo;
		float fx_hi;

		SET_FLOAT_WORD(fx_hi, (lx >> 40) | 0x3f800000);
		x_hi = fx_hi;
		x_lo = x - x_hi;
		d_hi = x_hi * G(i) - 1 + x_lo * G(i);
#endif
	}
	d_lo = f_lo * G(i);

	/*
	 * This is _2sumF(d_hi, d_lo) inlined.  The condition
	 * (d_hi == 0 || |d_hi| >= |d_lo|) for using _2sumF() is not
	 * always satisifed, so it is not clear that this works, but
	 * it works in practice.  It works even if it gives a wrong
	 * normalized d_lo, since |d_lo| > |d_hi| implies that i is
	 * nonzero and d is tiny, so the F(i) term dominates d_lo.
	 * In float precision:
	 * (By exhaustive testing, the worst case is d_hi = 0x1.bp-25.
	 * And if d is only a little tinier than that, we would have
	 * another underflow problem for the P3 term; this is also ruled
	 * out by exhaustive testing.)
	 */
	d = d_hi + d_lo;
	d_lo = d_hi - d + d_lo;
	d_hi = d;

	z = d * d;
	val_lo = z * d * z * (z * (d * P8 + P7) + (d * P6 + P5)) +
	    (F_lo(i) + dk * ln2_lo + d_lo + z * d * (d * P4 + P3)) + z * P2;
	val_hi = d_hi;
#ifdef DEBUG
	if (fetestexcept(FE_UNDERFLOW))
		breakpoint();
#endif

	_3sumF(val_hi, val_lo, F_hi(i) + dk * ln2_hi);
	RETURN2PI(val_hi, val_lo);
}

#ifdef STRUCT_RETURN

long double
logl(long double x)
{
	struct ld r;

	ENTERI();
	DOPRINT_START(&x);
	k_logl(x, &r);
	RETURNSPI(&r);
}

/* Use macros since GCC < 8 rejects static const expressions in initializers. */
#define	invln10_hi	4.3429448190317999e-1	/*  0x1bcb7b1526e000.0p-54 */
#define	invln10_lo	7.1842412889749798e-14	/*  0x1438ca9aadd558.0p-96 */
#define	invln2_hi	1.4426950408887933e0	/*  0x171547652b8000.0p-52 */
#define	invln2_lo	1.7010652264631490e-13	/*  0x17f0bbbe87fed0.0p-95 */
/* Let the compiler pre-calculate this sum to avoid FE_INEXACT at run time. */
static const double invln10_lo_plus_hi = invln10_lo + invln10_hi;
static const double invln2_lo_plus_hi = invln2_lo + invln2_hi;

long double
log10l(long double x)
{
	struct ld r;
	long double hi, lo;

	ENTERI();
	DOPRINT_START(&x);
	k_logl(x, &r);
	if (!r.lo_set)
		RETURNPI(r.hi);
	_2sumF(r.hi, r.lo);
	hi = (float)r.hi;
	lo = r.lo + (r.hi - hi);
	RETURN2PI(invln10_hi * hi,
	    invln10_lo_plus_hi * lo + invln10_lo * hi);
}

long double
log2l(long double x)
{
	struct ld r;
	long double hi, lo;

	ENTERI();
	DOPRINT_START(&x);
	k_logl(x, &r);
	if (!r.lo_set)
		RETURNPI(r.hi);
	_2sumF(r.hi, r.lo);
	hi = (float)r.hi;
	lo = r.lo + (r.hi - hi);
	RETURN2PI(invln2_hi * hi,
	    invln2_lo_plus_hi * lo + invln2_lo * hi);
}

#endif /* STRUCT_RETURN */