diff options
Diffstat (limited to 'newlib/libm/mathfp')
97 files changed, 0 insertions, 10655 deletions
diff --git a/newlib/libm/mathfp/Makefile.am b/newlib/libm/mathfp/Makefile.am deleted file mode 100644 index 562653f..0000000 --- a/newlib/libm/mathfp/Makefile.am +++ /dev/null @@ -1,184 +0,0 @@ -## Process this file with automake to generate Makefile.in - -AUTOMAKE_OPTIONS = cygnus - -INCLUDES = -I$(srcdir)/../common $(NEWLIB_CFLAGS) $(CROSS_CFLAGS) $(TARGET_CFLAGS) - -noinst_LIBRARIES = lib.a -src = s_acos.c s_frexp.c s_mathcnst.c \ - s_cos.c s_sinh.c \ - s_asin.c\ - s_asine.c s_cosh.c s_ispos.c s_numtest.c s_sqrt.c \ - s_exp.c s_ldexp.c s_pow.c s_tan.c \ - s_atan.c \ - s_atan2.c s_fabs.c s_log.c s_tanh.c \ - s_log10.c s_sin.c \ - s_floor.c s_sine.c \ - s_atangent.c s_logarithm.c \ - s_sineh.c \ - s_ceil.c s_isnan.c s_isinf.c \ - e_acosh.c e_atanh.c e_remainder.c \ - er_gamma.c er_lgamma.c \ - s_erf.c e_j0.c e_j1.c w_jn.c e_hypot.c \ - w_cabs.c w_drem.c s_asinh.c s_fmod.c \ - e_scalb.c s_infconst.c s_signif.c - -fsrc = sf_ceil.c \ - sf_acos.c sf_frexp.c \ - sf_cos.c sf_sinh.c \ - sf_asine.c sf_cosh.c sf_ispos.c sf_numtest.c sf_sqrt.c \ - sf_asin.c \ - sf_exp.c sf_ldexp.c sf_pow.c sf_tan.c \ - sf_atan2.c sf_fabs.c sf_tanh.c \ - sf_atan.c sf_log10.c sf_sin.c\ - sf_floor.c sf_sine.c \ - sf_atangent.c sf_logarithm.c sf_sineh.c \ - sf_log.c sf_sineh.c \ - sf_isnan.c sf_isinf.c \ - ef_acosh.c ef_atanh.c ef_remainder.c \ - erf_gamma.c erf_lgamma.c \ - sf_erf.c ef_j0.c ef_j1.c wf_jn.c ef_hypot.c \ - wf_cabs.c wf_drem.c sf_asinh.c sf_fmod.c \ - ef_scalb.c sf_signif.c - -lib_a_SOURCES = $(src) $(fsrc) - -chobj = eacosh.def \ - eatanh.def \ - ehypot.def \ - eremainder.def \ - erlgamma.def \ - sacos.def \ - sasine.def \ - sasinh.def \ - satan.def \ - satan2.def \ - satangent.def \ - scosh.def \ - serf.def \ - sexp.def \ - sfabs.def \ - sfloor.def \ - sfmod.def \ - sfrexp.def \ - sisnan.def \ - sldexp.def \ - slog10.def \ - slogarithm.def \ - spow.def \ - ssine.def \ - ssineh.def \ - ssqrt.def \ - stan.def \ - stanh.def \ - wjn.def - -SUFFIXES = .def - -CHEW = ../../doc/makedoc -f $(srcdir)/../../doc/doc.str - -.c.def: - $(CHEW) < $< > $*.def 2> $*.ref - touch stmp-def - -TARGETDOC = ../tmp.texi - -doc: $(chobj) - cat $(srcdir)/mathfp.tex >> $(TARGETDOC) - -CLEANFILES = $(chobj) *.ref - -# Texinfo does not appear to support underscores in file names, so we -# name the .def files without underscores. - -eacosh.def: e_acosh.c - $(CHEW) < $(srcdir)/e_acosh.c >$@ 2>/dev/null - touch stmp-def -eatanh.def: e_atanh.c - $(CHEW) < $(srcdir)/e_atanh.c >$@ 2>/dev/null - touch stmp-def -ehypot.def: e_hypot.c - $(CHEW) < $(srcdir)/e_hypot.c >$@ 2>/dev/null - touch stmp-def -eremainder.def: e_remainder.c - $(CHEW) < $(srcdir)/e_remainder.c >$@ 2>/dev/null - touch stmp-def -erlgamma.def: er_lgamma.c - $(CHEW) < $(srcdir)/er_lgamma.c >$@ 2>/dev/null - touch stmp-def -sacos.def: s_acos.c - $(CHEW) < $(srcdir)/s_acos.c >$@ 2>/dev/null - touch stmp-def -sasine.def: s_asine.c - $(CHEW) < $(srcdir)/s_asine.c >$@ 2>/dev/null - touch stmp-def -sasinh.def: s_asinh.c - $(CHEW) < $(srcdir)/s_asinh.c >$@ 2>/dev/null - touch stmp-def -satan.def: s_atan.c - $(CHEW) < $(srcdir)/s_atan.c >$@ 2>/dev/null - touch stmp-def -satan2.def: s_atan2.c - $(CHEW) < $(srcdir)/s_atan2.c >$@ 2>/dev/null - touch stmp-def -satangent.def: s_atangent.c - $(CHEW) < $(srcdir)/s_atangent.c >$@ 2>/dev/null - touch stmp-def -scosh.def: s_cosh.c - $(CHEW) < $(srcdir)/s_cosh.c >$@ 2>/dev/null - touch stmp-def -serf.def: s_erf.c - $(CHEW) < $(srcdir)/s_erf.c >$@ 2>/dev/null - touch stmp-def -sexp.def: s_exp.c - $(CHEW) < $(srcdir)/s_exp.c >$@ 2>/dev/null - touch stmp-def -sfabs.def: s_fabs.c - $(CHEW) < $(srcdir)/s_fabs.c >$@ 2>/dev/null - touch stmp-def -sfloor.def: s_floor.c - $(CHEW) < $(srcdir)/s_floor.c >$@ 2>/dev/null - touch stmp-def -sfmod.def: s_fmod.c - $(CHEW) < $(srcdir)/s_fmod.c >$@ 2>/dev/null - touch stmp-def -sfrexp.def: s_frexp.c - $(CHEW) < $(srcdir)/s_frexp.c >$@ 2>/dev/null - touch stmp-def -sisnan.def: s_isnan.c - $(CHEW) < $(srcdir)/s_isnan.c >$@ 2>/dev/null - touch stmp-def -sldexp.def: s_ldexp.c - $(CHEW) < $(srcdir)/s_ldexp.c >$@ 2>/dev/null - touch stmp-def -slog10.def: s_log10.c - $(CHEW) < $(srcdir)/s_log10.c >$@ 2>/dev/null - touch stmp-def -slogarithm.def: s_logarithm.c - $(CHEW) < $(srcdir)/s_logarithm.c >$@ 2>/dev/null - touch stmp-def -spow.def: s_pow.c - $(CHEW) < $(srcdir)/s_pow.c >$@ 2>/dev/null - touch stmp-def -ssine.def: s_sine.c - $(CHEW) < $(srcdir)/s_sine.c >$@ 2>/dev/null - touch stmp-def -ssineh.def: s_sineh.c - $(CHEW) < $(srcdir)/s_sineh.c >$@ 2>/dev/null - touch stmp-def -ssqrt.def: s_sqrt.c - $(CHEW) < $(srcdir)/s_sqrt.c >$@ 2>/dev/null - touch stmp-def -stan.def: s_tan.c - $(CHEW) < $(srcdir)/s_tan.c >$@ 2>/dev/null - touch stmp-def -stanh.def: s_tanh.c - $(CHEW) < $(srcdir)/s_tanh.c >$@ 2>/dev/null - touch stmp-def -wjn.def: w_jn.c - $(CHEW) < $(srcdir)/w_jn.c >$@ 2>/dev/null - touch stmp-def - -# A partial dependency list. - -$(lib_a_OBJECTS): $(srcdir)/../../libc/include/math.h $(srcdir)/../common/fdlibm.h diff --git a/newlib/libm/mathfp/Makefile.in b/newlib/libm/mathfp/Makefile.in deleted file mode 100644 index 1557536..0000000 --- a/newlib/libm/mathfp/Makefile.in +++ /dev/null @@ -1,410 +0,0 @@ -# Makefile.in generated automatically by automake 1.3b from Makefile.am - -# Copyright (C) 1994, 1995, 1996, 1997, 1998 Free Software Foundation, Inc. -# This Makefile.in is free software; the Free Software Foundation -# gives unlimited permission to copy and/or distribute it, -# with or without modifications, as long as this notice is preserved. - -# This program is distributed in the hope that it will be useful, -# but WITHOUT ANY WARRANTY, to the extent permitted by law; without -# even the implied warranty of MERCHANTABILITY or FITNESS FOR A -# PARTICULAR PURPOSE. - - -SHELL = @SHELL@ - -srcdir = @srcdir@ -top_srcdir = @top_srcdir@ -VPATH = @srcdir@ -prefix = @prefix@ -exec_prefix = @exec_prefix@ - -bindir = @bindir@ -sbindir = @sbindir@ -libexecdir = @libexecdir@ -datadir = @datadir@ -sysconfdir = @sysconfdir@ -sharedstatedir = @sharedstatedir@ -localstatedir = @localstatedir@ -libdir = @libdir@ -infodir = @infodir@ -mandir = @mandir@ -includedir = @includedir@ -oldincludedir = /usr/include - -DESTDIR = - -pkgdatadir = $(datadir)/@PACKAGE@ -pkglibdir = $(libdir)/@PACKAGE@ -pkgincludedir = $(includedir)/@PACKAGE@ - -top_builddir = .. - -ACLOCAL = @ACLOCAL@ -AUTOCONF = @AUTOCONF@ -AUTOMAKE = @AUTOMAKE@ -AUTOHEADER = @AUTOHEADER@ - -INSTALL = @INSTALL@ -INSTALL_PROGRAM = @INSTALL_PROGRAM@ -INSTALL_DATA = @INSTALL_DATA@ -INSTALL_SCRIPT = @INSTALL_SCRIPT@ -transform = @program_transform_name@ - -NORMAL_INSTALL = : -PRE_INSTALL = : -POST_INSTALL = : -NORMAL_UNINSTALL = : -PRE_UNINSTALL = : -POST_UNINSTALL = : -host_alias = @host_alias@ -host_triplet = @host@ -AR = @AR@ -AS = @AS@ -CC = @CC@ -CPP = @CPP@ -EXEEXT = @EXEEXT@ -MAINT = @MAINT@ -MAKEINFO = @MAKEINFO@ -NEWLIB_CFLAGS = @NEWLIB_CFLAGS@ -PACKAGE = @PACKAGE@ -RANLIB = @RANLIB@ -VERSION = @VERSION@ -mach_add_objs = @mach_add_objs@ -machine_dir = @machine_dir@ -newlib_basedir = @newlib_basedir@ -sys_dir = @sys_dir@ - -AUTOMAKE_OPTIONS = cygnus - -INCLUDES = -I$(srcdir)/../common $(NEWLIB_CFLAGS) $(CROSS_CFLAGS) $(TARGET_CFLAGS) - -noinst_LIBRARIES = lib.a -src = s_acos.c s_frexp.c s_mathcnst.c \ - s_cos.c s_sinh.c \ - s_asin.c\ - s_asine.c s_cosh.c s_ispos.c s_numtest.c s_sqrt.c \ - s_exp.c s_ldexp.c s_pow.c s_tan.c \ - s_atan.c \ - s_atan2.c s_fabs.c s_log.c s_tanh.c \ - s_log10.c s_sin.c \ - s_floor.c s_sine.c \ - s_atangent.c s_logarithm.c \ - s_sineh.c \ - s_ceil.c s_isnan.c s_isinf.c \ - e_acosh.c e_atanh.c e_remainder.c \ - er_gamma.c er_lgamma.c \ - s_erf.c e_j0.c e_j1.c w_jn.c e_hypot.c \ - w_cabs.c w_drem.c s_asinh.c s_fmod.c \ - e_scalb.c s_infconst.c s_signif.c - -fsrc = sf_ceil.c \ - sf_acos.c sf_frexp.c \ - sf_cos.c sf_sinh.c \ - sf_asine.c sf_cosh.c sf_ispos.c sf_numtest.c sf_sqrt.c \ - sf_asin.c \ - sf_exp.c sf_ldexp.c sf_pow.c sf_tan.c \ - sf_atan2.c sf_fabs.c sf_tanh.c \ - sf_atan.c sf_log10.c sf_sin.c\ - sf_floor.c sf_sine.c \ - sf_atangent.c sf_logarithm.c sf_sineh.c \ - sf_log.c sf_sineh.c \ - sf_isnan.c sf_isinf.c \ - ef_acosh.c ef_atanh.c ef_remainder.c \ - erf_gamma.c erf_lgamma.c \ - sf_erf.c ef_j0.c ef_j1.c wf_jn.c ef_hypot.c \ - wf_cabs.c wf_drem.c sf_asinh.c sf_fmod.c \ - ef_scalb.c sf_signif.c - -lib_a_SOURCES = $(src) $(fsrc) - -chobj = eacosh.def eatanh.def ehypot.def eremainder.def erlgamma.def sacos.def sasine.def sasinh.def satan.def satan2.def satangent.def scosh.def serf.def sexp.def sfabs.def sfloor.def sfmod.def sfrexp.def sisnan.def sldexp.def slog10.def slogarithm.def spow.def ssine.def ssineh.def ssqrt.def stan.def stanh.def wjn.def - -SUFFIXES = .def - -CHEW = ../../doc/makedoc -f $(srcdir)/../../doc/doc.str - -TARGETDOC = ../tmp.texi - -CLEANFILES = $(chobj) *.ref -mkinstalldirs = $(SHELL) $(top_srcdir)/../../mkinstalldirs -CONFIG_CLEAN_FILES = -LIBRARIES = $(noinst_LIBRARIES) - - -DEFS = @DEFS@ -I. -I$(srcdir) -CPPFLAGS = @CPPFLAGS@ -LDFLAGS = @LDFLAGS@ -LIBS = @LIBS@ -lib_a_LIBADD = -lib_a_OBJECTS = s_acos.o s_frexp.o s_mathcnst.o s_cos.o s_sinh.o \ -s_asin.o s_asine.o s_cosh.o s_ispos.o s_numtest.o s_sqrt.o s_exp.o \ -s_ldexp.o s_pow.o s_tan.o s_atan.o s_atan2.o s_fabs.o s_log.o s_tanh.o \ -s_log10.o s_sin.o s_floor.o s_sine.o s_atangent.o s_logarithm.o \ -s_sineh.o s_ceil.o s_isnan.o s_isinf.o e_acosh.o e_atanh.o \ -e_remainder.o er_gamma.o er_lgamma.o s_erf.o e_j0.o e_j1.o w_jn.o \ -e_hypot.o w_cabs.o w_drem.o s_asinh.o s_fmod.o e_scalb.o s_infconst.o \ -s_signif.o sf_ceil.o sf_acos.o sf_frexp.o sf_cos.o sf_sinh.o sf_asine.o \ -sf_cosh.o sf_ispos.o sf_numtest.o sf_sqrt.o sf_asin.o sf_exp.o \ -sf_ldexp.o sf_pow.o sf_tan.o sf_atan2.o sf_fabs.o sf_tanh.o sf_atan.o \ -sf_log10.o sf_sin.o sf_floor.o sf_sine.o sf_atangent.o sf_logarithm.o \ -sf_sineh.o sf_log.o sf_sineh.o sf_isnan.o sf_isinf.o ef_acosh.o \ -ef_atanh.o ef_remainder.o erf_gamma.o erf_lgamma.o sf_erf.o ef_j0.o \ -ef_j1.o wf_jn.o ef_hypot.o wf_cabs.o wf_drem.o sf_asinh.o sf_fmod.o \ -ef_scalb.o sf_signif.o -CFLAGS = @CFLAGS@ -COMPILE = $(CC) $(DEFS) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -LINK = $(CC) $(AM_CFLAGS) $(CFLAGS) $(LDFLAGS) -o $@ -DIST_COMMON = Makefile.am Makefile.in - - -DISTFILES = $(DIST_COMMON) $(SOURCES) $(HEADERS) $(TEXINFOS) $(EXTRA_DIST) - -TAR = tar -GZIP = --best -SOURCES = $(lib_a_SOURCES) -OBJECTS = $(lib_a_OBJECTS) - -all: Makefile $(LIBRARIES) - -.SUFFIXES: -.SUFFIXES: .S .c .def .o .s -$(srcdir)/Makefile.in: @MAINT@ Makefile.am $(top_srcdir)/configure.in $(ACLOCAL_M4) - cd $(top_srcdir) && $(AUTOMAKE) --cygnus mathfp/Makefile - -Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status - cd $(top_builddir) \ - && CONFIG_FILES=$(subdir)/$@ CONFIG_HEADERS= $(SHELL) ./config.status - - -mostlyclean-noinstLIBRARIES: - -clean-noinstLIBRARIES: - -test -z "$(noinst_LIBRARIES)" || rm -f $(noinst_LIBRARIES) - -distclean-noinstLIBRARIES: - -maintainer-clean-noinstLIBRARIES: - -.c.o: - $(COMPILE) -c $< - -.s.o: - $(COMPILE) -c $< - -.S.o: - $(COMPILE) -c $< - -mostlyclean-compile: - -rm -f *.o core *.core - -clean-compile: - -distclean-compile: - -rm -f *.tab.c - -maintainer-clean-compile: - -lib.a: $(lib_a_OBJECTS) $(lib_a_DEPENDENCIES) - -rm -f lib.a - $(AR) cru lib.a $(lib_a_OBJECTS) $(lib_a_LIBADD) - $(RANLIB) lib.a - -tags: TAGS - -ID: $(HEADERS) $(SOURCES) $(LISP) - here=`pwd` && cd $(srcdir) \ - && mkid -f$$here/ID $(SOURCES) $(HEADERS) $(LISP) - -TAGS: $(HEADERS) $(SOURCES) $(TAGS_DEPENDENCIES) $(LISP) - tags=; \ - here=`pwd`; \ - list='$(SOURCES) $(HEADERS)'; \ - unique=`for i in $$list; do echo $$i; done | \ - awk ' { files[$$0] = 1; } \ - END { for (i in files) print i; }'`; \ - test -z "$(ETAGS_ARGS)$$unique$(LISP)$$tags" \ - || (cd $(srcdir) && etags $(ETAGS_ARGS) $$tags $$unique $(LISP) -o $$here/TAGS) - -mostlyclean-tags: - -clean-tags: - -distclean-tags: - -rm -f TAGS ID - -maintainer-clean-tags: - -distdir = $(top_builddir)/$(PACKAGE)-$(VERSION)/$(subdir) - -subdir = mathfp - -distdir: $(DISTFILES) - @for file in $(DISTFILES); do \ - if test -f $$file; then d=.; else d=$(srcdir); fi; \ - test -f $(distdir)/$$file \ - || ln $$d/$$file $(distdir)/$$file 2> /dev/null \ - || cp -p $$d/$$file $(distdir)/$$file; \ - done -info: -dvi: -check: -installcheck: -install-info: -install-exec: - @$(NORMAL_INSTALL) - -install-data: - @$(NORMAL_INSTALL) - -install: install-exec install-data all - @: - -uninstall: - -install-strip: - $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM='$(INSTALL_PROGRAM) -s' INSTALL_SCRIPT='$(INSTALL_PROGRAM)' install -installdirs: - - -mostlyclean-generic: - -clean-generic: - -test -z "$(CLEANFILES)" || rm -f $(CLEANFILES) - -distclean-generic: - -rm -f Makefile $(CONFIG_CLEAN_FILES) - -rm -f config.cache config.log stamp-h stamp-h[0-9]* - -maintainer-clean-generic: -mostlyclean: mostlyclean-noinstLIBRARIES mostlyclean-compile \ - mostlyclean-tags mostlyclean-generic - -clean: clean-noinstLIBRARIES clean-compile clean-tags clean-generic \ - mostlyclean - -distclean: distclean-noinstLIBRARIES distclean-compile distclean-tags \ - distclean-generic clean - -rm -f config.status - -maintainer-clean: maintainer-clean-noinstLIBRARIES \ - maintainer-clean-compile maintainer-clean-tags \ - maintainer-clean-generic distclean - @echo "This command is intended for maintainers to use;" - @echo "it deletes files that may require special tools to rebuild." - -.PHONY: mostlyclean-noinstLIBRARIES distclean-noinstLIBRARIES \ -clean-noinstLIBRARIES maintainer-clean-noinstLIBRARIES \ -mostlyclean-compile distclean-compile clean-compile \ -maintainer-clean-compile tags mostlyclean-tags distclean-tags \ -clean-tags maintainer-clean-tags distdir info dvi installcheck \ -install-info install-exec install-data install uninstall all \ -installdirs mostlyclean-generic distclean-generic clean-generic \ -maintainer-clean-generic clean mostlyclean distclean maintainer-clean - - -.c.def: - $(CHEW) < $< > $*.def 2> $*.ref - touch stmp-def - -doc: $(chobj) - cat $(srcdir)/mathfp.tex >> $(TARGETDOC) - -# Texinfo does not appear to support underscores in file names, so we -# name the .def files without underscores. - -eacosh.def: e_acosh.c - $(CHEW) < $(srcdir)/e_acosh.c >$@ 2>/dev/null - touch stmp-def -eatanh.def: e_atanh.c - $(CHEW) < $(srcdir)/e_atanh.c >$@ 2>/dev/null - touch stmp-def -ehypot.def: e_hypot.c - $(CHEW) < $(srcdir)/e_hypot.c >$@ 2>/dev/null - touch stmp-def -eremainder.def: e_remainder.c - $(CHEW) < $(srcdir)/e_remainder.c >$@ 2>/dev/null - touch stmp-def -erlgamma.def: er_lgamma.c - $(CHEW) < $(srcdir)/er_lgamma.c >$@ 2>/dev/null - touch stmp-def -sacos.def: s_acos.c - $(CHEW) < $(srcdir)/s_acos.c >$@ 2>/dev/null - touch stmp-def -sasine.def: s_asine.c - $(CHEW) < $(srcdir)/s_asine.c >$@ 2>/dev/null - touch stmp-def -sasinh.def: s_asinh.c - $(CHEW) < $(srcdir)/s_asinh.c >$@ 2>/dev/null - touch stmp-def -satan.def: s_atan.c - $(CHEW) < $(srcdir)/s_atan.c >$@ 2>/dev/null - touch stmp-def -satan2.def: s_atan2.c - $(CHEW) < $(srcdir)/s_atan2.c >$@ 2>/dev/null - touch stmp-def -satangent.def: s_atangent.c - $(CHEW) < $(srcdir)/s_atangent.c >$@ 2>/dev/null - touch stmp-def -scosh.def: s_cosh.c - $(CHEW) < $(srcdir)/s_cosh.c >$@ 2>/dev/null - touch stmp-def -serf.def: s_erf.c - $(CHEW) < $(srcdir)/s_erf.c >$@ 2>/dev/null - touch stmp-def -sexp.def: s_exp.c - $(CHEW) < $(srcdir)/s_exp.c >$@ 2>/dev/null - touch stmp-def -sfabs.def: s_fabs.c - $(CHEW) < $(srcdir)/s_fabs.c >$@ 2>/dev/null - touch stmp-def -sfloor.def: s_floor.c - $(CHEW) < $(srcdir)/s_floor.c >$@ 2>/dev/null - touch stmp-def -sfmod.def: s_fmod.c - $(CHEW) < $(srcdir)/s_fmod.c >$@ 2>/dev/null - touch stmp-def -sfrexp.def: s_frexp.c - $(CHEW) < $(srcdir)/s_frexp.c >$@ 2>/dev/null - touch stmp-def -sisnan.def: s_isnan.c - $(CHEW) < $(srcdir)/s_isnan.c >$@ 2>/dev/null - touch stmp-def -sldexp.def: s_ldexp.c - $(CHEW) < $(srcdir)/s_ldexp.c >$@ 2>/dev/null - touch stmp-def -slog10.def: s_log10.c - $(CHEW) < $(srcdir)/s_log10.c >$@ 2>/dev/null - touch stmp-def -slogarithm.def: s_logarithm.c - $(CHEW) < $(srcdir)/s_logarithm.c >$@ 2>/dev/null - touch stmp-def -spow.def: s_pow.c - $(CHEW) < $(srcdir)/s_pow.c >$@ 2>/dev/null - touch stmp-def -ssine.def: s_sine.c - $(CHEW) < $(srcdir)/s_sine.c >$@ 2>/dev/null - touch stmp-def -ssineh.def: s_sineh.c - $(CHEW) < $(srcdir)/s_sineh.c >$@ 2>/dev/null - touch stmp-def -ssqrt.def: s_sqrt.c - $(CHEW) < $(srcdir)/s_sqrt.c >$@ 2>/dev/null - touch stmp-def -stan.def: s_tan.c - $(CHEW) < $(srcdir)/s_tan.c >$@ 2>/dev/null - touch stmp-def -stanh.def: s_tanh.c - $(CHEW) < $(srcdir)/s_tanh.c >$@ 2>/dev/null - touch stmp-def -wjn.def: w_jn.c - $(CHEW) < $(srcdir)/w_jn.c >$@ 2>/dev/null - touch stmp-def - -# A partial dependency list. - -$(lib_a_OBJECTS): $(srcdir)/../../libc/include/math.h $(srcdir)/../common/fdlibm.h - -# Tell versions [3.59,3.63) of GNU make to not export all variables. -# Otherwise a system limit (for SysV at least) may be exceeded. -.NOEXPORT: diff --git a/newlib/libm/mathfp/e_acosh.c b/newlib/libm/mathfp/e_acosh.c deleted file mode 100644 index a484203..0000000 --- a/newlib/libm/mathfp/e_acosh.c +++ /dev/null @@ -1,135 +0,0 @@ - -/* @(#)e_acosh.c 5.1 93/09/24 */ - -/* -FUNCTION -<<acosh>>, <<acoshf>>---inverse hyperbolic cosine - -INDEX -acosh -INDEX -acoshf - -ANSI_SYNOPSIS - #include <math.h> - double acosh(double <[x]>); - float acoshf(float <[x]>); - -TRAD_SYNOPSIS - #include <math.h> - double acosh(<[x]>) - double <[x]>; - - float acoshf(<[x]>) - float <[x]>; - -DESCRIPTION -<<acosh>> calculates the inverse hyperbolic cosine of <[x]>. -<<acosh>> is defined as -@ifinfo -. log(<[x]> + sqrt(<[x]>*<[x]>-1)) -@end ifinfo -@tex -$$ln\Bigl(x + \sqrt{x^2-1}\Bigr)$$ -@end tex - -<[x]> must be a number greater than or equal to 1. - -<<acoshf>> is identical, other than taking and returning floats. - -RETURNS -<<acosh>> and <<acoshf>> return the calculated value. If <[x]> -less than 1, the return value is NaN and <<errno>> is set to <<EDOM>>. - -You can change the error-handling behavior with the non-ANSI -<<matherr>> function. - -PORTABILITY -Neither <<acosh>> nor <<acoshf>> are ANSI C. They are not recommended -for portable programs. - - -QUICKREF ANSI SVID POSIX RENTRANT - acos n,n,n,m - acosf n,n,n,m - -MATHREF - acosh, NAN, arg,DOMAIN,EDOM - acosh, < 1.0, NAN,DOMAIN,EDOM - acosh, >=1.0, acosh(arg),,, - -MATHREF - acoshf, NAN, arg,DOMAIN,EDOM - acoshf, < 1.0, NAN,DOMAIN,EDOM - acoshf, >=1.0, acosh(arg),,, - -*/ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - * - */ - -/* acosh(x) - * Method : - * Based on - * acosh(x) = log [ x + sqrt(x*x-1) ] - * we have - * acosh(x) := log(x)+ln2, if x is large; else - * acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else - * acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1. - * - * Special cases: - * acosh(x) is NaN with signal if x<1. - * acosh(NaN) is NaN without signal. - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ -static const double -#else -static double -#endif -one = 1.0, -ln2 = 6.93147180559945286227e-01; /* 0x3FE62E42, 0xFEFA39EF */ - -#ifdef __STDC__ - double acosh(double x) -#else - double acosh(x) - double x; -#endif -{ - double t; - __int32_t hx; - __uint32_t lx; - EXTRACT_WORDS(hx,lx,x); - if(hx<0x3ff00000) { /* x < 1 */ - return (x-x)/(x-x); - } else if(hx >=0x41b00000) { /* x > 2**28 */ - if(hx >=0x7ff00000) { /* x is inf of NaN */ - return x+x; - } else - return log(x)+ln2; /* acosh(huge)=log(2x) */ - } else if(((hx-0x3ff00000)|lx)==0) { - return 0.0; /* acosh(1) = 0 */ - } else if (hx > 0x40000000) { /* 2**28 > x > 2 */ - t=x*x; - return log(2.0*x-one/(x+sqrt(t-one))); - } else { /* 1<x<2 */ - t = x-one; - return log1p(t+sqrt(2.0*t+t*t)); - } -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/mathfp/e_atanh.c b/newlib/libm/mathfp/e_atanh.c deleted file mode 100644 index 1ab311d..0000000 --- a/newlib/libm/mathfp/e_atanh.c +++ /dev/null @@ -1,139 +0,0 @@ - -/* @(#)e_atanh.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - * - */ - -/* -FUNCTION - <<atanh>>, <<atanhf>>---inverse hyperbolic tangent - -INDEX - atanh -INDEX - atanhf - -ANSI_SYNOPSIS - #include <math.h> - double atanh(double <[x]>); - float atanhf(float <[x]>); - -TRAD_SYNOPSIS - #include <math.h> - double atanh(<[x]>) - double <[x]>; - - float atanhf(<[x]>) - float <[x]>; - -DESCRIPTION - <<atanh>> calculates the inverse hyperbolic tangent of <[x]>. - - <<atanhf>> is identical, other than taking and returning - <<float>> values. - -RETURNS - <<atanh>> and <<atanhf>> return the calculated value. - - If - @ifinfo - |<[x]>| - @end ifinfo - @tex - $|x|$ - @end tex - is greater than 1, the global <<errno>> is set to <<EDOM>> and - the result is a NaN. A <<DOMAIN error>> is reported. - - If - @ifinfo - |<[x]>| - @end ifinfo - @tex - $|x|$ - @end tex - is 1, the global <<errno>> is set to <<EDOM>>; and the result is - infinity with the same sign as <<x>>. A <<SING error>> is reported. - - You can modify the error handling for these routines using - <<matherr>>. - -PORTABILITY - Neither <<atanh>> nor <<atanhf>> are ANSI C. - -QUICKREF - atanh - pure - atanhf - pure - - -*/ - -/* atanh(x) - * Method : - * 1.Reduced x to positive by atanh(-x) = -atanh(x) - * 2.For x>=0.5 - * 1 2x x - * atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------) - * 2 1 - x 1 - x - * - * For x<0.5 - * atanh(x) = 0.5*log1p(2x+2x*x/(1-x)) - * - * Special cases: - * atanh(x) is NaN if |x| > 1 with signal; - * atanh(NaN) is that NaN with no signal; - * atanh(+-1) is +-INF with signal. - * - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ -static const double one = 1.0, huge = 1e300; -#else -static double one = 1.0, huge = 1e300; -#endif - -#ifdef __STDC__ -static const double zero = 0.0; -#else -static double zero = 0.0; -#endif - -#ifdef __STDC__ - double atanh(double x) -#else - double atanh(x) - double x; -#endif -{ - double t; - __int32_t hx,ix; - __uint32_t lx; - EXTRACT_WORDS(hx,lx,x); - ix = hx&0x7fffffff; - if ((ix|((lx|(-lx))>>31))>0x3ff00000) /* |x|>1 */ - return (x-x)/(x-x); - if(ix==0x3ff00000) - return x/zero; - if(ix<0x3e300000&&(huge+x)>zero) return x; /* x<2**-28 */ - SET_HIGH_WORD(x,ix); - if(ix<0x3fe00000) { /* x < 0.5 */ - t = x+x; - t = 0.5*log1p(t+t*x/(one-x)); - } else - t = 0.5*log1p((x+x)/(one-x)); - if(hx>=0) return t; else return -t; -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/mathfp/e_hypot.c b/newlib/libm/mathfp/e_hypot.c deleted file mode 100644 index d93263e..0000000 --- a/newlib/libm/mathfp/e_hypot.c +++ /dev/null @@ -1,170 +0,0 @@ - -/* @(#)e_hypot.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* -FUNCTION - <<hypot>>, <<hypotf>>---distance from origin -INDEX - hypot -INDEX - hypotf - -ANSI_SYNOPSIS - #include <math.h> - double hypot(double <[x]>, double <[y]>); - float hypotf(float <[x]>, float <[y]>); - -TRAD_SYNOPSIS - double hypot(<[x]>, <[y]>) - double <[x]>, <[y]>; - - float hypotf(<[x]>, <[y]>) - float <[x]>, <[y]>; - -DESCRIPTION - <<hypot>> calculates the Euclidean distance - @tex - $\sqrt{x^2+y^2}$ - @end tex - @ifinfo - <<sqrt(<[x]>*<[x]> + <[y]>*<[y]>)>> - @end ifinfo - between the origin (0,0) and a point represented by the - Cartesian coordinates (<[x]>,<[y]>). <<hypotf>> differs only - in the type of its arguments and result. - -RETURNS - Normally, the distance value is returned. On overflow, - <<hypot>> returns <<HUGE_VAL>> and sets <<errno>> to - <<ERANGE>>. - - You can change the error treatment with <<matherr>>. - -PORTABILITY - <<hypot>> and <<hypotf>> are not ANSI C. */ - -/* hypot(x,y) - * - * Method : - * If (assume round-to-nearest) z=x*x+y*y - * has error less than sqrt(2)/2 ulp, than - * sqrt(z) has error less than 1 ulp (exercise). - * - * So, compute sqrt(x*x+y*y) with some care as - * follows to get the error below 1 ulp: - * - * Assume x>y>0; - * (if possible, set rounding to round-to-nearest) - * 1. if x > 2y use - * x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y - * where x1 = x with lower 32 bits cleared, x2 = x-x1; else - * 2. if x <= 2y use - * t1*y1+((x-y)*(x-y)+(t1*y2+t2*y)) - * where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1, - * y1= y with lower 32 bits chopped, y2 = y-y1. - * - * NOTE: scaling may be necessary if some argument is too - * large or too tiny - * - * Special cases: - * hypot(x,y) is INF if x or y is +INF or -INF; else - * hypot(x,y) is NAN if x or y is NAN. - * - * Accuracy: - * hypot(x,y) returns sqrt(x^2+y^2) with error less - * than 1 ulps (units in the last place) - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double hypot(double x, double y) -#else - double hypot(x,y) - double x, y; -#endif -{ - double a=x,b=y,t1,t2,y1,y2,w; - __int32_t j,k,ha,hb; - - GET_HIGH_WORD(ha,x); - ha &= 0x7fffffff; - GET_HIGH_WORD(hb,y); - hb &= 0x7fffffff; - if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;} - SET_HIGH_WORD(a,ha); /* a <- |a| */ - SET_HIGH_WORD(b,hb); /* b <- |b| */ - if((ha-hb)>0x3c00000) {return a+b;} /* x/y > 2**60 */ - k=0; - if(ha > 0x5f300000) { /* a>2**500 */ - if(ha >= 0x7ff00000) { /* Inf or NaN */ - __uint32_t low; - w = a+b; /* for sNaN */ - GET_LOW_WORD(low,a); - if(((ha&0xfffff)|low)==0) w = a; - GET_LOW_WORD(low,b); - if(((hb^0x7ff00000)|low)==0) w = b; - return w; - } - /* scale a and b by 2**-600 */ - ha -= 0x25800000; hb -= 0x25800000; k += 600; - SET_HIGH_WORD(a,ha); - SET_HIGH_WORD(b,hb); - } - if(hb < 0x20b00000) { /* b < 2**-500 */ - if(hb <= 0x000fffff) { /* subnormal b or 0 */ - __uint32_t low; - GET_LOW_WORD(low,b); - if((hb|low)==0) return a; - t1=0; - SET_HIGH_WORD(t1,0x7fd00000); /* t1=2^1022 */ - b *= t1; - a *= t1; - k -= 1022; - } else { /* scale a and b by 2^600 */ - ha += 0x25800000; /* a *= 2^600 */ - hb += 0x25800000; /* b *= 2^600 */ - k -= 600; - SET_HIGH_WORD(a,ha); - SET_HIGH_WORD(b,hb); - } - } - /* medium size a and b */ - w = a-b; - if (w>b) { - t1 = 0; - SET_HIGH_WORD(t1,ha); - t2 = a-t1; - w = sqrt(t1*t1-(b*(-b)-t2*(a+t1))); - } else { - a = a+a; - y1 = 0; - SET_HIGH_WORD(y1,hb); - y2 = b - y1; - t1 = 0; - SET_HIGH_WORD(t1,ha+0x00100000); - t2 = a - t1; - w = sqrt(t1*y1-(w*(-w)-(t1*y2+t2*b))); - } - if(k!=0) { - __uint32_t high; - t1 = 1.0; - GET_HIGH_WORD(high,t1); - SET_HIGH_WORD(t1,high+(k<<20)); - return t1*w; - } else return w; -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/mathfp/e_j0.c b/newlib/libm/mathfp/e_j0.c deleted file mode 100644 index c58c08e..0000000 --- a/newlib/libm/mathfp/e_j0.c +++ /dev/null @@ -1,487 +0,0 @@ - -/* @(#)e_j0.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* j0(x), y0(x) - * Bessel function of the first and second kinds of order zero. - * Method -- j0(x): - * 1. For tiny x, we use j0(x) = 1 - x^2/4 + x^4/64 - ... - * 2. Reduce x to |x| since j0(x)=j0(-x), and - * for x in (0,2) - * j0(x) = 1-z/4+ z^2*R0/S0, where z = x*x; - * (precision: |j0-1+z/4-z^2R0/S0 |<2**-63.67 ) - * for x in (2,inf) - * j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0)) - * where x0 = x-pi/4. It is better to compute sin(x0),cos(x0) - * as follow: - * cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4) - * = 1/sqrt(2) * (cos(x) + sin(x)) - * sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4) - * = 1/sqrt(2) * (sin(x) - cos(x)) - * (To avoid cancellation, use - * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) - * to compute the worse one.) - * - * 3 Special cases - * j0(nan)= nan - * j0(0) = 1 - * j0(inf) = 0 - * - * Method -- y0(x): - * 1. For x<2. - * Since - * y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x^2/4 - ...) - * therefore y0(x)-2/pi*j0(x)*ln(x) is an even function. - * We use the following function to approximate y0, - * y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x^2 - * where - * U(z) = u00 + u01*z + ... + u06*z^6 - * V(z) = 1 + v01*z + ... + v04*z^4 - * with absolute approximation error bounded by 2**-72. - * Note: For tiny x, U/V = u0 and j0(x)~1, hence - * y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27) - * 2. For x>=2. - * y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0)) - * where x0 = x-pi/4. It is better to compute sin(x0),cos(x0) - * by the method mentioned above. - * 3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0. - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ -static double pzero(double), qzero(double); -#else -static double pzero(), qzero(); -#endif - -#ifdef __STDC__ -static const double -#else -static double -#endif -huge = 1e300, -one = 1.0, -invsqrtpi= 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */ -tpi = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */ - /* R0/S0 on [0, 2.00] */ -R02 = 1.56249999999999947958e-02, /* 0x3F8FFFFF, 0xFFFFFFFD */ -R03 = -1.89979294238854721751e-04, /* 0xBF28E6A5, 0xB61AC6E9 */ -R04 = 1.82954049532700665670e-06, /* 0x3EBEB1D1, 0x0C503919 */ -R05 = -4.61832688532103189199e-09, /* 0xBE33D5E7, 0x73D63FCE */ -S01 = 1.56191029464890010492e-02, /* 0x3F8FFCE8, 0x82C8C2A4 */ -S02 = 1.16926784663337450260e-04, /* 0x3F1EA6D2, 0xDD57DBF4 */ -S03 = 5.13546550207318111446e-07, /* 0x3EA13B54, 0xCE84D5A9 */ -S04 = 1.16614003333790000205e-09; /* 0x3E1408BC, 0xF4745D8F */ - -#ifdef __STDC__ -static const double zero = 0.0; -#else -static double zero = 0.0; -#endif - -#ifdef __STDC__ - double j0(double x) -#else - double j0(x) - double x; -#endif -{ - double z, s,c,ss,cc,r,u,v; - __int32_t hx,ix; - - GET_HIGH_WORD(hx,x); - ix = hx&0x7fffffff; - if(ix>=0x7ff00000) return one/(x*x); - x = fabs(x); - if(ix >= 0x40000000) { /* |x| >= 2.0 */ - s = sin(x); - c = cos(x); - ss = s-c; - cc = s+c; - if(ix<0x7fe00000) { /* make sure x+x not overflow */ - z = -cos(x+x); - if ((s*c)<zero) cc = z/ss; - else ss = z/cc; - } - /* - * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x) - * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x) - */ - if(ix>0x48000000) z = (invsqrtpi*cc)/sqrt(x); - else { - u = pzero(x); v = qzero(x); - z = invsqrtpi*(u*cc-v*ss)/sqrt(x); - } - return z; - } - if(ix<0x3f200000) { /* |x| < 2**-13 */ - if(huge+x>one) { /* raise inexact if x != 0 */ - if(ix<0x3e400000) return one; /* |x|<2**-27 */ - else return one - 0.25*x*x; - } - } - z = x*x; - r = z*(R02+z*(R03+z*(R04+z*R05))); - s = one+z*(S01+z*(S02+z*(S03+z*S04))); - if(ix < 0x3FF00000) { /* |x| < 1.00 */ - return one + z*(-0.25+(r/s)); - } else { - u = 0.5*x; - return((one+u)*(one-u)+z*(r/s)); - } -} - -#ifdef __STDC__ -static const double -#else -static double -#endif -u00 = -7.38042951086872317523e-02, /* 0xBFB2E4D6, 0x99CBD01F */ -u01 = 1.76666452509181115538e-01, /* 0x3FC69D01, 0x9DE9E3FC */ -u02 = -1.38185671945596898896e-02, /* 0xBF8C4CE8, 0xB16CFA97 */ -u03 = 3.47453432093683650238e-04, /* 0x3F36C54D, 0x20B29B6B */ -u04 = -3.81407053724364161125e-06, /* 0xBECFFEA7, 0x73D25CAD */ -u05 = 1.95590137035022920206e-08, /* 0x3E550057, 0x3B4EABD4 */ -u06 = -3.98205194132103398453e-11, /* 0xBDC5E43D, 0x693FB3C8 */ -v01 = 1.27304834834123699328e-02, /* 0x3F8A1270, 0x91C9C71A */ -v02 = 7.60068627350353253702e-05, /* 0x3F13ECBB, 0xF578C6C1 */ -v03 = 2.59150851840457805467e-07, /* 0x3E91642D, 0x7FF202FD */ -v04 = 4.41110311332675467403e-10; /* 0x3DFE5018, 0x3BD6D9EF */ - -#ifdef __STDC__ - double y0(double x) -#else - double y0(x) - double x; -#endif -{ - double z, s,c,ss,cc,u,v; - __int32_t hx,ix,lx; - - EXTRACT_WORDS(hx,lx,x); - ix = 0x7fffffff&hx; - /* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0 */ - if(ix>=0x7ff00000) return one/(x+x*x); - if((ix|lx)==0) return -one/zero; - if(hx<0) return zero/zero; - if(ix >= 0x40000000) { /* |x| >= 2.0 */ - /* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0)) - * where x0 = x-pi/4 - * Better formula: - * cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4) - * = 1/sqrt(2) * (sin(x) + cos(x)) - * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4) - * = 1/sqrt(2) * (sin(x) - cos(x)) - * To avoid cancellation, use - * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) - * to compute the worse one. - */ - s = sin(x); - c = cos(x); - ss = s-c; - cc = s+c; - /* - * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x) - * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x) - */ - if(ix<0x7fe00000) { /* make sure x+x not overflow */ - z = -cos(x+x); - if ((s*c)<zero) cc = z/ss; - else ss = z/cc; - } - if(ix>0x48000000) z = (invsqrtpi*ss)/sqrt(x); - else { - u = pzero(x); v = qzero(x); - z = invsqrtpi*(u*ss+v*cc)/sqrt(x); - } - return z; - } - if(ix<=0x3e400000) { /* x < 2**-27 */ - return(u00 + tpi*log(x)); - } - z = x*x; - u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06))))); - v = one+z*(v01+z*(v02+z*(v03+z*v04))); - return(u/v + tpi*(j0(x)*log(x))); -} - -/* The asymptotic expansions of pzero is - * 1 - 9/128 s^2 + 11025/98304 s^4 - ..., where s = 1/x. - * For x >= 2, We approximate pzero by - * pzero(x) = 1 + (R/S) - * where R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10 - * S = 1 + pS0*s^2 + ... + pS4*s^10 - * and - * | pzero(x)-1-R/S | <= 2 ** ( -60.26) - */ -#ifdef __STDC__ -static const double pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ -#else -static double pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ -#endif - 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */ - -7.03124999999900357484e-02, /* 0xBFB1FFFF, 0xFFFFFD32 */ - -8.08167041275349795626e+00, /* 0xC02029D0, 0xB44FA779 */ - -2.57063105679704847262e+02, /* 0xC0701102, 0x7B19E863 */ - -2.48521641009428822144e+03, /* 0xC0A36A6E, 0xCD4DCAFC */ - -5.25304380490729545272e+03, /* 0xC0B4850B, 0x36CC643D */ -}; -#ifdef __STDC__ -static const double pS8[5] = { -#else -static double pS8[5] = { -#endif - 1.16534364619668181717e+02, /* 0x405D2233, 0x07A96751 */ - 3.83374475364121826715e+03, /* 0x40ADF37D, 0x50596938 */ - 4.05978572648472545552e+04, /* 0x40E3D2BB, 0x6EB6B05F */ - 1.16752972564375915681e+05, /* 0x40FC810F, 0x8F9FA9BD */ - 4.76277284146730962675e+04, /* 0x40E74177, 0x4F2C49DC */ -}; - -#ifdef __STDC__ -static const double pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ -#else -static double pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ -#endif - -1.14125464691894502584e-11, /* 0xBDA918B1, 0x47E495CC */ - -7.03124940873599280078e-02, /* 0xBFB1FFFF, 0xE69AFBC6 */ - -4.15961064470587782438e+00, /* 0xC010A370, 0xF90C6BBF */ - -6.76747652265167261021e+01, /* 0xC050EB2F, 0x5A7D1783 */ - -3.31231299649172967747e+02, /* 0xC074B3B3, 0x6742CC63 */ - -3.46433388365604912451e+02, /* 0xC075A6EF, 0x28A38BD7 */ -}; -#ifdef __STDC__ -static const double pS5[5] = { -#else -static double pS5[5] = { -#endif - 6.07539382692300335975e+01, /* 0x404E6081, 0x0C98C5DE */ - 1.05125230595704579173e+03, /* 0x40906D02, 0x5C7E2864 */ - 5.97897094333855784498e+03, /* 0x40B75AF8, 0x8FBE1D60 */ - 9.62544514357774460223e+03, /* 0x40C2CCB8, 0xFA76FA38 */ - 2.40605815922939109441e+03, /* 0x40A2CC1D, 0xC70BE864 */ -}; - -#ifdef __STDC__ -static const double pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ -#else -static double pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ -#endif - -2.54704601771951915620e-09, /* 0xBE25E103, 0x6FE1AA86 */ - -7.03119616381481654654e-02, /* 0xBFB1FFF6, 0xF7C0E24B */ - -2.40903221549529611423e+00, /* 0xC00345B2, 0xAEA48074 */ - -2.19659774734883086467e+01, /* 0xC035F74A, 0x4CB94E14 */ - -5.80791704701737572236e+01, /* 0xC04D0A22, 0x420A1A45 */ - -3.14479470594888503854e+01, /* 0xC03F72AC, 0xA892D80F */ -}; -#ifdef __STDC__ -static const double pS3[5] = { -#else -static double pS3[5] = { -#endif - 3.58560338055209726349e+01, /* 0x4041ED92, 0x84077DD3 */ - 3.61513983050303863820e+02, /* 0x40769839, 0x464A7C0E */ - 1.19360783792111533330e+03, /* 0x4092A66E, 0x6D1061D6 */ - 1.12799679856907414432e+03, /* 0x40919FFC, 0xB8C39B7E */ - 1.73580930813335754692e+02, /* 0x4065B296, 0xFC379081 */ -}; - -#ifdef __STDC__ -static const double pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ -#else -static double pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ -#endif - -8.87534333032526411254e-08, /* 0xBE77D316, 0xE927026D */ - -7.03030995483624743247e-02, /* 0xBFB1FF62, 0x495E1E42 */ - -1.45073846780952986357e+00, /* 0xBFF73639, 0x8A24A843 */ - -7.63569613823527770791e+00, /* 0xC01E8AF3, 0xEDAFA7F3 */ - -1.11931668860356747786e+01, /* 0xC02662E6, 0xC5246303 */ - -3.23364579351335335033e+00, /* 0xC009DE81, 0xAF8FE70F */ -}; -#ifdef __STDC__ -static const double pS2[5] = { -#else -static double pS2[5] = { -#endif - 2.22202997532088808441e+01, /* 0x40363865, 0x908B5959 */ - 1.36206794218215208048e+02, /* 0x4061069E, 0x0EE8878F */ - 2.70470278658083486789e+02, /* 0x4070E786, 0x42EA079B */ - 1.53875394208320329881e+02, /* 0x40633C03, 0x3AB6FAFF */ - 1.46576176948256193810e+01, /* 0x402D50B3, 0x44391809 */ -}; - -#ifdef __STDC__ - static double pzero(double x) -#else - static double pzero(x) - double x; -#endif -{ -#ifdef __STDC__ - const double *p,*q; -#else - double *p,*q; -#endif - double z,r,s; - __int32_t ix; - GET_HIGH_WORD(ix,x); - ix &= 0x7fffffff; - if(ix>=0x40200000) {p = pR8; q= pS8;} - else if(ix>=0x40122E8B){p = pR5; q= pS5;} - else if(ix>=0x4006DB6D){p = pR3; q= pS3;} - else {p = pR2; q= pS2;} - z = one/(x*x); - r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); - s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4])))); - return one+ r/s; -} - - -/* For x >= 8, the asymptotic expansions of qzero is - * -1/8 s + 75/1024 s^3 - ..., where s = 1/x. - * We approximate qzero by - * qzero(x) = s*(-1.25 + (R/S)) - * where R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10 - * S = 1 + qS0*s^2 + ... + qS5*s^12 - * and - * | qzero(x)/s +1.25-R/S | <= 2 ** ( -61.22) - */ -#ifdef __STDC__ -static const double qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ -#else -static double qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ -#endif - 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */ - 7.32421874999935051953e-02, /* 0x3FB2BFFF, 0xFFFFFE2C */ - 1.17682064682252693899e+01, /* 0x40278952, 0x5BB334D6 */ - 5.57673380256401856059e+02, /* 0x40816D63, 0x15301825 */ - 8.85919720756468632317e+03, /* 0x40C14D99, 0x3E18F46D */ - 3.70146267776887834771e+04, /* 0x40E212D4, 0x0E901566 */ -}; -#ifdef __STDC__ -static const double qS8[6] = { -#else -static double qS8[6] = { -#endif - 1.63776026895689824414e+02, /* 0x406478D5, 0x365B39BC */ - 8.09834494656449805916e+03, /* 0x40BFA258, 0x4E6B0563 */ - 1.42538291419120476348e+05, /* 0x41016652, 0x54D38C3F */ - 8.03309257119514397345e+05, /* 0x412883DA, 0x83A52B43 */ - 8.40501579819060512818e+05, /* 0x4129A66B, 0x28DE0B3D */ - -3.43899293537866615225e+05, /* 0xC114FD6D, 0x2C9530C5 */ -}; - -#ifdef __STDC__ -static const double qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ -#else -static double qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ -#endif - 1.84085963594515531381e-11, /* 0x3DB43D8F, 0x29CC8CD9 */ - 7.32421766612684765896e-02, /* 0x3FB2BFFF, 0xD172B04C */ - 5.83563508962056953777e+00, /* 0x401757B0, 0xB9953DD3 */ - 1.35111577286449829671e+02, /* 0x4060E392, 0x0A8788E9 */ - 1.02724376596164097464e+03, /* 0x40900CF9, 0x9DC8C481 */ - 1.98997785864605384631e+03, /* 0x409F17E9, 0x53C6E3A6 */ -}; -#ifdef __STDC__ -static const double qS5[6] = { -#else -static double qS5[6] = { -#endif - 8.27766102236537761883e+01, /* 0x4054B1B3, 0xFB5E1543 */ - 2.07781416421392987104e+03, /* 0x40A03BA0, 0xDA21C0CE */ - 1.88472887785718085070e+04, /* 0x40D267D2, 0x7B591E6D */ - 5.67511122894947329769e+04, /* 0x40EBB5E3, 0x97E02372 */ - 3.59767538425114471465e+04, /* 0x40E19118, 0x1F7A54A0 */ - -5.35434275601944773371e+03, /* 0xC0B4EA57, 0xBEDBC609 */ -}; - -#ifdef __STDC__ -static const double qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ -#else -static double qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ -#endif - 4.37741014089738620906e-09, /* 0x3E32CD03, 0x6ADECB82 */ - 7.32411180042911447163e-02, /* 0x3FB2BFEE, 0x0E8D0842 */ - 3.34423137516170720929e+00, /* 0x400AC0FC, 0x61149CF5 */ - 4.26218440745412650017e+01, /* 0x40454F98, 0x962DAEDD */ - 1.70808091340565596283e+02, /* 0x406559DB, 0xE25EFD1F */ - 1.66733948696651168575e+02, /* 0x4064D77C, 0x81FA21E0 */ -}; -#ifdef __STDC__ -static const double qS3[6] = { -#else -static double qS3[6] = { -#endif - 4.87588729724587182091e+01, /* 0x40486122, 0xBFE343A6 */ - 7.09689221056606015736e+02, /* 0x40862D83, 0x86544EB3 */ - 3.70414822620111362994e+03, /* 0x40ACF04B, 0xE44DFC63 */ - 6.46042516752568917582e+03, /* 0x40B93C6C, 0xD7C76A28 */ - 2.51633368920368957333e+03, /* 0x40A3A8AA, 0xD94FB1C0 */ - -1.49247451836156386662e+02, /* 0xC062A7EB, 0x201CF40F */ -}; - -#ifdef __STDC__ -static const double qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ -#else -static double qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ -#endif - 1.50444444886983272379e-07, /* 0x3E84313B, 0x54F76BDB */ - 7.32234265963079278272e-02, /* 0x3FB2BEC5, 0x3E883E34 */ - 1.99819174093815998816e+00, /* 0x3FFFF897, 0xE727779C */ - 1.44956029347885735348e+01, /* 0x402CFDBF, 0xAAF96FE5 */ - 3.16662317504781540833e+01, /* 0x403FAA8E, 0x29FBDC4A */ - 1.62527075710929267416e+01, /* 0x403040B1, 0x71814BB4 */ -}; -#ifdef __STDC__ -static const double qS2[6] = { -#else -static double qS2[6] = { -#endif - 3.03655848355219184498e+01, /* 0x403E5D96, 0xF7C07AED */ - 2.69348118608049844624e+02, /* 0x4070D591, 0xE4D14B40 */ - 8.44783757595320139444e+02, /* 0x408A6645, 0x22B3BF22 */ - 8.82935845112488550512e+02, /* 0x408B977C, 0x9C5CC214 */ - 2.12666388511798828631e+02, /* 0x406A9553, 0x0E001365 */ - -5.31095493882666946917e+00, /* 0xC0153E6A, 0xF8B32931 */ -}; - -#ifdef __STDC__ - static double qzero(double x) -#else - static double qzero(x) - double x; -#endif -{ -#ifdef __STDC__ - const double *p,*q; -#else - double *p,*q; -#endif - double s,r,z; - __int32_t ix; - GET_HIGH_WORD(ix,x); - ix &= 0x7fffffff; - if(ix>=0x40200000) {p = qR8; q= qS8;} - else if(ix>=0x40122E8B){p = qR5; q= qS5;} - else if(ix>=0x4006DB6D){p = qR3; q= qS3;} - else {p = qR2; q= qS2;} - z = one/(x*x); - r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); - s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5]))))); - return (-.125 + r/s)/x; -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/mathfp/e_j1.c b/newlib/libm/mathfp/e_j1.c deleted file mode 100644 index 274adfd..0000000 --- a/newlib/libm/mathfp/e_j1.c +++ /dev/null @@ -1,486 +0,0 @@ - -/* @(#)e_j1.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* j1(x), y1(x) - * Bessel function of the first and second kinds of order zero. - * Method -- j1(x): - * 1. For tiny x, we use j1(x) = x/2 - x^3/16 + x^5/384 - ... - * 2. Reduce x to |x| since j1(x)=-j1(-x), and - * for x in (0,2) - * j1(x) = x/2 + x*z*R0/S0, where z = x*x; - * (precision: |j1/x - 1/2 - R0/S0 |<2**-61.51 ) - * for x in (2,inf) - * j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1)) - * y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1)) - * where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1) - * as follow: - * cos(x1) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4) - * = 1/sqrt(2) * (sin(x) - cos(x)) - * sin(x1) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4) - * = -1/sqrt(2) * (sin(x) + cos(x)) - * (To avoid cancellation, use - * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) - * to compute the worse one.) - * - * 3 Special cases - * j1(nan)= nan - * j1(0) = 0 - * j1(inf) = 0 - * - * Method -- y1(x): - * 1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN - * 2. For x<2. - * Since - * y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x^3-...) - * therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function. - * We use the following function to approximate y1, - * y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x^2 - * where for x in [0,2] (abs err less than 2**-65.89) - * U(z) = U0[0] + U0[1]*z + ... + U0[4]*z^4 - * V(z) = 1 + v0[0]*z + ... + v0[4]*z^5 - * Note: For tiny x, 1/x dominate y1 and hence - * y1(tiny) = -2/pi/tiny, (choose tiny<2**-54) - * 3. For x>=2. - * y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1)) - * where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1) - * by method mentioned above. - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ -static double pone(double), qone(double); -#else -static double pone(), qone(); -#endif - -#ifdef __STDC__ -static const double -#else -static double -#endif -huge = 1e300, -one = 1.0, -invsqrtpi= 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */ -tpi = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */ - /* R0/S0 on [0,2] */ -r00 = -6.25000000000000000000e-02, /* 0xBFB00000, 0x00000000 */ -r01 = 1.40705666955189706048e-03, /* 0x3F570D9F, 0x98472C61 */ -r02 = -1.59955631084035597520e-05, /* 0xBEF0C5C6, 0xBA169668 */ -r03 = 4.96727999609584448412e-08, /* 0x3E6AAAFA, 0x46CA0BD9 */ -s01 = 1.91537599538363460805e-02, /* 0x3F939D0B, 0x12637E53 */ -s02 = 1.85946785588630915560e-04, /* 0x3F285F56, 0xB9CDF664 */ -s03 = 1.17718464042623683263e-06, /* 0x3EB3BFF8, 0x333F8498 */ -s04 = 5.04636257076217042715e-09, /* 0x3E35AC88, 0xC97DFF2C */ -s05 = 1.23542274426137913908e-11; /* 0x3DAB2ACF, 0xCFB97ED8 */ - -#ifdef __STDC__ -static const double zero = 0.0; -#else -static double zero = 0.0; -#endif - -#ifdef __STDC__ - double j1(double x) -#else - double j1(x) - double x; -#endif -{ - double z, s,c,ss,cc,r,u,v,y; - __int32_t hx,ix; - - GET_HIGH_WORD(hx,x); - ix = hx&0x7fffffff; - if(ix>=0x7ff00000) return one/x; - y = fabs(x); - if(ix >= 0x40000000) { /* |x| >= 2.0 */ - s = sin(y); - c = cos(y); - ss = -s-c; - cc = s-c; - if(ix<0x7fe00000) { /* make sure y+y not overflow */ - z = cos(y+y); - if ((s*c)>zero) cc = z/ss; - else ss = z/cc; - } - /* - * j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x) - * y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x) - */ - if(ix>0x48000000) z = (invsqrtpi*cc)/sqrt(y); - else { - u = pone(y); v = qone(y); - z = invsqrtpi*(u*cc-v*ss)/sqrt(y); - } - if(hx<0) return -z; - else return z; - } - if(ix<0x3e400000) { /* |x|<2**-27 */ - if(huge+x>one) return 0.5*x;/* inexact if x!=0 necessary */ - } - z = x*x; - r = z*(r00+z*(r01+z*(r02+z*r03))); - s = one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05)))); - r *= x; - return(x*0.5+r/s); -} - -#ifdef __STDC__ -static const double U0[5] = { -#else -static double U0[5] = { -#endif - -1.96057090646238940668e-01, /* 0xBFC91866, 0x143CBC8A */ - 5.04438716639811282616e-02, /* 0x3FA9D3C7, 0x76292CD1 */ - -1.91256895875763547298e-03, /* 0xBF5F55E5, 0x4844F50F */ - 2.35252600561610495928e-05, /* 0x3EF8AB03, 0x8FA6B88E */ - -9.19099158039878874504e-08, /* 0xBE78AC00, 0x569105B8 */ -}; -#ifdef __STDC__ -static const double V0[5] = { -#else -static double V0[5] = { -#endif - 1.99167318236649903973e-02, /* 0x3F94650D, 0x3F4DA9F0 */ - 2.02552581025135171496e-04, /* 0x3F2A8C89, 0x6C257764 */ - 1.35608801097516229404e-06, /* 0x3EB6C05A, 0x894E8CA6 */ - 6.22741452364621501295e-09, /* 0x3E3ABF1D, 0x5BA69A86 */ - 1.66559246207992079114e-11, /* 0x3DB25039, 0xDACA772A */ -}; - -#ifdef __STDC__ - double y1(double x) -#else - double y1(x) - double x; -#endif -{ - double z, s,c,ss,cc,u,v; - __int32_t hx,ix,lx; - - EXTRACT_WORDS(hx,lx,x); - ix = 0x7fffffff&hx; - /* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */ - if(ix>=0x7ff00000) return one/(x+x*x); - if((ix|lx)==0) return -one/zero; - if(hx<0) return zero/zero; - if(ix >= 0x40000000) { /* |x| >= 2.0 */ - s = sin(x); - c = cos(x); - ss = -s-c; - cc = s-c; - if(ix<0x7fe00000) { /* make sure x+x not overflow */ - z = cos(x+x); - if ((s*c)>zero) cc = z/ss; - else ss = z/cc; - } - /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0)) - * where x0 = x-3pi/4 - * Better formula: - * cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4) - * = 1/sqrt(2) * (sin(x) - cos(x)) - * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4) - * = -1/sqrt(2) * (cos(x) + sin(x)) - * To avoid cancellation, use - * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) - * to compute the worse one. - */ - if(ix>0x48000000) z = (invsqrtpi*ss)/sqrt(x); - else { - u = pone(x); v = qone(x); - z = invsqrtpi*(u*ss+v*cc)/sqrt(x); - } - return z; - } - if(ix<=0x3c900000) { /* x < 2**-54 */ - return(-tpi/x); - } - z = x*x; - u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4]))); - v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4])))); - return(x*(u/v) + tpi*(j1(x)*log(x)-one/x)); -} - -/* For x >= 8, the asymptotic expansions of pone is - * 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x. - * We approximate pone by - * pone(x) = 1 + (R/S) - * where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10 - * S = 1 + ps0*s^2 + ... + ps4*s^10 - * and - * | pone(x)-1-R/S | <= 2 ** ( -60.06) - */ - -#ifdef __STDC__ -static const double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ -#else -static double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ -#endif - 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */ - 1.17187499999988647970e-01, /* 0x3FBDFFFF, 0xFFFFFCCE */ - 1.32394806593073575129e+01, /* 0x402A7A9D, 0x357F7FCE */ - 4.12051854307378562225e+02, /* 0x4079C0D4, 0x652EA590 */ - 3.87474538913960532227e+03, /* 0x40AE457D, 0xA3A532CC */ - 7.91447954031891731574e+03, /* 0x40BEEA7A, 0xC32782DD */ -}; -#ifdef __STDC__ -static const double ps8[5] = { -#else -static double ps8[5] = { -#endif - 1.14207370375678408436e+02, /* 0x405C8D45, 0x8E656CAC */ - 3.65093083420853463394e+03, /* 0x40AC85DC, 0x964D274F */ - 3.69562060269033463555e+04, /* 0x40E20B86, 0x97C5BB7F */ - 9.76027935934950801311e+04, /* 0x40F7D42C, 0xB28F17BB */ - 3.08042720627888811578e+04, /* 0x40DE1511, 0x697A0B2D */ -}; - -#ifdef __STDC__ -static const double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ -#else -static double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ -#endif - 1.31990519556243522749e-11, /* 0x3DAD0667, 0xDAE1CA7D */ - 1.17187493190614097638e-01, /* 0x3FBDFFFF, 0xE2C10043 */ - 6.80275127868432871736e+00, /* 0x401B3604, 0x6E6315E3 */ - 1.08308182990189109773e+02, /* 0x405B13B9, 0x452602ED */ - 5.17636139533199752805e+02, /* 0x40802D16, 0xD052D649 */ - 5.28715201363337541807e+02, /* 0x408085B8, 0xBB7E0CB7 */ -}; -#ifdef __STDC__ -static const double ps5[5] = { -#else -static double ps5[5] = { -#endif - 5.92805987221131331921e+01, /* 0x404DA3EA, 0xA8AF633D */ - 9.91401418733614377743e+02, /* 0x408EFB36, 0x1B066701 */ - 5.35326695291487976647e+03, /* 0x40B4E944, 0x5706B6FB */ - 7.84469031749551231769e+03, /* 0x40BEA4B0, 0xB8A5BB15 */ - 1.50404688810361062679e+03, /* 0x40978030, 0x036F5E51 */ -}; - -#ifdef __STDC__ -static const double pr3[6] = { -#else -static double pr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ -#endif - 3.02503916137373618024e-09, /* 0x3E29FC21, 0xA7AD9EDD */ - 1.17186865567253592491e-01, /* 0x3FBDFFF5, 0x5B21D17B */ - 3.93297750033315640650e+00, /* 0x400F76BC, 0xE85EAD8A */ - 3.51194035591636932736e+01, /* 0x40418F48, 0x9DA6D129 */ - 9.10550110750781271918e+01, /* 0x4056C385, 0x4D2C1837 */ - 4.85590685197364919645e+01, /* 0x4048478F, 0x8EA83EE5 */ -}; -#ifdef __STDC__ -static const double ps3[5] = { -#else -static double ps3[5] = { -#endif - 3.47913095001251519989e+01, /* 0x40416549, 0xA134069C */ - 3.36762458747825746741e+02, /* 0x40750C33, 0x07F1A75F */ - 1.04687139975775130551e+03, /* 0x40905B7C, 0x5037D523 */ - 8.90811346398256432622e+02, /* 0x408BD67D, 0xA32E31E9 */ - 1.03787932439639277504e+02, /* 0x4059F26D, 0x7C2EED53 */ -}; - -#ifdef __STDC__ -static const double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ -#else -static double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ -#endif - 1.07710830106873743082e-07, /* 0x3E7CE9D4, 0xF65544F4 */ - 1.17176219462683348094e-01, /* 0x3FBDFF42, 0xBE760D83 */ - 2.36851496667608785174e+00, /* 0x4002F2B7, 0xF98FAEC0 */ - 1.22426109148261232917e+01, /* 0x40287C37, 0x7F71A964 */ - 1.76939711271687727390e+01, /* 0x4031B1A8, 0x177F8EE2 */ - 5.07352312588818499250e+00, /* 0x40144B49, 0xA574C1FE */ -}; -#ifdef __STDC__ -static const double ps2[5] = { -#else -static double ps2[5] = { -#endif - 2.14364859363821409488e+01, /* 0x40356FBD, 0x8AD5ECDC */ - 1.25290227168402751090e+02, /* 0x405F5293, 0x14F92CD5 */ - 2.32276469057162813669e+02, /* 0x406D08D8, 0xD5A2DBD9 */ - 1.17679373287147100768e+02, /* 0x405D6B7A, 0xDA1884A9 */ - 8.36463893371618283368e+00, /* 0x4020BAB1, 0xF44E5192 */ -}; - -#ifdef __STDC__ - static double pone(double x) -#else - static double pone(x) - double x; -#endif -{ -#ifdef __STDC__ - const double *p,*q; -#else - double *p,*q; -#endif - double z,r,s; - __int32_t ix; - GET_HIGH_WORD(ix,x); - ix &= 0x7fffffff; - if(ix>=0x40200000) {p = pr8; q= ps8;} - else if(ix>=0x40122E8B){p = pr5; q= ps5;} - else if(ix>=0x4006DB6D){p = pr3; q= ps3;} - else {p = pr2; q= ps2;} - z = one/(x*x); - r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); - s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4])))); - return one+ r/s; -} - - -/* For x >= 8, the asymptotic expansions of qone is - * 3/8 s - 105/1024 s^3 - ..., where s = 1/x. - * We approximate qone by - * qone(x) = s*(0.375 + (R/S)) - * where R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10 - * S = 1 + qs1*s^2 + ... + qs6*s^12 - * and - * | qone(x)/s -0.375-R/S | <= 2 ** ( -61.13) - */ - -#ifdef __STDC__ -static const double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ -#else -static double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ -#endif - 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */ - -1.02539062499992714161e-01, /* 0xBFBA3FFF, 0xFFFFFDF3 */ - -1.62717534544589987888e+01, /* 0xC0304591, 0xA26779F7 */ - -7.59601722513950107896e+02, /* 0xC087BCD0, 0x53E4B576 */ - -1.18498066702429587167e+04, /* 0xC0C724E7, 0x40F87415 */ - -4.84385124285750353010e+04, /* 0xC0E7A6D0, 0x65D09C6A */ -}; -#ifdef __STDC__ -static const double qs8[6] = { -#else -static double qs8[6] = { -#endif - 1.61395369700722909556e+02, /* 0x40642CA6, 0xDE5BCDE5 */ - 7.82538599923348465381e+03, /* 0x40BE9162, 0xD0D88419 */ - 1.33875336287249578163e+05, /* 0x4100579A, 0xB0B75E98 */ - 7.19657723683240939863e+05, /* 0x4125F653, 0x72869C19 */ - 6.66601232617776375264e+05, /* 0x412457D2, 0x7719AD5C */ - -2.94490264303834643215e+05, /* 0xC111F969, 0x0EA5AA18 */ -}; - -#ifdef __STDC__ -static const double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ -#else -static double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ -#endif - -2.08979931141764104297e-11, /* 0xBDB6FA43, 0x1AA1A098 */ - -1.02539050241375426231e-01, /* 0xBFBA3FFF, 0xCB597FEF */ - -8.05644828123936029840e+00, /* 0xC0201CE6, 0xCA03AD4B */ - -1.83669607474888380239e+02, /* 0xC066F56D, 0x6CA7B9B0 */ - -1.37319376065508163265e+03, /* 0xC09574C6, 0x6931734F */ - -2.61244440453215656817e+03, /* 0xC0A468E3, 0x88FDA79D */ -}; -#ifdef __STDC__ -static const double qs5[6] = { -#else -static double qs5[6] = { -#endif - 8.12765501384335777857e+01, /* 0x405451B2, 0xFF5A11B2 */ - 1.99179873460485964642e+03, /* 0x409F1F31, 0xE77BF839 */ - 1.74684851924908907677e+04, /* 0x40D10F1F, 0x0D64CE29 */ - 4.98514270910352279316e+04, /* 0x40E8576D, 0xAABAD197 */ - 2.79480751638918118260e+04, /* 0x40DB4B04, 0xCF7C364B */ - -4.71918354795128470869e+03, /* 0xC0B26F2E, 0xFCFFA004 */ -}; - -#ifdef __STDC__ -static const double qr3[6] = { -#else -static double qr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ -#endif - -5.07831226461766561369e-09, /* 0xBE35CFA9, 0xD38FC84F */ - -1.02537829820837089745e-01, /* 0xBFBA3FEB, 0x51AEED54 */ - -4.61011581139473403113e+00, /* 0xC01270C2, 0x3302D9FF */ - -5.78472216562783643212e+01, /* 0xC04CEC71, 0xC25D16DA */ - -2.28244540737631695038e+02, /* 0xC06C87D3, 0x4718D55F */ - -2.19210128478909325622e+02, /* 0xC06B66B9, 0x5F5C1BF6 */ -}; -#ifdef __STDC__ -static const double qs3[6] = { -#else -static double qs3[6] = { -#endif - 4.76651550323729509273e+01, /* 0x4047D523, 0xCCD367E4 */ - 6.73865112676699709482e+02, /* 0x40850EEB, 0xC031EE3E */ - 3.38015286679526343505e+03, /* 0x40AA684E, 0x448E7C9A */ - 5.54772909720722782367e+03, /* 0x40B5ABBA, 0xA61D54A6 */ - 1.90311919338810798763e+03, /* 0x409DBC7A, 0x0DD4DF4B */ - -1.35201191444307340817e+02, /* 0xC060E670, 0x290A311F */ -}; - -#ifdef __STDC__ -static const double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ -#else -static double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ -#endif - -1.78381727510958865572e-07, /* 0xBE87F126, 0x44C626D2 */ - -1.02517042607985553460e-01, /* 0xBFBA3E8E, 0x9148B010 */ - -2.75220568278187460720e+00, /* 0xC0060484, 0x69BB4EDA */ - -1.96636162643703720221e+01, /* 0xC033A9E2, 0xC168907F */ - -4.23253133372830490089e+01, /* 0xC04529A3, 0xDE104AAA */ - -2.13719211703704061733e+01, /* 0xC0355F36, 0x39CF6E52 */ -}; -#ifdef __STDC__ -static const double qs2[6] = { -#else -static double qs2[6] = { -#endif - 2.95333629060523854548e+01, /* 0x403D888A, 0x78AE64FF */ - 2.52981549982190529136e+02, /* 0x406F9F68, 0xDB821CBA */ - 7.57502834868645436472e+02, /* 0x4087AC05, 0xCE49A0F7 */ - 7.39393205320467245656e+02, /* 0x40871B25, 0x48D4C029 */ - 1.55949003336666123687e+02, /* 0x40637E5E, 0x3C3ED8D4 */ - -4.95949898822628210127e+00, /* 0xC013D686, 0xE71BE86B */ -}; - -#ifdef __STDC__ - static double qone(double x) -#else - static double qone(x) - double x; -#endif -{ -#ifdef __STDC__ - const double *p,*q; -#else - double *p,*q; -#endif - double s,r,z; - __int32_t ix; - GET_HIGH_WORD(ix,x); - ix &= 0x7fffffff; - if(ix>=0x40200000) {p = qr8; q= qs8;} - else if(ix>=0x40122E8B){p = qr5; q= qs5;} - else if(ix>=0x4006DB6D){p = qr3; q= qs3;} - else {p = qr2; q= qs2;} - z = one/(x*x); - r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); - s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5]))))); - return (.375 + r/s)/x; -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/mathfp/e_remainder.c b/newlib/libm/mathfp/e_remainder.c deleted file mode 100644 index 02a714d..0000000 --- a/newlib/libm/mathfp/e_remainder.c +++ /dev/null @@ -1,113 +0,0 @@ - -/* @(#)e_remainder.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* -FUNCTION -<<remainder>>, <<remainderf>>---round and remainder -INDEX - remainder -INDEX - remainderf - -ANSI_SYNOPSIS - #include <math.h> - double remainder(double <[x]>, double <[y]>); - float remainderf(float <[x]>, float <[y]>); - -TRAD_SYNOPSIS - #include <math.h> - double remainder(<[x]>,<[y]>) - double <[x]>, <[y]>; - float remainderf(<[x]>,<[y]>) - float <[x]>, <[y]>; - -DESCRIPTION -<<remainder>> and <<remainderf>> find the remainder of -<[x]>/<[y]>; this value is in the range -<[y]>/2 .. +<[y]>/2. - -RETURNS -<<remainder>> returns the integer result as a double. - -PORTABILITY -<<remainder>> is a System V release 4. -<<remainderf>> is an extension. - -*/ - -/* remainder(x,p) - * Return : - * returns x REM p = x - [x/p]*p as if in infinite - * precise arithmetic, where [x/p] is the (infinite bit) - * integer nearest x/p (in half way case choose the even one). - * Method : - * Based on fmod() return x-[x/p]chopped*p exactlp. - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ -static const double zero = 0.0; -#else -static double zero = 0.0; -#endif - - -#ifdef __STDC__ - double remainder(double x, double p) -#else - double remainder(x,p) - double x,p; -#endif -{ - __int32_t hx,hp; - __uint32_t sx,lx,lp; - double p_half; - - EXTRACT_WORDS(hx,lx,x); - EXTRACT_WORDS(hp,lp,p); - sx = hx&0x80000000; - hp &= 0x7fffffff; - hx &= 0x7fffffff; - - /* purge off exception values */ - if((hp|lp)==0) return (x*p)/(x*p); /* p = 0 */ - if((hx>=0x7ff00000)|| /* x not finite */ - ((hp>=0x7ff00000)&& /* p is NaN */ - (((hp-0x7ff00000)|lp)!=0))) - return (x*p)/(x*p); - - - if (hp<=0x7fdfffff) x = fmod(x,p+p); /* now x < 2p */ - if (((hx-hp)|(lx-lp))==0) return zero*x; - x = fabs(x); - p = fabs(p); - if (hp<0x00200000) { - if(x+x>p) { - x-=p; - if(x+x>=p) x -= p; - } - } else { - p_half = 0.5*p; - if(x>p_half) { - x-=p; - if(x>=p_half) x -= p; - } - } - GET_HIGH_WORD(hx,x); - SET_HIGH_WORD(x,hx^sx); - return x; -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/mathfp/e_scalb.c b/newlib/libm/mathfp/e_scalb.c deleted file mode 100644 index c4056e0..0000000 --- a/newlib/libm/mathfp/e_scalb.c +++ /dev/null @@ -1,55 +0,0 @@ - -/* @(#)e_scalb.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* - * __ieee754_scalb(x, fn) is provide for - * passing various standard test suite. One - * should use scalbn() instead. - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef _SCALB_INT -#ifdef __STDC__ - double scalb(double x, int fn) -#else - double scalb(x,fn) - double x; int fn; -#endif -#else -#ifdef __STDC__ - double scalb(double x, double fn) -#else - double scalb(x,fn) - double x, fn; -#endif -#endif -{ -#ifdef _SCALB_INT - return scalbn(x,fn); -#else - if (isnan(x)||isnan(fn)) return x*fn; - if (!finite(fn)) { - if(fn>0.0) return x*fn; - else return x/(-fn); - } - if (rint(fn)!=fn) return (fn-fn)/(fn-fn); - if ( fn > 65000.0) return scalbn(x, 65000); - if (-fn > 65000.0) return scalbn(x,-65000); - return scalbn(x,(int)fn); -#endif -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/mathfp/ef_acosh.c b/newlib/libm/mathfp/ef_acosh.c deleted file mode 100644 index 705be49..0000000 --- a/newlib/libm/mathfp/ef_acosh.c +++ /dev/null @@ -1,53 +0,0 @@ -/* ef_acosh.c -- float version of e_acosh.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - * - */ - -#include "fdlibm.h" - -#ifdef __STDC__ -static const float -#else -static float -#endif -one = 1.0, -ln2 = 6.9314718246e-01; /* 0x3f317218 */ - -#ifdef __STDC__ - float acoshf(float x) -#else - float acoshf(x) - float x; -#endif -{ - float t; - __int32_t hx; - GET_FLOAT_WORD(hx,x); - if(hx<0x3f800000) { /* x < 1 */ - return (x-x)/(x-x); - } else if(hx >=0x4d800000) { /* x > 2**28 */ - if(hx >=0x7f800000) { /* x is inf of NaN */ - return x+x; - } else - return logf(x)+ln2; /* acosh(huge)=log(2x) */ - } else if (hx==0x3f800000) { - return 0.0; /* acosh(1) = 0 */ - } else if (hx > 0x40000000) { /* 2**28 > x > 2 */ - t=x*x; - return logf((float)2.0*x-one/(x+sqrtf(t-one))); - } else { /* 1<x<2 */ - t = x-one; - return log1pf(t+sqrtf((float)2.0*t+t*t)); - } -} diff --git a/newlib/libm/mathfp/ef_atanh.c b/newlib/libm/mathfp/ef_atanh.c deleted file mode 100644 index bfc40de..0000000 --- a/newlib/libm/mathfp/ef_atanh.c +++ /dev/null @@ -1,54 +0,0 @@ -/* ef_atanh.c -- float version of e_atanh.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - * - */ - -#include "fdlibm.h" - -#ifdef __STDC__ -static const float one = 1.0, huge = 1e30; -#else -static float one = 1.0, huge = 1e30; -#endif - -#ifdef __STDC__ -static const float zero = 0.0; -#else -static float zero = 0.0; -#endif - -#ifdef __STDC__ - float atanhf(float x) -#else - float atanhf(x) - float x; -#endif -{ - float t; - __int32_t hx,ix; - GET_FLOAT_WORD(hx,x); - ix = hx&0x7fffffff; - if (ix>0x3f800000) /* |x|>1 */ - return (x-x)/(x-x); - if(ix==0x3f800000) - return x/zero; - if(ix<0x31800000&&(huge+x)>zero) return x; /* x<2**-28 */ - SET_FLOAT_WORD(x,ix); - if(ix<0x3f000000) { /* x < 0.5 */ - t = x+x; - t = (float)0.5*log1pf(t+t*x/(one-x)); - } else - t = (float)0.5*log1pf((x+x)/(one-x)); - if(hx>=0) return t; else return -t; -} diff --git a/newlib/libm/mathfp/ef_hypot.c b/newlib/libm/mathfp/ef_hypot.c deleted file mode 100644 index 8e5f4cc..0000000 --- a/newlib/libm/mathfp/ef_hypot.c +++ /dev/null @@ -1,82 +0,0 @@ -/* ef_hypot.c -- float version of e_hypot.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -#include "fdlibm.h" - -#ifdef __STDC__ - float hypotf(float x, float y) -#else - float hypotf(x,y) - float x, y; -#endif -{ - float a=x,b=y,t1,t2,y1,y2,w; - __int32_t j,k,ha,hb; - - GET_FLOAT_WORD(ha,x); - ha &= 0x7fffffffL; - GET_FLOAT_WORD(hb,y); - hb &= 0x7fffffffL; - if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;} - SET_FLOAT_WORD(a,ha); /* a <- |a| */ - SET_FLOAT_WORD(b,hb); /* b <- |b| */ - if((ha-hb)>0xf000000L) {return a+b;} /* x/y > 2**30 */ - k=0; - if(ha > 0x58800000L) { /* a>2**50 */ - if(ha >= 0x7f800000L) { /* Inf or NaN */ - w = a+b; /* for sNaN */ - if(ha == 0x7f800000L) w = a; - if(hb == 0x7f800000L) w = b; - return w; - } - /* scale a and b by 2**-60 */ - ha -= 0x5d800000L; hb -= 0x5d800000L; k += 60; - SET_FLOAT_WORD(a,ha); - SET_FLOAT_WORD(b,hb); - } - if(hb < 0x26800000L) { /* b < 2**-50 */ - if(hb <= 0x007fffffL) { /* subnormal b or 0 */ - if(hb==0) return a; - SET_FLOAT_WORD(t1,0x3f000000L); /* t1=2^126 */ - b *= t1; - a *= t1; - k -= 126; - } else { /* scale a and b by 2^60 */ - ha += 0x5d800000; /* a *= 2^60 */ - hb += 0x5d800000; /* b *= 2^60 */ - k -= 60; - SET_FLOAT_WORD(a,ha); - SET_FLOAT_WORD(b,hb); - } - } - /* medium size a and b */ - w = a-b; - if (w>b) { - SET_FLOAT_WORD(t1,ha&0xfffff000L); - t2 = a-t1; - w = sqrtf(t1*t1-(b*(-b)-t2*(a+t1))); - } else { - a = a+a; - SET_FLOAT_WORD(y1,hb&0xfffff000L); - y2 = b - y1; - SET_FLOAT_WORD(t1,ha+0x00800000L); - t2 = a - t1; - w = sqrtf(t1*y1-(w*(-w)-(t1*y2+t2*b))); - } - if(k!