aboutsummaryrefslogtreecommitdiff
path: root/newlib/libm/ld80/k_expl.h
blob: a744d2d3812700148d493c341e27dbf7e2cfce47 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
/* from: FreeBSD: head/lib/msun/ld80/s_expl.c 251343 2013-06-03 19:51:32Z kargl */

/*-
 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
 *
 * Copyright (c) 2009-2013 Steven G. Kargl
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice unmodified, this list of conditions, and the following
 *    disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * Optimized by Bruce D. Evans.
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

/*
 * See s_expl.c for more comments about __k_expl().
 *
 * See ../src/e_exp.c and ../src/k_exp.h for precision-independent comments
 * about the secondary kernels.
 */

#define	INTERVALS	128
#define	LOG2_INTERVALS	7
#define	BIAS	(LDBL_MAX_EXP - 1)

static const double
/*
 * ln2/INTERVALS = L1+L2 (hi+lo decomposition for multiplication).  L1 must
 * have at least 22 (= log2(|LDBL_MIN_EXP-extras|) + log2(INTERVALS)) lowest
 * bits zero so that multiplication of it by n is exact.
 */
INV_L = 1.8466496523378731e+2,		/*  0x171547652b82fe.0p-45 */
L1 =  5.4152123484527692e-3,		/*  0x162e42ff000000.0p-60 */
L2 = -3.2819649005320973e-13,		/* -0x1718432a1b0e26.0p-94 */
/*
 * Domain [-0.002708, 0.002708], range ~[-5.7136e-24, 5.7110e-24]:
 * |exp(x) - p(x)| < 2**-77.2
 * (0.002708 is ln2/(2*INTERVALS) rounded up a little).
 */
A2 =  0.5,
A3 =  1.6666666666666119e-1,		/*  0x15555555555490.0p-55 */
A4 =  4.1666666666665887e-2,		/*  0x155555555554e5.0p-57 */
A5 =  8.3333354987869413e-3,		/*  0x1111115b789919.0p-59 */
A6 =  1.3888891738560272e-3;		/*  0x16c16c651633ae.0p-62 */