=0) { - SET_FLOAT_WORD(t1,0x3f800000L+(k<<23)); - return t1*w; - } else return w; -} diff --git a/newlib/libm/mathfp/ef_j0.c b/newlib/libm/mathfp/ef_j0.c deleted file mode 100644 index e4cc108..0000000 --- a/newlib/libm/mathfp/ef_j0.c +++ /dev/null @@ -1,439 +0,0 @@ -/* ef_j0.c -- float version of e_j0.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -#include "fdlibm.h" - -#ifdef __STDC__ -static float pzerof(float), qzerof(float); -#else -static float pzerof(), qzerof(); -#endif - -#ifdef __STDC__ -static const float -#else -static float -#endif -huge = 1e30, -one = 1.0, -invsqrtpi= 5.6418961287e-01, /* 0x3f106ebb */ -tpi = 6.3661974669e-01, /* 0x3f22f983 */ - /* R0/S0 on [0, 2.00] */ -R02 = 1.5625000000e-02, /* 0x3c800000 */ -R03 = -1.8997929874e-04, /* 0xb947352e */ -R04 = 1.8295404516e-06, /* 0x35f58e88 */ -R05 = -4.6183270541e-09, /* 0xb19eaf3c */ -S01 = 1.5619102865e-02, /* 0x3c7fe744 */ -S02 = 1.1692678527e-04, /* 0x38f53697 */ -S03 = 5.1354652442e-07, /* 0x3509daa6 */ -S04 = 1.1661400734e-09; /* 0x30a045e8 */ - -#ifdef __STDC__ -static const float zero = 0.0; -#else -static float zero = 0.0; -#endif - -#ifdef __STDC__ - float j0f(float x) -#else - float j0f(x) - float x; -#endif -{ - float z, s,c,ss,cc,r,u,v; - __int32_t hx,ix; - - GET_FLOAT_WORD(hx,x); - ix = hx&0x7fffffff; - if(ix>=0x7f800000) return one/(x*x); - x = fabsf(x); - if(ix >= 0x40000000) { /* |x| >= 2.0 */ - s = sinf(x); - c = cosf(x); - ss = s-c; - cc = s+c; - if(ix<0x7f000000) { /* make sure x+x not overflow */ - z = -cosf(x+x); - if ((s*c)<zero) cc = z/ss; - else ss = z/cc; - } - /* - * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x) - * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x) - */ - if(ix>0x80000000) z = (invsqrtpi*cc)/sqrtf(x); - else { - u = pzerof(x); v = qzerof(x); - z = invsqrtpi*(u*cc-v*ss)/sqrtf(x); - } - return z; - } - if(ix<0x39000000) { /* |x| < 2**-13 */ - if(huge+x>one) { /* raise inexact if x != 0 */ - if(ix<0x32000000) return one; /* |x|<2**-27 */ - else return one - (float)0.25*x*x; - } - } - z = x*x; - r = z*(R02+z*(R03+z*(R04+z*R05))); - s = one+z*(S01+z*(S02+z*(S03+z*S04))); - if(ix < 0x3F800000) { /* |x| < 1.00 */ - return one + z*((float)-0.25+(r/s)); - } else { - u = (float)0.5*x; - return((one+u)*(one-u)+z*(r/s)); - } -} - -#ifdef __STDC__ -static const float -#else -static float -#endif -u00 = -7.3804296553e-02, /* 0xbd9726b5 */ -u01 = 1.7666645348e-01, /* 0x3e34e80d */ -u02 = -1.3818567619e-02, /* 0xbc626746 */ -u03 = 3.4745343146e-04, /* 0x39b62a69 */ -u04 = -3.8140706238e-06, /* 0xb67ff53c */ -u05 = 1.9559013964e-08, /* 0x32a802ba */ -u06 = -3.9820518410e-11, /* 0xae2f21eb */ -v01 = 1.2730483897e-02, /* 0x3c509385 */ -v02 = 7.6006865129e-05, /* 0x389f65e0 */ -v03 = 2.5915085189e-07, /* 0x348b216c */ -v04 = 4.4111031494e-10; /* 0x2ff280c2 */ - -#ifdef __STDC__ - float y0f(float x) -#else - float y0f(x) - float x; -#endif -{ - float z, s,c,ss,cc,u,v; - __int32_t hx,ix; - - GET_FLOAT_WORD(hx,x); - ix = 0x7fffffff&hx; - /* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0 */ - if(ix>=0x7f800000) return one/(x+x*x); - if(ix==0) return -one/zero; - if(hx<0) return zero/zero; - if(ix >= 0x40000000) { /* |x| >= 2.0 */ - /* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0)) - * where x0 = x-pi/4 - * Better formula: - * cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4) - * = 1/sqrt(2) * (sin(x) + cos(x)) - * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4) - * = 1/sqrt(2) * (sin(x) - cos(x)) - * To avoid cancellation, use - * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) - * to compute the worse one. - */ - s = sinf(x); - c = cosf(x); - ss = s-c; - cc = s+c; - /* - * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x) - * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x) - */ - if(ix<0x7f000000) { /* make sure x+x not overflow */ - z = -cosf(x+x); - if ((s*c)<zero) cc = z/ss; - else ss = z/cc; - } - if(ix>0x80000000) z = (invsqrtpi*ss)/sqrtf(x); - else { - u = pzerof(x); v = qzerof(x); - z = invsqrtpi*(u*ss+v*cc)/sqrtf(x); - } - return z; - } - if(ix<=0x32000000) { /* x < 2**-27 */ - return(u00 + tpi*logf(x)); - } - z = x*x; - u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06))))); - v = one+z*(v01+z*(v02+z*(v03+z*v04))); - return(u/v + tpi*(j0f(x)*logf(x))); -} - -/* The asymptotic expansions of pzero is - * 1 - 9/128 s^2 + 11025/98304 s^4 - ..., where s = 1/x. - * For x >= 2, We approximate pzero by - * pzero(x) = 1 + (R/S) - * where R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10 - * S = 1 + pS0*s^2 + ... + pS4*s^10 - * and - * | pzero(x)-1-R/S | <= 2 ** ( -60.26) - */ -#ifdef __STDC__ -static const float pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ -#else -static float pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ -#endif - 0.0000000000e+00, /* 0x00000000 */ - -7.0312500000e-02, /* 0xbd900000 */ - -8.0816707611e+00, /* 0xc1014e86 */ - -2.5706311035e+02, /* 0xc3808814 */ - -2.4852163086e+03, /* 0xc51b5376 */ - -5.2530439453e+03, /* 0xc5a4285a */ -}; -#ifdef __STDC__ -static const float pS8[5] = { -#else -static float pS8[5] = { -#endif - 1.1653436279e+02, /* 0x42e91198 */ - 3.8337448730e+03, /* 0x456f9beb */ - 4.0597855469e+04, /* 0x471e95db */ - 1.1675296875e+05, /* 0x47e4087c */ - 4.7627726562e+04, /* 0x473a0bba */ -}; -#ifdef __STDC__ -static const float pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ -#else -static float pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ -#endif - -1.1412546255e-11, /* 0xad48c58a */ - -7.0312492549e-02, /* 0xbd8fffff */ - -4.1596107483e+00, /* 0xc0851b88 */ - -6.7674766541e+01, /* 0xc287597b */ - -3.3123129272e+02, /* 0xc3a59d9b */ - -3.4643338013e+02, /* 0xc3ad3779 */ -}; -#ifdef __STDC__ -static const float pS5[5] = { -#else -static float pS5[5] = { -#endif - 6.0753936768e+01, /* 0x42730408 */ - 1.0512523193e+03, /* 0x44836813 */ - 5.9789707031e+03, /* 0x45bad7c4 */ - 9.6254453125e+03, /* 0x461665c8 */ - 2.4060581055e+03, /* 0x451660ee */ -}; - -#ifdef __STDC__ -static const float pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ -#else -static float pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ -#endif - -2.5470459075e-09, /* 0xb12f081b */ - -7.0311963558e-02, /* 0xbd8fffb8 */ - -2.4090321064e+00, /* 0xc01a2d95 */ - -2.1965976715e+01, /* 0xc1afba52 */ - -5.8079170227e+01, /* 0xc2685112 */ - -3.1447946548e+01, /* 0xc1fb9565 */ -}; -#ifdef __STDC__ -static const float pS3[5] = { -#else -static float pS3[5] = { -#endif - 3.5856033325e+01, /* 0x420f6c94 */ - 3.6151397705e+02, /* 0x43b4c1ca */ - 1.1936077881e+03, /* 0x44953373 */ - 1.1279968262e+03, /* 0x448cffe6 */ - 1.7358093262e+02, /* 0x432d94b8 */ -}; - -#ifdef __STDC__ -static const float pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ -#else -static float pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ -#endif - -8.8753431271e-08, /* 0xb3be98b7 */ - -7.0303097367e-02, /* 0xbd8ffb12 */ - -1.4507384300e+00, /* 0xbfb9b1cc */ - -7.6356959343e+00, /* 0xc0f4579f */ - -1.1193166733e+01, /* 0xc1331736 */ - -3.2336456776e+00, /* 0xc04ef40d */ -}; -#ifdef __STDC__ -static const float pS2[5] = { -#else -static float pS2[5] = { -#endif - 2.2220300674e+01, /* 0x41b1c32d */ - 1.3620678711e+02, /* 0x430834f0 */ - 2.7047027588e+02, /* 0x43873c32 */ - 1.5387539673e+02, /* 0x4319e01a */ - 1.4657617569e+01, /* 0x416a859a */ -}; - -#ifdef __STDC__ - static float pzerof(float x) -#else - static float pzerof(x) - float x; -#endif -{ -#ifdef __STDC__ - const float *p,*q; -#else - float *p,*q; -#endif - float z,r,s; - __int32_t ix; - GET_FLOAT_WORD(ix,x); - ix &= 0x7fffffff; - if(ix>=0x41000000) {p = pR8; q= pS8;} - else if(ix>=0x40f71c58){p = pR5; q= pS5;} - else if(ix>=0x4036db68){p = pR3; q= pS3;} - else {p = pR2; q= pS2;} - z = one/(x*x); - r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); - s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4])))); - return one+ r/s; -} - - -/* For x >= 8, the asymptotic expansions of qzero is - * -1/8 s + 75/1024 s^3 - ..., where s = 1/x. - * We approximate qzero by - * qzero(x) = s*(-1.25 + (R/S)) - * where R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10 - * S = 1 + qS0*s^2 + ... + qS5*s^12 - * and - * | qzero(x)/s +1.25-R/S | <= 2 ** ( -61.22) - */ -#ifdef __STDC__ -static const float qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ -#else -static float qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ -#endif - 0.0000000000e+00, /* 0x00000000 */ - 7.3242187500e-02, /* 0x3d960000 */ - 1.1768206596e+01, /* 0x413c4a93 */ - 5.5767340088e+02, /* 0x440b6b19 */ - 8.8591972656e+03, /* 0x460a6cca */ - 3.7014625000e+04, /* 0x471096a0 */ -}; -#ifdef __STDC__ -static const float qS8[6] = { -#else -static float qS8[6] = { -#endif - 1.6377603149e+02, /* 0x4323c6aa */ - 8.0983447266e+03, /* 0x45fd12c2 */ - 1.4253829688e+05, /* 0x480b3293 */ - 8.0330925000e+05, /* 0x49441ed4 */ - 8.4050156250e+05, /* 0x494d3359 */ - -3.4389928125e+05, /* 0xc8a7eb69 */ -}; - -#ifdef __STDC__ -static const float qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ -#else -static float qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ -#endif - 1.8408595828e-11, /* 0x2da1ec79 */ - 7.3242180049e-02, /* 0x3d95ffff */ - 5.8356351852e+00, /* 0x40babd86 */ - 1.3511157227e+02, /* 0x43071c90 */ - 1.0272437744e+03, /* 0x448067cd */ - 1.9899779053e+03, /* 0x44f8bf4b */ -}; -#ifdef __STDC__ -static const float qS5[6] = { -#else -static float qS5[6] = { -#endif - 8.2776611328e+01, /* 0x42a58da0 */ - 2.0778142090e+03, /* 0x4501dd07 */ - 1.8847289062e+04, /* 0x46933e94 */ - 5.6751113281e+04, /* 0x475daf1d */ - 3.5976753906e+04, /* 0x470c88c1 */ - -5.3543427734e+03, /* 0xc5a752be */ -}; - -#ifdef __STDC__ -static const float qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ -#else -static float qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ -#endif - 4.3774099900e-09, /* 0x3196681b */ - 7.3241114616e-02, /* 0x3d95ff70 */ - 3.3442313671e+00, /* 0x405607e3 */ - 4.2621845245e+01, /* 0x422a7cc5 */ - 1.7080809021e+02, /* 0x432acedf */ - 1.6673394775e+02, /* 0x4326bbe4 */ -}; -#ifdef __STDC__ -static const float qS3[6] = { -#else -static float qS3[6] = { -#endif - 4.8758872986e+01, /* 0x42430916 */ - 7.0968920898e+02, /* 0x44316c1c */ - 3.7041481934e+03, /* 0x4567825f */ - 6.4604252930e+03, /* 0x45c9e367 */ - 2.5163337402e+03, /* 0x451d4557 */ - -1.4924745178e+02, /* 0xc3153f59 */ -}; - -#ifdef __STDC__ -static const float qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ -#else -static float qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ -#endif - 1.5044444979e-07, /* 0x342189db */ - 7.3223426938e-02, /* 0x3d95f62a */ - 1.9981917143e+00, /* 0x3fffc4bf */ - 1.4495602608e+01, /* 0x4167edfd */ - 3.1666231155e+01, /* 0x41fd5471 */ - 1.6252708435e+01, /* 0x4182058c */ -}; -#ifdef __STDC__ -static const float qS2[6] = { -#else -static float qS2[6] = { -#endif - 3.0365585327e+01, /* 0x41f2ecb8 */ - 2.6934811401e+02, /* 0x4386ac8f */ - 8.4478375244e+02, /* 0x44533229 */ - 8.8293585205e+02, /* 0x445cbbe5 */ - 2.1266638184e+02, /* 0x4354aa98 */ - -5.3109550476e+00, /* 0xc0a9f358 */ -}; - -#ifdef __STDC__ - static float qzerof(float x) -#else - static float qzerof(x) - float x; -#endif -{ -#ifdef __STDC__ - const float *p,*q; -#else - float *p,*q; -#endif - float s,r,z; - __int32_t ix; - GET_FLOAT_WORD(ix,x); - ix &= 0x7fffffff; - if(ix>=0x41000000) {p = qR8; q= qS8;} - else if(ix>=0x40f71c58){p = qR5; q= qS5;} - else if(ix>=0x4036db68){p = qR3; q= qS3;} - else {p = qR2; q= qS2;} - z = one/(x*x); - r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); - s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5]))))); - return (-(float).125 + r/s)/x; -} diff --git a/newlib/libm/mathfp/ef_j1.c b/newlib/libm/mathfp/ef_j1.c deleted file mode 100644 index 636a4c9..0000000 --- a/newlib/libm/mathfp/ef_j1.c +++ /dev/null @@ -1,439 +0,0 @@ -/* ef_j1.c -- float version of e_j1.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -#include "fdlibm.h" - -#ifdef __STDC__ -static float ponef(float), qonef(float); -#else -static float ponef(), qonef(); -#endif - -#ifdef __STDC__ -static const float -#else -static float -#endif -huge = 1e30, -one = 1.0, -invsqrtpi= 5.6418961287e-01, /* 0x3f106ebb */ -tpi = 6.3661974669e-01, /* 0x3f22f983 */ - /* R0/S0 on [0,2] */ -r00 = -6.2500000000e-02, /* 0xbd800000 */ -r01 = 1.4070566976e-03, /* 0x3ab86cfd */ -r02 = -1.5995563444e-05, /* 0xb7862e36 */ -r03 = 4.9672799207e-08, /* 0x335557d2 */ -s01 = 1.9153760746e-02, /* 0x3c9ce859 */ -s02 = 1.8594678841e-04, /* 0x3942fab6 */ -s03 = 1.1771846857e-06, /* 0x359dffc2 */ -s04 = 5.0463624390e-09, /* 0x31ad6446 */ -s05 = 1.2354227016e-11; /* 0x2d59567e */ - -#ifdef __STDC__ -static const float zero = 0.0; -#else -static float zero = 0.0; -#endif - -#ifdef __STDC__ - float j1f(float x) -#else - float j1f(x) - float x; -#endif -{ - float z, s,c,ss,cc,r,u,v,y; - __int32_t hx,ix; - - GET_FLOAT_WORD(hx,x); - ix = hx&0x7fffffff; - if(ix>=0x7f800000) return one/x; - y = fabsf(x); - if(ix >= 0x40000000) { /* |x| >= 2.0 */ - s = sinf(y); - c = cosf(y); - ss = -s-c; - cc = s-c; - if(ix<0x7f000000) { /* make sure y+y not overflow */ - z = cosf(y+y); - if ((s*c)>zero) cc = z/ss; - else ss = z/cc; - } - /* - * j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x) - * y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x) - */ - if(ix>0x80000000) z = (invsqrtpi*cc)/sqrtf(y); - else { - u = ponef(y); v = qonef(y); - z = invsqrtpi*(u*cc-v*ss)/sqrtf(y); - } - if(hx<0) return -z; - else return z; - } - if(ix<0x32000000) { /* |x|<2**-27 */ - if(huge+x>one) return (float)0.5*x;/* inexact if x!=0 necessary */ - } - z = x*x; - r = z*(r00+z*(r01+z*(r02+z*r03))); - s = one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05)))); - r *= x; - return(x*(float)0.5+r/s); -} - -#ifdef __STDC__ -static const float U0[5] = { -#else -static float U0[5] = { -#endif - -1.9605709612e-01, /* 0xbe48c331 */ - 5.0443872809e-02, /* 0x3d4e9e3c */ - -1.9125689287e-03, /* 0xbafaaf2a */ - 2.3525259166e-05, /* 0x37c5581c */ - -9.1909917899e-08, /* 0xb3c56003 */ -}; -#ifdef __STDC__ -static const float V0[5] = { -#else -static float V0[5] = { -#endif - 1.9916731864e-02, /* 0x3ca3286a */ - 2.0255257550e-04, /* 0x3954644b */ - 1.3560879779e-06, /* 0x35b602d4 */ - 6.2274145840e-09, /* 0x31d5f8eb */ - 1.6655924903e-11, /* 0x2d9281cf */ -}; - -#ifdef __STDC__ - float y1f(float x) -#else - float y1f(x) - float x; -#endif -{ - float z, s,c,ss,cc,u,v; - __int32_t hx,ix; - - GET_FLOAT_WORD(hx,x); - ix = 0x7fffffff&hx; - /* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */ - if(ix>=0x7f800000) return one/(x+x*x); - if(ix==0) return -one/zero; - if(hx<0) return zero/zero; - if(ix >= 0x40000000) { /* |x| >= 2.0 */ - s = sinf(x); - c = cosf(x); - ss = -s-c; - cc = s-c; - if(ix<0x7f000000) { /* make sure x+x not overflow */ - z = cosf(x+x); - if ((s*c)>zero) cc = z/ss; - else ss = z/cc; - } - /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0)) - * where x0 = x-3pi/4 - * Better formula: - * cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4) - * = 1/sqrt(2) * (sin(x) - cos(x)) - * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4) - * = -1/sqrt(2) * (cos(x) + sin(x)) - * To avoid cancellation, use - * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) - * to compute the worse one. - */ - if(ix>0x48000000) z = (invsqrtpi*ss)/sqrtf(x); - else { - u = ponef(x); v = qonef(x); - z = invsqrtpi*(u*ss+v*cc)/sqrtf(x); - } - return z; - } - if(ix<=0x24800000) { /* x < 2**-54 */ - return(-tpi/x); - } - z = x*x; - u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4]))); - v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4])))); - return(x*(u/v) + tpi*(j1f(x)*logf(x)-one/x)); -} - -/* For x >= 8, the asymptotic expansions of pone is - * 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x. - * We approximate pone by - * pone(x) = 1 + (R/S) - * where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10 - * S = 1 + ps0*s^2 + ... + ps4*s^10 - * and - * | pone(x)-1-R/S | <= 2 ** ( -60.06) - */ - -#ifdef __STDC__ -static const float pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ -#else -static float pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ -#endif - 0.0000000000e+00, /* 0x00000000 */ - 1.1718750000e-01, /* 0x3df00000 */ - 1.3239480972e+01, /* 0x4153d4ea */ - 4.1205184937e+02, /* 0x43ce06a3 */ - 3.8747453613e+03, /* 0x45722bed */ - 7.9144794922e+03, /* 0x45f753d6 */ -}; -#ifdef __STDC__ -static const float ps8[5] = { -#else -static float ps8[5] = { -#endif - 1.1420736694e+02, /* 0x42e46a2c */ - 3.6509309082e+03, /* 0x45642ee5 */ - 3.6956207031e+04, /* 0x47105c35 */ - 9.7602796875e+04, /* 0x47bea166 */ - 3.0804271484e+04, /* 0x46f0a88b */ -}; - -#ifdef __STDC__ -static const float pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ -#else -static float pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ -#endif - 1.3199052094e-11, /* 0x2d68333f */ - 1.1718749255e-01, /* 0x3defffff */ - 6.8027510643e+00, /* 0x40d9b023 */ - 1.0830818176e+02, /* 0x42d89dca */ - 5.1763616943e+02, /* 0x440168b7 */ - 5.2871520996e+02, /* 0x44042dc6 */ -}; -#ifdef __STDC__ -static const float ps5[5] = { -#else -static float ps5[5] = { -#endif - 5.9280597687e+01, /* 0x426d1f55 */ - 9.9140142822e+02, /* 0x4477d9b1 */ - 5.3532670898e+03, /* 0x45a74a23 */ - 7.8446904297e+03, /* 0x45f52586 */ - 1.5040468750e+03, /* 0x44bc0180 */ -}; - -#ifdef __STDC__ -static const float pr3[6] = { -#else -static float pr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ -#endif - 3.0250391081e-09, /* 0x314fe10d */ - 1.1718686670e-01, /* 0x3defffab */ - 3.9329774380e+00, /* 0x407bb5e7 */ - 3.5119403839e+01, /* 0x420c7a45 */ - 9.1055007935e+01, /* 0x42b61c2a */ - 4.8559066772e+01, /* 0x42423c7c */ -}; -#ifdef __STDC__ -static const float ps3[5] = { -#else -static float ps3[5] = { -#endif - 3.4791309357e+01, /* 0x420b2a4d */ - 3.3676245117e+02, /* 0x43a86198 */ - 1.0468714600e+03, /* 0x4482dbe3 */ - 8.9081134033e+02, /* 0x445eb3ed */ - 1.0378793335e+02, /* 0x42cf936c */ -}; - -#ifdef __STDC__ -static const float pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ -#else -static float pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ -#endif - 1.0771083225e-07, /* 0x33e74ea8 */ - 1.1717621982e-01, /* 0x3deffa16 */ - 2.3685150146e+00, /* 0x401795c0 */ - 1.2242610931e+01, /* 0x4143e1bc */ - 1.7693971634e+01, /* 0x418d8d41 */ - 5.0735230446e+00, /* 0x40a25a4d */ -}; -#ifdef __STDC__ -static const float ps2[5] = { -#else -static float ps2[5] = { -#endif - 2.1436485291e+01, /* 0x41ab7dec */ - 1.2529022980e+02, /* 0x42fa9499 */ - 2.3227647400e+02, /* 0x436846c7 */ - 1.1767937469e+02, /* 0x42eb5bd7 */ - 8.3646392822e+00, /* 0x4105d590 */ -}; - -#ifdef __STDC__ - static float ponef(float x) -#else - static float ponef(x) - float x; -#endif -{ -#ifdef __STDC__ - const float *p,*q; -#else - float *p,*q; -#endif - float z,r,s; - __int32_t ix; - GET_FLOAT_WORD(ix,x); - ix &= 0x7fffffff; - if(ix>=0x41000000) {p = pr8; q= ps8;} - else if(ix>=0x40f71c58){p = pr5; q= ps5;} - else if(ix>=0x4036db68){p = pr3; q= ps3;} - else {p = pr2; q= ps2;} - z = one/(x*x); - r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); - s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4])))); - return one+ r/s; -} - - -/* For x >= 8, the asymptotic expansions of qone is - * 3/8 s - 105/1024 s^3 - ..., where s = 1/x. - * We approximate qone by - * qone(x) = s*(0.375 + (R/S)) - * where R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10 - * S = 1 + qs1*s^2 + ... + qs6*s^12 - * and - * | qone(x)/s -0.375-R/S | <= 2 ** ( -61.13) - */ - -#ifdef __STDC__ -static const float qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ -#else -static float qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ -#endif - 0.0000000000e+00, /* 0x00000000 */ - -1.0253906250e-01, /* 0xbdd20000 */ - -1.6271753311e+01, /* 0xc1822c8d */ - -7.5960174561e+02, /* 0xc43de683 */ - -1.1849806641e+04, /* 0xc639273a */ - -4.8438511719e+04, /* 0xc73d3683 */ -}; -#ifdef __STDC__ -static const float qs8[6] = { -#else -static float qs8[6] = { -#endif - 1.6139537048e+02, /* 0x43216537 */ - 7.8253862305e+03, /* 0x45f48b17 */ - 1.3387534375e+05, /* 0x4802bcd6 */ - 7.1965775000e+05, /* 0x492fb29c */ - 6.6660125000e+05, /* 0x4922be94 */ - -2.9449025000e+05, /* 0xc88fcb48 */ -}; - -#ifdef __STDC__ -static const float qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ -#else -static float qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ -#endif - -2.0897993405e-11, /* 0xadb7d219 */ - -1.0253904760e-01, /* 0xbdd1fffe */ - -8.0564479828e+00, /* 0xc100e736 */ - -1.8366960144e+02, /* 0xc337ab6b */ - -1.3731937256e+03, /* 0xc4aba633 */ - -2.6124443359e+03, /* 0xc523471c */ -}; -#ifdef __STDC__ -static const float qs5[6] = { -#else -static float qs5[6] = { -#endif - 8.1276550293e+01, /* 0x42a28d98 */ - 1.9917987061e+03, /* 0x44f8f98f */ - 1.7468484375e+04, /* 0x468878f8 */ - 4.9851425781e+04, /* 0x4742bb6d */ - 2.7948074219e+04, /* 0x46da5826 */ - -4.7191835938e+03, /* 0xc5937978 */ -}; - -#ifdef __STDC__ -static const float qr3[6] = { -#else -static float qr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ -#endif - -5.0783124372e-09, /* 0xb1ae7d4f */ - -1.0253783315e-01, /* 0xbdd1ff5b */ - -4.6101160049e+00, /* 0xc0938612 */ - -5.7847221375e+01, /* 0xc267638e */ - -2.2824453735e+02, /* 0xc3643e9a */ - -2.1921012878e+02, /* 0xc35b35cb */ -}; -#ifdef __STDC__ -static const float qs3[6] = { -#else -static float qs3[6] = { -#endif - 4.7665153503e+01, /* 0x423ea91e */ - 6.7386511230e+02, /* 0x4428775e */ - 3.3801528320e+03, /* 0x45534272 */ - 5.5477290039e+03, /* 0x45ad5dd5 */ - 1.9031191406e+03, /* 0x44ede3d0 */ - -1.3520118713e+02, /* 0xc3073381 */ -}; - -#ifdef __STDC__ -static const float qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ -#else -static float qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ -#endif - -1.7838172539e-07, /* 0xb43f8932 */ - -1.0251704603e-01, /* 0xbdd1f475 */ - -2.7522056103e+00, /* 0xc0302423 */ - -1.9663616180e+01, /* 0xc19d4f16 */ - -4.2325313568e+01, /* 0xc2294d1f */ - -2.1371921539e+01, /* 0xc1aaf9b2 */ -}; -#ifdef __STDC__ -static const float qs2[6] = { -#else -static float qs2[6] = { -#endif - 2.9533363342e+01, /* 0x41ec4454 */ - 2.5298155212e+02, /* 0x437cfb47 */ - 7.5750280762e+02, /* 0x443d602e */ - 7.3939318848e+02, /* 0x4438d92a */ - 1.5594900513e+02, /* 0x431bf2f2 */ - -4.9594988823e+00, /* 0xc09eb437 */ -}; - -#ifdef __STDC__ - static float qonef(float x) -#else - static float qonef(x) - float x; -#endif -{ -#ifdef __STDC__ - const float *p,*q; -#else - float *p,*q; -#endif - float s,r,z; - __int32_t ix; - GET_FLOAT_WORD(ix,x); - ix &= 0x7fffffff; - if(ix>=0x40200000) {p = qr8; q= qs8;} - else if(ix>=0x40f71c58){p = qr5; q= qs5;} - else if(ix>=0x4036db68){p = qr3; q= qs3;} - else {p = qr2; q= qs2;} - z = one/(x*x); - r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); - s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5]))))); - return ((float).375 + r/s)/x; -} diff --git a/newlib/libm/mathfp/ef_remainder.c b/newlib/libm/mathfp/ef_remainder.c deleted file mode 100644 index 92958ef..0000000 --- a/newlib/libm/mathfp/ef_remainder.c +++ /dev/null @@ -1,68 +0,0 @@ -/* ef_remainder.c -- float version of e_remainder.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -#include "fdlibm.h" - -#ifdef __STDC__ -static const float zero = 0.0; -#else -static float zero = 0.0; -#endif - - -#ifdef __STDC__ - float remainderf(float x, float p) -#else - float remainderf(x,p) - float x,p; -#endif -{ - __int32_t hx,hp; - __uint32_t sx; - float p_half; - - GET_FLOAT_WORD(hx,x); - GET_FLOAT_WORD(hp,p); - sx = hx&0x80000000; - hp &= 0x7fffffff; - hx &= 0x7fffffff; - - /* purge off exception values */ - if(hp==0) return (x*p)/(x*p); /* p = 0 */ - if((hx>=0x7f800000)|| /* x not finite */ - ((hp>0x7f800000))) /* p is NaN */ - return (x*p)/(x*p); - - - if (hp<=0x7effffff) x = fmodf(x,p+p); /* now x < 2p */ - if ((hx-hp)==0) return zero*x; - x = fabsf(x); - p = fabsf(p); - if (hp<0x01000000) { - if(x+x>p) { - x-=p; - if(x+x>=p) x -= p; - } - } else { - p_half = (float)0.5*p; - if(x>p_half) { - x-=p; - if(x>=p_half) x -= p; - } - } - GET_FLOAT_WORD(hx,x); - SET_FLOAT_WORD(x,hx^sx); - return x; -} diff --git a/newlib/libm/mathfp/ef_scalb.c b/newlib/libm/mathfp/ef_scalb.c deleted file mode 100644 index 901f177..0000000 --- a/newlib/libm/mathfp/ef_scalb.c +++ /dev/null @@ -1,53 +0,0 @@ -/* ef_scalb.c -- float version of e_scalb.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -#include "fdlibm.h" -#include <limits.h> - -#ifdef _SCALB_INT -#ifdef __STDC__ - float scalbf(float x, int fn) -#else - float scalbf(x,fn) - float x; int fn; -#endif -#else -#ifdef __STDC__ - float scalbf(float x, float fn) -#else - float scalbf(x,fn) - float x, fn; -#endif -#endif -{ -#ifdef _SCALB_INT - return scalbnf(x,fn); -#else - if (isnanf(x)||isnanf(fn)) return x*fn; - if (!finitef(fn)) { - if(fn>(float)0.0) return x*fn; - else return x/(-fn); - } - if (rintf(fn)!=fn) return (fn-fn)/(fn-fn); -#if INT_MAX > 65000 - if ( fn > (float)65000.0) return scalbnf(x, 65000); - if (-fn > (float)65000.0) return scalbnf(x,-65000); -#else - if ( fn > (float)32000.0) return scalbnf(x, 32000); - if (-fn > (float)32000.0) return scalbnf(x,-32000); -#endif - return scalbnf(x,(int)fn); -#endif -} diff --git a/newlib/libm/mathfp/er_gamma.c b/newlib/libm/mathfp/er_gamma.c deleted file mode 100644 index 6246c88..0000000 --- a/newlib/libm/mathfp/er_gamma.c +++ /dev/null @@ -1,32 +0,0 @@ - -/* @(#)er_gamma.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - * - */ - -/* gamma_r(x, signgamp) - * Reentrant version of the logarithm of the Gamma function - * with user provide pointer for the sign of Gamma(x). - * - * Method: See lgamma_r - */ - -#include "fdlibm.h" - -#ifdef __STDC__ - double gamma_r(double x, int *signgamp) -#else - double gamma_r(x,signgamp) - double x; int *signgamp; -#endif -{ - return lgamma_r(x,signgamp); -} diff --git a/newlib/libm/mathfp/er_lgamma.c b/newlib/libm/mathfp/er_lgamma.c deleted file mode 100644 index 9d8e370..0000000 --- a/newlib/libm/mathfp/er_lgamma.c +++ /dev/null @@ -1,422 +0,0 @@ - -/* @(#)er_lgamma.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - * - */ - -/* -FUNCTION - <<gamma>>, <<gammaf>>, <<lgamma>>, <<lgammaf>>, <<gamma_r>>, - <<gammaf_r>>, <<lgamma_r>>, <<lgammaf_r>>---logarithmic gamma - function -INDEX -gamma -INDEX -gammaf -INDEX -lgamma -INDEX -lgammaf -INDEX -gamma_r -INDEX -gammaf_r -INDEX -lgamma_r -INDEX -lgammaf_r - -ANSI_SYNOPSIS -#include <math.h> -double gamma(double <[x]>); -float gammaf(float <[x]>); -double lgamma(double <[x]>); -float lgammaf(float <[x]>); -double gamma_r(double <[x]>, int *<[signgamp]>); -float gammaf_r(float <[x]>, int *<[signgamp]>); -double lgamma_r(double <[x]>, int *<[signgamp]>); -float lgammaf_r(float <[x]>, int *<[signgamp]>); - -TRAD_SYNOPSIS -#include <math.h> -double gamma(<[x]>) -double <[x]>; -float gammaf(<[x]>) -float <[x]>; -double lgamma(<[x]>) -double <[x]>; -float lgammaf(<[x]>) -float <[x]>; -double gamma_r(<[x]>, <[signgamp]>) -double <[x]>; -int <[signgamp]>; -float gammaf_r(<[x]>, <[signgamp]>) -float <[x]>; -int <[signgamp]>; -double lgamma_r(<[x]>, <[signgamp]>) -double <[x]>; -int <[signgamp]>; -float lgammaf_r(<[x]>, <[signgamp]>) -float <[x]>; -int <[signgamp]>; - -DESCRIPTION -<<gamma>> calculates -@tex -$\mit ln\bigl(\Gamma(x)\bigr)$, -@end tex -the natural logarithm of the gamma function of <[x]>. The gamma function -(<<exp(gamma(<[x]>))>>) is a generalization of factorial, and retains -the property that -@ifinfo -<<exp(gamma(N))>> is equivalent to <<N*exp(gamma(N-1))>>. -@end ifinfo -@tex -$\mit \Gamma(N)\equiv N\times\Gamma(N-1)$. -@end tex -Accordingly, the results of the gamma function itself grow very -quickly. <<gamma>> is defined as -@tex -$\mit ln\bigl(\Gamma(x)\bigr)$ rather than simply $\mit \Gamma(x)$ -@end tex -@ifinfo -the natural log of the gamma function, rather than the gamma function -itself, -@end ifinfo -to extend the useful range of results representable. - -The sign of the result is returned in the global variable <<signgam>>, -which is declared in math.h. - -<<gammaf>> performs the same calculation as <<gamma>>, but uses and -returns <<float>> values. - -<<lgamma>> and <<lgammaf>> are alternate names for <<gamma>> and -<<gammaf>>. The use of <<lgamma>> instead of <<gamma>> is a reminder -that these functions compute the log of the gamma function, rather -than the gamma function itself. - -The functions <<gamma_r>>, <<gammaf_r>>, <<lgamma_r>>, and -<<lgammaf_r>> are just like <<gamma>>, <<gammaf>>, <<lgamma>>, and -<<lgammaf>>, respectively, but take an additional argument. This -additional argument is a pointer to an integer. This additional -argument is used to return the sign of the result, and the global -variable <<signgam>> is not used. These functions may be used for -reentrant calls (but they will still set the global variable <<errno>> -if an error occurs). - -RETURNS -Normally, the computed result is returned. - -When <[x]> is a nonpositive integer, <<gamma>> returns <<HUGE_VAL>> -and <<errno>> is set to <<EDOM>>. If the result overflows, <<gamma>> -returns <<HUGE_VAL>> and <<errno>> is set to <<ERANGE>>. - -You can modify this error treatment using <<matherr>>. - -PORTABILITY -Neither <<gamma>> nor <<gammaf>> is ANSI C. */ - -/* lgamma_r(x, signgamp) - * Reentrant version of the logarithm of the Gamma function - * with user provide pointer for the sign of Gamma(x). - * - * Method: - * 1. Argument Reduction for 0 < x <= 8 - * Since gamma(1+s)=s*gamma(s), for x in [0,8], we may - * reduce x to a number in [1.5,2.5] by - * lgamma(1+s) = log(s) + lgamma(s) - * for example, - * lgamma(7.3) = log(6.3) + lgamma(6.3) - * = log(6.3*5.3) + lgamma(5.3) - * = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3) - * 2. Polynomial approximation of lgamma around its - * minimun ymin=1.461632144968362245 to maintain monotonicity. - * On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use - * Let z = x-ymin; - * lgamma(x) = -1.214862905358496078218 + z^2*poly(z) - * where - * poly(z) is a 14 degree polynomial. - * 2. Rational approximation in the primary interval [2,3] - * We use the following approximation: - * s = x-2.0; - * lgamma(x) = 0.5*s + s*P(s)/Q(s) - * with accuracy - * |P/Q - (lgamma(x)-0.5s)| < 2**-61.71 - * Our algorithms are based on the following observation - * - * zeta(2)-1 2 zeta(3)-1 3 - * lgamma(2+s) = s*(1-Euler) + --------- * s - --------- * s + ... - * 2 3 - * - * where Euler = 0.5771... is the Euler constant, which is very - * close to 0.5. - * - * 3. For x>=8, we have - * lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+.... - * (better formula: - * lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...) - * Let z = 1/x, then we approximation - * f(z) = lgamma(x) - (x-0.5)(log(x)-1) - * by - * 3 5 11 - * w = w0 + w1*z + w2*z + w3*z + ... + w6*z - * where - * |w - f(z)| < 2**-58.74 - * - * 4. For negative x, since (G is gamma function) - * -x*G(-x)*G(x) = pi/sin(pi*x), - * we have - * G(x) = pi/(sin(pi*x)*(-x)*G(-x)) - * since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0 - * Hence, for x<0, signgam = sign(sin(pi*x)) and - * lgamma(x) = log(|Gamma(x)|) - * = log(pi/(|x*sin(pi*x)|)) - lgamma(-x); - * Note: one should avoid compute pi*(-x) directly in the - * computation of sin(pi*(-x)). - * - * 5. Special Cases - * lgamma(2+s) ~ s*(1-Euler) for tiny s - * lgamma(1)=lgamma(2)=0 - * lgamma(x) ~ -log(x) for tiny x - * lgamma(0) = lgamma(inf) = inf - * lgamma(-integer) = +-inf - * - */ - -#include "fdlibm.h" - -#ifdef __STDC__ -static const double -#else -static double -#endif -two52= 4.50359962737049600000e+15, /* 0x43300000, 0x00000000 */ -half= 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */ -one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ -pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */ -a0 = 7.72156649015328655494e-02, /* 0x3FB3C467, 0xE37DB0C8 */ -a1 = 3.22467033424113591611e-01, /* 0x3FD4A34C, 0xC4A60FAD */ -a2 = 6.73523010531292681824e-02, /* 0x3FB13E00, 0x1A5562A7 */ -a3 = 2.05808084325167332806e-02, /* 0x3F951322, 0xAC92547B */ -a4 = 7.38555086081402883957e-03, /* 0x3F7E404F, 0xB68FEFE8 */ -a5 = 2.89051383673415629091e-03, /* 0x3F67ADD8, 0xCCB7926B */ -a6 = 1.19270763183362067845e-03, /* 0x3F538A94, 0x116F3F5D */ -a7 = 5.10069792153511336608e-04, /* 0x3F40B6C6, 0x89B99C00 */ -a8 = 2.20862790713908385557e-04, /* 0x3F2CF2EC, 0xED10E54D */ -a9 = 1.08011567247583939954e-04, /* 0x3F1C5088, 0x987DFB07 */ -a10 = 2.52144565451257326939e-05, /* 0x3EFA7074, 0x428CFA52 */ -a11 = 4.48640949618915160150e-05, /* 0x3F07858E, 0x90A45837 */ -tc = 1.46163214496836224576e+00, /* 0x3FF762D8, 0x6356BE3F */ -tf = -1.21486290535849611461e-01, /* 0xBFBF19B9, 0xBCC38A42 */ -/* tt = -(tail of tf) */ -tt = -3.63867699703950536541e-18, /* 0xBC50C7CA, 0xA48A971F */ -t0 = 4.83836122723810047042e-01, /* 0x3FDEF72B, 0xC8EE38A2 */ -t1 = -1.47587722994593911752e-01, /* 0xBFC2E427, 0x8DC6C509 */ -t2 = 6.46249402391333854778e-02, /* 0x3FB08B42, 0x94D5419B */ -t3 = -3.27885410759859649565e-02, /* 0xBFA0C9A8, 0xDF35B713 */ -t4 = 1.79706750811820387126e-02, /* 0x3F9266E7, 0x970AF9EC */ -t5 = -1.03142241298341437450e-02, /* 0xBF851F9F, 0xBA91EC6A */ -t6 = 6.10053870246291332635e-03, /* 0x3F78FCE0, 0xE370E344 */ -t7 = -3.68452016781138256760e-03, /* 0xBF6E2EFF, 0xB3E914D7 */ -t8 = 2.25964780900612472250e-03, /* 0x3F6282D3, 0x2E15C915 */ -t9 = -1.40346469989232843813e-03, /* 0xBF56FE8E, 0xBF2D1AF1 */ -t10 = 8.81081882437654011382e-04, /* 0x3F4CDF0C, 0xEF61A8E9 */ -t11 = -5.38595305356740546715e-04, /* 0xBF41A610, 0x9C73E0EC */ -t12 = 3.15632070903625950361e-04, /* 0x3F34AF6D, 0x6C0EBBF7 */ -t13 = -3.12754168375120860518e-04, /* 0xBF347F24, 0xECC38C38 */ -t14 = 3.35529192635519073543e-04, /* 0x3F35FD3E, 0xE8C2D3F4 */ -u0 = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */ -u1 = 6.32827064025093366517e-01, /* 0x3FE4401E, 0x8B005DFF */ -u2 = 1.45492250137234768737e+00, /* 0x3FF7475C, 0xD119BD6F */ -u3 = 9.77717527963372745603e-01, /* 0x3FEF4976, 0x44EA8450 */ -u4 = 2.28963728064692451092e-01, /* 0x3FCD4EAE, 0xF6010924 */ -u5 = 1.33810918536787660377e-02, /* 0x3F8B678B, 0xBF2BAB09 */ -v1 = 2.45597793713041134822e+00, /* 0x4003A5D7, 0xC2BD619C */ -v2 = 2.12848976379893395361e+00, /* 0x40010725, 0xA42B18F5 */ -v3 = 7.69285150456672783825e-01, /* 0x3FE89DFB, 0xE45050AF */ -v4 = 1.04222645593369134254e-01, /* 0x3FBAAE55, 0xD6537C88 */ -v5 = 3.21709242282423911810e-03, /* 0x3F6A5ABB, 0x57D0CF61 */ -s0 = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */ -s1 = 2.14982415960608852501e-01, /* 0x3FCB848B, 0x36E20878 */ -s2 = 3.25778796408930981787e-01, /* 0x3FD4D98F, 0x4F139F59 */ -s3 = 1.46350472652464452805e-01, /* 0x3FC2BB9C, 0xBEE5F2F7 */ -s4 = 2.66422703033638609560e-02, /* 0x3F9B481C, 0x7E939961 */ -s5 = 1.84028451407337715652e-03, /* 0x3F5E26B6, 0x7368F239 */ -s6 = 3.19475326584100867617e-05, /* 0x3F00BFEC, 0xDD17E945 */ -r1 = 1.39200533467621045958e+00, /* 0x3FF645A7, 0x62C4AB74 */ -r2 = 7.21935547567138069525e-01, /* 0x3FE71A18, 0x93D3DCDC */ -r3 = 1.71933865632803078993e-01, /* 0x3FC601ED, 0xCCFBDF27 */ -r4 = 1.86459191715652901344e-02, /* 0x3F9317EA, 0x742ED475 */ -r5 = 7.77942496381893596434e-04, /* 0x3F497DDA, 0xCA41A95B */ -r6 = 7.32668430744625636189e-06, /* 0x3EDEBAF7, 0xA5B38140 */ -w0 = 4.18938533204672725052e-01, /* 0x3FDACFE3, 0x90C97D69 */ -w1 = 8.33333333333329678849e-02, /* 0x3FB55555, 0x5555553B */ -w2 = -2.77777777728775536470e-03, /* 0xBF66C16C, 0x16B02E5C */ -w3 = 7.93650558643019558500e-04, /* 0x3F4A019F, 0x98CF38B6 */ -w4 = -5.95187557450339963135e-04, /* 0xBF4380CB, 0x8C0FE741 */ -w5 = 8.36339918996282139126e-04, /* 0x3F4B67BA, 0x4CDAD5D1 */ -w6 = -1.63092934096575273989e-03; /* 0xBF5AB89D, 0x0B9E43E4 */ - -#ifdef __STDC__ -static const double zero= 0.00000000000000000000e+00; -#else -static double zero= 0.00000000000000000000e+00; -#endif - -#ifdef __STDC__ - static double sin_pi(double x) -#else - static double sin_pi(x) - double x; -#endif -{ - double y,z; - __int32_t n,ix; - - GET_HIGH_WORD(ix,x); - ix &= 0x7fffffff; - - if(ix<0x3fd00000) return __kernel_sin(pi*x,zero,0); - y = -x; /* x is assume negative */ - - /* - * argument reduction, make sure inexact flag not raised if input - * is an integer - */ - z = floor(y); - if(z!