/*
 * 2^(i/INTERVALS) for i in [0,INTERVALS] is represented by two values where
 * the first 53 bits of the significand are stored in hi and the next 53
 * bits are in lo.  Tang's paper states that the trailing 6 bits of hi must
 * be zero for his algorithm in both single and double precision, because
 * the table is re-used in the implementation of expm1() where a floating
 * point addition involving hi must be exact.  Here hi is double, so
 * converting it to long double gives 11 trailing zero bits.
 */
static const struct {
	double	hi;
	double	lo;
} tbl[INTERVALS] = {
	{ 0x1p+0, 0x0p+0 },
	/*
	 * XXX hi is rounded down, and the formatting is not quite normal.
	 * But I rather like both.  The 0x1.*p format is good for 4N+1
	 * mantissa bits.  Rounding down makes the lo terms positive,
	 * so that the columnar formatting can be simpler.
	 */
	{ 0x1.0163da9fb3335p+0, 0x1.b61299ab8cdb7p-54 },
	{ 0x1.02c9a3e778060p+0, 0x1.dcdef95949ef4p-53 },
	{ 0x1.04315e86e7f84p+0, 0x1.7ae71f3441b49p-53 },
	{ 0x1.059b0d3158574p+0, 0x1.d73e2a475b465p-55 },
	{ 0x1.0706b29ddf6ddp+0, 0x1.8db880753b0f6p-53 },
	{ 0x1.0874518759bc8p+0, 0x1.186be4bb284ffp-57 },
	{ 0x1.09e3ecac6f383p+0, 0x1.1487818316136p-54 },
	{ 0x1.0b5586cf9890fp+0, 0x1.8a62e4adc610bp-54 },
	{ 0x1.0cc922b7247f7p+0, 0x1.01edc16e24f71p-54 },
	{ 0x1.0e3ec32d3d1a2p+0, 0x1.03a1727c57b53p-59 },
	{ 0x1.0fb66affed31ap+0, 0x1.e464123bb1428p-53 },
	{ 0x1.11301d0125b50p+0, 0x1.49d77e35db263p-53 },
	{ 0x1.12abdc06c31cbp+0, 0x1.f72575a649ad2p-53 },
	{ 0x1.1429aaea92ddfp+0, 0x1.66820328764b1p-53 },
	{ 0x1.15a98c8a58e51p+0, 0x1.2406ab9eeab0ap-55 },
	{ 0x1.172b83c7d517ap+0, 0x1.b9bef918a1d63p-53 },
	{ 0x1.18af9388c8de9p+0, 0x1.777ee1734784ap-53 },
	{ 0x1.1a35beb6fcb75p+0, 0x1.e5b4c7b4968e4p-55 },
	{ 0x1.1bbe084045cd3p+0, 0x1.3563ce56884fcp-53 },
	{ 0x1.1d4873168b9aap+0, 0x1.e016e00a2643cp-54 },
	{ 0x1.1ed5022fcd91cp+0, 0x1.71033fec2243ap-53 },
	{ 0x1.2063b88628cd6p+0, 0x1.dc775814a8495p-55 },
	{ 0x1.21f49917ddc96p+0, 0x1.2a97e9494a5eep-55 },
	{ 0x1.2387a6e756238p+0, 0x1.9b07eb6c70573p-54 },
	{ 0x1.251ce4fb2a63fp+0, 0x1.ac155bef4f4a4p-55 },
	{ 0x1.26b4565e27cddp+0, 0x1.2bd339940e9d9p-55 },
	{ 0x1.284dfe1f56380p+0, 0x1.2d9e2b9e07941p-53 },
	{ 0x1.29e9df51fdee1p+0, 0x1.612e8afad1255p-55 },
	{ 0x1.2b87fd0dad98fp+0, 0x1.fbbd48ca71f95p-53 },
	{ 0x1.2d285a6e4030bp+0, 0x1.0024754db41d5p-54 },
	{ 0x1.2ecafa93e2f56p+0, 0x1.1ca0f45d52383p-56 },
	{ 0x1.306fe0a31b715p+0, 0x1.6f46ad23182e4p-55 },
	{ 0x1.32170fc4cd831p+0, 0x1.a9ce78e18047cp-55 },
	{ 0x1.33c08b26416ffp+0, 0x1.32721843659a6p-54 },
	{ 0x1.356c55f929ff0p+0, 0x1.928c468ec6e76p-53 },
	{ 0x1.371a7373aa9cap+0, 0x1.4e28aa05e8a8fp-53 },
	{ 0x1.38cae6d05d865p+0, 0x1.0b53961b37da2p-53 },
	{ 0x1.3a7db34e59ff6p+0, 0x1.d43792533c144p-53 },
	{ 0x1.3c32dc313a8e4p+0, 0x1.08003e4516b1ep-53 },
	{ 0x1.3dea64c123422p+0, 0x1.ada0911f09ebcp-55 },
	{ 0x1.3fa4504ac801bp+0, 0x1.417ee03548306p-53 },
	{ 0x1.4160a21f72e29p+0, 0x1.f0864b71e7b6cp-53 },
	{ 0x1.431f5d950a896p+0, 0x1.b8e088728219ap-53 },
	{ 0x1.44e086061892dp+0, 0x1.89b7a04ef80d0p-59 },
	{ 0x1.46a41ed1d0057p+0, 0x1.c944bd1648a76p-54 },
	{ 0x1.486a2b5c13cd0p+0, 0x1.3c1a3b69062f0p-56 },
	{ 0x1.4a32af0d7d3dep+0, 0x1.9cb62f3d1be56p-54 },
	{ 0x1.4bfdad5362a27p+0, 0x1.d4397afec42e2p-56 },
	{ 0x1.4dcb299fddd0dp+0, 0x1.8ecdbbc6a7833p-54 },
	{ 0x1.4f9b2769d2ca6p+0, 0x1.5a67b16d3540ep-53 },
	{ 0x1.516daa2cf6641p+0, 0x1.8225ea5909b04p-53 },
	{ 0x1.5342b569d4f81p+0, 0x1.be1507893b0d5p-53 },
	{ 0x1.551a4ca5d920ep+0, 0x1.8a5d8c4048699p-53 },
	{ 0x1.56f4736b527dap+0, 0x1.9bb2c011d93adp-54 },
	{ 0x1.58d12d497c7fdp+0, 0x1.295e15b9a1de8p-55 },