=y) { /* inexact anyway */ - y *= 0.5; - y = 2.0*(y - floor(y)); /* y = |x| mod 2.0 */ - n = (__int32_t) (y*4.0); - } else { - if(ix>=0x43400000) { - y = zero; n = 0; /* y must be even */ - } else { - if(ix<0x43300000) z = y+two52; /* exact */ - GET_LOW_WORD(n,z); - n &= 1; - y = n; - n<<= 2; - } - } - switch (n) { - case 0: y = __kernel_sin(pi*y,zero,0); break; - case 1: - case 2: y = __kernel_cos(pi*(0.5-y),zero); break; - case 3: - case 4: y = __kernel_sin(pi*(one-y),zero,0); break; - case 5: - case 6: y = -__kernel_cos(pi*(y-1.5),zero); break; - default: y = __kernel_sin(pi*(y-2.0),zero,0); break; - } - return -y; -} - - -#ifdef __STDC__ - double lgamma_r(double x, int *signgamp) -#else - double lgamma_r(x,signgamp) - double x; int *signgamp; -#endif -{ - double t,y,z,nadj,p,p1,p2,p3,q,r,w; - __int32_t i,hx,lx,ix; - - EXTRACT_WORDS(hx,lx,x); - - /* purge off +-inf, NaN, +-0, and negative arguments */ - *signgamp = 1; - ix = hx&0x7fffffff; - if(ix>=0x7ff00000) return x*x; - if((ix|lx)==0) return one/zero; - if(ix<0x3b900000) { /* |x|<2**-70, return -log(|x|) */ - if(hx<0) { - *signgamp = -1; - return -log(-x); - } else return -log(x); - } - if(hx<0) { - if(ix>=0x43300000) /* |x|>=2**52, must be -integer */ - return one/zero; - t = sin_pi(x); - if(t==zero) return one/zero; /* -integer */ - nadj = log(pi/fabs(t*x)); - if(t<zero) *signgamp = -1; - x = -x; - } - - /* purge off 1 and 2 */ - if((((ix-0x3ff00000)|lx)==0)||(((ix-0x40000000)|lx)==0)) r = 0; - /* for x < 2.0 */ - else if(ix<0x40000000) { - if(ix<=0x3feccccc) { /* lgamma(x) = lgamma(x+1)-log(x) */ - r = -log(x); - if(ix>=0x3FE76944) {y = one-x; i= 0;} - else if(ix>=0x3FCDA661) {y= x-(tc-one); i=1;} - else {y = x; i=2;} - } else { - r = zero; - if(ix>=0x3FFBB4C3) {y=2.0-x;i=0;} /* [1.7316,2] */ - else if(ix>=0x3FF3B4C4) {y=x-tc;i=1;} /* [1.23,1.73] */ - else {y=x-one;i=2;} - } - switch(i) { - case 0: - z = y*y; - p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10)))); - p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11))))); - p = y*p1+p2; - r += (p-0.5*y); break; - case 1: - z = y*y; - w = z*y; - p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12))); /* parallel comp */ - p2 = t1+w*(t4+w*(t7+w*(t10+w*t13))); - p3 = t2+w*(t5+w*(t8+w*(t11+w*t14))); - p = z*p1-(tt-w*(p2+y*p3)); - r += (tf + p); break; - case 2: - p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5))))); - p2 = one+y*(v1+y*(v2+y*(v3+y*(v4+y*v5)))); - r += (-0.5*y + p1/p2); - } - } - else if(ix<0x40200000) { /* x < 8.0 */ - i = (__int32_t)x; - t = zero; - y = x-(double)i; - p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6)))))); - q = one+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6))))); - r = half*y+p/q; - z = one; /* lgamma(1+s) = log(s) + lgamma(s) */ - switch(i) { - case 7: z *= (y+6.0); /* FALLTHRU */ - case 6: z *= (y+5.0); /* FALLTHRU */ - case 5: z *= (y+4.0); /* FALLTHRU */ - case 4: z *= (y+3.0); /* FALLTHRU */ - case 3: z *= (y+2.0); /* FALLTHRU */ - r += log(z); break; - } - /* 8.0 <= x < 2**58 */ - } else if (ix < 0x43900000) { - t = log(x); - z = one/x; - y = z*z; - w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6))))); - r = (x-half)*(t-one)+w; - } else - /* 2**58 <= x <= inf */ - r = x*(log(x)-one); - if(hx<0) r = nadj - r; - return r; -} diff --git a/newlib/libm/mathfp/erf_gamma.c b/newlib/libm/mathfp/erf_gamma.c deleted file mode 100644 index 96e8c46..0000000 --- a/newlib/libm/mathfp/erf_gamma.c +++ /dev/null @@ -1,34 +0,0 @@ -/* erf_gamma.c -- float version of er_gamma.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - * - */ - -/* gammaf_r(x, signgamp) - * Reentrant version of the logarithm of the Gamma function - * with user provide pointer for the sign of Gamma(x). - * - * Method: See lgammaf_r - */ - -#include "fdlibm.h" - -#ifdef __STDC__ - float gammaf_r(float x, int *signgamp) -#else - float gammaf_r(x,signgamp) - float x; int *signgamp; -#endif -{ - return lgammaf_r(x,signgamp); -} diff --git a/newlib/libm/mathfp/erf_lgamma.c b/newlib/libm/mathfp/erf_lgamma.c deleted file mode 100644 index 664812d..0000000 --- a/newlib/libm/mathfp/erf_lgamma.c +++ /dev/null @@ -1,244 +0,0 @@ -/* erf_lgamma.c -- float version of er_lgamma.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - * - */ - -#include "fdlibm.h" - -#ifdef __STDC__ -static const float -#else -static float -#endif -two23= 8.3886080000e+06, /* 0x4b000000 */ -half= 5.0000000000e-01, /* 0x3f000000 */ -one = 1.0000000000e+00, /* 0x3f800000 */ -pi = 3.1415927410e+00, /* 0x40490fdb */ -a0 = 7.7215664089e-02, /* 0x3d9e233f */ -a1 = 3.2246702909e-01, /* 0x3ea51a66 */ -a2 = 6.7352302372e-02, /* 0x3d89f001 */ -a3 = 2.0580807701e-02, /* 0x3ca89915 */ -a4 = 7.3855509982e-03, /* 0x3bf2027e */ -a5 = 2.8905137442e-03, /* 0x3b3d6ec6 */ -a6 = 1.1927076848e-03, /* 0x3a9c54a1 */ -a7 = 5.1006977446e-04, /* 0x3a05b634 */ -a8 = 2.2086278477e-04, /* 0x39679767 */ -a9 = 1.0801156895e-04, /* 0x38e28445 */ -a10 = 2.5214456400e-05, /* 0x37d383a2 */ -a11 = 4.4864096708e-05, /* 0x383c2c75 */ -tc = 1.4616321325e+00, /* 0x3fbb16c3 */ -tf = -1.2148628384e-01, /* 0xbdf8cdcd */ -/* tt = -(tail of tf) */ -tt = 6.6971006518e-09, /* 0x31e61c52 */ -t0 = 4.8383611441e-01, /* 0x3ef7b95e */ -t1 = -1.4758771658e-01, /* 0xbe17213c */ -t2 = 6.4624942839e-02, /* 0x3d845a15 */ -t3 = -3.2788541168e-02, /* 0xbd064d47 */ -t4 = 1.7970675603e-02, /* 0x3c93373d */ -t5 = -1.0314224288e-02, /* 0xbc28fcfe */ -t6 = 6.1005386524e-03, /* 0x3bc7e707 */ -t7 = -3.6845202558e-03, /* 0xbb7177fe */ -t8 = 2.2596477065e-03, /* 0x3b141699 */ -t9 = -1.4034647029e-03, /* 0xbab7f476 */ -t10 = 8.8108185446e-04, /* 0x3a66f867 */ -t11 = -5.3859531181e-04, /* 0xba0d3085 */ -t12 = 3.1563205994e-04, /* 0x39a57b6b */ -t13 = -3.1275415677e-04, /* 0xb9a3f927 */ -t14 = 3.3552918467e-04, /* 0x39afe9f7 */ -u0 = -7.7215664089e-02, /* 0xbd9e233f */ -u1 = 6.3282704353e-01, /* 0x3f2200f4 */ -u2 = 1.4549225569e+00, /* 0x3fba3ae7 */ -u3 = 9.7771751881e-01, /* 0x3f7a4bb2 */ -u4 = 2.2896373272e-01, /* 0x3e6a7578 */ -u5 = 1.3381091878e-02, /* 0x3c5b3c5e */ -v1 = 2.4559779167e+00, /* 0x401d2ebe */ -v2 = 2.1284897327e+00, /* 0x4008392d */ -v3 = 7.6928514242e-01, /* 0x3f44efdf */ -v4 = 1.0422264785e-01, /* 0x3dd572af */ -v5 = 3.2170924824e-03, /* 0x3b52d5db */ -s0 = -7.7215664089e-02, /* 0xbd9e233f */ -s1 = 2.1498242021e-01, /* 0x3e5c245a */ -s2 = 3.2577878237e-01, /* 0x3ea6cc7a */ -s3 = 1.4635047317e-01, /* 0x3e15dce6 */ -s4 = 2.6642270386e-02, /* 0x3cda40e4 */ -s5 = 1.8402845599e-03, /* 0x3af135b4 */ -s6 = 3.1947532989e-05, /* 0x3805ff67 */ -r1 = 1.3920053244e+00, /* 0x3fb22d3b */ -r2 = 7.2193557024e-01, /* 0x3f38d0c5 */ -r3 = 1.7193385959e-01, /* 0x3e300f6e */ -r4 = 1.8645919859e-02, /* 0x3c98bf54 */ -r5 = 7.7794247773e-04, /* 0x3a4beed6 */ -r6 = 7.3266842264e-06, /* 0x36f5d7bd */ -w0 = 4.1893854737e-01, /* 0x3ed67f1d */ -w1 = 8.3333335817e-02, /* 0x3daaaaab */ -w2 = -2.7777778450e-03, /* 0xbb360b61 */ -w3 = 7.9365057172e-04, /* 0x3a500cfd */ -w4 = -5.9518753551e-04, /* 0xba1c065c */ -w5 = 8.3633989561e-04, /* 0x3a5b3dd2 */ -w6 = -1.6309292987e-03; /* 0xbad5c4e8 */ - -#ifdef __STDC__ -static const float zero= 0.0000000000e+00; -#else -static float zero= 0.0000000000e+00; -#endif - -#ifdef __STDC__ - static float sin_pif(float x) -#else - static float sin_pif(x) - float x; -#endif -{ - float y,z; - __int32_t n,ix; - - GET_FLOAT_WORD(ix,x); - ix &= 0x7fffffff; - - if(ix<0x3e800000) return __kernel_sinf(pi*x,zero,0); - y = -x; /* x is assume negative */ - - /* - * argument reduction, make sure inexact flag not raised if input - * is an integer - */ - z = floorf(y); - if(z!=y) { /* inexact anyway */ - y *= (float)0.5; - y = (float)2.0*(y - floorf(y)); /* y = |x| mod 2.0 */ - n = (__int32_t) (y*(float)4.0); - } else { - if(ix>=0x4b800000) { - y = zero; n = 0; /* y must be even */ - } else { - if(ix<0x4b000000) z = y+two23; /* exact */ - GET_FLOAT_WORD(n,z); - n &= 1; - y = n; - n<<= 2; - } - } - switch (n) { - case 0: y = __kernel_sinf(pi*y,zero,0); break; - case 1: - case 2: y = __kernel_cosf(pi*((float)0.5-y),zero); break; - case 3: - case 4: y = __kernel_sinf(pi*(one-y),zero,0); break; - case 5: - case 6: y = -__kernel_cosf(pi*(y-(float)1.5),zero); break; - default: y = __kernel_sinf(pi*(y-(float)2.0),zero,0); break; - } - return -y; -} - - -#ifdef __STDC__ - float lgammaf_r(float x, int *signgamp) -#else - float lgammaf_r(x,signgamp) - float x; int *signgamp; -#endif -{ - float t,y,z,nadj,p,p1,p2,p3,q,r,w; - __int32_t i,hx,ix; - - GET_FLOAT_WORD(hx,x); - - /* purge off +-inf, NaN, +-0, and negative arguments */ - *signgamp = 1; - ix = hx&0x7fffffff; - if(ix>=0x7f800000) return x*x; - if(ix==0) return one/zero; - if(ix<0x1c800000) { /* |x|<2**-70, return -log(|x|) */ - if(hx<0) { - *signgamp = -1; - return -logf(-x); - } else return -logf(x); - } - if(hx<0) { - if(ix>=0x4b000000) /* |x|>=2**23, must be -integer */ - return one/zero; - t = sin_pif(x); - if(t==zero) return one/zero; /* -integer */ - nadj = logf(pi/fabsf(t*x)); - if(t<zero) *signgamp = -1; - x = -x; - } - - /* purge off 1 and 2 */ - if (ix==0x3f800000||ix==0x40000000) r = 0; - /* for x < 2.0 */ - else if(ix<0x40000000) { - if(ix<=0x3f666666) { /* lgamma(x) = lgamma(x+1)-log(x) */ - r = -logf(x); - if(ix>=0x3f3b4a20) {y = one-x; i= 0;} - else if(ix>=0x3e6d3308) {y= x-(tc-one); i=1;} - else {y = x; i=2;} - } else { - r = zero; - if(ix>=0x3fdda618) {y=(float)2.0-x;i=0;} /* [1.7316,2] */ - else if(ix>=0x3F9da620) {y=x-tc;i=1;} /* [1.23,1.73] */ - else {y=x-one;i=2;} - } - switch(i) { - case 0: - z = y*y; - p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10)))); - p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11))))); - p = y*p1+p2; - r += (p-(float)0.5*y); break; - case 1: - z = y*y; - w = z*y; - p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12))); /* parallel comp */ - p2 = t1+w*(t4+w*(t7+w*(t10+w*t13))); - p3 = t2+w*(t5+w*(t8+w*(t11+w*t14))); - p = z*p1-(tt-w*(p2+y*p3)); - r += (tf + p); break; - case 2: - p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5))))); - p2 = one+y*(v1+y*(v2+y*(v3+y*(v4+y*v5)))); - r += (-(float)0.5*y + p1/p2); - } - } - else if(ix<0x41000000) { /* x < 8.0 */ - i = (__int32_t)x; - t = zero; - y = x-(float)i; - p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6)))))); - q = one+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6))))); - r = half*y+p/q; - z = one; /* lgamma(1+s) = log(s) + lgamma(s) */ - switch(i) { - case 7: z *= (y+(float)6.0); /* FALLTHRU */ - case 6: z *= (y+(float)5.0); /* FALLTHRU */ - case 5: z *= (y+(float)4.0); /* FALLTHRU */ - case 4: z *= (y+(float)3.0); /* FALLTHRU */ - case 3: z *= (y+(float)2.0); /* FALLTHRU */ - r += logf(z); break; - } - /* 8.0 <= x < 2**58 */ - } else if (ix < 0x5c800000) { - t = logf(x); - z = one/x; - y = z*z; - w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6))))); - r = (x-half)*(t-one)+w; - } else - /* 2**58 <= x <= inf */ - r = x*(logf(x)-one); - if(hx<0) r = nadj - r; - return r; -} diff --git a/newlib/libm/mathfp/mathfp.tex b/newlib/libm/mathfp/mathfp.tex deleted file mode 100644 index e7f897a..0000000 --- a/newlib/libm/mathfp/mathfp.tex +++ /dev/null @@ -1,199 +0,0 @@ -@node Math -@chapter Mathematical Functions (@file{math.h}) - -This chapter groups a wide variety of mathematical functions. The -corresponding definitions and declarations are in @file{math.h}. -Two definitions from @file{math.h} are of particular interest. - -@enumerate -@item -The representation of infinity as a @code{double} is defined as -@code{HUGE_VAL}; this number is returned on overflow by many functions. - -@item -The structure @code{exception} is used when you write customized error -handlers for the mathematical functions. You can customize error -handling for most of these functions by defining your own version of -@code{matherr}; see the section on @code{matherr} for details. -@end enumerate - -@cindex system calls -@cindex support subroutines -@cindex stubs -@cindex OS stubs -Since the error handling code calls @code{fputs}, the mathematical -subroutines require stubs or minimal implementations for the same list -of OS subroutines as @code{fputs}: @code{close}, @code{fstat}, -@code{isatty}, @code{lseek}, @code{read}, @code{sbrk}, @code{write}. -@xref{syscalls,,System Calls, libc.info, The Cygnus C Support Library}, -for a discussion and for sample minimal implementations of these support -subroutines. - -Alternative declarations of the mathematical functions, which exploit -specific machine capabilities to operate faster---but generally have -less error checking and may reflect additional limitations on some -machines---are available when you include @file{fastmath.h} instead of -@file{math.h}. - -@menu -* version:: Version of library -* acos:: Arccosine -* acosh:: Inverse hyperbolic cosine -* asin:: Arcsine -* asinh:: Inverse hyperbolic sine -* atan:: Arctangent -* atan2:: Arctangent of y/x -* atanh:: Inverse hyperbolic tangent -* jN:: Bessel functions (jN, yN) -* cbrt:: Cube root -* copysign:: Sign of Y, magnitude of X -* cosh:: Hyperbolic cosine -* erf:: Error function (erf, erfc) -* exp:: Exponential -* expm1:: Exponential of x, - 1 -* fabs:: Absolute value (magnitude) -* floor:: Floor and ceiling (floor, ceil) -* fmod:: Floating-point remainder (modulo) -* frexp:: Split floating-point number -* gamma:: Logarithmic gamma function -* hypot:: Distance from origin -* ilogb:: Get exponent -* infinity:: Floating infinity -* isnan:: Check type of number -* ldexp:: Load exponent -* log:: Natural logarithms -* log10:: Base 10 logarithms -* log1p:: Log of 1 + X -* matherr:: Modifiable math error handler -* modf:: Split fractional and integer parts -* nan:: Floating Not a Number -* nextafter:: Get next representable number -* pow:: X to the power Y -* remainder:: remainder of X divided by Y -* scalbn:: scalbn -* sin:: Sine or cosine (sin, cos) -* sinh:: Hyperbolic sine -* sqrt:: Positive square root -* tan:: Tangent -* tanh:: Hyperbolic tangent -@end menu - -@page -@node version -@section Version of library - -There are four different versions of the math library routines: IEEE, -POSIX, X/Open, or SVID. The version may be selected at runtime by -setting the global variable @code{_LIB_VERSION}, defined in -@file{math.h}. It may be set to one of the following constants defined -in @file{math.h}: @code{_IEEE_}, @code{_POSIX_}, @code{_XOPEN_}, or -@code{_SVID_}. The @code{_LIB_VERSION} variable is not specific to any -thread, and changing it will affect all threads. - -The versions of the library differ only in how errors are handled. - -In IEEE mode, the @code{matherr} function is never called, no warning -messages are printed, and @code{errno} is never set. - -In POSIX mode, @code{errno} is set correctly, but the @code{matherr} -function is never called and no warning messages are printed. - -In X/Open mode, @code{errno} is set correctly, and @code{matherr} is -called, but warning message are not printed. - -In SVID mode, functions which overflow return 3.40282346638528860e+38, -the maximum single precision floating point value, rather than infinity. -Also, @code{errno} is set correctly, @code{matherr} is called, and, if -@code{matherr} returns 0, warning messages are printed for some errors. -For example, by default @samp{log(-1.0)} writes this message on standard -error output: - -@example -log: DOMAIN error -@end example - -The library is set to X/Open mode by default. - -@page -@include mathfp/sacos.def - -@page -@include mathfp/eacosh.def - -@page -@include mathfp/sasine.def - -@page -@include mathfp/sasinh.def - -@page -@include mathfp/satan.def - -@page -@include mathfp/satan2.def - -@page -@include mathfp/eatanh.def - -@page -@include mathfp/wjn.def - -@page -@include mathfp/scosh.def - -@page -@include mathfp/serf.def - -@page -@include mathfp/sexp.def - -@page -@include mathfp/sfabs.def - -@page -@include mathfp/sfloor.def - -@page -@include mathfp/sfmod.def - -@page -@include mathfp/sfrexp.def - -@page -@include mathfp/erlgamma.def - -@page -@include mathfp/ehypot.def - -@page -@include mathfp/sisnan.def - -@page -@include mathfp/sldexp.def - -@page -@include mathfp/slogarithm.def - -@page -@include mathfp/slog10.def - -@page -@include mathfp/spow.def - -@page -@include mathfp/eremainder.def - -@page -@include mathfp/ssqrt.def - -@page -@include mathfp/ssine.def - -@page -@include mathfp/ssineh.def - -@page -@include mathfp/stan.def - -@page -@include mathfp/stanh.def diff --git a/newlib/libm/mathfp/s_acos.c b/newlib/libm/mathfp/s_acos.c deleted file mode 100644 index e03344e..0000000 --- a/newlib/libm/mathfp/s_acos.c +++ /dev/null @@ -1,93 +0,0 @@ - -/* @(#)z_acos.c 1.0 98/08/13 */ - -/* -FUNCTION - <<acos>>, <<acosf>>---arc cosine - -INDEX - acos -INDEX - acosf - -ANSI_SYNOPSIS - #include <math.h> - double acos(double <[x]>); - float acosf(float <[x]>); - -TRAD_SYNOPSIS - #include <math.h> - double acos(<[x]>) - double <[x]>; - - float acosf(<[x]>) - float <[x]>; - - - -DESCRIPTION - - <<acos>> computes the inverse cosine (arc cosine) of the input value. - Arguments to <<acos>> must be in the range @minus{}1 to 1. - - <<acosf>> is identical to <<acos>>, except that it performs - its calculations on <<floats>>. - -RETURNS - @ifinfo - <<acos>> and <<acosf>> return values in radians, in the range of 0 to pi -. - @end ifinfo - @tex - <<acos>> and <<acosf>> return values in radians, in the range of <<0>> t -o $\pi$. - @end tex - - If <[x]> is not between @minus{}1 and 1, the returned value is NaN - (not a number) the global variable <<errno>> is set to <<EDOM>>, and a - <<DOMAIN error>> message is sent as standard error output. - - You can modify error handling for these functions using <<matherr>>. - - -QUICKREF ANSI SVID POSIX RENTRANT - acos y,y,y,m - acosf n,n,n,m - -MATHREF - acos, [-1,1], acos(arg),,, - acos, NAN, arg,DOMAIN,EDOM - -MATHREF - acosf, [-1,1], acosf(arg),,, - acosf, NAN, argf,DOMAIN,EDOM - -*/ - -/***************************************************************** - * Arccosine - * - * Input: - * x - floating point value - * - * Output: - * arccosine of x - * - * Description: - * This routine returns the arccosine of x. - * - *****************************************************************/ - -#include "fdlibm.h" -#include "zmath.h" - -#ifndef _DOUBLE_IS_32BITS - -double -_DEFUN (acos, (double), - double x) -{ - return (asine (x, 1)); -} - -#endif /* _DOUBLE_IS_32BITS */ diff --git a/newlib/libm/mathfp/s_asin.c b/newlib/libm/mathfp/s_asin.c deleted file mode 100644 index 477bbf5..0000000 --- a/newlib/libm/mathfp/s_asin.c +++ /dev/null @@ -1,29 +0,0 @@ - -/* @(#)z_asin.c 1.0 98/08/13 */ -/****************************************************************** - * Arcsine - * - * Input: - * x - floating point value - * - * Output: - * arcsine of x - * - * Description: - * This routine returns the arcsine of x. - * - *****************************************************************/ - -#include "fdlibm.h" -#include "zmath.h" - -#ifndef _DOUBLE_IS_32BITS - -double -_DEFUN (asin, (double), - double x) -{ - return (asine (x, 0)); -} - -#endif /* _DOUBLE_IS_32BITS */ diff --git a/newlib/libm/mathfp/s_asine.c b/newlib/libm/mathfp/s_asine.c deleted file mode 100644 index efc0a81..0000000 --- a/newlib/libm/mathfp/s_asine.c +++ /dev/null @@ -1,186 +0,0 @@ - -/* @(#)z_asine.c 1.0 98/08/13 */ -/****************************************************************** - * The following routines are coded directly from the algorithms - * and coefficients given in "Software Manual for the Elementary - * Functions" by William J. Cody, Jr. and William Waite, Prentice - * Hall, 1980. - ******************************************************************/ - -/* -FUNCTION - <<asin>>, <<asinf>>, <<acos>>, <<acosf>>, <<asine>>, <<asinef>>---arc sine or cosine - -INDEX - asin -INDEX - asinf -INDEX - acos -INDEX - acosf -INDEX - asine -INDEX - asinef - -ANSI_SYNOPSIS - #include <math.h> - double asine(double <[x]>); - float asinef(float <[x]>); - double asin(double <[x]>); - float asinf(float <[x]>); - double acos(double <[x]>); - float acosf(float <[x]>); - -TRAD_SYNOPSIS - #include <math.h> - double asine(<[x]>); - double <[x]>; - - float asinef(<[x]>); - float <[x]>; - - double asin(<[x]>) - double <[x]>; - - float asinf(<[x]>) - float <[x]>; - - double acos(<[x]>) - double <[x]>; - - float acosf(<[x]>) - float <[x]>; - -DESCRIPTION - -<<asin>> computes the inverse sine or cosine of the argument <[x]>. -Arguments to <<asin>> and <<acos>> must be in the range @minus{}1 to 1. - -<<asinf>> and <<acosf>> are identical to <<asin>> and <<acos>>, other -than taking and returning floats. - -RETURNS -@ifinfo -<<asin>> and <<acos>> return values in radians, in the range of -pi/2 to pi/2. -@end ifinfo -@tex -<<asin>> and <<acos>> return values in radians, in the range of $-\pi/2$ to $\pi/2$. -@end tex - -If <[x]> is not in the range @minus{}1 to 1, <<asin>> and <<asinf>> -return NaN (not a number), set the global variable <<errno>> to -<<EDOM>>, and issue a <<DOMAIN error>> message. - -*/ - -/****************************************************************** - * Arcsine - * - * Input: - * x - floating point value - * acosine - indicates acos calculation - * - * Output: - * Arcsine of x. - * - * Description: - * This routine calculates arcsine / arccosine. - * - *****************************************************************/ - -#include "fdlibm.h" -#include "zmath.h" - -#ifndef _DOUBLE_IS_32BITS - -static const double p[] = { -0.27368494524164255994e+2, - 0.57208227877891731407e+2, - -0.39688862997404877339e+2, - 0.10152522233806463645e+2, - -0.69674573447350646411 }; -static const double q[] = { -0.16421096714498560795e+3, - 0.41714430248260412556e+3, - -0.38186303361750149284e+3, - 0.15095270841030604719e+3, - -0.23823859153670238830e+2 }; -static const double a[] = { 0.0, 0.78539816339744830962 }; -static const double b[] = { 1.57079632679489661923, 0.78539816339744830962 }; - -double -_DEFUN (asine, (double, int), - double x _AND - int acosine) -{ - int flag, i; - int branch = 0; - double g, res, R, P, Q, y; - - /* Check for special values. */ - i = numtest (x); - if (i == NAN || i == INF) - { - errno = EDOM; - if (i == NAN) - return (x); - else - return (z_infinity.d); - } - - y = fabs (x); - flag = acosine; - - if (y > 0.5) - { - i = 1 - flag; - - /* Check for range error. */ - if (y > 1.0) - { - errno = ERANGE; - return (z_notanum.d); - } - - g = (1 - y) / 2.0; - y = -2 * sqrt (g); - branch = 1; - } - else - { - i = flag; - if (y < z_rooteps) - res = y; - else - g = y * y; - } - - if (y >= z_rooteps || branch == 1) - { - /* Calculate the Taylor series. */ - P = ((((p[4] * g + p[3]) * g + p[2]) * g + p[1]) * g + p[0]) * g; - Q = ((((g + q[4]) * g + q[3]) * g + q[2]) * g + q[1]) * g + q[0]; - R = P / Q; - - res = y + y * R; - } - - /* Calculate asine or acose. */ - if (flag == 0) - { - res = (a[i] + res) + a[i]; - if (x < 0.0) - res = -res; - } - else - { - if (x < 0.0) - res = (b[i] + res) + b[i]; - else - res = (a[i] - res) + a[i]; - } - - return (res); -} - -#endif /* _DOUBLE_IS_32BITS */ diff --git a/newlib/libm/mathfp/s_asinh.c b/newlib/libm/mathfp/s_asinh.c deleted file mode 100644 index 43b9d49..0000000 --- a/newlib/libm/mathfp/s_asinh.c +++ /dev/null @@ -1,107 +0,0 @@ - -/* @(#)s_asinh.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* -FUNCTION - <<asinh>>, <<asinhf>>---inverse hyperbolic sine - -INDEX - asinh -INDEX - asinhf - -ANSI_SYNOPSIS - #include <math.h> - double asinh(double <[x]>); - float asinhf(float <[x]>); - -TRAD_SYNOPSIS - #include <math.h> - double asinh(<[x]>) - double <[x]>; - - float asinhf(<[x]>) - float <[x]>; - -DESCRIPTION -<<asinh>> calculates the inverse hyperbolic sine of <[x]>. -<<asinh>> is defined as -@ifinfo -. sgn(<[x]>) * log(abs(<[x]>) + sqrt(1+<[x]>*<[x]>)) -@end ifinfo -@tex -$$sign(x) \times ln\Bigl(|x| + \sqrt{1+x^2}\Bigr)$$ -@end tex - -<<asinhf>> is identical, other than taking and returning floats. - -RETURNS -<<asinh>> and <<asinhf>> return the calculated value. - -PORTABILITY -Neither <<asinh>> nor <<asinhf>> are ANSI C. - -*/ - -/* asinh(x) - * Method : - * Based on - * asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ] - * we have - * asinh(x) := x if 1+x*x=1, - * := sign(x)*(log(x)+ln2)) for large |x|, else - * := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else - * := sign(x)*log1p(|x| + x^2/(1 + sqrt(1+x^2))) - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ -static const double -#else -static double -#endif -one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ -ln2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */ -huge= 1.00000000000000000000e+300; - -#ifdef __STDC__ - double asinh(double x) -#else - double asinh(x) - double x; -#endif -{ - double t,w; - __int32_t hx,ix; - GET_HIGH_WORD(hx,x); - ix = hx&0x7fffffff; - if(ix>=0x7ff00000) return x+x; /* x is inf or NaN */ - if(ix< 0x3e300000) { /* |x|<2**-28 */ - if(huge+x>one) return x; /* return x inexact except 0 */ - } - if(ix>0x41b00000) { /* |x| > 2**28 */ - w = log(fabs(x))+ln2; - } else if (ix>0x40000000) { /* 2**28 > |x| > 2.0 */ - t = fabs(x); - w = log(2.0*t+one/(sqrt(x*x+one)+t)); - } else { /* 2.0 > |x| > 2**-28 */ - t = x*x; - w =log1p(fabs(x)+t/(one+sqrt(one+t))); - } - if(hx>0) return w; else return -w; -} - -#endif /* _DOUBLE_IS_32BITS */ diff --git a/newlib/libm/mathfp/s_atan.c b/newlib/libm/mathfp/s_atan.c deleted file mode 100644 index b8e633e..0000000 --- a/newlib/libm/mathfp/s_atan.c +++ /dev/null @@ -1,83 +0,0 @@ - -/* @(#)z_atan.c 1.0 98/08/13 */ - -/* -FUNCTION - <<atan>>, <<atanf>>---arc tangent - -INDEX - atan -INDEX - atanf - -ANSI_SYNOPSIS - #include <math.h> - double atan(double <[x]>); - float atanf(float <[x]>); - -TRAD_SYNOPSIS - #include <math.h> - double atan(<[x]>); - double <[x]>; - - float atanf(<[x]>); - float <[x]>; - -DESCRIPTION - -<<atan>> computes the inverse tangent (arc tangent) of the input value. - -<<atanf>> is identical to <<atan>>, save that it operates on <<floats>>. - -RETURNS -@ifinfo -<<atan>> returns a value in radians, in the range of -pi/2 to pi/2. -@end ifinfo -@tex -<<atan>> returns a value in radians, in the range of $-\pi/2$ to $\pi/2$. -@end tex - -PORTABILITY -<<atan>> is ANSI C. <<atanf>> is an extension. - -*/ - -/****************************************************************** - * Arctangent - * - * Input: - * x - floating point value - * - * Output: - * arctan of x - * - * Description: - * This routine returns the arctan of x. - * - *****************************************************************/ - -#include "fdlibm.h" -#include "zmath.h" - -#ifndef _DOUBLE_IS_32BITS - -double -_DEFUN (atan, (double), - double x) -{ - switch (numtest (x)) - { - case NAN: - errno = EDOM; - return (x); - case INF: - /* this should check to see if neg NaN or pos NaN... */ - return (__PI_OVER_TWO); - case 0: - return (0.0); - default: - return (atangent (x, 0, 0, 0)); - } -} - -#endif /* _DOUBLE_IS_32BITS */ diff --git a/newlib/libm/mathfp/s_atan2.c b/newlib/libm/mathfp/s_atan2.c deleted file mode 100644 index d73a6ef..0000000 --- a/newlib/libm/mathfp/s_atan2.c +++ /dev/null @@ -1,89 +0,0 @@ - -/* @(#)z_atan2.c 1.0 98/08/13 */ - -/* -FUNCTION - <<atan2>>, <<atan2f>>---arc tangent of y/x - -INDEX - atan2 -INDEX - atan2f - -ANSI_SYNOPSIS - #include <math.h> - double atan2(double <[y]>,double <[x]>); - float atan2f(float <[y]>,float <[x]>); - -TRAD_SYNOPSIS - #include <math.h> - double atan2(<[y]>,<[x]>); - double <[y]>; - double <[x]>; - - float atan2f(<[y]>,<[x]>); - float <[y]>; - float <[x]>; - -DESCRIPTION - -<<atan2>> computes the inverse tangent (arc tangent) of <[y]>/<[x]>. -<<atan2>> produces the correct result even for angles near -@ifinfo -pi/2 or -pi/2 -@end ifinfo -@tex -$\pi/2$ or $-\pi/2$ -@end tex -(that is, when <[x]> is near 0). - -<<atan2f>> is identical to <<atan2>>, save that it takes and returns -<<float>>. - -RETURNS -<<atan2>> and <<atan2f>> return a value in radians, in the range of -@ifinfo --pi to pi. -@end ifinfo -@tex -$-\pi$ to $\pi$. -@end tex - -If both <[x]> and <[y]> are 0.0, <<atan2>> causes a <<DOMAIN>> error. - -You can modify error handling for these functions using <<matherr>>. - -PORTABILITY -<<atan2>> is ANSI C. <<atan2f>> is an extension. - - -*/ - -/****************************************************************** - * Arctangent2 - * - * Input: - * v, u - floating point values - * - * Output: - * arctan2 of v / u - * - * Description: - * This routine returns the arctan2 of v / u. - * - *****************************************************************/ - -#include "fdlibm.h" -#include "zmath.h" - -#ifndef _DOUBLE_IS_32BITS - -double -_DEFUN (atan2, (double, double), - double v _AND - double u) -{ - return (atangent (0.0, v, u, 1)); -} - -#endif /* _DOUBLE_IS_32BITS */ diff --git a/newlib/libm/mathfp/s_atangent.c b/newlib/libm/mathfp/s_atangent.c deleted file mode 100644 index c6f3c9b..0000000 --- a/newlib/libm/mathfp/s_atangent.c +++ /dev/null @@ -1,213 +0,0 @@ - -/* @(#)z_atangent.c 1.0 98/08/13 */ -/****************************************************************** - * The following routines are coded directly from the algorithms - * and coefficients given in "Software Manual for the Elementary - * Functions" by William J. Cody, Jr. and William Waite, Prentice - * Hall, 1980. - ******************************************************************/ - -/* -FUNCTION - <<atan>>, <<atanf>>, <<atan2>>, <<atan2f>>, <<atangent>>, <<atangentf>>---arc tangent - -INDEX - atan2 -INDEX - atan2f -INDEX - atan -INDEX - atanf - -ANSI_SYNOPSIS - #include <math.h> - double atan(double <[x]>); - float atan(float <[x]>); - double atan2(double <[y]>,double <[x]>); - float atan2f(float <[y]>,float <[x]>); - -TRAD_SYNOPSIS - #include <math.h> - double atan2(<[y]>,<[x]>); - double <[y]>; - double <[x]>; - - float atan2f(<[y]>,<[x]>); - float <[y]>; - float <[x]>; - - #include <math.h> - double atan(<[x]>); - double <[x]>; - - float atanf(<[x]>); - float <[x]>; - -DESCRIPTION - -<<atan2>> computes the inverse tangent (arc tangent) of y / x. - -<<atan2f>> is identical to <<atan2>>, save that it operates on <<floats>>. - -<<atan>> computes the inverse tangent (arc tangent) of the input value. - -<<atanf>> is identical to <<atan>>, save that it operates on <<floats>>. - -RETURNS -@ifinfo -<<atan>> returns a value in radians, in the range of -pi/2 to pi/2. -<<atan2>> returns a value in radians, in the range of -pi/2 to pi/2. -@end ifinfo -@tex -<<atan>> returns a value in radians, in the range of $-\pi/2$ to $\pi/2$. -<<atan2>> returns a value in radians, in the range of $-\pi/2$ to $\pi/2$. -@end tex - -PORTABILITY -<<atan>> is ANSI C. <<atanf>> is an extension. -<<atan2>> is ANSI C. <<atan2f>> is an extension. - -*/ - -/****************************************************************** - * Arctangent - * - * Input: - * x - floating point value - * - * Output: - * arctangent of x - * - * Description: - * This routine calculates arctangents. - * - *****************************************************************/ -#include <float.h> -#include "fdlibm.h" -#include "zmath.h" - -#ifndef _DOUBLE_IS_32BITS - -static const double ROOT3 = 1.73205080756887729353; -static const double a[] = { 0.0, 0.52359877559829887308, 1.57079632679489661923, - 1.04719755119659774615 }; -static const double q[] = { 0.41066306682575781263e+2, - 0.86157349597130242515e+2, - 0.59578436142597344465e+2, - 0.15024001160028576121e+2 }; -static const double p[] = { -0.13688768894191926929e+2, - -0.20505855195861651981e+2, - -0.84946240351320683534e+1, - -0.83758299368150059274 }; - -double -_DEFUN (atangent, (double, double, double, int), - double x _AND - double v _AND - double u _AND - int arctan2) -{ - double f, g, R, P, Q, A, res; - int N; - int branch = 0; - int expv, expu; - - /* Preparation for calculating arctan2. */ - if (arctan2) - { - if (u == 0.0) - if (v == 0.0) - { - errno = ERANGE; - return (z_notanum.d); - } - else - { - branch = 1; - res = __PI_OVER_TWO; - } - - if (!branch) - { - int e; - /* Get the exponent values of the inputs. */ - g = frexp (v, &expv); - g = frexp (u, &expu); - - /* See if a divide will overflow. */ - e = expv - expu; - if (e > DBL_MAX_EXP) - { - branch = 1; - res = __PI_OVER_TWO; - } - - /* Also check for underflow. */ - else if (e < DBL_MIN_EXP) - { - branch = 2; - res = 0.0; - } - } - } - - if (!branch) - { - if (arctan2) - f = fabs (v / u); - else - f = fabs (x); - - if (f > 1.0) - { - f = 1.0 / f; - N = 2; - } - else - N = 0; - - if (f > (2.0 - ROOT3)) - { - A = ROOT3 - 1.0; - f = (((A * f - 0.5) - 0.5) + f) / (ROOT3 + f); - N++; - } - - /* Check for values that are too small. */ - if (-z_rooteps < f && f < z_rooteps) - res = f; - - /* Calculate the Taylor series. */ - else - { - g = f * f; - P = (((p[3] * g + p[2]) * g + p[1]) * g + p[0]) * g; - Q = (((g + q[3]) * g + q[2]) * g + q[1]) * g + q[0]; - R = P / Q; - - res = f + f * R; - } - - if (N > 1) - res = -res; - - res += a[N]; - } - - if (arctan2) - { - if (u < 0.0 || branch == 2) - res = __PI - res; - if (v < 0.0 || branch == 1) - res = -res; - } - else if (x < 0.0) - { - res = -res; - } - - return (res); -} - -#endif /* _DOUBLE_IS_32BITS */ diff --git a/newlib/libm/mathfp/s_ceil.c b/newlib/libm/mathfp/s_ceil.c deleted file mode 100644 index c6ecbe3..0000000 --- a/newlib/libm/mathfp/s_ceil.c +++ /dev/null @@ -1,38 +0,0 @@ - -/* @(#)z_ceil.c 1.0 98/08/13 */ -/***************************************************************** - * ceil - * - * Input: - * x - floating point value - * - * Output: - * Smallest integer greater than x. - * - * Description: - * This routine returns the smallest integer greater than x. - * - *****************************************************************/ - -#include "fdlibm.h" -#include "zmath.h" - -#ifndef _DOUBLE_IS_32BITS - -double -_DEFUN (ceil, (double), - double x) -{ - double f, y; - - y = modf (x, &f); - - if (y == 0.0) - return (x); - else if (x > -1.0 && x < 1.0) - return (x > 0 ? 1.0 : 0.0); - else - return (x > 0 ? f + 1.0 : f); -} - -#endif /* _DOUBLE_IS_32BITS */ diff --git a/newlib/libm/mathfp/s_cos.c b/newlib/libm/mathfp/s_cos.c deleted file mode 100644 index 6f63a40..0000000 --- a/newlib/libm/mathfp/s_cos.c +++ /dev/null @@ -1,29 +0,0 @@ - -/* @(#)z_cos.c 1.0 98/08/13 */ -/****************************************************************** - * Cosine - * - * Input: - * x - floating point value - * - * Output: - * cosine of x - * - * Description: - * This routine returns the cosine of x. - * - *****************************************************************/ - -#include "fdlibm.h" -#include "zmath.h" - -#ifndef _DOUBLE_IS_32BITS - -double -_DEFUN (cos, (double), - double x) -{ - return (sine (x, 1)); -} - -#endif /* _DOUBLE_IS_32BITS */ diff --git a/newlib/libm/mathfp/s_cosh.c b/newlib/libm/mathfp/s_cosh.c deleted file mode 100644 index 6550e9c..0000000 --- a/newlib/libm/mathfp/s_cosh.c +++ /dev/null @@ -1,80 +0,0 @@ - -/* @(#)z_cosh.c 1.0 98/08/13 */ - -/* - -FUNCTION - <<cosh>>, <<coshf>>---hyperbolic cosine - -ANSI_SYNOPSIS - #include <math.h> - double cosh(double <[x]>); - float coshf(float <[x]>) - -TRAD_SYNOPSIS - #include <math.h> - double cosh(<[x]>) - double <[x]>; - - float coshf(<[x]>) - float <[x]>; - -DESCRIPTION - - <<cosh>> computes the hyperbolic cosine of the argument <[x]>. - <<cosh(<[x]>)>> is defined as - @ifinfo - . (exp(x) + exp(-x))/2 - @end ifinfo - @tex - $${(e^x + e^{-x})} \over 2$$ - @end tex - - Angles are specified in radians. - - <<coshf>> is identical, save that it takes and returns <<float>>. - -RETURNS - The computed value is returned. When the correct value would create - an overflow, <<cosh>> returns the value <<HUGE_VAL>> with the - appropriate sign, and the global value <<errno>> is set to <<ERANGE>>. - - You can modify error handling for these functions using the - function <<matherr>>. - -PORTABILITY - <<cosh>> is ANSI. - <<coshf>> is an extension. - -QUICKREF - cosh ansi pure - coshf - pure -*/ - -/****************************************************************** - * Hyperbolic Cosine - * - * Input: - * x - floating point value - * - * Output: - * hyperbolic cosine of x - * - * Description: - * This routine returns the hyperbolic cosine of x. - * - *****************************************************************/ - -#include "fdlibm.h" -#include "zmath.h" - -#ifndef _DOUBLE_IS_32BITS - -double -_DEFUN (cosh, (double), - double x) -{ - return (sineh (x, 1)); -} - -#endif /* _DOUBLE_IS_32BITS */ diff --git a/newlib/libm/mathfp/s_erf.c b/newlib/libm/mathfp/s_erf.c deleted file mode 100644 index 2d8faa3..0000000 --- a/newlib/libm/mathfp/s_erf.c +++ /dev/null @@ -1,373 +0,0 @@ - -/* @(#)s_erf.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* -FUNCTION - <<erf>>, <<erff>>, <<erfc>>, <<erfcf>>---error function -INDEX - erf -INDEX - erff -INDEX - erfc -INDEX - erfcf - -ANSI_SYNOPSIS - #include <math.h> - double erf(double <[x]>); - float erff(float <[x]>); - double erfc(double <[x]>); - float erfcf(float <[x]>); -TRAD_SYNOPSIS - #include <math.h> - - double erf(<[x]>) - double <[x]>; - - float erff(<[x]>) - float <[x]>; - - double erfc(<[x]>) - double <[x]>; - - float erfcf(<[x]>) - float <[x]>; - -DESCRIPTION - <<erf>> calculates an approximation to the ``error function'', - which estimates the probability that an observation will fall within - <[x]> standard deviations of the mean (assuming a normal - distribution). - @tex - The error function is defined as - $${2\over\sqrt\pi}\times\int_0^x e^{-t^2}dt$$ - @end tex - - <<erfc>> calculates the complementary probability; that is, - <<erfc(<[x]>)>> is <<1 - erf(<[x]>)>>. <<erfc>> is computed directly, - so that you can use it to avoid the loss of precision that would - result from subtracting large probabilities (on large <[x]>) from 1. - - <<erff>> and <<erfcf>> differ from <<erf>> and <<erfc>> only in the - argument and result types. - -RETURNS - For positive arguments, <<erf>> and all its variants return a - probability---a number between 0 and 1. - -PORTABILITY - None of the variants of <<erf>> are ANSI C. -*/ - -/* double erf(double x) - * double erfc(double x) - * x - * 2 |\ - * erf(x) = --------- | exp(-t*t)dt - * sqrt(pi) \| - * 0 - * - * erfc(x) = 1-erf(x) - * Note that - * erf(-x) = -erf(x) - * erfc(-x) = 2 - erfc(x) - * - * Method: - * 1. For |x| in [0, 0.84375] - * erf(x) = x + x*R(x^2) - * erfc(x) = 1 - erf(x) if x in [-.84375,0.25] - * = 0.5 + ((0.5-x)-x*R) if x in [0.25,0.84375] - * where R = P/Q where P is an odd poly of degree 8 and - * Q is an odd poly of degree 10. - * -57.90 - * | R - (erf(x)-x)/x | <= 2 - * - * - * Remark. The formula is derived by noting - * erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....) - * and that - * 2/sqrt(pi) = 1.128379167095512573896158903121545171688 - * is close to one. The interval is chosen because the fix - * point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is - * near 0.6174), and by some experiment, 0.84375 is chosen to - * guarantee the error is less than one ulp for erf. - * - * 2. For |x| in [0.84375,1.25], let s = |x| - 1, and - * c = 0.84506291151 rounded to single (24 bits) - * erf(x) = sign(x) * (c + P1(s)/Q1(s)) - * erfc(x) = (1-c) - P1(s)/Q1(s) if x > 0 - * 1+(c+P1(s)/Q1(s)) if x < 0 - * |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06 - * Remark: here we use the taylor series expansion at x=1. - * erf(1+s) = erf(1) + s*Poly(s) - * = 0.845.. + P1(s)/Q1(s) - * That is, we use rational approximation to approximate - * erf(1+s) - (c = (single)0.84506291151) - * Note that |P1/Q1|< 0.078 for x in [0.84375,1.25] - * where - * P1(s) = degree 6 poly in s - * Q1(s) = degree 6 poly in s - * - * 3. For x in [1.25,1/0.35(~2.857143)], - * erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1) - * erf(x) = 1 - erfc(x) - * where - * R1(z) = degree 7 poly in z, (z=1/x^2) - * S1(z) = degree 8 poly in z - * - * 4. For x in [1/0.35,28] - * erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0 - * = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0 - * = 2.0 - tiny (if x <= -6) - * erf(x) = sign(x)*(1.0 - erfc(x)) if x < 6, else - * erf(x) = sign(x)*(1.0 - tiny) - * where - * R2(z) = degree 6 poly in z, (z=1/x^2) - * S2(z) = degree 7 poly in z - * - * Note1: - * To compute exp(-x*x-0.5625+R/S), let s be a single - * precision number and s := x; then - * -x*x = -s*s + (s-x)*(s+x) - * exp(-x*x-0.5626+R/S) = - * exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S); - * Note2: - * Here 4 and 5 make use of the asymptotic series - * exp(-x*x) - * erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) ) - * x*sqrt(pi) - * We use rational approximation to approximate - * g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625 - * Here is the error bound for R1/S1 and R2/S2 - * |R1/S1 - f(x)| < 2**(-62.57) - * |R2/S2 - f(x)| < 2**(-61.52) - * - * 5. For inf > x >= 28 - * erf(x) = sign(x) *(1 - tiny) (raise inexact) - * erfc(x) = tiny*tiny (raise underflow) if x > 0 - * = 2 - tiny if x<0 - * - * 7. Special case: - * erf(0) = 0, erf(inf) = 1, erf(-inf) = -1, - * erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2, - * erfc/erf(NaN) is NaN - */ - - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ -static const double -#else -static double -#endif -tiny = 1e-300, -half= 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */ -one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ -two = 2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */ - /* c = (float)0.84506291151 */ -erx = 8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */ -/* - * Coefficients for approximation to erf on [0,0.84375] - */ -efx = 1.28379167095512586316e-01, /* 0x3FC06EBA, 0x8214DB69 */ -efx8= 1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */ -pp0 = 1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */ -pp1 = -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */ -pp2 = -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */ -pp3 = -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */ -pp4 = -2.37630166566501626084e-05, /* 0xBEF8EAD6, 0x120016AC */ -qq1 = 3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */ -qq2 = 6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */ -qq3 = 5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */ -qq4 = 1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */ -qq5 = -3.96022827877536812320e-06, /* 0xBED09C43, 0x42A26120 */ -/* - * Coefficients for approximation to erf in [0.84375,1.25] - */ -pa0 = -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */ -pa1 = 4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */ -pa2 = -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */ -pa3 = 3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */ -pa4 = -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */ -pa5 = 3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */ -pa6 = -2.16637559486879084300e-03, /* 0xBF61BF38, 0x0A96073F */ -qa1 = 1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */ -qa2 = 5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */ -qa3 = 7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */ -qa4 = 1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */ -qa5 = 1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */ -qa6 = 1.19844998467991074170e-02, /* 0x3F888B54, 0x5735151D */ -/* - * Coefficients for approximation to erfc in [1.25,1/0.35] - */ -ra0 = -9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */ -ra1 = -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */ -ra2 = -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */ -ra3 = -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */ -ra4 = -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */ -ra5 = -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */ -ra6 = -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */ -ra7 = -9.81432934416914548592e+00, /* 0xC023A0EF, 0xC69AC25C */ -sa1 = 1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */ -sa2 = 1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */ -sa3 = 4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */ -sa4 = 6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */ -sa5 = 4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */ -sa6 = 1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */ -sa7 = 6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */ -sa8 = -6.04244152148580987438e-02, /* 0xBFAEEFF2, 0xEE749A62 */ -/* - * Coefficients for approximation to erfc in [1/.35,28] - */ -rb0 = -9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */ -rb1 = -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */ -rb2 = -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */ -rb3 = -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */ -rb4 = -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */ -rb5 = -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */ -rb6 = -4.83519191608651397019e+02, /* 0xC07E384E, 0x9BDC383F */ -sb1 = 3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */ -sb2 = 3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */ -sb3 = 1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */ -sb4 = 3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */ -sb5 = 2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */ -sb6 = 4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */ -sb7 = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */ - -#ifdef __STDC__ - double erf(double x) -#else - double erf(x) - double x; -#endif -{ - __int32_t hx,ix,i; - double R,S,P,Q,s,y,z,r; - GET_HIGH_WORD(hx,x); - ix = hx&0x7fffffff; - if(ix>=0x7ff00000) { /* erf(nan)=nan */ - i = ((__uint32_t)hx>>31)<<1; - return (double)(1-i)+one/x; /* erf(+-inf)=+-1 */ - } - - if(ix < 0x3feb0000) { /* |x|<0.84375 */ - if(ix < 0x3e300000) { /* |x|<2**-28 */ - if (ix < 0x00800000) - return 0.125*(8.0*x+efx8*x); /*avoid underflow */ - return x + efx*x; - } - z = x*x; - r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4))); - s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5)))); - y = r/s; - return x + x*y; - } - if(ix < 0x3ff40000) { /* 0.84375 <= |x| < 1.25 */ - s = fabs(x)-one; - P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6))))); - Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6))))); - if(hx>=0) return erx + P/Q; else return -erx - P/Q; - } - if (ix >= 0x40180000) { /* inf>|x|>=6 */ - if(hx>=0) return one-tiny; else return tiny-one; - } - x = fabs(x); - s = one/(x*x); - if(ix< 0x4006DB6E) { /* |x| < 1/0.35 */ - R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*( - ra5+s*(ra6+s*ra7)))))); - S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*( - sa5+s*(sa6+s*(sa7+s*sa8))))))); - } else { /* |x| >= 1/0.35 */ - R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*( - rb5+s*rb6))))); - S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*( - sb5+s*(sb6+s*sb7)))))); - } - z = x; - SET_LOW_WORD(z,0); - r = exp(-z*z-0.5625)*exp((z-x)*(z+x)+R/S); - if(hx>=0) return one-r/x; else return r/x-one; -} - -#ifdef __STDC__ - double erfc(double x) -#else - double erfc(x) - double x; -#endif -{ - __int32_t hx,ix; - double R,S,P,Q,s,y,z,r; - GET_HIGH_WORD(hx,x); - ix = hx&0x7fffffff; - if(ix>=0x7ff00000) { /* erfc(nan)=nan */ - /* erfc(+-inf)=0,2 */ - return (double)(((__uint32_t)hx>>31)<<1)+one/x; - } - - if(ix < 0x3feb0000) { /* |x|<0.84375 */ - if(ix < 0x3c700000) /* |x|<2**-56 */ - return one-x; - z = x*x; - r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4))); - s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5)))); - y = r/s; - if(hx < 0x3fd00000) { /* x<1/4 */ - return one-(x+x*y); - } else { - r = x*y; - r += (x-half); - return half - r ; - } - } - if(ix < 0x3ff40000) { /* 0.84375 <= |x| < 1.25 */ - s = fabs(x)-one; - P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6))))); - Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6))))); - if(hx>=0) { - z = one-erx; return z - P/Q; - } else { - z = erx+P/Q; return one+z; - } - } - if (ix < 0x403c0000) { /* |x|<28 */ - x = fabs(x); - s = one/(x*x); - if(ix< 0x4006DB6D) { /* |x| < 1/.35 ~ 2.857143*/ - R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*( - ra5+s*(ra6+s*ra7)))))); - S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*( - sa5+s*(sa6+s*(sa7+s*sa8))))))); - } else { /* |x| >= 1/.35 ~ 2.857143 */ - if(hx<0&&ix>=0x40180000) return two-tiny;/* x < -6 */ - R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*( - rb5+s*rb6))))); - S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*( - sb5+s*(sb6+s*sb7)))))); - } - z = x; - SET_LOW_WORD(z,0); - r = exp(-z*z-0.5625)* - exp((z-x)*(z+x)+R/S); - if(hx>0) return r/x; else return two-r/x; - } else { - if(hx>0) return tiny*tiny; else return two-tiny; - } -} - -#endif /* _DOUBLE_IS_32BITS */ diff --git a/newlib/libm/mathfp/s_exp.c b/newlib/libm/mathfp/s_exp.c deleted file mode 100644 index 8c7f723..0000000 --- a/newlib/libm/mathfp/s_exp.c +++ /dev/null @@ -1,133 +0,0 @@ - -/* @(#)z_exp.c 1.0 98/08/13 */ -/****************************************************************** - * The following routines are coded directly from the algorithms - * and coefficients given in "Software Manual for the Elementary - * Functions" by William J. Cody, Jr. and William Waite, Prentice - * Hall, 1980. - ******************************************************************/ - -/* -FUNCTION - <<exp>>, <<expf>>---exponential -INDEX - exp -INDEX - expf - -ANSI_SYNOPSIS - #include <math.h> - double exp(double <[x]>); - float expf(float <[x]>); - -TRAD_SYNOPSIS - #include <math.h> - double exp(<[x]>); - double <[x]>; - - float expf(<[x]>); - float <[x]>; - -DESCRIPTION - <<exp>> and <<expf>> calculate the exponential of <[x]>, that is, - @ifinfo - e raised to the power <[x]> (where e - @end ifinfo - @tex - $e^x$ (where $e$ - @end tex - is the base of the natural system of logarithms, approximately 2.71828). - -RETURNS - On success, <<exp>> and <<expf>> return the calculated value. - If the result underflows, the returned value is <<0>>. If the - result overflows, the returned value is <<HUGE_VAL>>. In - either case, <<errno>> is set to <<ERANGE>>. - -PORTABILITY - <<exp>> is ANSI C. <<expf>> is an extension. - -*/ - -/***************************************************************** - * Exponential Function - * - * Input: - * x - floating point value - * - * Output: - * e raised to x. - * - * Description: - * This routine returns e raised to the xth power. - * - *****************************************************************/ - -#include <float.h> -#include "fdlibm.h" -#include "zmath.h" - -#ifndef _DOUBLE_IS_32BITS - -static const double INV_LN2 = 1.4426950408889634074; -static const double LN2 = 0.6931471805599453094172321; -static const double p[] = { 0.25, 0.75753180159422776666e-2, - 0.31555192765684646356e-4 }; -static const double q[] = { 0.5, 0.56817302698551221787e-1, - 0.63121894374398504557e-3, - 0.75104028399870046114e-6 }; - -double -_DEFUN (exp, (double), - double x) -{ - int N; - double g, z, R, P, Q; - - switch (numtest (x)) - { - case NAN: - errno = EDOM; - return (x); - case INF: - errno = ERANGE; - if (ispos (x)) - return (z_infinity.d); - else - return (0.0); - case 0: - return (1.0); - } - - /* Check for out of bounds. */ - if (x > BIGX || x < SMALLX) - { - errno = ERANGE; - return (x); - } - - /* Check for a value too small to calculate. */ - if (-z_rooteps < x && x < z_rooteps) - { - return (1.0); - } - - /* Calculate the exponent. */ - if (x < 0.0) - N = (int) (x * INV_LN2 - 0.5); - else - N = (int) (x * INV_LN2 + 0.5); - - /* Construct the mantissa. */ - g = x - N * LN2; - z = g * g; - P = g * ((p[2] * z + p[1]) * z + p[0]); - Q = ((q[3] * z + q[2]) * z + q[1]) * z + q[0]; - R = 0.5 + P / (Q - P); - - /* Return the floating point value. */ - N++; - return (ldexp (R, N)); -} - -#endif /* _DOUBLE_IS_32BITS */ diff --git a/newlib/libm/mathfp/s_fabs.c b/newlib/libm/mathfp/s_fabs.c deleted file mode 100644 index 9e1d75e..0000000 --- a/newlib/libm/mathfp/s_fabs.c +++ /dev/null @@ -1,80 +0,0 @@ - -/* @(#)z_fabs.c 1.0 98/08/13 */ - -/* -FUNCTION - <<fabs>>, <<fabsf>>---absolute value (magnitude) -INDEX - fabs -INDEX - fabsf - -ANSI_SYNOPSIS - #include <math.h> - double fabs(double <[x]>); - float fabsf(float <[x]>); - -TRAD_SYNOPSIS - #include <math.h> - double fabs(<[x]>) - double <[x]>; - - float fabsf(<[x]>) - float <[x]>; - -DESCRIPTION -<<fabs>> and <<fabsf>> calculate -@tex -$|x|$, -@end tex -the absolute value (magnitude) of the argument <[x]>, by direct -manipulation of the bit representation of <[x]>. - -RETURNS -The calculated value is returned. - -PORTABILITY -<<fabs>> is ANSI. -<<fabsf>> is an extension. - -*/ - -/****************************************************************** - * Floating-Point Absolute Value - * - * Input: - * x - floating-point number - * - * Output: - * absolute value of x - * - * Description: - * fabs computes the absolute value of a floating point number. - * - *****************************************************************/ - -#include "fdlibm.h" -#include "zmath.h" - -#ifndef _DOUBLE_IS_32BITS - -double -_DEFUN (fabs, (double), - double x) -{ - switch (numtest (x)) - { - case NAN: - errno = EDOM; - return (x); - case INF: - errno = ERANGE; - return (x); - case 0: - return (0.0); - default: - return (x < 0.0 ? -x : x); - } -} - -#endif /* _DOUBLE_IS_32BITS */ diff --git a/newlib/libm/mathfp/s_floor.c b/newlib/libm/mathfp/s_floor.c deleted file mode 100644 index 0dbc207..0000000 --- a/newlib/libm/mathfp/s_floor.c +++ /dev/null @@ -1,92 +0,0 @@ - -/* @(#)z_floor.c 1.0 98/08/13 */ - -/* -FUNCTION -<<floor>>, <<floorf>>, <<ceil>>, <<ceilf>>---floor and ceiling -INDEX - floor -INDEX - floorf -INDEX - ceil -INDEX - ceilf - -ANSI_SYNOPSIS - #include <math.h> - double floor(double <[x]>); - float floorf(float <[x]>); - double ceil(double <[x]>); - float ceilf(float <[x]>); - -TRAD_SYNOPSIS - #include <math.h> - double floor(<[x]>) - double <[x]>; - float floorf(<[x]>) - float <[x]>; - double ceil(<[x]>) - double <[x]>; - float ceilf(<[x]>) - float <[x]>; - -DESCRIPTION -<<floor>> and <<floorf>> find -@tex -$\lfloor x \rfloor$, -@end tex -the nearest integer less than or equal to <[x]>. -<<ceil>> and <<ceilf>> find -@tex -$\lceil x\rceil$, -@end tex -the nearest integer greater than or equal to <[x]>. - -RETURNS -<<floor>> and <<ceil>> return the integer result as a double. -<<floorf>> and <<ceilf>> return the integer result as a float. - -PORTABILITY -<<floor>> and <<ceil>> are ANSI. -<<floorf>> and <<ceilf>> are extensions. - -*/ - -/***************************************************************** - * floor - * - * Input: - * x - floating point value - * - * Output: - * Smallest integer less than x. - * - * Description: - * This routine returns the smallest integer less than x. - * - *****************************************************************/ - -#include "fdlibm.h" -#include "zmath.h" - -#ifndef _DOUBLE_IS_32BITS - -double -_DEFUN (floor, (double), - double x) -{ - double f, y; - - if (x > -1.0 && x < 1.0) - return (x >= 0 ? 0 : -1.0); - - y = modf (x, &f); - - if (y == 0.0) - return (x); - - return (x >= 0 ? f : f - 1.0); -} - -#endif /* _DOUBLE_IS_32BITS */ diff --git a/newlib/libm/mathfp/s_fmod.c b/newlib/libm/mathfp/s_fmod.c deleted file mode 100644 index 3af7300..0000000 --- a/newlib/libm/mathfp/s_fmod.c +++ /dev/null @@ -1,187 +0,0 @@ - -/* @(#)z_fmod.c 1.0 98/08/13 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* -FUNCTION -<<fmod>>, <<fmodf>>---floating-point remainder (modulo) - -INDEX -fmod -INDEX -fmodf - -ANSI_SYNOPSIS -#include <math.h> -double fmod(double <[x]>, double <[y]>) -float fmodf(float <[x]>, float <[y]>) - -TRAD_SYNOPSIS -#include <math.h> -double fmod(<[x]>, <[y]>) -double (<[x]>, <[y]>); - -float fmodf(<[x]>, <[y]>) -float (<[x]>, <[y]>); - -DESCRIPTION -The <<fmod>> and <<fmodf>> functions compute the floating-point -remainder of <[x]>/<[y]> (<[x]> modulo <[y]>). - -RETURNS -The <<fmod>> function returns the value -@ifinfo -<[x]>-<[i]>*<[y]>, -@end ifinfo -@tex -$x-i\times y$, -@end tex -for the largest integer <[i]> such that, if <[y]> is nonzero, the -result has the same sign as <[x]> and magnitude less than the -magnitude of <[y]>. - -<<fmod(<[x]>,0)>> returns NaN, and sets <<errno>> to <<EDOM>>. - -You can modify error treatment for these functions using <<matherr>>. - -PORTABILITY -<<fmod>> is ANSI C. <<fmodf>> is an extension. -*/ - -/* - * fmod(x,y) - * Return x mod y in exact arithmetic - * Method: shift and subtract - */ - -#include "fdlibm.h" -#include "zmath.