	{ 0x1.5ab07dd485429p+0, 0x1.6324c054647adp-54 },
	{ 0x1.5c9268a5946b7p+0, 0x1.c4b1b816986a2p-60 },
	{ 0x1.5e76f15ad2148p+0, 0x1.ba6f93080e65ep-54 },
	{ 0x1.605e1b976dc08p+0, 0x1.60edeb25490dcp-53 },
	{ 0x1.6247eb03a5584p+0, 0x1.63e1f40dfa5b5p-53 },
	{ 0x1.6434634ccc31fp+0, 0x1.8edf0e2989db3p-53 },
	{ 0x1.6623882552224p+0, 0x1.224fb3c5371e6p-53 },
	{ 0x1.68155d44ca973p+0, 0x1.038ae44f73e65p-57 },
	{ 0x1.6a09e667f3bccp+0, 0x1.21165f626cdd5p-53 },
	{ 0x1.6c012750bdabep+0, 0x1.daed533001e9ep-53 },
	{ 0x1.6dfb23c651a2ep+0, 0x1.e441c597c3775p-53 },
	{ 0x1.6ff7df9519483p+0, 0x1.9f0fc369e7c42p-53 },
	{ 0x1.71f75e8ec5f73p+0, 0x1.ba46e1e5de15ap-53 },
	{ 0x1.73f9a48a58173p+0, 0x1.7ab9349cd1562p-53 },
	{ 0x1.75feb564267c8p+0, 0x1.7edd354674916p-53 },
	{ 0x1.780694fde5d3fp+0, 0x1.866b80a02162dp-54 },
	{ 0x1.7a11473eb0186p+0, 0x1.afaa2047ed9b4p-53 },
	{ 0x1.7c1ed0130c132p+0, 0x1.f124cd1164dd6p-54 },
	{ 0x1.7e2f336cf4e62p+0, 0x1.05d02ba15797ep-56 },
	{ 0x1.80427543e1a11p+0, 0x1.6c1bccec9346bp-53 },
	{ 0x1.82589994cce12p+0, 0x1.159f115f56694p-53 },
	{ 0x1.8471a4623c7acp+0, 0x1.9ca5ed72f8c81p-53 },
	{ 0x1.868d99b4492ecp+0, 0x1.01c83b21584a3p-53 },
	{ 0x1.88ac7d98a6699p+0, 0x1.994c2f37cb53ap-54 },
	{ 0x1.8ace5422aa0dbp+0, 0x1.6e9f156864b27p-54 },
	{ 0x1.8cf3216b5448bp+0, 0x1.de55439a2c38bp-53 },
	{ 0x1.8f1ae99157736p+0, 0x1.5cc13a2e3976cp-55 },
	{ 0x1.9145b0b91ffc5p+0, 0x1.114c368d3ed6ep-53 },
	{ 0x1.93737b0cdc5e4p+0, 0x1.e8a0387e4a814p-53 },
	{ 0x1.95a44cbc8520ep+0, 0x1.d36906d2b41f9p-53 },
	{ 0x1.97d829fde4e4fp+0, 0x1.173d241f23d18p-53 },
	{ 0x1.9a0f170ca07b9p+0, 0x1.7462137188ce7p-53 },
	{ 0x1.9c49182a3f090p+0, 0x1.c7c46b071f2bep-56 },
	{ 0x1.9e86319e32323p+0, 0x1.824ca78e64c6ep-56 },
	{ 0x1.a0c667b5de564p+0, 0x1.6535b51719567p-53 },
	{ 0x1.a309bec4a2d33p+0, 0x1.6305c7ddc36abp-54 },
	{ 0x1.a5503b23e255cp+0, 0x1.1684892395f0fp-53 },
	{ 0x1.a799e1330b358p+0, 0x1.bcb7ecac563c7p-54 },
	{ 0x1.a9e6b5579fdbfp+0, 0x1.0fac90ef7fd31p-54 },
	{ 0x1.ac36bbfd3f379p+0, 0x1.81b72cd4624ccp-53 },
	{ 0x1.ae89f995ad3adp+0, 0x1.7a1cd345dcc81p-54 },
	{ 0x1.b0e07298db665p+0, 0x1.2108559bf8deep-53 },
	{ 0x1.b33a2b84f15fap+0, 0x1.ed7fa1cf7b290p-53 },
	{ 0x1.b59728de55939p+0, 0x1.1c7102222c90ep-53 },
	{ 0x1.b7f76f2fb5e46p+0, 0x1.d54f610356a79p-53 },
	{ 0x1.ba5b030a10649p+0, 0x1.0819678d5eb69p-53 },
	{ 0x1.bcc1e904bc1d2p+0, 0x1.23dd07a2d9e84p-55 },
	{ 0x1.bf2c25bd71e08p+0, 0x1.0811ae04a31c7p-53 },
	{ 0x1.c199bdd85529cp+0, 0x1.11065895048ddp-55 },
	{ 0x1.c40ab5fffd07ap+0, 0x1.b4537e083c60ap-54 },
	{ 0x1.c67f12e57d14bp+0, 0x1.2884dff483cadp-54 },
	{ 0x1.c8f6d9406e7b5p+0, 0x1.1acbc48805c44p-56 },
	{ 0x1.cb720dcef9069p+0, 0x1.503cbd1e949dbp-56 },
	{ 0x1.cdf0b555dc3f9p+0, 0x1.889f12b1f58a3p-53 },
	{ 0x1.d072d4a07897bp+0, 0x1.1a1e45e4342b2p-53 },
	{ 0x1.d2f87080d89f1p+0, 0x1.15bc247313d44p-53 },
	{ 0x1.d5818dcfba487p+0, 0x1.2ed02d75b3707p-55 },
	{ 0x1.d80e316c98397p+0, 0x1.7709f3a09100cp-53 },
	{ 0x1.da9e603db3285p+0, 0x1.c2300696db532p-54 },
	{ 0x1.dd321f301b460p+0, 0x1.2da5778f018c3p-54 },
	{ 0x1.dfc97337b9b5ep+0, 0x1.72d195873da52p-53 },
	{ 0x1.e264614f5a128p+0, 0x1.424ec3f42f5b5p-53 },
	{ 0x1.e502ee78b3ff6p+0, 0x1.39e8980a9cc8fp-55 },
	{ 0x1.e7a51fbc74c83p+0, 0x1.2d522ca0c8de2p-54 },
	{ 0x1.ea4afa2a490d9p+0, 0x1.0b1ee7431ebb6p-53 },
	{ 0x1.ecf482d8e67f0p+0, 0x1.1b60625f7293ap-53 },
	{ 0x1.efa1bee615a27p+0, 0x1.dc7f486a4b6b0p-54 },
	{ 0x1.f252b376bba97p+0, 0x1.3a1a5bf0d8e43p-54 },
	{ 0x1.f50765b6e4540p+0, 0x1.9d3e12dd8a18bp-54 },
	{ 0x1.f7bfdad9cbe13p+0, 0x1.1227697fce57bp-53 },
	{ 0x1.fa7c1819e90d8p+0, 0x1.74853f3a5931ep-55 },
	{ 0x1.fd3c22b8f71f1p+0, 0x1.2eb74966579e7p-57 }
};

/*
 * Kernel for expl(x).  x must be finite and not tiny or huge.
 * "tiny" is anything that would make us underflow (|A6*x^6| < ~LDBL_MIN).
 * "huge" is anything that would make fn*L1 inexact (|x| > ~2**17*ln2).
 */
static inline void
__k_expl(long double x, long double *hip, long double *lop, int *kp)
{
	long double fn, q, r, r1, r2, t, z;
	int n, n2;

	/* Reduce x to (k*ln2 + endpoint[n2] + r1 + r2). */
	fn = rnintl(x * INV_L);
	r = x - fn * L1 - fn * L2;	/* r = r1 + r2 done independently. */
	n = irint(fn);
	n2 = (unsigned)n % INTERVALS;
	/* Depend on the sign bit being propagated: */
	*kp = n >> LOG2_INTERVALS;
	r1 = x - fn * L1;
	r2 = fn * -L2;

	/* Evaluate expl(endpoint[n2] + r1 + r2) = tbl[n2] * expl(r1 + r2). */
	z = r * r;
#if 0
	q = r2 + z * (A2 + r * A3) + z * z * (A4 + r * A5) + z * z * z * A6;
#else
	q = r2 + z * A2 + z * r * (A3 + r * A4 + z * (A5 + r * A6));
#endif
	t = (long double)tbl[n2].lo + tbl[n2].hi;
	*hip = tbl[n2].hi;
	*lop = tbl[n2].lo + t * (q + r1);
}

static inline void
k_hexpl(long double x, long double *hip, long double *lop)
{
	float twopkm1;
	int k;

	__k_expl(x, hip, lop, &k);
	SET_FLOAT_WORD(twopkm1, 0x3f800000 + ((k - 1) << 23));
	*hip *= twopkm1;
	*lop *= twopkm1;
}

static inline long double
hexpl(long double x)
{
	long double hi, lo, twopkm2;
	int k;

	twopkm2 = 1;
	__k_expl(x, &hi, &lo, &k);
	SET_LDBL_EXPSIGN(twopkm2, BIAS + k - 2);
	return (lo + hi) * 2 * twopkm2;
}

#ifdef _COMPLEX_H
/*
 * See ../src/k_exp.c for details.
 */
static inline long double complex
__ldexp_cexpl(long double complex z, int expt)
{
	long double c, exp_x, hi, lo, s;
	long double x, y, scale1, scale2;
	int half_expt, k;

	x = creall(z);
	y = cimagl(z);
	__k_expl(x, &hi, &lo, &k);

	exp_x = (lo + hi) * 0x1p16382L;
	expt += k - 16382;

	scale1 = 1;
	half_expt = expt / 2;
	SET_LDBL_EXPSIGN(scale1, BIAS + half_expt);
	scale2 = 1;
	SET_LDBL_EXPSIGN(scale2, BIAS + expt - half_expt);

	sincosl(y, &s, &c);
	return (CMPLXL(c * exp_x * scale1 * scale2,
	    s * exp_x * scale1 * scale2));
}
#endif /* _COMPLEX_H */