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ -static const double one = 1.0, Zero[] = {0.0, -0.0,}; -#else -static double one = 1.0, Zero[] = {0.0, -0.0,}; -#endif - -#ifdef __STDC__ - double fmod(double x, double y) -#else - double fmod(x,y) - double x,y ; -#endif -{ - __int32_t n,hx,hy,hz,ix,iy,sx,i; - __uint32_t lx,ly,lz; - - EXTRACT_WORDS(hx,lx,x); - EXTRACT_WORDS(hy,ly,y); - sx = hx&0x80000000; /* sign of x */ - hx ^=sx; /* |x| */ - hy &= 0x7fffffff; /* |y| */ - - /* purge off exception values */ - if((hy|ly)==0||(hx>=0x7ff00000)|| /* y=0,or x not finite */ - ((hy|((ly|-ly)>>31))>0x7ff00000)) /* or y is NaN */ - return (x*y)/(x*y); - if(hx<=hy) { - if((hx<hy)||(lx<ly)) return x; /* |x|<|y| return x */ - if(lx==ly) - return Zero[(__uint32_t)sx>>31]; /* |x|=|y| return x*0*/ - } - - /* determine ix = ilogb(x) */ - if(hx<0x00100000) { /* subnormal x */ - if(hx==0) { - for (ix = -1043, i=lx; i>0; i<<=1) ix -=1; - } else { - for (ix = -1022,i=(hx<<11); i>0; i<<=1) ix -=1; - } - } else ix = (hx>>20)-1023; - - /* determine iy = ilogb(y) */ - if(hy<0x00100000) { /* subnormal y */ - if(hy==0) { - for (iy = -1043, i=ly; i>0; i<<=1) iy -=1; - } else { - for (iy = -1022,i=(hy<<11); i>0; i<<=1) iy -=1; - } - } else iy = (hy>>20)-1023; - - /* set up {hx,lx}, {hy,ly} and align y to x */ - if(ix >= -1022) - hx = 0x00100000|(0x000fffff&hx); - else { /* subnormal x, shift x to normal */ - n = -1022-ix; - if(n<=31) { - hx = (hx<<n)|(lx>>(32-n)); - lx <<= n; - } else { - hx = lx<<(n-32); - lx = 0; - } - } - if(iy >= -1022) - hy = 0x00100000|(0x000fffff&hy); - else { /* subnormal y, shift y to normal */ - n = -1022-iy; - if(n<=31) { - hy = (hy<<n)|(ly>>(32-n)); - ly <<= n; - } else { - hy = ly<<(n-32); - ly = 0; - } - } - - /* fix point fmod */ - n = ix - iy; - while(n--) { - hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1; - if(hz<0){hx = hx+hx+(lx>>31); lx = lx+lx;} - else { - if((hz|lz)==0) /* return sign(x)*0 */ - return Zero[(__uint32_t)sx>>31]; - hx = hz+hz+(lz>>31); lx = lz+lz; - } - } - hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1; - if(hz>=0) {hx=hz;lx=lz;} - - /* convert back to floating value and restore the sign */ - if((hx|lx)==0) /* return sign(x)*0 */ - return Zero[(__uint32_t)sx>>31]; - while(hx<0x00100000) { /* normalize x */ - hx = hx+hx+(lx>>31); lx = lx+lx; - iy -= 1; - } - if(iy>= -1022) { /* normalize output */ - hx = ((hx-0x00100000)|((iy+1023)<<20)); - INSERT_WORDS(x,hx|sx,lx); - } else { /* subnormal output */ - n = -1022 - iy; - if(n<=20) { - lx = (lx>>n)|((__uint32_t)hx<<(32-n)); - hx >>= n; - } else if (n<=31) { - lx = (hx<<(32-n))|(lx>>n); hx = sx; - } else { - lx = hx>>(n-32); hx = sx; - } - INSERT_WORDS(x,hx|sx,lx); - x *= one; /* create necessary signal */ - } - return x; /* exact output */ -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/mathfp/s_frexp.c b/newlib/libm/mathfp/s_frexp.c deleted file mode 100644 index 6145c47..0000000 --- a/newlib/libm/mathfp/s_frexp.c +++ /dev/null @@ -1,110 +0,0 @@ - -/* @(#)z_frexp.c 1.0 98/08/13 */ - -/* -FUNCTION - <<frexp>>, <<frexpf>>---split floating-point number -INDEX - frexp -INDEX - frexpf - -ANSI_SYNOPSIS - #include <math.h> - double frexp(double <[val]>, int *<[exp]>); - float frexpf(float <[val]>, int *<[exp]>); - -TRAD_SYNOPSIS - #include <math.h> - double frexp(<[val]>, <[exp]>) - double <[val]>; - int *<[exp]>; - - float frexpf(<[val]>, <[exp]>) - float <[val]>; - int *<[exp]>; - - -DESCRIPTION - All non zero, normal numbers can be described as <[m]> * 2**<[p]>. - <<frexp>> represents the double <[val]> as a mantissa <[m]> - and a power of two <[p]>. The resulting mantissa will always - be greater than or equal to <<0.5>>, and less than <<1.0>> (as - long as <[val]> is nonzero). The power of two will be stored - in <<*>><[exp]>. - -@ifinfo -<[m]> and <[p]> are calculated so that -<[val]> is <[m]> times <<2>> to the power <[p]>. -@end ifinfo -@tex -<[m]> and <[p]> are calculated so that -$ val = m \times 2^p $. -@end tex - -<<frexpf>> is identical, other than taking and returning -floats rather than doubles. - -RETURNS -<<frexp>> returns the mantissa <[m]>. If <[val]> is <<0>>, infinity, -or Nan, <<frexp>> will set <<*>><[exp]> to <<0>> and return <[val]>. - -PORTABILITY -<<frexp>> is ANSI. -<<frexpf>> is an extension. - - -*/ - -/***************************************************************** - * frexp - * - * Input: - * d - floating point value - * exp - exponent value - * - * Output: - * A floating point value in the range [0.5, 1). - * - * Description: - * This routine breaks a floating point value into a number f and - * an exponent exp such that d = f * 2 ^ exp. - * - *****************************************************************/ - -#include "fdlibm.h" -#include "zmath.h" - -#ifndef _DOUBLE_IS_32BITS - -double frexp (double d, int *exp) -{ - double f; - __uint32_t hd, ld, hf, lf; - - EXTRACT_WORDS (hd, ld, d); - - /* Get the exponent. */ - *exp = ((hd & 0x7ff00000) >> 20) - 1022; - - /* Get the mantissa. */ - lf = ld; - hf = hd & 0x800fffff; - hf |= 0x3fe00000; - - INSERT_WORDS (f, hf, lf); - - /* Check for special values. */ - switch (numtest (f)) - { - case NAN: - case INF: - errno = EDOM; - *exp = 0; - return (f); - } - - return (f); -} - -#endif /* _DOUBLE_IS_32BITS */ diff --git a/newlib/libm/mathfp/s_infconst.c b/newlib/libm/mathfp/s_infconst.c deleted file mode 100644 index e6b86d4..0000000 --- a/newlib/libm/mathfp/s_infconst.c +++ /dev/null @@ -1,15 +0,0 @@ -/* Infinity as a constant value. This is used for HUGE_VAL. - * Added by Cygnus Support. - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS -#ifdef __IEEE_BIG_ENDIAN -const union __dmath __infinity[1] = {{ 0x7ff00000, 0 }}; -#else -const union __dmath __infinity[1] = {{ 0, 0x7ff00000 }}; -#endif -#else /* defined (_DOUBLE_IS_32BITS) */ -const union __dmath __infinity[1] = {{ 0x7f800000, 0 }}; -#endif /* defined (_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/mathfp/s_isinf.c b/newlib/libm/mathfp/s_isinf.c deleted file mode 100644 index fe9f547..0000000 --- a/newlib/libm/mathfp/s_isinf.c +++ /dev/null @@ -1,37 +0,0 @@ - -/* @(#)z_isinf.c 1.0 98/08/13 */ -/****************************************************************** - * isinf - * - * Input: - * x - pointer to a floating point value - * - * Output: - * An integer that indicates if the number is infinite. - * - * Description: - * This routine returns an integer that indicates if the number - * passed in is infinite (1) or is finite (0). - * - *****************************************************************/ - -#include "fdlibm.h" -#include "zmath.h" - -#ifndef _DOUBLE_IS_32BITS - -int isinf (double x) -{ - __uint32_t lx, hx; - int exp; - - EXTRACT_WORDS (hx, lx, x); - exp = (hx & 0x7ff00000) >> 20; - - if ((exp == 0x7ff) && ((hx & 0xf0000 || lx) == 0)) - return (1); - else - return (0); -} - -#endif /* _DOUBLE_IS_32BITS */ diff --git a/newlib/libm/mathfp/s_isnan.c b/newlib/libm/mathfp/s_isnan.c deleted file mode 100644 index 776baa2..0000000 --- a/newlib/libm/mathfp/s_isnan.c +++ /dev/null @@ -1,125 +0,0 @@ - -/* @(#)z_isnan.c 1.0 98/08/13 */ - -/* -FUNCTION - <<isnan>>,<<isnanf>>,<<isinf>>,<<isinff>>,<<finite>>,<<finitef>>---test -for exceptional numbers - -INDEX - isnan -INDEX - isinf -INDEX - finite - -INDEX - isnanf -INDEX - isinff -INDEX - finitef - -ANSI_SYNOPSIS - #include <ieeefp.h> - int isnan(double <[arg]>); - int isinf(double <[arg]>); - int finite(double <[arg]>); - int isnanf(float <[arg]>); - int isinff(float <[arg]>); - int finitef(float <[arg]>); - -TRAD_SYNOPSIS - #include <ieeefp.h> - int isnan(<[arg]>) - double <[arg]>; - int isinf(<[arg]>) - double <[arg]>; - int finite(<[arg]>); - double <[arg]>; - int isnanf(<[arg]>); - float <[arg]>; - int isinff(<[arg]>); - float <[arg]>; - int finitef(<[arg]>); - float <[arg]>; - - -DESCRIPTION - These functions provide information on the floating point - argument supplied. - - There are five major number formats - - o+ - o zero - a number which contains all zero bits. - o subnormal - Is used to represent number with a zero exponent, but a non zero fract -ion. - o normal - A number with an exponent, and a fraction - o infinity - A number with an all 1's exponent and a zero fraction. - o NAN - A number with an all 1's exponent and a non zero fraction. - - o- - - <<isnan>> returns 1 if the argument is a nan. <<isinf>> - returns 1 if the argument is infinity. <<finite>> returns 1 if the - argument is zero, subnormal or normal. - - The <<isnanf>>, <<isinff>> and <<finitef>> perform the same - operations as their <<isnan>>, <<isinf>> and <<finite>> - counterparts, but on single precision floating point numbers. - -QUICKREF - isnan - pure -QUICKREF - isinf - pure -QUICKREF - finite - pure -QUICKREF - isnan - pure -QUICKREF - isinf - pure -QUICKREF - finite - pure -*/ - - -/****************************************************************** - * isnan - * - * Input: - * x - pointer to a floating point value - * - * Output: - * An integer that indicates if the number is NaN. - * - * Description: - * This routine returns an integer that indicates if the number - * passed in is NaN (1) or is finite (0). - * - *****************************************************************/ - -#include "fdlibm.h" -#include "zmath.h" - -#ifndef _DOUBLE_IS_32BITS - -int isnan (double x) -{ - __uint32_t lx, hx; - int exp; - - EXTRACT_WORDS (hx, lx, x); - exp = (hx & 0x7ff00000) >> 20; - - if ((exp == 0x7ff) && (hx & 0xf0000 || lx)) - return (1); - else - return (0); -} - -#endif /* _DOUBLE_IS_32BITS */ diff --git a/newlib/libm/mathfp/s_ispos.c b/newlib/libm/mathfp/s_ispos.c deleted file mode 100644 index 2077999..0000000 --- a/newlib/libm/mathfp/s_ispos.c +++ /dev/null @@ -1,35 +0,0 @@ - -/* @(#)z_ispos.c 1.0 98/08/13 */ -/****************************************************************** - * Numtest - * - * Input: - * x - pointer to a floating point value - * - * Output: - * An integer that indicates if the number is positive. - * - * Description: - * This routine returns an integer that indicates if the number - * passed in is positive (1) or negative (0). - * - *****************************************************************/ - -#include "fdlibm.h" -#include "zmath.h" - -#ifndef _DOUBLE_IS_32BITS - -int ispos (double x) -{ - __uint32_t hx; - - GET_HIGH_WORD (hx, x); - - if (hx & 0x80000000) - return (0); - else - return (1); -} - -#endif /* _DOUBLE_IS_32BITS */ diff --git a/newlib/libm/mathfp/s_ldexp.c b/newlib/libm/mathfp/s_ldexp.c deleted file mode 100644 index 97d8a3b..0000000 --- a/newlib/libm/mathfp/s_ldexp.c +++ /dev/null @@ -1,125 +0,0 @@ - -/* @(#)z_ldexp.c 1.0 98/08/13 */ - -/* -FUNCTION - <<ldexp>>, <<ldexpf>>---load exponent - -INDEX - ldexp -INDEX - ldexpf - -ANSI_SYNOPSIS - #include <math.h> - double ldexp(double <[val]>, int <[exp]>); - float ldexpf(float <[val]>, int <[exp]>); - -TRAD_SYNOPSIS - #include <math.h> - - double ldexp(<[val]>, <[exp]>) - double <[val]>; - int <[exp]>; - - float ldexpf(<[val]>, <[exp]>) - float <[val]>; - int <[exp]>; - -DESCRIPTION -<<ldexp>> calculates the value -@ifinfo -<[val]> times 2 to the power <[exp]>. -@end ifinfo -@tex -$val\times 2^{exp}$. -@end tex -<<ldexpf>> is identical, save that it takes and returns <<float>> -rather than <<double>> values. - -RETURNS -<<ldexp>> returns the calculated value. - -Underflow and overflow both set <<errno>> to <<ERANGE>>. -On underflow, <<ldexp>> and <<ldexpf>> return 0.0. -On overflow, <<ldexp>> returns plus or minus <<HUGE_VAL>>. - -PORTABILITY -<<ldexp>> is ANSI, <<ldexpf>> is an extension. - -*/ - -/****************************************************************** - * ldexp - * - * Input: - * d - a floating point value - * e - an exponent value - * - * Output: - * A floating point value f such that f = d * 2 ^ e. - * - * Description: - * This function creates a floating point number f such that - * f = d * 2 ^ e. - * - *****************************************************************/ - -#include <float.h> -#include "fdlibm.h" -#include "zmath.h" - -#ifndef _DOUBLE_IS_32BITS - -#define DOUBLE_EXP_OFFS 1023 - -double -_DEFUN (ldexp, (double, int), - double d _AND - int e) -{ - int exp; - __uint32_t hd; - - GET_HIGH_WORD (hd, d); - - /* Check for special values and then scale d by e. */ - switch (numtest (d)) - { - case NAN: - errno = EDOM; - break; - - case INF: - errno = ERANGE; - break; - - case 0: - break; - - default: - exp = (hd & 0x7ff00000) >> 20; - exp += e; - - if (exp > DBL_MAX_EXP + DOUBLE_EXP_OFFS) - { - errno = ERANGE; - d = z_infinity.d; - } - else if (exp < DBL_MIN_EXP + DOUBLE_EXP_OFFS) - { - errno = ERANGE; - d = -z_infinity.d; - } - else - { - hd &= 0x800fffff; - hd |= exp << 20; - SET_HIGH_WORD (d, hd); - } - } - - return (d); -} - -#endif /* _DOUBLE_IS_32BITS */ diff --git a/newlib/libm/mathfp/s_log.c b/newlib/libm/mathfp/s_log.c deleted file mode 100644 index 27b9598..0000000 --- a/newlib/libm/mathfp/s_log.c +++ /dev/null @@ -1,29 +0,0 @@ - -/* @(#)z_log.c 1.0 98/08/13 */ -/****************************************************************** - * Logarithm - * - * Input: - * x - floating point value - * - * Output: - * natural logarithm of x - * - * Description: - * This routine returns the natural logarithm of x. - * - *****************************************************************/ - -#include "fdlibm.h" -#include "zmath.h" - -#ifndef _DOUBLE_IS_32BITS - -double -_DEFUN (log, (double), - double x) -{ - return (logarithm (x, 0)); -} - -#endif /* _DOUBLE_IS_32BITS */ diff --git a/newlib/libm/mathfp/s_log10.c b/newlib/libm/mathfp/s_log10.c deleted file mode 100644 index 080cecd..0000000 --- a/newlib/libm/mathfp/s_log10.c +++ /dev/null @@ -1,68 +0,0 @@ - -/* @(#)z_log10.c 1.0 98/08/13 */ -/****************************************************************** - * Logarithm - * - * Input: - * x - floating point value - * - * Output: - * logarithm of x - * - * Description: - * This routine returns the logarithm of x (base 10). - * - *****************************************************************/ - -/* -FUNCTION - <<log10>>, <<log10f>>---base 10 logarithms - -INDEX -log10 -INDEX -log10f - -ANSI_SYNOPSIS - #include <math.h> - double log10(double <[x]>); - float log10f(float <[x]>); - -TRAD_SYNOPSIS - #include <math.h> - double log10(<[x]>) - double <[x]>; - - float log10f(<[x]>) - float <[x]>; - -DESCRIPTION -<<log10>> returns the base 10 logarithm of <[x]>. -It is implemented as <<log(<[x]>) / log(10)>>. - -<<log10f>> is identical, save that it takes and returns <<float>> values. - -RETURNS -<<log10>> and <<log10f>> return the calculated value. - -See the description of <<log>> for information on errors. - -PORTABILITY -<<log10>> is ANSI C. <<log10f>> is an extension. - -*/ - - -#include "fdlibm.h" -#include "zmath.h" - -#ifndef _DOUBLE_IS_32BITS - -double -_DEFUN (log10, (double), - double x) -{ - return (logarithm (x, 1)); -} - -#endif /* _DOUBLE_IS_32BITS */ diff --git a/newlib/libm/mathfp/s_logarithm.c b/newlib/libm/mathfp/s_logarithm.c deleted file mode 100644 index ee7c706..0000000 --- a/newlib/libm/mathfp/s_logarithm.c +++ /dev/null @@ -1,135 +0,0 @@ - -/* @(#)z_logarithm.c 1.0 98/08/13 */ -/****************************************************************** - * The following routines are coded directly from the algorithms - * and coefficients given in "Software Manual for the Elementary - * Functions" by William J. Cody, Jr. and William Waite, Prentice - * Hall, 1980. - ******************************************************************/ - -/* -FUNCTION - <<log>>, <<logf>>, <<log10>>, <<log10f>>, <<logarithm>>, <<logarithmf>>---natural or base 10 logarithms - -INDEX - log -INDEX - logf -INDEX - log10 -INDEX - log10f - -ANSI_SYNOPSIS - #include <math.h> - double log(double <[x]>); - float logf(float <[x]>); - double log10(double <[x]>); - float log10f(float <[x]>); - -TRAD_SYNOPSIS - #include <math.h> - double log(<[x]>); - double <[x]>; - - float logf(<[x]>); - float <[x]>; - - double log10(<[x]>); - double <[x]>; - - float log10f(<[x]>); - float <[x]>; - -DESCRIPTION -Return the natural or base 10 logarithm of <[x]>, that is, its logarithm base e -(where e is the base of the natural system of logarithms, 2.71828@dots{}) or -base 10. -<<log>> and <<logf>> are identical save for the return and argument types. -<<log10>> and <<log10f>> are identical save for the return and argument types. - -RETURNS -Normally, returns the calculated value. When <[x]> is zero, the -returned value is <<-HUGE_VAL>> and <<errno>> is set to <<ERANGE>>. -When <[x]> is negative, the returned value is <<-HUGE_VAL>> and -<<errno>> is set to <<EDOM>>. You can control the error behavior via -<<matherr>>. - -PORTABILITY -<<log>> is ANSI, <<logf>> is an extension. -<<log10>> is ANSI, <<log10f>> is an extension. -*/ - - -/****************************************************************** - * Logarithm - * - * Input: - * x - floating point value - * ten - indicates base ten numbers - * - * Output: - * logarithm of x - * - * Description: - * This routine calculates logarithms. - * - *****************************************************************/ - -#include "fdlibm.h" -#include "zmath.h" - -#ifndef _DOUBLE_IS_32BITS - -static const double a[] = { -0.64124943423745581147e+02, - 0.16383943563021534222e+02, - -0.78956112887481257267 }; -static const double b[] = { -0.76949932108494879777e+03, - 0.31203222091924532844e+03, - -0.35667977739034646171e+02 }; -static const double C1 = 22713.0 / 32768.0; -static const double C2 = 1.428606820309417232e-06; -static const double C3 = 0.43429448190325182765; - -double -_DEFUN (logarithm, (double, int), - double x _AND - int ten) -{ - int N; - double f, w, z; - - /* Check for domain error here. */ - if (x <= 0.0) - { - errno = ERANGE; - return (z_notanum.d); - } - - /* Get the exponent and mantissa where x = f * 2^N. */ - f = frexp (x, &N); - - z = f - 0.5; - - if (f > __SQRT_HALF) - z = (z - 0.5) / (f * 0.5 + 0.5); - else - { - N--; - z /= (z * 0.5 + 0.5); - } - w = z * z; - - /* Use Newton's method with 4 terms. */ - z += z * w * ((a[2] * w + a[1]) * w + a[0]) / (((w + b[2]) * w + b[1]) * w + b[0]); - - if (N != 0) - z = (N * C2 + z) + N * C1; - - if (ten) - z *= C3; - - return (z); -} - -#endif /* _DOUBLE_IS_32BITS */ diff --git a/newlib/libm/mathfp/s_mathcnst.c b/newlib/libm/mathfp/s_mathcnst.c deleted file mode 100644 index 7865c7f..0000000 --- a/newlib/libm/mathfp/s_mathcnst.c +++ /dev/null @@ -1,24 +0,0 @@ -/* @(#)z_mathcnst.c 1.0 98/08/13 */ - -#include "zmath.h" -#include "fdlibm.h" - -double BIGX = 7.09782712893383973096e+02; -double SMALLX = -7.45133219101941108420e+02; -double z_rooteps = 7.4505859692e-9; -float z_rooteps_f = 1.7263349182589107e-4; - -ufloat z_hugeval_f = { 0x7f800000 }; -ufloat z_infinity_f = { 0x7f800000 }; -ufloat z_notanum_f = { 0xffd00000 }; - -#ifdef ___IEEE_LITTLE_ENDIAN -udouble z_hugeval = { 0x7ff00000, 0 }; -udouble z_infinity = { 0x7ff00000, 0 }; -udouble z_notanum = { 0xfff80000, 0 }; -#else -udouble z_hugeval = { 0, 0x7ff00000 }; -udouble z_infinity = { 0, 0x7ff00000 }; -udouble z_notanum = { 0, 0xfff80000 }; -#endif /* ___IEEE_LITTLE_ENDIAN */ - diff --git a/newlib/libm/mathfp/s_numtest.c b/newlib/libm/mathfp/s_numtest.c deleted file mode 100644 index b41bb87..0000000 --- a/newlib/libm/mathfp/s_numtest.c +++ /dev/null @@ -1,58 +0,0 @@ - -/* @(#)z_numtest.c 1.0 98/08/13 */ -/****************************************************************** - * Numtest - * - * Input: - * x - pointer to a floating point value - * - * Output: - * An integer that indicates what kind of number was passed in: - * NUM = 3 - a finite value - * NAN = 2 - not a number - * INF = 1 - an infinite value - * 0 - zero - * - * Description: - * This routine returns an integer that indicates the character- - * istics of the number that was passed in. - * - *****************************************************************/ - -#include "fdlibm.h" -#include "zmath.h" - -#ifndef _DOUBLE_IS_32BITS - -int -_DEFUN (numtest, (double), - double x) -{ - __uint32_t hx, lx; - int exp; - - EXTRACT_WORDS (hx, lx, x); - - exp = (hx & 0x7ff00000) >> 20; - - /* Check for a zero input. */ - if (x == 0.0) - { - return (0); - } - - /* Check for not a number or infinity. */ - if (exp == 0x7ff) - { - if(hx & 0xf0000 || lx) - return (NAN); - else - return (INF); - } - - /* Otherwise it's a finite value. */ - else - return (NUM); -} - -#endif /* _DOUBLE_IS_32BITS */ diff --git a/newlib/libm/mathfp/s_pow.c b/newlib/libm/mathfp/s_pow.c deleted file mode 100644 index 7c0a38a..0000000 --- a/newlib/libm/mathfp/s_pow.c +++ /dev/null @@ -1,146 +0,0 @@ - -/* @(#)z_pow.c 1.0 98/08/13 */ - -/* -FUNCTION - <<pow>>, <<powf>>---x to the power y -INDEX - pow -INDEX - powf - - -ANSI_SYNOPSIS - #include <math.h> - double pow(double <[x]>, double <[y]>); - float pow(float <[x]>, float <[y]>); - -TRAD_SYNOPSIS - #include <math.h> - double pow(<[x]>, <[y]>); - double <[x]>, <[y]>; - - float pow(<[x]>, <[y]>); - float <[x]>, <[y]>; - -DESCRIPTION - <<pow>> and <<powf>> calculate <[x]> raised to the exp1.0nt <[y]>. - @tex - (That is, $x^y$.) - @end tex - -RETURNS - On success, <<pow>> and <<powf>> return the value calculated. - - When the argument values would produce overflow, <<pow>> - returns <<HUGE_VAL>> and set <<errno>> to <<ERANGE>>. If the - argument <[x]> passed to <<pow>> or <<powf>> is a negative - noninteger, and <[y]> is also not an integer, then <<errno>> - is set to <<EDOM>>. If <[x]> and <[y]> are both 0, then - <<pow>> and <<powf>> return <<1>>. - - You can modify error handling for these functions using <<matherr>>. - -PORTABILITY - <<pow>> is ANSI C. <<powf>> is an extension. */ - -#include <float.h> -#include "fdlibm.h" -#include "zmath.h" - -#ifndef _DOUBLE_IS_32BITS - -double pow (double x, double y) -{ - double d, t, r = 1.0; - int n, k, sign = 0; - __uint32_t px; - - GET_HIGH_WORD (px, x); - - k = modf (y, &d); - if (k == 0.0) - { - if (modf (ldexp (y, -1), &t)) - sign = 0; - else - sign = 1; - } - - if (x == 0.0 && y <= 0.0) - errno = EDOM; - - else if ((t = y * log (fabs (x))) >= BIGX) - { - errno = ERANGE; - if (px & 0x80000000) - { - if (!k) - { - errno = EDOM; - x = 0.0; - } - else if (sign) - x = -z_infinity.d; - else - x = z_infinity.d; - } - - else - x = z_infinity.d; - } - - else if (t < SMALLX) - { - errno = ERANGE; - x = 0.0; - } - - else - { - if ( k && fabs(d) <= 32767 ) - { - n = (int) d; - - if (sign = (n < 0)) - n = -n; - - while ( n > 0 ) - { - if ((unsigned int) n % 2) - r *= x; - x *= x; - n = (unsigned int) n / 2; - } - - if (sign) - r = 1.0 / r; - - return r; - } - - else - { - if ( px & 0x80000000 ) - { - if ( !k ) - { - errno = EDOM; - return 0.0; - } - } - - x = exp (t); - - if ( sign ) - { - px ^= 0x80000000; - SET_HIGH_WORD (x, px); - } - } - } - - return x; -} - -#endif _DOUBLE_IS_32BITS diff --git a/newlib/libm/mathfp/s_signif.c b/newlib/libm/mathfp/s_signif.c deleted file mode 100644 index 76b5f7c..0000000 --- a/newlib/libm/mathfp/s_signif.c +++ /dev/null @@ -1,34 +0,0 @@ - -/* @(#)s_signif.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* - * significand(x) computes just - * scalb(x, (double) -ilogb(x)), - * for exercising the fraction-part(F) IEEE 754-1985 test vector. - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double significand(double x) -#else - double significand(x) - double x; -#endif -{ - return scalb(x,(double) -ilogb(x)); -} - -#endif /* _DOUBLE_IS_32BITS */ diff --git a/newlib/libm/mathfp/s_sin.c b/newlib/libm/mathfp/s_sin.c deleted file mode 100644 index 2051304..0000000 --- a/newlib/libm/mathfp/s_sin.c +++ /dev/null @@ -1,29 +0,0 @@ - -/* @(#)z_sin.c 1.0 98/08/13 */ -/****************************************************************** - * Sine - * - * Input: - * x - floating point value - * - * Output: - * sine of x - * - * Description: - * This routine returns the sine of x. - * - *****************************************************************/ - -#include "fdlibm.h" -#include "zmath.h" - -#ifndef _DOUBLE_IS_32BITS - -double -_DEFUN (sin, (double), - double x) -{ - return (sine (x, 0)); -} - -#endif /* _DOUBLE_IS_32BITS */ diff --git a/newlib/libm/mathfp/s_sine.c b/newlib/libm/mathfp/s_sine.c deleted file mode 100644 index 9642f4a..0000000 --- a/newlib/libm/mathfp/s_sine.c +++ /dev/null @@ -1,166 +0,0 @@ - -/* @(#)z_sine.c 1.0 98/08/13 */ -/****************************************************************** - * The following routines are coded directly from the algorithms - * and coefficients given in "Software Manual for the Elementary - * Functions" by William J. Cody, Jr. and William Waite, Prentice - * Hall, 1980. - ******************************************************************/ - -/* -FUNCTION - <<sin>>, <<cos>>, <<sine>>, <<sinf>>, <<cosf>>, <<sinef>>---sine or cosine -INDEX -sin -INDEX -sinf -INDEX -cos -INDEX -cosf -ANSI_SYNOPSIS - #include <math.h> - double sin(double <[x]>); - float sinf(float <[x]>); - double cos(double <[x]>); - float cosf(float <[x]>); - -TRAD_SYNOPSIS - #include <math.h> - double sin(<[x]>) - double <[x]>; - float sinf(<[x]>) - float <[x]>; - - double cos(<[x]>) - double <[x]>; - float cosf(<[x]>) - float <[x]>; - -DESCRIPTION - <<sin>> and <<cos>> compute (respectively) the sine and cosine - of the argument <[x]>. Angles are specified in radians. -RETURNS - The sine or cosine of <[x]> is returned. - -PORTABILITY - <<sin>> and <<cos>> are ANSI C. - <<sinf>> and <<cosf>> are extensions. - -QUICKREF - sin ansi pure - sinf - pure -*/ - -/****************************************************************** - * sine - * - * Input: - * x - floating point value - * cosine - indicates cosine value - * - * Output: - * Sine of x. - * - * Description: - * This routine calculates sines and cosines. - * - *****************************************************************/ - -#include "fdlibm.h" -#include "zmath.h" - -#ifndef _DOUBLE_IS_32BITS - -static const double HALF_PI = 1.57079632679489661923; -static const double ONE_OVER_PI = 0.31830988618379067154; -static const double r[] = { -0.16666666666666665052, - 0.83333333333331650314e-02, - -0.19841269841201840457e-03, - 0.27557319210152756119e-05, - -0.25052106798274584544e-07, - 0.16058936490371589114e-09, - -0.76429178068910467734e-12, - 0.27204790957888846175e-14 }; - -double -_DEFUN (sine, (double, int), - double x _AND - int cosine) -{ - int sgn, N; - double y, XN, g, R, res; - double YMAX = 210828714.0; - - switch (numtest (x)) - { - case NAN: - errno = EDOM; - return (x); - case INF: - errno = EDOM; - return (z_notanum.d); - } - - /* Use sin and cos properties to ease computations. */ - if (cosine) - { - sgn = 1; - y = fabs (x) + HALF_PI; - } - else - { - if (x < 0.0) - { - sgn = -1; - y = -x; - } - else - { - sgn = 1; - y = x; - } - } - - /* Check for values of y that will overflow here. */ - if (y > YMAX) - { - errno = ERANGE; - return (x); - } - - /* Calculate the exponent. */ - if (y < 0.0) - N = (int) (y * ONE_OVER_PI - 0.5); - else - N = (int) (y * ONE_OVER_PI + 0.5); - XN = (double) N; - - if (N & 1) - sgn = -sgn; - - if (cosine) - XN -= 0.5; - - y = fabs (x) - XN * __PI; - - if (-z_rooteps < y && y < z_rooteps) - res = y; - - else - { - g = y * y; - - /* Calculate the Taylor series. */ - R = (((((((r[6] * g + r[5]) * g + r[4]) * g + r[3]) * g + r[2]) * g + r[1]) * g + r[0]) * g); - - /* Finally, compute the result. */ - res = y + y * R; - } - - res *= sgn; - - return (res); -} - -#endif /* _DOUBLE_IS_32BITS */ diff --git a/newlib/libm/mathfp/s_sineh.c b/newlib/libm/mathfp/s_sineh.c deleted file mode 100644 index 6b3480d..0000000 --- a/newlib/libm/mathfp/s_sineh.c +++ /dev/null @@ -1,185 +0,0 @@ - -/* @(#)z_sineh.c 1.0 98/08/13 */ -/****************************************************************** - * The following routines are coded directly from the algorithms - * and coefficients given in "Software Manual for the Elementary - * Functions" by William J. Cody, Jr. and William Waite, Prentice - * Hall, 1980. - ******************************************************************/ - -/* -FUNCTION - <<sinh>>, <<sinhf>>, <<cosh>>, <<coshf>>, <<sineh>>---hyperbolic sine or cosine - -INDEX - sinh -INDEX - sinhf -INDEX - cosh -INDEX - coshf - -ANSI_SYNOPSIS - #include <math.h> - double sinh(double <[x]>); - float sinhf(float <[x]>); - double cosh(double <[x]>); - float coshf(float <[x]>); -TRAD_SYNOPSIS - #include <math.h> - double sinh(<[x]>) - double <[x]>; - - float sinhf(<[x]>) - float <[x]>; - - double cosh(<[x]>) - double <[x]>; - - float coshf(<[x]>) - float <[x]>; - -DESCRIPTION - <<sinh>> and <<cosh>> compute the hyperbolic sine or cosine - of the argument <[x]>. - Angles are specified in radians. <<sinh>>(<[x]>) is defined as - @ifinfo - . (exp(<[x]>) - exp(-<[x]>))/2 - @end ifinfo - @tex - $${e^x - e^{-x}}\over 2$$ - @end tex - <<cosh>> is defined as - @ifinfo - . (exp(<[x]>) - exp(-<[x]>))/2 - @end ifinfo - @tex - $${e^x + e^{-x}}\over 2$$ - @end tex - - <<sinhf>> and <<coshf>> are identical, save that they take - and returns <<float>> values. - -RETURNS - The hyperbolic sine or cosine of <[x]> is returned. - - When the correct result is too large to be representable (an - overflow), the functions return <<HUGE_VAL>> with the - appropriate sign, and sets the global value <<errno>> to - <<ERANGE>>. - -PORTABILITY - <<sinh>> is ANSI C. - <<sinhf>> is an extension. - <<cosh>> is ANSI C. - <<coshf>> is an extension. - -*/ - -/****************************************************************** - * Hyperbolic Sine - * - * Input: - * x - floating point value - * - * Output: - * hyperbolic sine of x - * - * Description: - * This routine calculates hyperbolic sines. - * - *****************************************************************/ - -#include <float.h> -#include "fdlibm.h" -#include "zmath.h" - -static const double q[] = { -0.21108770058106271242e+7, - 0.36162723109421836460e+5, - -0.27773523119650701667e+3 }; -static const double p[] = { -0.35181283430177117881e+6, - -0.11563521196851768270e+5, - -0.16375798202630751372e+3, - -0.78966127417357099479 }; -static const double LNV = 0.6931610107421875000; -static const double INV_V2 = 0.24999308500451499336; -static const double V_OVER2_MINUS1 = 0.13830277879601902638e-4; - -double -_DEFUN (sineh, (double, int), - double x _AND - int cosineh) -{ - double y, f, P, Q, R, res, z, w; - int sgn = 1; - double WBAR = 18.55; - - /* Check for special values. */ - switch (numtest (x)) - { - case NAN: - errno = EDOM; - return (x); - case INF: - errno = ERANGE; - return (ispos (x) ? z_infinity.d : -z_infinity.d); - } - - y = fabs (x); - - if (!cosineh && x < 0.0) - sgn = -1; - - if ((y > 1.0 && !cosineh) || cosineh) - { - if (y > BIGX) - { - w = y - LNV; - - /* Check for w > maximum here. */ - if (w > BIGX) - { - errno = ERANGE; - return (x); - } - - z = exp (w); - - if (w > WBAR) - res = z * (V_OVER2_MINUS1 + 1.0); - } - - else - { - z = exp (y); - if (cosineh) - res = (z + 1 / z) / 2.0; - else - res = (z - 1 / z) / 2.0; - } - - if (sgn < 0) - res = -res; - } - else - { - /* Check for y being too small. */ - if (y < z_rooteps) - { - res = x; - } - /* Calculate the Taylor series. */ - else - { - f = x * x; - Q = ((f + q[2]) * f + q[1]) * f + q[0]; - P = ((p[3] * f + p[2]) * f + p[1]) * f + p[0]; - R = f * (P / Q); - - res = x + x * R; - } - } - - return (res); -} diff --git a/newlib/libm/mathfp/s_sinf.c b/newlib/libm/mathfp/s_sinf.c deleted file mode 100644 index b738a49..0000000 --- a/newlib/libm/mathfp/s_sinf.c +++ /dev/null @@ -1,34 +0,0 @@ - -/* @(#)z_sinf.c 1.0 98/08/13 */ -/****************************************************************** - * Sine - * - * Input: - * x - floating point value - * - * Output: - * sine of x - * - * Description: - * This routine returns the sine of x. - * - *****************************************************************/ - -#include "fdlibm.h" -#include "zmath.h" - -float -_DEFUN (sinf, (float), - float x) -{ - return (sinef (x, 0)); -} - -#ifdef _DOUBLE_IS_32BITS - -double sin (double x) -{ - return (double) sinf ((float) x); -} - -#endif /* _DOUBLE_IS_32BITS */ diff --git a/newlib/libm/mathfp/s_sinh.c b/newlib/libm/mathfp/s_sinh.c deleted file mode 100644 index c600ee0..0000000 --- a/newlib/libm/mathfp/s_sinh.c +++ /dev/null @@ -1,29 +0,0 @@ - -/* @(#)z_sinh.c 1.0 98/08/13 */ -/****************************************************************** - * Hyperbolic Sine - * - * Input: - * x - floating point value - * - * Output: - * hyperbolic sine of x - * - * Description: - * This routine returns the hyperbolic sine of x. - * - *****************************************************************/ - -#include "fdlibm.h" -#include "zmath.h" - -#ifndef _DOUBLE_IS_32BITS - -double -_DEFUN (sinh, (double), - double x) -{ - return (sineh (x, 0)); -} - -#endif /* _DOUBLE_IS_32BITS */ diff --git a/newlib/libm/mathfp/s_sqrt.c b/newlib/libm/mathfp/s_sqrt.c deleted file mode 100644 index bafbb38..0000000 --- a/newlib/libm/mathfp/s_sqrt.c +++ /dev/null @@ -1,129 +0,0 @@ - -/* @(#)z_sqrt.c 1.0 98/08/13 */ -/***************************************************************** - * The following routines are coded directly from the algorithms - * and coefficients given in "Software Manual for the Elementary - * Functions" by William J. Cody, Jr. and William Waite, Prentice - * Hall, 1980. - *****************************************************************/ - -/* -FUNCTION - <<sqrt>>, <<sqrtf>>---positive square root - -INDEX - sqrt -INDEX - sqrtf - -ANSI_SYNOPSIS - #include <math.h> - double sqrt(double <[x]>); - float sqrtf(float <[x]>); - -TRAD_SYNOPSIS - #include <math.h> - double sqrt(<[x]>); - float sqrtf(<[x]>); - -DESCRIPTION - <<sqrt>> computes the positive square root of the argument. - -RETURNS - On success, the square root is returned. If <[x]> is real and - positive, then the result is positive. If <[x]> is real and - negative, the global value <<errno>> is set to <<EDOM>> (domain error). - - -PORTABILITY - <<sqrt>> is ANSI C. <<sqrtf>> is an extension. -*/ - -/****************************************************************** - * Square Root - * - * Input: - * x - floating point value - * - * Output: - * square-root of x - * - * Description: - * This routine performs floating point square root. - * - * The initial approximation is computed as - * y0 = 0.41731 + 0.59016 * f - * where f is a fraction such that x = f * 2^exp. - * - * Three Newton iterations in the form of Heron's formula - * are then performed to obtain the final value: - * y[i] = (y[i-1] + f / y[i-1]) / 2, i = 1, 2, 3. - * - *****************************************************************/ - -#include "fdlibm.h" -#include "zmath.h" - -#ifndef _DOUBLE_IS_32BITS - -double -_DEFUN (sqrt, (double), - double x) -{ - double f, y; - int exp, i, odd; - - /* Check for special values. */ - switch (numtest (x)) - { - case NAN: - errno = EDOM; - return (x); - case INF: - if (ispos (x)) - { - errno = EDOM; - return (z_notanum.d); - } - else - { - errno = ERANGE; - return (z_infinity.d); - } - } - - /* Initial checks are performed here. */ - if (x == 0.0) - return (0.0); - if (x < 0) - { - errno = EDOM; - return (z_notanum.d); - } - - /* Find the exponent and mantissa for the form x = f * 2^exp. */ - f = frexp (x, &exp); - - odd = exp & 1; - - /* Get the initial approximation. */ - y = 0.41731 + 0.59016 * f; - - f /= 2.0; - /* Calculate the remaining iterations. */ - for (i = 0; i < 3; ++i) - y = y / 2.0 + f / y; - - /* Calculate the final value. */ - if (odd) - { - y *= __SQRT_HALF; - exp++; - } - exp >>= 1; - y = ldexp (y, exp); - - return (y); -} - -#endif /* _DOUBLE_IS_32BITS */ diff --git a/newlib/libm/mathfp/s_tan.c b/newlib/libm/mathfp/s_tan.c deleted file mode 100644 index 725aeec..0000000 --- a/newlib/libm/mathfp/s_tan.c +++ /dev/null @@ -1,139 +0,0 @@ - -/* @(#)z_tan.c 1.0 98/08/13 */ -/****************************************************************** - * The following routines are coded directly from the algorithms - * and coefficients given in "Software Manual for the Elementary - * Functions" by William J. Cody, Jr. and William Waite, Prentice - * Hall, 1980. - ******************************************************************/ - -/* -FUNCTION - <<tan>>, <<tanf>>---tangent - -INDEX -tan -INDEX -tanf - -ANSI_SYNOPSIS - #include <math.h> - double tan(double <[x]>); - float tanf(float <[x]>); - -TRAD_SYNOPSIS - #include <math.h> - double tan(<[x]>) - double <[x]>; - - float tanf(<[x]>) - float <[x]>; - - -DESCRIPTION -<<tan>> computes the tangent of the argument <[x]>. -Angles are specified in radians. - -<<tanf>> is identical, save that it takes and returns <<float>> values. - -RETURNS -The tangent of <[x]> is returned. - -PORTABILITY -<<tan>> is ANSI. <<tanf>> is an extension. -*/ - -/****************************************************************** - * Tangent - * - * Input: - * x - floating point value - * - * Output: - * tangent of x - * - * Description: - * This routine calculates the tangent of x. - * - *****************************************************************/ - -#include "fdlibm.h" -#include "zmath.h" - -#ifndef _DOUBLE_IS_32BITS - -static const double TWO_OVER_PI = 0.63661977236758134308; -static const double p[] = { -0.13338350006421960681, - 0.34248878235890589960e-2, - -0.17861707342254426711e-4 }; -static const double q[] = { -0.46671683339755294240, - 0.25663832289440112864e-1, - -0.31181531907010027307e-3, - 0.49819433993786512270e-6 }; - -double -_DEFUN (tan, (double), - double x) -{ - double y, f, g, XN, xnum, xden, res; - int N; - - /* Check for special values. */ - switch (numtest (x)) - { - case NAN: - errno = EDOM; - return (x); - case INF: - errno = EDOM; - return (z_notanum.d); - } - - y = fabs (x); - - /* Check for values that are out of our range. */ - if (y > 105414357.0) - { - errno = ERANGE; - return (y); - } - - if (x < 0.0) - N = (int) (x * TWO_OVER_PI - 0.5); - else - N = (int) (x * TWO_OVER_PI + 0.5); - - XN = (double) N; - - f = x - N * __PI_OVER_TWO; - - /* Check for values that are too small. */ - if (-z_rooteps < f && f < z_rooteps) - { - xnum = f; - xden = 1.0; - } - - /* Calculate the polynomial. */ - else - { - g = f * f; - - xnum = f * ((p[2] * g + p[1]) * g + p[0]) * g + f; - xden = (((q[3] * g + q[2]) * g + q[1]) * g + q[0]) * g + 1.0; - } - - if (N & 1) - { - xnum = -xnum; - res = xden / xnum; - } - else - { - res = xnum / xden; - } - - return (res); -} - -#endif /* _DOUBLE_IS_32BITS */ diff --git a/newlib/libm/mathfp/s_tanh.c b/newlib/libm/mathfp/s_tanh.c deleted file mode 100644 index a19855e..0000000 --- a/newlib/libm/mathfp/s_tanh.c +++ /dev/null @@ -1,117 +0,0 @@ - -/* @(#)z_tanh.c 1.0 98/08/13 */ -/***************************************************************** - * The following routines are coded directly from the algorithms - * and coefficients given in "Software Manual for the Elementary - * Functions" by William J. Cody, Jr. and William Waite, Prentice - * Hall, 1980. - *****************************************************************/ - -/* - -FUNCTION - <<tanh>>, <<tanhf>>---hyperbolic tangent - -INDEX -tanh -INDEX -tanhf - -ANSI_SYNOPSIS - #include <math.h> - double tanh(double <[x]>); - float tanhf(float <[x]>); - -TRAD_SYNOPSIS - #include <math.h> - double tanh(<[x]>) - double <[x]>; - - float tanhf(<[x]>) - float <[x]>; - - -DESCRIPTION - -<<tanh>> computes the hyperbolic tangent of -the argument <[x]>. Angles are specified in radians. - -<<tanh(<[x]>)>> is defined as -. sinh(<[x]>)/cosh(<[x]>) - -<<tanhf>> is identical, save that it takes and returns <<float>> values. - -RETURNS -The hyperbolic tangent of <[x]> is returned. - -PORTABILITY -<<tanh>> is ANSI C. <<tanhf>> is an extension. - -*/ - -/****************************************************************** - * Hyperbolic Tangent - * - * Input: - * x - floating point value - * - * Output: - * hyperbolic tangent of x - * - * Description: - * This routine calculates hyperbolic tangent. - * - *****************************************************************/ - -#include <float.h> -#include "fdlibm.h" -#include "zmath.h" - -#ifndef _DOUBLE_IS_32BITS - -static const double LN3_OVER2 = 0.54930614433405484570; -static const double p[] = { -0.16134119023996228053e+4, - -0.99225929672236083313e+2, - -0.96437492777225469787 }; -static const double q[] = { 0.48402357071988688686e+4, - 0.22337720718962312926e+4, - 0.11274474380534949335e+3 }; - -double -_DEFUN (tanh, (double), - double x) -{ - double f, res, g, P, Q, R; - - f = fabs (x); - - /* Check if the input is too big. */ - if (f > BIGX) - res = 1.0; - - else if (f > LN3_OVER2) - res = 1.0 - 2.0 / (exp (2 * f) + 1.0); - - /* Check if the input is too small. */ - else if (f < z_rooteps) - res = f; - - /* Calculate the Taylor series. */ - else - { - g = f * f; - - P = (p[2] * g + p[1]) * g + p[0]; - Q = ((g + q[2]) * g + q[1]) * g + q[0]; - R = g * (P / Q); - - res = f + f * R; - } - - if (x < 0.0) - res = -res; - - return (res); -} - -#endif /* _DOUBLE_IS_32BITS */ diff --git a/newlib/libm/mathfp/sf_acos.c b/newlib/libm/mathfp/sf_acos.c deleted file mode 100644 index 6bef980..0000000 --- a/newlib/libm/mathfp/sf_acos.c +++ /dev/null @@ -1,33 +0,0 @@ - -/* @(#)z_acosf.c 1.0 98/08/13 */ -/****************************************************************** - * Arccosine - * - * Input: - * x - floating point value - * - * Output: - * arccosine of x - * - * Description: - * This routine returns the arccosine of x. - * - *****************************************************************/ - -#include "fdlibm.h" -#include "zmath.h" - -float -_DEFUN (acosf, (float), - float x) -{ - return (asinef (x, 1)); -} - -#ifdef _DOUBLE_IS_32BITS -double acos (double x) -{ - return (double) asinef ((float) x, 1); -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/mathfp/sf_asin.c b/newlib/libm/mathfp/sf_asin.c deleted file mode 100644 index 92c33fd..0000000 --- a/newlib/libm/mathfp/sf_asin.c +++ /dev/null @@ -1,34 +0,0 @@ - -/* @(#)z_asinf.c 1.0 98/08/13 */ -/****************************************************************** - * Arcsine - * - * Input: - * x - floating point value - * - * Output: - * arcsine of x - * - * Description: - * This routine returns the arcsine of x. - * - *****************************************************************/ - -#include "fdlibm.h" -#include "zmath.h" - -float -_DEFUN (asinf, (float), - float x) -{ - return (asinef (x, 0)); -} - -#ifdef _DOUBLE_IS_32BITS - -double asin (double x) -{ - return (double) asinef ((float) x, 0); -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/mathfp/sf_asine.c b/newlib/libm/mathfp/sf_asine.c deleted file mode 100644 index 12ba289..0000000 --- a/newlib/libm/mathfp/sf_asine.c +++ /dev/null @@ -1,105 +0,0 @@ - -/* @(#)z_asinef.c 1.0 98/08/13 */ -/****************************************************************** - * The following routines are coded directly from the algorithms - * and coefficients given in "Software Manual for the Elementary - * Functions" by William J. Cody, Jr. and William Waite, Prentice - * Hall, 1980. - ******************************************************************/ -/****************************************************************** - * Arcsine - * - * Input: - * x - floating point value - * acosine - indicates acos calculation - * - * Output: - * Arcsine of x. - * - * Description: - * This routine calculates arcsine / arccosine. - * - *****************************************************************/ - -#include "fdlibm.h" -#include "zmath.h" - -static const float p[] = { 0.933935835, -0.504400557 }; -static const float q[] = { 0.560363004e+1, -0.554846723e+1 }; -static const float a[] = { 0.0, 0.785398163 }; -static const float b[] = { 1.570796326, 0.785398163 }; - -float -_DEFUN (asinef, (float, int), - float x _AND - int acosine) -{ - int flag, i; - int branch = 0; - float g, res, R, P, Q, y; - - /* Check for special values. */ - i = numtestf (x); - if (i == NAN || i == INF) - { - errno = EDOM; - if (i == NAN) - return (x); - else - return (z_infinity_f.f); - } - - y = fabsf (x); - flag = acosine; - - if (y > 0.5) - { - i = 1 - flag; - - /* Check for range error. */ - if (y > 1.0) - { - errno = ERANGE; - return (z_notanum_f.f); - } - - g = (1 - y) / 2.0; - y = -2 * sqrt (g); - branch = 1; - } - else - { - i = flag; - if (y < z_rooteps_f) - res = y; - else - g = y * y; - } - - if (y >= z_rooteps_f || branch == 1) - { - /* Calculate the Taylor series. */ - P = (p[1] * g + p[0]) * g; - Q = (g + q[1]) * g + q[0]; - R = P / Q; - - res = y + y * R; - } - - /* Calculate asine or acose. */ - if (flag == 0) - { - res = (a[i] + res) + a[i]; - if (x < 0.0) - res = -res; - } - else - { - if (x < 0.0) - res = (b[i] + res) + b[i]; - else - res = (a[i] - res) + a[i]; - } - - return (res); -} diff --git a/newlib/libm/mathfp/sf_asinh.c b/newlib/libm/mathfp/sf_asinh.c deleted file mode 100644 index ee07e39..0000000 --- a/newlib/libm/mathfp/sf_asinh.c +++ /dev/null @@ -1,66 +0,0 @@ -/* sf_asinh.c -- float version of s_asinh.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -#include "fdlibm.h" - -#ifdef __STDC__ -static const float -#else -static float -#endif -one = 1.0000000000e+00, /* 0x3F800000 */ -ln2 = 6.9314718246e-01, /* 0x3f317218 */ -huge= 1.0000000000e+30; - -#ifdef __STDC__ - float asinhf(float x) -#else - float asinhf(x) - float x; -#endif -{ - float t,w; - __int32_t hx,ix; - GET_FLOAT_WORD(hx,x); - ix = hx&0x7fffffff; - if(ix>=0x7f800000) return x+x; /* x is inf or NaN */ - if(ix< 0x31800000) { /* |x|<2**-28 */ - if(huge+x>one) return x; /* return x inexact except 0 */ - } - if(ix>0x4d800000) { /* |x| > 2**28 */ - w = logf(fabsf(x))+ln2; - } else if (ix>0x40000000) { /* 2**28 > |x| > 2.0 */ - t = fabsf(x); - w = logf((float)2.0*t+one/(sqrtf(x*x+one)+t)); - } else { /* 2.0 > |x| > 2**-28 */ - t = x*x; - w =log1pf(fabsf(x)+t/(one+sqrtf(one+t))); - } - if(hx>0) return w; else return -w; -} - -#ifdef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double asinh(double x) -#else - double asinh(x) - double x; -#endif -{ - return (double) asinhf((float) x); -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/mathfp/sf_atan.c b/newlib/libm/mathfp/sf_atan.c deleted file mode 100644 index f0f5220..0000000 --- a/newlib/libm/mathfp/sf_atan.c +++ /dev/null @@ -1,45 +0,0 @@ - -/* @(#)z_atanf.c 1.0 98/08/13 */ -/****************************************************************** - * Arctangent - * - * Input: - * x - floating point value - * - * Output: - * arctan of x - * - * Description: - * This routine returns the arctan of x. - * - *****************************************************************/ - -#include "fdlibm.h" -#include "zmath.h" - -float -_DEFUN (atanf, (float), - float x) -{ - switch (numtestf (x)) - { - case NAN: - errno = EDOM; - return (x); - case INF: - /* this should check to see if neg NaN or pos NaN... */ - return (__PI_OVER_TWO); - case 0: - return (0.0); - default: - return (atangentf (x, 0, 0, 0)); - } -} - -#ifdef _DOUBLE_IS_32BITS -double atan (double x) -{ - return (double) atangentf ((float) x, 0, 0, 0); -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/mathfp/sf_atan2.c b/newlib/libm/mathfp/sf_atan2.c deleted file mode 100644 index 69c6123..0000000 --- a/newlib/libm/mathfp/sf_atan2.c +++ /dev/null @@ -1,34 +0,0 @@ - -/* @(#)z_atan2f.c 1.0 98/08/13 */ -/****************************************************************** - * Arctangent2 - * - * Input: - * v, u - floating point values - * - * Output: - * arctan2 of v / u - * - * Description: - * This routine returns the arctan2 of v / u. - * - *****************************************************************/ - -#include "fdlibm.h" -#include "zmath.h" - -float -_DEFUN (atan2f, (float, float), - float v _AND - float u) -{ - return (atangentf (0.0, v, u, 1)); -} - -#ifdef _DOUBLE_IS_32BITS -double atan2 (double v, double u) -{ - return (double) atangentf (0.0, (float) v, (float) u, 1); -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/mathfp/sf_atangent.c b/newlib/libm/mathfp/sf_atangent.c deleted file mode 100644 index 55a9006..0000000 --- a/newlib/libm/mathfp/sf_atangent.c +++ /dev/null @@ -1,140 +0,0 @@ - -/* @(#)z_atangentf.c 1.0 98/08/13 */ -/****************************************************************** - * The following routines are coded directly from the algorithms - * and coefficients given in "Software Manual for the Elementary - * Functions" by William J. Cody, Jr. and William Waite, Prentice - * Hall, 1980. - ******************************************************************/ -/****************************************************************** - * Arctangent - * - * Input: - * x - floating point value - * - * Output: - * arctangent of x - * - * Description: - * This routine calculates arctangents. - * - *****************************************************************/ - -#include <float.h> -#include "fdlibm.h" -#include "zmath.h" - -static const float ROOT3 = 1.732050807; -static const float a[] = { 0.0, 0.523598775, 1.570796326, - 1.047197551 }; -static const float q[] = { 0.1412500740e+1 }; -static const float p[] = { -0.4708325141, -0.5090958253e-1 }; - -float -_DEFUN (atangentf, (float, float, float, int), - float x _AND - float v _AND - float u _AND - int arctan2) -{ - float f, g, R, P, Q, A, res; - int N; - int branch = 0; - int expv, expu; - - /* Preparation for calculating arctan2. */ - if (arctan2) - { - if (u == 0.0) - if (v == 0.0) - { - errno = ERANGE; - return (z_notanum_f.f); - } - else - { - branch = 1; - res = __PI_OVER_TWO; - } - - if (!branch) - { - int e; - /* Get the exponent values of the inputs. */ - g = frexpf (v, &expv); - g = frexpf (u, &expu); - - /* See if a divide will overflow. */ - e = expv - expu; - if (e > FLT_MAX_EXP) - { - branch = 1; - res = __PI_OVER_TWO; - } - - /* Also check for underflow. */ - else if (e < FLT_MIN_EXP) - { - branch = 2; - res = 0.0; - } - } - } - - if (!branch) - { - if (arctan2) - f = fabsf (v / u); - else - f = fabsf (x); - - if (f > 1.0) - { - f = 1.0 / f; - N = 2; - } - else - N = 0; - - if (f > (2.0 - ROOT3)) - { - A = ROOT3 - 1.0; - f = (((A * f - 0.5) - 0.5) + f) / (ROOT3 + f); - N++; - } - - /* Check for values that are too small. */ - if (-z_rooteps_f < f && f < z_rooteps_f) - res = f; - - /* Calculate the Taylor series. */ - else - { - g = f * f; - P = (p[1] * g + p[0]) * g; - Q = g + q[0]; - R = P / Q; - - res = f + f * R; - } - - if (N > 1) - res = -res; - - res += a[N]; - } - - if (arctan2) - { - if (u < 0.0 || branch == 2) - res = __PI - res; - if (v < 0.0 || branch == 1) - res = -res; - } - else if (x < 0.0) - { - res = -res; - } - - return (res); -} diff --git a/newlib/libm/mathfp/sf_ceil.c b/newlib/libm/mathfp/sf_ceil.c deleted file mode 100644 index bc8e140..0000000 --- a/newlib/libm/mathfp/sf_ceil.c +++ /dev/null @@ -1,42 +0,0 @@ - -/* @(#)z_ceilf.c 1.0 98/08/13 */ -/***************************************************************** - * ceil - * - * Input: - * x - floating point value - * - * Output: - * Smallest integer greater than x. - * - * Description: - * This routine returns the smallest integer greater than x. - * - *****************************************************************/ - -#include "fdlibm.h" -#include "zmath.h" - -float -_DEFUN (ceilf, (float), - float x) -{ - float f, y; - - y = modff (x, &f); - - if (y == 0.0) - return (x); - else if (x > -1.0 && x < 1.0) - return (x > 0 ? 1.0 : 0.0); - else - return (x > 0 ? f + 1.0 : f); -} - -#ifdef _DOUBLE_IS_32BITS -double ceil (double x) -{ - return (double) ceilf ((float) x); -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/mathfp/sf_cos.c b/newlib/libm/mathfp/sf_cos.c deleted file mode 100644 index 057663e..0000000 --- a/newlib/libm/mathfp/sf_cos.c +++ /dev/null @@ -1,34 +0,0 @@ - -/* @(#)z_cosf.c 1.0 98/08/13 */ -/****************************************************************** - * Cosine - * - * Input: - * x - floating point value - * - * Output: - * cosine of x - * - * Description: - * This routine returns the cosine of x. - * - *****************************************************************/ - -#include "fdlibm.h" -#include "zmath.h" - -float -_DEFUN (cosf, (float), - float x) -{ - return (sinef (x, 1)); -} - -#ifdef _DOUBLE_IS_32BITS - -double cos (double x) -{ - return (double) sinef ((float) x, 1); -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/mathfp/sf_cosh.c b/newlib/libm/mathfp/sf_cosh.c deleted file mode 100644 index 4635b71..0000000 --- a/newlib/libm/mathfp/sf_cosh.c +++ /dev/null @@ -1,33 +0,0 @@ - -/* @(#)z_coshf.c 1.0 98/08/13 */ -/****************************************************************** - * Hyperbolic Cosine - * - * Input: - * x - floating point value - * - * Output: - * hyperbolic cosine of x - * - * Description: - * This routine returns the hyperbolic cosine of x. - * - *****************************************************************/ - -#include "fdlibm.h" -#include "zmath.h" - -float -_DEFUN (coshf, (float), - float x) -{ - return (sinehf (x, 1)); -} - -#ifdef _DOUBLE_IS_32BITS -double cosh (double x) -{ - return (double) sinehf ((float) x, 1); -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/mathfp/sf_erf.c b/newlib/libm/mathfp/sf_erf.c deleted file mode 100644 index aa209f6..0000000 --- a/newlib/libm/mathfp/sf_erf.c +++ /dev/null @@ -1,246 +0,0 @@ -/* sf_erf.c -- float version of s_erf.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -#include "fdlibm.h" - -#ifdef __v810__ -#define const -#endif - -#ifdef __STDC__ -static const float -#else -static float -#endif -tiny = 1e-30, -half= 5.0000000000e-01, /* 0x3F000000 */ -one = 1.0000000000e+00, /* 0x3F800000 */ -two = 2.0000000000e+00, /* 0x40000000 */ - /* c = (subfloat)0.84506291151 */ -erx = 8.4506291151e-01, /* 0x3f58560b */ -/* - * Coefficients for approximation to erf on [0,0.84375] - */ -efx = 1.2837916613e-01, /* 0x3e0375d4 */ -efx8= 1.0270333290e+00, /* 0x3f8375d4 */ -pp0 = 1.2837916613e-01, /* 0x3e0375d4 */ -pp1 = -3.2504209876e-01, /* 0xbea66beb */ -pp2 = -2.8481749818e-02, /* 0xbce9528f */ -pp3 = -5.7702702470e-03, /* 0xbbbd1489 */ -pp4 = -2.3763017452e-05, /* 0xb7c756b1 */ -qq1 = 3.9791721106e-01, /* 0x3ecbbbce */ -qq2 = 6.5022252500e-02, /* 0x3d852a63 */ -qq3 = 5.0813062117e-03, /* 0x3ba68116 */ -qq4 = 1.3249473704e-04, /* 0x390aee49 */ -qq5 = -3.9602282413e-06, /* 0xb684e21a */ -/* - * Coefficients for approximation to erf in [0.84375,1.25] - */ -pa0 = -2.3621185683e-03, /* 0xbb1acdc6 */ -pa1 = 4.1485610604e-01, /* 0x3ed46805 */ -pa2 = -3.7220788002e-01, /* 0xbebe9208 */ -pa3 = 3.1834661961e-01, /* 0x3ea2fe54 */ -pa4 = -1.1089469492e-01, /* 0xbde31cc2 */ -pa5 = 3.5478305072e-02, /* 0x3d1151b3 */ -pa6 = -2.1663755178e-03, /* 0xbb0df9c0 */ -qa1 = 1.0642088205e-01, /* 0x3dd9f331 */ -qa2 = 5.4039794207e-01, /* 0x3f0a5785 */ -qa3 = 7.1828655899e-02, /* 0x3d931ae7 */ -qa4 = 1.2617121637e-01, /* 0x3e013307 */ -qa5 = 1.3637083583e-02, /* 0x3c5f6e13 */ -qa6 = 1.1984500103e-02, /* 0x3c445aa3 */ -/* - * Coefficients for approximation to erfc in [1.25,1/0.35] - */ -ra0 = -9.8649440333e-03, /* 0xbc21a093 */ -ra1 = -6.9385856390e-01, /* 0xbf31a0b7 */ -ra2 = -1.0558626175e+01, /* 0xc128f022 */ -ra3 = -6.2375331879e+01, /* 0xc2798057 */ -ra4 = -1.6239666748e+02, /* 0xc322658c */ -ra5 = -1.8460508728e+02, /* 0xc3389ae7 */ -ra6 = -8.1287437439e+01, /* 0xc2a2932b */ -ra7 = -9.8143291473e+00, /* 0xc11d077e */ -sa1 = 1.9651271820e+01, /* 0x419d35ce */ -sa2 = 1.3765776062e+02, /* 0x4309a863 */ -sa3 = 4.3456588745e+02, /* 0x43d9486f */ -sa4 = 6.4538726807e+02, /* 0x442158c9 */ -sa5 = 4.2900814819e+02, /* 0x43d6810b */ -sa6 = 1.0863500214e+02, /* 0x42d9451f */ -sa7 = 6.5702495575e+00, /* 0x40d23f7c */ -sa8 = -6.0424413532e-02, /* 0xbd777f97 */ -/* - * Coefficients for approximation to erfc in [1/.35,28] - */ -rb0 = -9.8649431020e-03, /* 0xbc21a092 */ -rb1 = -7.9928326607e-01, /* 0xbf4c9dd4 */ -rb2 = -1.7757955551e+01, /* 0xc18e104b */ -rb3 = -1.6063638306e+02, /* 0xc320a2ea */ -rb4 = -6.3756646729e+02, /* 0xc41f6441 */ -rb5 = -1.0250950928e+03, /* 0xc480230b */ -rb6 = -4.8351919556e+02, /* 0xc3f1c275 */ -sb1 = 3.0338060379e+01, /* 0x41f2b459 */ -sb2 = 3.2579251099e+02, /* 0x43a2e571 */ -sb3 = 1.5367296143e+03, /* 0x44c01759 */ -sb4 = 3.1998581543e+03, /* 0x4547fdbb */ -sb5 = 2.5530502930e+03, /* 0x451f90ce */ -sb6 = 4.7452853394e+02, /* 0x43ed43a7 */ -sb7 = -2.2440952301e+01; /* 0xc1b38712 */ - -#ifdef __STDC__ - float erff(float x) -#else - float erff(x) - float x; -#endif -{ - __int32_t hx,ix,i; - float R,S,P,Q,s,y,z,r; - GET_FLOAT_WORD(hx,x); - ix = hx&0x7fffffff; - if(ix>=0x7f800000) { /* erf(nan)=nan */ - i = ((__uint32_t)hx>>31)<<1; - return (float)(1-i)+one/x; /* erf(+-inf)=+-1 */ - } - - if(ix < 0x3f580000) { /* |x|<0.84375 */ - if(ix < 0x31800000) { /* |x|<2**-28 */ - if (ix < 0x04000000) - /*avoid underflow */ - return (float)0.125*((float)8.0*x+efx8*x); - return x + efx*x; - } - z = x*x; - r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4))); - s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5)))); - y = r/s; - return x + x*y; - } - if(ix < 0x3fa00000) { /* 0.84375 <= |x| < 1.25 */ - s = fabsf(x)-one; - P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6))))); - Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6))))); - if(hx>=0) return erx + P/Q; else return -erx - P/Q; - } - if (ix >= 0x40c00000) { /* inf>|x|>=6 */ - if(hx>=0) return one-tiny; else return tiny-one; - } - x = fabsf(x); - s = one/(x*x); - if(ix< 0x4036DB6E) { /* |x| < 1/0.35 */ - R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*( - ra5+s*(ra6+s*ra7)))))); - S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*( - sa5+s*(sa6+s*(sa7+s*sa8))))))); - } else { /* |x| >= 1/0.35 */ - R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*( - rb5+s*rb6))))); - S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*( - sb5+s*(sb6+s*sb7)))))); - } - GET_FLOAT_WORD(ix,x); - SET_FLOAT_WORD(z,ix&0xfffff000); - r = expf(-z*z-(float)0.5625)*expf((z-x)*(z+x)+R/S); - if(hx>=0) return one-r/x; else return r/x-one; -} - -#ifdef __STDC__ - float erfcf(float x) -#else - float erfcf(x) - float x; -#endif -{ - __int32_t hx,ix; - float R,S,P,Q,s,y,z,r; - GET_FLOAT_WORD(hx,x); - ix = hx&0x7fffffff; - if(ix>=0x7f800000) { /* erfc(nan)=nan */ - /* erfc(+-inf)=0,2 */ - return (float)(((__uint32_t)hx>>31)<<1)+one/x; - } - - if(ix < 0x3f580000) { /* |x|<0.84375 */ - if(ix < 0x23800000) /* |x|<2**-56 */ - return one-x; - z = x*x; - r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4))); - s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5)))); - y = r/s; - if(hx < 0x3e800000) { /* x<1/4 */ - return one-(x+x*y); - } else { - r = x*y; - r += (x-half); - return half - r ; - } - } - if(ix < 0x3fa00000) { /* 0.84375 <= |x| < 1.25 */ - s = fabsf(x)-one; - P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6))))); - Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6))))); - if(hx>=0) { - z = one-erx; return z - P/Q; - } else { - z = erx+P/Q; return one+z; - } - } - if (ix < 0x41e00000) { /* |x|<28 */ - x = fabsf(x); - s = one/(x*x); - if(ix< 0x4036DB6D) { /* |x| < 1/.35 ~ 2.857143*/ - R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*( - ra5+s*(ra6+s*ra7)))))); - S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*( - sa5+s*(sa6+s*(sa7+s*sa8))))))); - } else { /* |x| >= 1/.35 ~ 2.857143 */ - if(hx<0&&ix>=0x40c00000) return two-tiny;/* x < -6 */ - R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*( - rb5+s*rb6))))); - S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*( - sb5+s*(sb6+s*sb7)))))); - } - GET_FLOAT_WORD(ix,x); - SET_FLOAT_WORD(z,ix&0xfffff000); - r = expf(-z*z-(float)0.5625)* - expf((z-x)*(z+x)+R/S); - if(hx>0) return r/x; else return two-r/x; - } else { - if(hx>0) return tiny*tiny; else return two-tiny; - } -} - -#ifdef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double erf(double x) -#else - double erf(x) - double x; -#endif -{ - return (double) erff((float) x); -} - -#ifdef __STDC__ - double erfc(double x) -#else - double erfc(x) - double x; -#endif -{ - return (double) erfcf((float) x); -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/mathfp/sf_exp.c b/newlib/libm/mathfp/sf_exp.c deleted file mode 100644 index e37fac5..0000000 --- a/newlib/libm/mathfp/sf_exp.c +++ /dev/null @@ -1,92 +0,0 @@ - -/* @(#)z_expf.c 1.0 98/08/13 */ -/****************************************************************** - * The following routines are coded directly from the algorithms - * and coefficients given in "Software Manual for the Elementary - * Functions" by William J. Cody, Jr. and William Waite, Prentice - * Hall, 1980. - ******************************************************************/ -/****************************************************************** - * Exponential Function - * - * Input: - * x - floating point value - * - * Output: - * e raised to x. - * - * Description: - * This routine returns e raised to the xth power. - * - *****************************************************************/ - -#include <float.h> -#include "fdlibm.h" -#include "zmath.h" - -static const float INV_LN2 = 1.442695040; -static const float LN2 = 0.693147180; -static const float p[] = { 0.249999999950, 0.00416028863 }; -static const float q[] = { 0.5, 0.04998717878 }; - -float -_DEFUN (expf, (float), - float x) -{ - int N; - float g, z, R, P, Q; - - switch (numtestf (x)) - { - case NAN: - errno = EDOM; - return (x); - case INF: - errno = ERANGE; - if (isposf (x)) - return (z_infinity_f.f); - else - return (0.0); - case 0: - return (1.0); - } - - /* Check for out of bounds. */ - if (x > BIGX || x < SMALLX) - { - errno = ERANGE; - return (x); - } - - /* Check for a value too small to calculate. */ - if (-z_rooteps_f < x && x < z_rooteps_f) - { - return (1.0); - } - - /* Calculate the exponent. */ - if (x < 0.0) - N = (int) (x * INV_LN2 - 0.5); - else - N = (int) (x * INV_LN2 + 0.5); - - /* Construct the mantissa. */ - g = x - N * LN2; - z = g * g; - P = g * (p[1] * z + p[0]); - Q = q[1] * z + q[0]; - R = 0.5 + P / (Q - P); - - /* Return the floating point value. */ - N++; - return (ldexpf (R, N)); -} - -#ifdef _DOUBLE_IS_32BITS - -double exp (double x) -{ - return (double) expf ((float) x); -} - -#endif /* _DOUBLE_IS_32BITS */ diff --git a/newlib/libm/mathfp/sf_fabs.c b/newlib/libm/mathfp/sf_fabs.c deleted file mode 100644 index 2661eab..0000000 --- a/newlib/libm/mathfp/sf_fabs.c +++ /dev/null @@ -1,45 +0,0 @@ - -/* @(#)z_fabsf.c 1.0 98/08/13 */ -/****************************************************************** - * Floating-Point Absolute Value - * - * Input: - * x - floating-point number - * - * Output: - * absolute value of x - * - * Description: - * fabs computes the absolute value of a floating point number. - * - *****************************************************************/ - -#include "fdlibm.h" -#include "zmath.h" - -float -_DEFUN (fabsf, (float), - float x) -{ - switch (numtestf (x)) - { - case NAN: - errno = EDOM; - return (x); - case INF: - errno = ERANGE; - return (x); - case 0: - return (0.0); - default: - return (x < 0.0 ? -x : x); - } -} - -#ifdef _DOUBLE_IS_32BITS -double fabs (double x) -{ - return (double) fabsf ((float) x); -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/mathfp/sf_floor.c b/newlib/libm/mathfp/sf_floor.c deleted file mode 100644 index 1e0fb9e..0000000 --- a/newlib/libm/mathfp/sf_floor.c +++ /dev/null @@ -1,43 +0,0 @@ - -/* @(#)z_floorf.c 1.0 98/08/13 */ -/***************************************************************** - * floor - * - * Input: - * x - floating point value - * - * Output: - * Smallest integer less than x. - * - * Description: - * This routine returns the smallest integer less than x. - * - *****************************************************************/ - -#include "fdlibm.h" -#include "zmath.h" - -float -_DEFUN (floorf, (float), - float x) -{ - float f, y; - - if (x > -1.0 && x < 1.0) - return (x >= 0 ? 0 : -1.0); - - y = modff (x, &f); - - if (y == 0.0) - return (x); - - return (x >= 0 ? f : f - 1.0); -} - -#ifdef _DOUBLE_IS_32BITS -double floor (double x) -{ - return (double) floorf ((float) x); -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/mathfp/sf_fmod.c b/newlib/libm/mathfp/sf_fmod.c deleted file mode 100644 index 0ac86bb..0000000 --- a/newlib/libm/mathfp/sf_fmod.c +++ /dev/null @@ -1,103 +0,0 @@ -/* ef_fmod.c -- float version of e_fmod.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* - * fmodf(x,y) - * Return x mod y in exact arithmetic - * Method: shift and subtract - */ - -#include "fdlibm.h" -#include "zmath.h" - -static const float one = 1.0, Zero[] = {0.0, -0.0,}; - -float -_DEFUN (fmodf, (float, float), - float x _AND - float y) -{ - __int32_t n,hx,hy,hz,ix,iy,sx,i; - - GET_FLOAT_WORD(hx,x); - GET_FLOAT_WORD(hy,y); - sx = hx&0x80000000; /* sign of x */ - hx ^=sx; /* |x| */ - hy &= 0x7fffffff; /* |y| */ - - /* purge off exception values */ - if(hy==0||(hx>=0x7f800000)|| /* y=0,or x not finite */ - (hy>0x7f800000)) /* or y is NaN */ - return (x*y)/(x*y); - if(hx<hy) return x; /* |x|<|y| return x */ - if(hx==hy) - return Zero[(__uint32_t)sx>>31]; /* |x|=|y| return x*0*/ - - /* determine ix = ilogb(x) */ - if(hx<0x00800000) { /* subnormal x */ - for (ix = -126,i=(hx<<8); i>0; i<<=1) ix -=1; - } else ix = (hx>>23)-127; - - /* determine iy = ilogb(y) */ - if(hy<0x00800000) { /* subnormal y */ - for (iy = -126,i=(hy<<8); i>=0; i<<=1) iy -=1; - } else iy = (hy>>23)-127; - - /* set up {hx,lx}, {hy,ly} and align y to x */ - if(ix >= -126) - hx = 0x00800000|(0x007fffff&hx); - else { /* subnormal x, shift x to normal */ - n = -126-ix; - hx = hx<<n; - } - if(iy >= -126) - hy = 0x00800000|(0x007fffff&hy); - else { /* subnormal y, shift y to normal */ - n = -126-iy; - hy = hy<<n; - } - - /* fix point fmod */ - n = ix - iy; - while(n--) { - hz=hx-hy; - if(hz<0){hx = hx+hx;} - else { - if(hz==0) /* return sign(x)*0 */ - return Zero[(__uint32_t)sx>>31]; - hx = hz+hz; - } - } - hz=hx-hy; - if(hz>=0) {hx=hz;} - - /* convert back to floating value and restore the sign */ - if(hx==0) /* return sign(x)*0 */ - return Zero[(__uint32_t)sx>>31]; - while(hx<0x00800000) { /* normalize x */ - hx = hx+hx; - iy -= 1; - } - if(iy>= -126) { /* normalize output */ - hx = ((hx-0x00800000)|((iy+127)<<23)); - SET_FLOAT_WORD(x,hx|sx); - } else { /* subnormal output */ - n = -126 - iy; - hx >>= n; - SET_FLOAT_WORD(x,hx|sx); - x *= one; /* create necessary signal */ - } - return x; /* exact output */ -} diff --git a/newlib/libm/mathfp/sf_frexp.c b/newlib/libm/mathfp/sf_frexp.c deleted file mode 100644 index c2751f6..0000000 --- a/newlib/libm/mathfp/sf_frexp.c +++ /dev/null @@ -1,58 +0,0 @@ - -/* @(#)z_frexpf.c 1.0 98/08/13 */ -/****************************************************************** - * frexp - * - * Input: - * d - floating point value - * exp - exponent value - * - * Output: - * A floating point value in the range [0.5, 1). - * - * Description: - * This routine breaks a floating point value into a number f and - * an exponent exp such that d = f * 2 ^ exp. - * - *****************************************************************/ - -#include "fdlibm.h" -#include "zmath.h" - -float frexpf (float d, int *exp) -{ - float f; - __int32_t wf, wd; - - GET_FLOAT_WORD (wd, d); - - /* Get the exponent. */ - *exp = ((wd & 0x7f800000) >> 23) - 126; - - /* Get the mantissa. */ - wf = wd & 0x7fffff; - wf |= 0x3f000000; - - SET_FLOAT_WORD (f, wf); - - /* Check for special values. */ - switch (numtestf (f)) - { - case NAN: - case INF: - errno = EDOM; - *exp = 0; - return (f); - } - - return (f); -} - -#ifdef _DOUBLE_IS_32BITS - -double frexp (double x, int *exp) -{ - return (double) frexpf ((float) x, exp); -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/mathfp/sf_isinf.c b/newlib/libm/mathfp/sf_isinf.c deleted file mode 100644 index 5d53760..0000000 --- a/newlib/libm/mathfp/sf_isinf.c +++ /dev/null @@ -1,33 +0,0 @@ - -/* @(#)z_isinff.c 1.0 98/08/13 */ -/****************************************************************** - * isinff - * - * Input: - * x - pointer to a floating point value - * - * Output: - * An integer that indicates if the number is infinite. - * - * Description: - * This routine returns an integer that indicates if the number - * passed in is infinite (1) or is finite (0). - * - *****************************************************************/ - -#include "fdlibm.h" -#include "zmath.h" - -int isinff (float x) -{ - __uint32_t wx; - int exp; - - GET_FLOAT_WORD (wx, x); - exp = (wx & 0x7f800000) >> 23; - - if ((exp == 0x7f8) && !(wx & 0xf0000)) - return (1); - else - return (0); -} diff --git a/newlib/libm/mathfp/sf_isnan.c b/newlib/libm/mathfp/sf_isnan.c deleted file mode 100644 index 3dcdbf4..0000000 --- a/newlib/libm/mathfp/sf_isnan.c +++ /dev/null @@ -1,33 +0,0 @@ - -/* @(#)z_isnanf.c 1.0 98/08/13 */ -/****************************************************************** - * isnanf - * - * Input: - * x - pointer to a floating point value - * - * Output: - * An integer that indicates if the number is NaN. - * - * Description: - * This routine returns an integer that indicates if the number - * passed in is NaN (1) or is finite (0). - * - *****************************************************************/ - -#include "fdlibm.h" -#include "zmath.h" - -int isnanf (float x) -{ - __int32_t wx; - int exp; - - GET_FLOAT_WORD (wx, x); - exp = (wx & 0x7f800000) >> 23; - - if ((exp == 0x7f8) && (wx & 0x7fffff)) - return (1); - else - return (0); -} diff --git a/newlib/libm/mathfp/sf_ispos.c b/newlib/libm/mathfp/sf_ispos.c deleted file mode 100644 index 1b91f39..0000000 --- a/newlib/libm/mathfp/sf_ispos.c +++ /dev/null @@ -1,40 +0,0 @@ - -/* @(#)z_isposf.c 1.0 98/08/13 */ -/****************************************************************** - * Positive value test - * - * Input: - * x - floating point value - * - * Output: - * An integer that indicates if the number is positive. - * - * Description: - * This routine returns an integer that indicates if the number - * passed in is positive (1) or negative (0). - * - *****************************************************************/ - -#include "fdlibm.h" -#include "zmath.h" - -int isposf (float x) -{ - __int32_t wx; - - GET_FLOAT_WORD (wx, x); - - if (wx & 0x80000000) - return (0); - else - return (1); -} - -#ifdef _DOUBLE_IS_32BITS - -int ispos (double x) -{ - return isposf ((float) x); -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/mathfp/sf_ldexp.c b/newlib/libm/mathfp/sf_ldexp.c deleted file mode 100644 index 6b6c2c0..0000000 --- a/newlib/libm/mathfp/sf_ldexp.c +++ /dev/null @@ -1,81 +0,0 @@ - -/* @(#)z_ldexpf.c 1.0 98/08/13 */ -/****************************************************************** - * ldexp - * - * Input: - * d - a floating point value - * e - an exponent value - * - * Output: - * A floating point value f such that f = d * 2 ^ e. - * - * Description: - * This function creates a floating point number f such that - * f = d * 2 ^ e. - * - *****************************************************************/ - -#include <float.h> -#include "fdlibm.h" -#include "zmath.h" - -#define FLOAT_EXP_OFFS 127 - -float -_DEFUN (ldexpf, (float, int), - float d _AND - int e) -{ - int exp; - __int32_t wd; - - GET_FLOAT_WORD (wd, d); - - /* Check for special values and then scale d by e. */ - switch (numtestf (wd)) - { - case NAN: - errno = EDOM; - break; - - case INF: - errno = ERANGE; - break; - - case 0: - break; - - default: - exp = (wd & 0x7f800000) >> 23; - exp += e; - - if (exp > FLT_MAX_EXP + FLOAT_EXP_OFFS) - { - errno = ERANGE; - d = z_infinity_f.f; - } - else if (exp < FLT_MIN_EXP + FLOAT_EXP_OFFS) - { - errno = ERANGE; - d = -z_infinity_f.f; - } - else - { - wd &= 0x807fffff; - wd |= exp << 23; - SET_FLOAT_WORD (d, wd); - } - } - - return (d); -} - -#ifdef _DOUBLE_IS_32BITS - -double ldexp (double x, int e) -{ - return (double) ldexpf ((float) x, e); -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/mathfp/sf_log.c b/newlib/libm/mathfp/sf_log.c deleted file mode 100644 index b746d44..0000000 --- a/newlib/libm/mathfp/sf_log.c +++ /dev/null @@ -1,34 +0,0 @@ - -/* @(#)z_logf.c 1.0 98/08/13 */ -/****************************************************************** - * Logarithm - * - * Input: - * x - floating point value - * - * Output: - * natural logarithm of x - * - * Description: - * This routine returns the natural logarithm of x. - * - *****************************************************************/ - -#include "fdlibm.h" -#include "zmath.h" - -float -_DEFUN (logf, (float), - float x) -{ - return (logarithmf (x, 0)); -} - -#ifdef _DOUBLE_IS_32BITS - -double log (double x) -{ - return (double) logf ((float) x); -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/mathfp/sf_log10.c b/newlib/libm/mathfp/sf_log10.c deleted file mode 100644 index 444e535..0000000 --- a/newlib/libm/mathfp/sf_log10.c +++ /dev/null @@ -1,34 +0,0 @@ - -/* @(#)z_log10f.c 1.0 98/08/13 */ -/****************************************************************** - * Logarithm - * - * Input: - * x - floating point value - * - * Output: - * logarithm of x - * - * Description: - * This routine returns the logarithm of x (base 10). - * - *****************************************************************/ - -#include "fdlibm.h" -#include "zmath.h" - -float -_DEFUN (log10f, (float), - float x) -{ - return (logarithmf (x, 1)); -} - -#ifdef _DOUBLE_IS_32BITS - -double log10 (double x) -{ - return (double) log10f ((float) x); -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/mathfp/sf_logarithm.c b/newlib/libm/mathfp/sf_logarithm.c deleted file mode 100644 index 224482f..0000000 --- a/newlib/libm/mathfp/sf_logarithm.c +++ /dev/null @@ -1,72 +0,0 @@ - -/* @(#)z_logarithmf.c 1.0 98/08/13 */ -/****************************************************************** - * The following routines are coded directly from the algorithms - * and coefficients given in "Software Manual for the Elementary - * Functions" by William J. Cody, Jr. and William Waite, Prentice - * Hall, 1980. - ******************************************************************/ -/****************************************************************** - * Logarithm - * - * Input: - * x - floating point value - * ten - indicates base ten numbers - * - * Output: - * logarithm of x - * - * Description: - * This routine calculates logarithms. - * - *****************************************************************/ - -#include "fdlibm.h" -#include "zmath.h" - -static const float a[] = { -0.5527074855 }; -static const float b[] = { -0.6632718214e+1 }; -static const float C1 = 0.693145752; -static const float C2 = 1.428606820e-06; -static const float C3 = 0.4342944819; - -float -_DEFUN (logarithmf, (float, int), - float x _AND - int ten) -{ - int N; - float f, w, z; - - /* Check for domain error here. */ - if (x <= 0.0) - { - errno = ERANGE; - return (z_notanum_f.f); - } - - /* Get the exponent and mantissa where x = f * 2^N. */ - f = frexpf (x, &N); - - z = f - 0.5; - - if (f > __SQRT_HALF) - z = (z - 0.5) / (f * 0.5 + 0.5); - else - { - N--; - z /= (z * 0.5 + 0.5); - } - w = z * z; - - /* Use Newton's method with 4 terms. */ - z += z * w * (a[0]) / ((w + 1.0) * w + b[0]); - - if (N != 0) - z = (N * C2 + z) + N * C1; - - if (ten) - z *= C3; - - return (z); -} diff --git a/newlib/libm/mathfp/sf_numtest.c b/newlib/libm/mathfp/sf_numtest.c deleted file mode 100644 index 675086c..0000000 --- a/newlib/libm/mathfp/sf_numtest.c +++ /dev/null @@ -1,63 +0,0 @@ - -/* @(#)z_numtestf.c 1.0 98/08/13 */ -/****************************************************************** - * Numtest - * - * Input: - * x - pointer to a floating point value - * - * Output: - * An integer that indicates what kind of number was passed in: - * NUM = 3 - a finite value - * NAN = 2 - not a number - * INF = 1 - an infinite value - * 0 - zero - * - * Description: - * This routine returns an integer that indicates the character- - * istics of the number that was passed in. - * - *****************************************************************/ - -#include "fdlibm.h" -#include "zmath.h" - -int -_DEFUN (numtestf, (float), - float x) -{ - __int32_t wx; - int exp; - - GET_FLOAT_WORD (wx, x); - - exp = (wx & 0x7f800000) >> 23; - - /* Check for a zero input. */ - if (x == 0.0) - { - return (0); - } - - /* Check for not a number or infinity. */ - if (exp == 0x7f8) - { - if(wx & 0x7fffff) - return (NAN); - else - return (INF); - } - - /* Otherwise it's a finite value. */ - else - return (NUM); -} - -#ifdef _DOUBLE_IS_32BITS - -int numtest (double x) -{ - return numtestf ((float) x); -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/mathfp/sf_pow.c b/newlib/libm/mathfp/sf_pow.c deleted file mode 100644 index 2b3bed3..0000000 --- a/newlib/libm/mathfp/sf_pow.c +++ /dev/null @@ -1,107 +0,0 @@ - -/* @(#)z_powf.c 1.0 98/08/13 */ -#include <float.h> -#include "fdlibm.h" -#include "zmath.h" - -float powf (float x, float y) -{ - float d, t, r = 1.0; - int n, k, sign = 0; - __int32_t px; - - GET_FLOAT_WORD (px, x); - - k = modff (y, &d); - if (k == 0.0) - { - if (modff (ldexpf (y, -1), &t)) - sign = 0; - else - sign = 1; - } - - if (x == 0.0 && y <= 0.0) - errno = EDOM; - - else if ((t = y * log (fabsf (x))) >= BIGX) - { - errno = ERANGE; - if (px & 0x80000000) - { - if (!k) - { - errno = EDOM; - x = 0.0; - } - else if (sign) - x = -z_infinity_f.f; - else - x = z_infinity_f.f; - } - - else - x = z_infinity_f.f; - } - - else if (t < SMALLX) - { - errno = ERANGE; - x = 0.0; - } - - else - { - if ( k && fabsf (d) <= 32767 ) - { - n = (int) d; - - if (sign = (n < 0)) - n = -n; - - while ( n > 0 ) - { - if ((unsigned int) n % 2) - r *= x; - x *= x; - n = (unsigned int) n / 2; - } - - if (sign) - r = 1.0 / r; - - return r; - } - - else - { - if ( px & 0x80000000 ) - { - if ( !k ) - { - errno = EDOM; - return 0.0; - } - } - - x = exp (t); - - if ( sign ) - { - px ^= 0x80000000; - SET_FLOAT_WORD (x, px); - } - } - } - - return x; -} - -#ifdef _DOUBLE_IS_32BITS - -double pow (double x, double y) -{ - return (double) powf ((float) x, (float) y); -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/mathfp/sf_signif.c b/newlib/libm/mathfp/sf_signif.c deleted file mode 100644 index 35427f9..0000000 --- a/newlib/libm/mathfp/sf_signif.c +++ /dev/null @@ -1,40 +0,0 @@ -/* sf_signif.c -- float version of s_signif.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -#include "fdlibm.h" - -#ifdef __STDC__ - float significandf(float x) -#else - float significandf(x) - float x; -#endif -{ - return scalbf(x,(float) -ilogbf(x)); -} - -#ifdef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double significand(double x) -#else - double significand(x) - double x; -#endif -{ - return (double) significandf((float) x); -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/mathfp/sf_sin.c b/newlib/libm/mathfp/sf_sin.c deleted file mode 100644 index c68e18e..0000000 --- a/newlib/libm/mathfp/sf_sin.c +++ /dev/null @@ -1,34 +0,0 @@ - -/* @(#)z_sinf.c 1.0 98/08/13 */ -/****************************************************************** - * Sine - * - * Input: - * x - floating point value - * - * Output: - * sine of x - * - * Description: - * This routine returns the sine of x. - * - *****************************************************************/ - -#include "fdlibm.h" -#include "zmath.h" - -float -_DEFUN (sinf, (float), - float x) -{ - return (sinef (x, 0)); -} - -#ifdef _DOUBLE_IS_32BITS - -double sin (double x) -{ - return (double) sinef ((float) x, 0); -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/mathfp/sf_sine.c b/newlib/libm/mathfp/sf_sine.c deleted file mode 100644 index 6932de2..0000000 --- a/newlib/libm/mathfp/sf_sine.c +++ /dev/null @@ -1,112 +0,0 @@ - -/* @(#)z_sinef.c 1.0 98/08/13 */ -/****************************************************************** - * The following routines are coded directly from the algorithms - * and coefficients given in "Software Manual for the Elementary - * Functions" by William J. Cody, Jr. and William Waite, Prentice - * Hall, 1980. - ******************************************************************/ -/****************************************************************** - * sine generator - * - * Input: - * x - floating point value - * cosine - indicates cosine value - * - * Output: - * Sine of x. - * - * Description: - * This routine calculates sines and cosines. - * - *****************************************************************/ - -#include "fdlibm.h" -#include "zmath.h" - -static const float HALF_PI = 1.570796326; -static const float ONE_OVER_PI = 0.318309886; -static const float r[] = { -0.1666665668, - 0.8333025139e-02, - -0.1980741872e-03, - 0.2601903036e-5 }; - -float -_DEFUN (sinef, (float, int), - float x _AND - int cosine) -{ - int sgn, N; - float y, XN, g, R, res; - float YMAX = 210828714.0; - - switch (numtestf (x)) - { - case NAN: - errno = EDOM; - return (x); - case INF: - errno = EDOM; - return (z_notanum_f.f); - } - - /* Use sin and cos properties to ease computations. */ - if (cosine) - { - sgn = 1; - y = fabsf (x) + HALF_PI; - } - else - { - if (x < 0.0) - { - sgn = -1; - y = -x; - } - else - { - sgn = 1; - y = x; - } - } - - /* Check for values of y that will overflow here. */ - if (y > YMAX) - { - errno = ERANGE; - return (x); - } - - /* Calculate the exponent. */ - if (y < 0.0) - N = (int) (y * ONE_OVER_PI - 0.5); - else - N = (int) (y * ONE_OVER_PI + 0.5); - XN = (float) N; - - if (N & 1) - sgn = -sgn; - - if (cosine) - XN -= 0.5; - - y = fabsf (x) - XN * __PI; - - if (-z_rooteps_f < y && y < z_rooteps_f) - res = y; - - else - { - g = y * y; - - /* Calculate the Taylor series. */ - R = (((r[3] * g + r[2]) * g + r[1]) * g + r[0]) * g; - - /* Finally, compute the result. */ - res = y + y * R; - } - - res *= sgn; - - return (res); -} diff --git a/newlib/libm/mathfp/sf_sineh.c b/newlib/libm/mathfp/sf_sineh.c deleted file mode 100644 index 4eee2c9..0000000 --- a/newlib/libm/mathfp/sf_sineh.c +++ /dev/null @@ -1,110 +0,0 @@ - -/* @(#)z_sinehf.c 1.0 98/08/13 */ -/****************************************************************** - * The following routines are coded directly from the algorithms - * and coefficients given in "Software Manual for the Elementary - * Functions" by William J. Cody, Jr. and William Waite, Prentice - * Hall, 1980. - ******************************************************************/ -/****************************************************************** - * Hyperbolic Sine - * - * Input: - * x - floating point value - * - * Output: - * hyperbolic sine of x - * - * Description: - * This routine calculates hyperbolic sines. - * - *****************************************************************/ - -#include <float.h> -#include "fdlibm.h" -#include "zmath.h" - -static const float q[] = { -0.428277109e+2 }; -static const float p[] = { -0.713793159e+1, - -0.190333399 }; -static const float LNV = 0.6931610107; -static const float INV_V2 = 0.2499930850; -static const float V_OVER2_MINUS1 = 0.1383027787e-4; - -float -_DEFUN (sinehf, (float, int), - float x _AND - int cosineh) -{ - float y, f, P, Q, R, res, z, w; - int sgn = 1; - float WBAR = 18.55; - - /* Check for special values. */ - switch (numtestf (x)) - { - case NAN: - errno = EDOM; - return (x); - case INF: - errno = ERANGE; - return (ispos (x) ? z_infinity_f.f : -z_infinity_f.f); - } - - y = fabs (x); - - if (!cosineh && x < 0.0) - sgn = -1; - - if ((y > 1.0 && !cosineh) || cosineh) - { - if (y > BIGX) - { - w = y - LNV; - - /* Check for w > maximum here. */ - if (w > BIGX) - { - errno = ERANGE; - return (x); - } - - z = exp (w); - - if (w > WBAR) - res = z * (V_OVER2_MINUS1 + 1.0); - } - - else - { - z = exp (y); - if (cosineh) - res = (z + 1 / z) / 2.0; - else - res = (z - 1 / z) / 2.0; - } - - if (sgn < 0) - res = -res; - } - else - { - /* Check for y being too small. */ - if (y < z_rooteps_f) - { - res = x; - } - /* Calculate the Taylor series. */ - else - { - f = x * x; - Q = f + q[0]; - P = p[1] * f + p[0]; - R = f * (P / Q); - - res = x + x * R; - } - } - - return (res); -} diff --git a/newlib/libm/mathfp/sf_sinh.c b/newlib/libm/mathfp/sf_sinh.c deleted file mode 100644 index a50e566..0000000 --- a/newlib/libm/mathfp/sf_sinh.c +++ /dev/null @@ -1,34 +0,0 @@ - -/* @(#)z_sinhf.c 1.0 98/08/13 */ -/****************************************************************** - * Hyperbolic Sine - * - * Input: - * x - floating point value - * - * Output: - * hyperbolic sine of x - * - * Description: - * This routine returns the hyperbolic sine of x. - * - *****************************************************************/ - -#include "fdlibm.h" -#include "zmath.h" - -float -_DEFUN (sinhf, (float), - float x) -{ - return (sinehf (x, 0)); -} - -#ifdef _DOUBLE_IS_32BITS - -double sinh (double x) -{ - return (double) sinhf ((float) x); -} - -#endif /* _DOUBLE_IS_32BITS */ diff --git a/newlib/libm/mathfp/sf_sqrt.c b/newlib/libm/mathfp/sf_sqrt.c deleted file mode 100644 index 5d5410d..0000000 --- a/newlib/libm/mathfp/sf_sqrt.c +++ /dev/null @@ -1,100 +0,0 @@ - -/* @(#)z_sqrtf.c 1.0 98/08/13 */ -/***************************************************************** - * The following routines are coded directly from the algorithms - * and coefficients given in "Software Manual for the Elementary - * Functions" by William J. Cody, Jr. and William Waite, Prentice - * Hall, 1980. - *****************************************************************/ -/****************************************************************** - * Square Root - * - * Input: - * x - floating point value - * - * Output: - * square-root of x - * - * Description: - * This routine performs floating point square root. - * - * The initial approximation is computed as - * y0 = 0.41731 + 0.59016 * f - * where f is a fraction such that x = f * 2^exp. - * - * Three Newton iterations in the form of Heron's formula - * are then performed to obtain the final value: - * y[i] = (y[i-1] + f / y[i-1]) / 2, i = 1, 2, 3. - * - *****************************************************************/ - -#include "fdlibm.h" -#include "zmath.h" - -float -_DEFUN (sqrtf, (float), - float x) -{ - float f, y; - int exp, i, odd; - - /* Check for special values. */ - switch (numtestf (x)) - { - case NAN: - errno = EDOM; - return (x); - case INF: - if (isposf (x)) - { - errno = EDOM; - return (z_notanum_f.f); - } - else - { - errno = ERANGE; - return (z_infinity_f.f); - } - } - - /* Initial checks are performed here. */ - if (x == 0.0) - return (0.0); - if (x < 0) - { - errno = EDOM; - return (z_notanum_f.f); - } - - /* Find the exponent and mantissa for the form x = f * 2^exp. */ - f = frexpf (x, &exp); - odd = exp & 1; - - /* Get the initial approximation. */ - y = 0.41731 + 0.59016 * f; - - f *= 0.5; - /* Calculate the remaining iterations. */ - for (i = 0; i < 2; ++i) - y = y * 0.5 + f / y; - - /* Calculate the final value. */ - if (odd) - { - y *= __SQRT_HALF; - exp++; - } - exp >>= 1; - y = ldexpf (y, exp); - - return (y); -} - -#ifdef _DOUBLE_IS_32BITS - -double sqrt (double x) -{ - return (double) sqrtf ((float) x); -} - -#endif /* _DOUBLE_IS_32BITS */ diff --git a/newlib/libm/mathfp/sf_tan.c b/newlib/libm/mathfp/sf_tan.c deleted file mode 100644 index fcde19a..0000000 --- a/newlib/libm/mathfp/sf_tan.c +++ /dev/null @@ -1,104 +0,0 @@ - -/* @(#)z_tanf.c 1.0 98/08/13 */ -/****************************************************************** - * The following routines are coded directly from the algorithms - * and coefficients given in "Software Manual for the Elementary - * Functions" by William J. Cody, Jr. and William Waite, Prentice - * Hall, 1980. - ******************************************************************/ -/****************************************************************** - * Tangent - * - * Input: - * x - floating point value - * - * Output: - * tangent of x - * - * Description: - * This routine calculates the tangent of x. - * - *****************************************************************/ - -#include "fdlibm.h" -#include "zmath.h" - -static const float TWO_OVER_PI = 0.6366197723; -static const float p[] = { -0.958017723e-1 }; -static const float q[] = { -0.429135777, - 0.971685835e-2 }; - -float -_DEFUN (tanf, (float), - float x) -{ - float y, f, g, XN, xnum, xden, res; - int N; - - /* Check for special values. */ - switch (numtestf (x)) - { - case NAN: - errno = EDOM; - return (x); - case INF: - errno = EDOM; - return (z_notanum_f.f); - } - - y = fabsf (x); - - /* Check for values that are out of our range. */ - if (y > 105414357.0) - { - errno = ERANGE; - return (y); - } - - if (x < 0.0) - N = (int) (x * TWO_OVER_PI - 0.5); - else - N = (int) (x * TWO_OVER_PI + 0.5); - - XN = (float) N; - - f = x - N * __PI_OVER_TWO; - - /* Check for values that are too small. */ - if (-z_rooteps_f < f && f < z_rooteps_f) - { - xnum = f; - xden = 1.0; - } - - /* Calculate the polynomial. */ - else - { - g = f * f; - - xnum = f * (p[0] * g) + f; - xden = (q[1] * g + q[0]) * g + 1.0; - } - - /* Check for odd or even values. */ - if (N & 1) - { - xnum = -xnum; - res = xden / xnum; - } - else - { - res = xnum / xden; - } - - return (res); -} - -#ifdef _DOUBLE_IS_32BITS - -double tan (double x) -{ - return (double) tanf ((float) x); -} - -#endif /* _DOUBLE_IS_32BITS */ diff --git a/newlib/libm/mathfp/sf_tanh.c b/newlib/libm/mathfp/sf_tanh.c deleted file mode 100644 index 51806af..0000000 --- a/newlib/libm/mathfp/sf_tanh.c +++ /dev/null @@ -1,77 +0,0 @@ - -/* @(#)z_tanhf.c 1.0 98/08/13 */ -/***************************************************************** - * The following routines are coded directly from the algorithms - * and coefficients given in "Software Manual for the Elementary - * Functions" by William J. Cody, Jr. and William Waite, Prentice - * Hall, 1980. - *****************************************************************/ -/****************************************************************** - * Hyperbolic Tangent - * - * Input: - * x - floating point value - * - * Output: - * hyperbolic tangent of x - * - * Description: - * This routine calculates hyperbolic tangent. - * - *****************************************************************/ - -#include <float.h> -#include "fdlibm.h" -#include "zmath.h" - -static const float LN3_OVER2 = 0.5493061443; -static const float p[] = { -0.2059432032, - -0.0009577527 }; -static const float q[] = { 0.6178299136, - 0.25 }; - -float -_DEFUN (tanhf, (float), - float x) -{ - float f, res, g, P, Q, R; - - f = fabsf (x); - - /* Check if the input is too big. */ - if (f > BIGX) - res = 1.0; - - else if (f > LN3_OVER2) - res = 1.0 - 2.0 / (exp (2 * f) + 1.0); - - /* Check if the input is too small. */ - else if (f < z_rooteps_f) - res = f; - - /* Calculate the Taylor series. */ - else - { - g = f * f; - - P = p[1] * g + p[0]; - Q = (g + q[1]) * g + q[0]; - R = g * (P / Q); - - res = f + f * R; - } - - if (x < 0.0) - res = -res; - - return (res); -} - -#ifdef _DOUBLE_IS_32BITS - -double tanh (double x) -{ - return (double) tanhf ((float) x); -} - -#endif _DOUBLE_IS_32BITS diff --git a/newlib/libm/mathfp/w_cabs.c b/newlib/libm/mathfp/w_cabs.c deleted file mode 100644 index bef7668..0000000 --- a/newlib/libm/mathfp/w_cabs.c +++ /dev/null @@ -1,20 +0,0 @@ -/* - * cabs() wrapper for hypot(). - * - * Written by J.T. Conklin, <jtc@wimsey.com> - * Placed into the Public Domain, 1994. - */ - -#include "fdlibm.h" - -struct complex { - double x; - double y; -}; - -double -cabs(z) - struct complex z; -{ - return hypot(z.x, z.y); -} diff --git a/newlib/libm/mathfp/w_drem.c b/newlib/libm/mathfp/w_drem.c deleted file mode 100644 index d289bda..0000000 --- a/newlib/libm/mathfp/w_drem.c +++ /dev/null @@ -1,15 +0,0 @@ -/* - * drem() wrapper for remainder(). - * - * Written by J.T. Conklin, <jtc@wimsey.com> - * Placed into the Public Domain, 1994. - */ - -#include "fdlibm.h" - -double -drem(x, y) - double x, y; -{ - return remainder(x, y); -} diff --git a/newlib/libm/mathfp/w_jn.c b/newlib/libm/mathfp/w_jn.c deleted file mode 100644 index 6806f01..0000000 --- a/newlib/libm/mathfp/w_jn.c +++ /dev/null @@ -1,248 +0,0 @@ - -/* @(#)w_jn.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* -FUNCTION -<<jN>>,<<jNf>>,<<yN>>,<<yNf>>---Bessel functions - -INDEX -j0 -INDEX -j0f -INDEX -j1 -INDEX -j1f -INDEX -jn -INDEX -jnf -INDEX -y0 -INDEX -y0f -INDEX -y1 -INDEX -y1f -INDEX -yn -INDEX -ynf - -ANSI_SYNOPSIS -#include <math.h> -double j0(double <[x]>); -float j0f(float <[x]>); -double j1(double <[x]>); -float j1f(float <[x]>); -double jn(int <[n]>, double <[x]>); -float jnf(int <[n]>, float <[x]>); -double y0(double <[x]>); -float y0f(float <[x]>); -double y1(double <[x]>); -float y1f(float <[x]>); -double yn(int <[n]>, double <[x]>); -float ynf(int <[n]>, float <[x]>); - -TRAD_SYNOPSIS -#include <math.h> - -double j0(<[x]>) -double <[x]>; -float j0f(<[x]>) -float <[x]>; -double j1(<[x]>) -double <[x]>; -float j1f(<[x]>) -float <[x]>; -double jn(<[n]>, <[x]>) -int <[n]>; -double <[x]>; -float jnf(<[n]>, <[x]>) -int <[n]>; -float <[x]>; - -double y0(<[x]>) -double <[x]>; -float y0f(<[x]>) -float <[x]>; -double y1(<[x]>) -double <[x]>; -float y1f(<[x]>) -float <[x]>; -double yn(<[n]>, <[x]>) -int <[n]>; -double <[x]>; -float ynf(<[n]>, <[x]>) -int <[n]>; -float <[x]>; - -DESCRIPTION -The Bessel functions are a family of functions that solve the -differential equation -@ifinfo -. 2 2 2 -. x y'' + xy' + (x - p )y = 0 -@end ifinfo -@tex -$$x^2{d^2y\over dx^2} + x{dy\over dx} + (x^2-p^2)y = 0$$ -@end tex -These functions have many applications in engineering and physics. - -<<jn>> calculates the Bessel function of the first kind of order -<[n]>. <<j0>> and <<j1>> are special cases for order 0 and order -1 respectively. - -Similarly, <<yn>> calculates the Bessel function of the second kind of -order <[n]>, and <<y0>> and <<y1>> are special cases for order 0 and -1. - -<<jnf>>, <<j0f>>, <<j1f>>, <<ynf>>, <<y0f>>, and <<y1f>> perform the -same calculations, but on <<float>> rather than <<double>> values. - -RETURNS -The value of each Bessel function at <[x]> is returned. - -PORTABILITY -None of the Bessel functions are in ANSI C. -*/ - -/* - * wrapper jn(int n, double x), yn(int n, double x) - * floating point Bessel's function of the 1st and 2nd kind - * of order n - * - * Special cases: - * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal; - * y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal. - * Note 2. About jn(n,x), yn(n,x) - * For n=0, j0(x) is called, - * for n=1, j1(x) is called, - * for n<x, forward recursion us used starting - * from values of j0(x) and j1(x). - * for n>x, a continued fraction approximation to - * j(n,x)/j(n-1,x) is evaluated and then backward - * recursion is used starting from a supposed value - * for j(n,x). The resulting value of j(0,x) is - * compared with the actual value to correct the - * supposed value of j(n,x). - * - * yn(n,x) is similar in all respects, except - * that forward recursion is used for all - * values of n>1. - * - */ - -#include "fdlibm.h" -#include <errno.h> - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double jn(int n, double x) /* wrapper jn */ -#else - double jn(n,x) /* wrapper jn */ - double x; int n; -#endif -{ -#ifdef _IEEE_LIBM - return jn(n,x); -#else - double z; - struct exception exc; - z = jn(n,x); - if(_LIB_VERSION == _IEEE_ || isnan(x) ) return z; - if(fabs(x)>X_TLOSS) { - /* jn(|x|>X_TLOSS) */ - exc.type = TLOSS; - exc.name = "jn"; - exc.err = 0; - exc.arg1 = n; - exc.arg2 = x; - exc.retval = 0.0; - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - errno = ERANGE; - } - if (exc.err != 0) - errno = exc.err; - return exc.retval; - } else - return z; -#endif -} - -#ifdef __STDC__ - double yn(int n, double x) /* wrapper yn */ -#else - double yn(n,x) /* wrapper yn */ - double x; int n; -#endif -{ -#ifdef _IEEE_LIBM - return yn(n,x); -#else - double z; - struct exception exc; - z = yn(n,x); - if(_LIB_VERSION == _IEEE_ || isnan(x) ) return z; - if(x <= 0.0){ - /* yn(n,0) = -inf or yn(x<0) = NaN */ -#ifndef HUGE_VAL -#define HUGE_VAL inf - double inf = 0.0; - - SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ -#endif - exc.type = DOMAIN; /* should be SING for IEEE */ - exc.name = "yn"; - exc.err = 0; - exc.arg1 = n; - exc.arg2 = x; - if (_LIB_VERSION == _SVID_) - exc.retval = -HUGE; - else - exc.retval = -HUGE_VAL; - if (_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - errno = EDOM; - } - if (exc.err != 0) - errno = exc.err; - return exc.retval; - } - if(x>X_TLOSS) { - /* yn(x>X_TLOSS) */ - exc.type = TLOSS; - exc.name = "yn"; - exc.err = 0; - exc.arg1 = n; - exc.arg2 = x; - exc.retval = 0.0; - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - errno = ERANGE; - } - if (exc.err != 0) - errno = exc.err; - return exc.retval; - } else - return z; -#endif -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/mathfp/wf_cabs.c b/newlib/libm/mathfp/wf_cabs.c deleted file mode 100644 index c3ed0ca..0000000 --- a/newlib/libm/mathfp/wf_cabs.c +++ /dev/null @@ -1,20 +0,0 @@ -/* - * cabsf() wrapper for hypotf(). - * - * Written by J.T. Conklin, <jtc@wimsey.com> - * Placed into the Public Domain, 1994. - */ - -#include "fdlibm.h" - -struct complex { - float x; - float y; -}; - -float -cabsf(z) - struct complex z; -{ - return hypotf(z.x, z.y); -} diff --git a/newlib/libm/mathfp/wf_drem.c b/newlib/libm/mathfp/wf_drem.c deleted file mode 100644 index 7c3f7c5..0000000 --- a/newlib/libm/mathfp/wf_drem.c +++ /dev/null @@ -1,19 +0,0 @@ -/* - * dremf() wrapper for remainderf(). - * - * Written by J.T. Conklin, <jtc@wimsey.com> - * Placed into the Public Domain, 1994. - */ - -#include "fdlibm.h" - -float -#ifdef __STDC__ -dremf(float x, float y) -#else -dremf(x, y) - float x, y; -#endif -{ - return remainderf(x, y); -} diff --git a/newlib/libm/mathfp/wf_jn.c b/newlib/libm/mathfp/wf_jn.c deleted file mode 100644 index ebc886d..0000000 --- a/newlib/libm/mathfp/wf_jn.c +++ /dev/null @@ -1,138 +0,0 @@ -/* wf_jn.c -- float version of w_jn.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -#include "fdlibm.h" -#include <errno.h> - - -#ifdef __STDC__ - float jnf(int n, float x) /* wrapper jnf */ -#else - float jnf(n,x) /* wrapper jnf */ - float x; int n; -#endif -{ -#ifdef _IEEE_LIBM - return jnf(n,x); -#else - float z; - struct exception exc; - z = jnf(n,x); - if(_LIB_VERSION == _IEEE_ || isnanf(x) ) return z; - if(fabsf(x)>(float)X_TLOSS) { - /* jnf(|x|>X_TLOSS) */ - exc.type = TLOSS; - exc.name = "jnf"; - exc.err = 0; - exc.arg1 = (double)n; - exc.arg2 = (double)x; - exc.retval = 0.0; - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - errno = ERANGE; - } - if (exc.err != 0) - errno = exc.err; - return exc.retval; - } else - return z; -#endif -} - -#ifdef __STDC__ - float ynf(int n, float x) /* wrapper ynf */ -#else - float ynf(n,x) /* wrapper ynf */ - float x; int n; -#endif -{ -#ifdef _IEEE_LIBM - return ynf(n,x); -#else - float z; - struct exception exc; - z = ynf(n,x); - if(_LIB_VERSION == _IEEE_ || isnanf(x) ) return z; - if(x <= (float)0.0){ - /* ynf(n,0) = -inf or ynf(x<0) = NaN */ -#ifndef HUGE_VAL -#define HUGE_VAL inf - double inf = 0.0; - - SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ -#endif - exc.type = DOMAIN; /* should be SING for IEEE */ - exc.name = "ynf"; - exc.err = 0; - exc.arg1 = (double)n; - exc.arg2 = (double)x; - if (_LIB_VERSION == _SVID_) - exc.retval = -HUGE; - else - exc.retval = -HUGE_VAL; - if (_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - errno = EDOM; - } - if (exc.err != 0) - errno = exc.err; - return (float)exc.retval; - } - if(x>(float)X_TLOSS) { - /* ynf(x>X_TLOSS) */ - exc.type = TLOSS; - exc.name = "ynf"; - exc.err = 0; - exc.arg1 = (double)n; - exc.arg2 = (double)x; - exc.retval = 0.0; - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - errno = ERANGE; - } - if (exc.err != 0) - errno = exc.err; - return (float)exc.retval; - } else - return z; -#endif -} - -#ifdef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double jn(int n, double x) -#else - double jn(n,x) - double x; int n; -#endif -{ - return (double) jnf(n, (float) x); -} - -#ifdef __STDC__ - double yn(int n, double x) -#else - double yn(n,x) - double x; int n; -#endif -{ - return (double) ynf(n, (float) x); -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/mathfp/zmath.h b/newlib/libm/mathfp/zmath.h deleted file mode 100644 index 369bfec..0000000 --- a/newlib/libm/mathfp/zmath.h +++ /dev/null @@ -1,55 +0,0 @@ -#ifndef __ZMATH_H -#define __ZMATH_H - -#include <errno.h> - -#define NUM 3 -#define NAN 2 -#define INF 1 - -#define __PI 3.14159265358979323846 -#define __SQRT_HALF 0.70710678118654752440 -#define __PI_OVER_TWO 1.57079632679489661923132 - -extern double BIGX; -extern double SMALLX; - -typedef const union -{ - long l[2]; - double d; -} udouble; - -typedef const union -{ - long l; - float f; -} ufloat; - -extern double BIGX; -extern double SMALLX; - -extern udouble z_infinity; -extern udouble z_notanum; -extern double z_rooteps; - -extern ufloat z_infinity_f; -extern ufloat z_notanum_f; -extern float z_rooteps_f; - -/* Core math routines. */ - -int _EXFUN (numtest, (double)); -int _EXFUN (numtestf, (float)); -double _EXFUN (logarithm, (double, int)); -float _EXFUN (logarithmf, (float, int)); -double _EXFUN (sine, (double, int)); -float _EXFUN (sinef, (float, int)); -double _EXFUN (asine, (double, int)); -float _EXFUN (asinef, (float, int)); -double _EXFUN (atangent, (double, double, double, int)); -float _EXFUN (atangentf, (float, float, float, int)); -double _EXFUN (sineh, (double, int)); -float _EXFUN (sinehf, (float, int)); - -#endif /* no __ZMATH_H */ |