diff options
Diffstat (limited to 'newlib/libm/math')
136 files changed, 0 insertions, 17575 deletions
diff --git a/newlib/libm/math/Makefile.am b/newlib/libm/math/Makefile.am deleted file mode 100644 index 9e16155..0000000 --- a/newlib/libm/math/Makefile.am +++ /dev/null @@ -1,173 +0,0 @@ -## Process this file with automake to generate Makefile.in - -AUTOMAKE_OPTIONS = cygnus - -INCLUDES = -I$(srcdir)/../common $(NEWLIB_CFLAGS) $(CROSS_CFLAGS) $(TARGET_CFLAGS) - -noinst_LIBRARIES = lib.a - -src = k_standard.c k_rem_pio2.c \ - k_cos.c k_sin.c k_tan.c \ - e_acos.c e_acosh.c e_asin.c e_atan2.c \ - e_atanh.c e_cosh.c e_exp.c e_fmod.c \ - er_gamma.c e_hypot.c e_j0.c \ - e_j1.c e_jn.c er_lgamma.c \ - e_log.c e_log10.c e_pow.c e_rem_pio2.c e_remainder.c \ - e_scalb.c e_sinh.c e_sqrt.c \ - w_acos.c w_acosh.c w_asin.c w_atan2.c \ - w_atanh.c w_cosh.c w_exp.c w_fmod.c \ - w_gamma.c wr_gamma.c w_hypot.c w_j0.c \ - w_j1.c w_jn.c w_lgamma.c wr_lgamma.c \ - w_log.c w_log10.c w_pow.c w_remainder.c \ - w_scalb.c w_sinh.c w_sqrt.c \ - w_cabs.c w_drem.c \ - s_asinh.c s_atan.c s_ceil.c \ - s_cos.c s_erf.c s_fabs.c s_floor.c \ - s_frexp.c s_isnan.c s_ldexp.c \ - s_signif.c s_sin.c \ - s_tan.c s_tanh.c \ - s_isinf.c s_infconst.c - -fsrc = kf_rem_pio2.c \ - kf_cos.c kf_sin.c kf_tan.c \ - ef_acos.c ef_acosh.c ef_asin.c ef_atan2.c \ - ef_atanh.c ef_cosh.c ef_exp.c ef_fmod.c \ - erf_gamma.c ef_hypot.c ef_j0.c \ - ef_j1.c ef_jn.c erf_lgamma.c \ - ef_log.c ef_log10.c ef_pow.c ef_rem_pio2.c ef_remainder.c \ - ef_scalb.c ef_sinh.c ef_sqrt.c \ - wf_acos.c wf_acosh.c wf_asin.c wf_atan2.c \ - wf_atanh.c wf_cosh.c wf_exp.c wf_fmod.c \ - wf_gamma.c wrf_gamma.c wf_hypot.c wf_j0.c \ - wf_j1.c wf_jn.c wf_lgamma.c wrf_lgamma.c \ - wf_log.c wf_log10.c wf_pow.c wf_remainder.c \ - wf_scalb.c wf_sinh.c wf_sqrt.c \ - wf_cabs.c wf_drem.c \ - sf_asinh.c sf_atan.c sf_ceil.c \ - sf_cos.c sf_erf.c sf_fabs.c sf_floor.c \ - sf_frexp.c sf_isnan.c sf_ldexp.c \ - sf_signif.c sf_sin.c \ - sf_tan.c sf_tanh.c \ - sf_isinf.c - -lib_a_SOURCES = $(src) $(fsrc) - -chobj = wacos.def wacosh.def wasin.def sasinh.def \ - satan.def watan2.def watanh.def wj0.def \ - wcosh.def serf.def wexp.def \ - sfabs.def sfloor.def wfmod.def sfrexp.def \ - wgamma.def whypot.def sldexp.def wlog.def \ - wlog10.def \ - wpow.def wremainder.def ssin.def wsinh.def \ - wsqrt.def stan.def stanh.def \ - sisnan.def - -SUFFIXES = .def - -CHEW = ../../doc/makedoc -f $(srcdir)/../../doc/doc.str - -.c.def: - $(CHEW) < $< > $*.def 2> $*.ref - touch stmp-def - -TARGETDOC = ../tmp.texi - -doc: $(chobj) - cat $(srcdir)/math.tex >> $(TARGETDOC) - -CLEANFILES = $(chobj) *.ref - -# Texinfo does not appear to support underscores in file names, so we -# name the .def files without underscores. - -wacos.def: w_acos.c - $(CHEW) < $(srcdir)/w_acos.c >$@ 2>/dev/null - touch stmp-def -wacosh.def: w_acosh.c - $(CHEW) < $(srcdir)/w_acosh.c >$@ 2>/dev/null - touch stmp-def -wasin.def: w_asin.c - $(CHEW) < $(srcdir)/w_asin.c >$@ 2>/dev/null - touch stmp-def -sasinh.def: s_asinh.c - $(CHEW) < $(srcdir)/s_asinh.c >$@ 2>/dev/null - touch stmp-def -satan.def: s_atan.c - $(CHEW) < $(srcdir)/s_atan.c >$@ 2>/dev/null - touch stmp-def -watan2.def: w_atan2.c - $(CHEW) < $(srcdir)/w_atan2.c >$@ 2>/dev/null - touch stmp-def -watanh.def: w_atanh.c - $(CHEW) < $(srcdir)/w_atanh.c >$@ 2>/dev/null - touch stmp-def -wj0.def: w_j0.c - $(CHEW) < $(srcdir)/w_j0.c >$@ 2>/dev/null - touch stmp-def -scopysign.def: s_copysign.c - $(CHEW) < $(srcdir)/../common/s_copysign.c >$@ 2>/dev/null - touch stmp-def -wcosh.def: w_cosh.c - $(CHEW) < $(srcdir)/w_cosh.c >$@ 2>/dev/null - touch stmp-def -serf.def: s_erf.c - $(CHEW) < $(srcdir)/s_erf.c >$@ 2>/dev/null - touch stmp-def -wexp.def: w_exp.c - $(CHEW) < $(srcdir)/w_exp.c >$@ 2>/dev/null - touch stmp-def -sfabs.def: s_fabs.c - $(CHEW) < $(srcdir)/s_fabs.c >$@ 2>/dev/null - touch stmp-def -sfloor.def: s_floor.c - $(CHEW) < $(srcdir)/s_floor.c >$@ 2>/dev/null - touch stmp-def -wfmod.def: w_fmod.c - $(CHEW) < $(srcdir)/w_fmod.c >$@ 2>/dev/null - touch stmp-def -sfrexp.def: s_frexp.c - $(CHEW) < $(srcdir)/s_frexp.c >$@ 2>/dev/null - touch stmp-def -wgamma.def: w_gamma.c - $(CHEW) < $(srcdir)/w_gamma.c >$@ 2>/dev/null - touch stmp-def -whypot.def: w_hypot.c - $(CHEW) < $(srcdir)/w_hypot.c >$@ 2>/dev/null - touch stmp-def -sldexp.def: s_ldexp.c - $(CHEW) < $(srcdir)/s_ldexp.c >$@ 2>/dev/null - touch stmp-def -wlog.def: w_log.c - $(CHEW) < $(srcdir)/w_log.c >$@ 2>/dev/null - touch stmp-def -wlog10.def: w_log10.c - $(CHEW) < $(srcdir)/w_log10.c >$@ 2>/dev/null - touch stmp-def -wpow.def: w_pow.c - $(CHEW) < $(srcdir)/w_pow.c >$@ 2>/dev/null - touch stmp-def -wremainder.def: w_remainder.c - $(CHEW) < $(srcdir)/w_remainder.c >$@ 2>/dev/null - touch stmp-def -ssin.def: s_sin.c - $(CHEW) < $(srcdir)/s_sin.c >$@ 2>/dev/null - touch stmp-def -wsinh.def: w_sinh.c - $(CHEW) < $(srcdir)/w_sinh.c >$@ 2>/dev/null - touch stmp-def -wsqrt.def: w_sqrt.c - $(CHEW) < $(srcdir)/w_sqrt.c >$@ 2>/dev/null - touch stmp-def -stan.def: s_tan.c - $(CHEW) < $(srcdir)/s_tan.c >$@ 2>/dev/null - touch stmp-def -stanh.def: s_tanh.c - $(CHEW) < $(srcdir)/s_tanh.c >$@ 2>/dev/null - touch stmp-def -sisnan.def: s_isnan.c - $(CHEW) < $(srcdir)/s_isnan.c >$@ 2>/dev/null - touch stmp-def - -# A partial dependency list. - -$(lib_a_OBJECTS): $(srcdir)/../../libc/include/math.h $(srcdir)/../common/fdlibm.h diff --git a/newlib/libm/math/Makefile.in b/newlib/libm/math/Makefile.in deleted file mode 100644 index b80f8fb..0000000 --- a/newlib/libm/math/Makefile.in +++ /dev/null @@ -1,431 +0,0 @@ -# Makefile.in generated automatically by automake 1.3b from Makefile.am - -# Copyright (C) 1994, 1995, 1996, 1997, 1998 Free Software Foundation, Inc. -# This Makefile.in is free software; the Free Software Foundation -# gives unlimited permission to copy and/or distribute it, -# with or without modifications, as long as this notice is preserved. - -# This program is distributed in the hope that it will be useful, -# but WITHOUT ANY WARRANTY, to the extent permitted by law; without -# even the implied warranty of MERCHANTABILITY or FITNESS FOR A -# PARTICULAR PURPOSE. - - -SHELL = @SHELL@ - -srcdir = @srcdir@ -top_srcdir = @top_srcdir@ -VPATH = @srcdir@ -prefix = @prefix@ -exec_prefix = @exec_prefix@ - -bindir = @bindir@ -sbindir = @sbindir@ -libexecdir = @libexecdir@ -datadir = @datadir@ -sysconfdir = @sysconfdir@ -sharedstatedir = @sharedstatedir@ -localstatedir = @localstatedir@ -libdir = @libdir@ -infodir = @infodir@ -mandir = @mandir@ -includedir = @includedir@ -oldincludedir = /usr/include - -DESTDIR = - -pkgdatadir = $(datadir)/@PACKAGE@ -pkglibdir = $(libdir)/@PACKAGE@ -pkgincludedir = $(includedir)/@PACKAGE@ - -top_builddir = .. - -ACLOCAL = @ACLOCAL@ -AUTOCONF = @AUTOCONF@ -AUTOMAKE = @AUTOMAKE@ -AUTOHEADER = @AUTOHEADER@ - -INSTALL = @INSTALL@ -INSTALL_PROGRAM = @INSTALL_PROGRAM@ -INSTALL_DATA = @INSTALL_DATA@ -INSTALL_SCRIPT = @INSTALL_SCRIPT@ -transform = @program_transform_name@ - -NORMAL_INSTALL = : -PRE_INSTALL = : -POST_INSTALL = : -NORMAL_UNINSTALL = : -PRE_UNINSTALL = : -POST_UNINSTALL = : -host_alias = @host_alias@ -host_triplet = @host@ -AR = @AR@ -AS = @AS@ -CC = @CC@ -CPP = @CPP@ -EXEEXT = @EXEEXT@ -MAINT = @MAINT@ -MAKEINFO = @MAKEINFO@ -NEWLIB_CFLAGS = @NEWLIB_CFLAGS@ -PACKAGE = @PACKAGE@ -RANLIB = @RANLIB@ -VERSION = @VERSION@ -machine_dir = @machine_dir@ -newlib_basedir = @newlib_basedir@ -sys_dir = @sys_dir@ - -AUTOMAKE_OPTIONS = cygnus - -INCLUDES = -I$(srcdir)/../common $(NEWLIB_CFLAGS) $(CROSS_CFLAGS) $(TARGET_CFLAGS) - -noinst_LIBRARIES = lib.a - -src = k_standard.c k_rem_pio2.c \ - k_cos.c k_sin.c k_tan.c \ - e_acos.c e_acosh.c e_asin.c e_atan2.c \ - e_atanh.c e_cosh.c e_exp.c e_fmod.c \ - er_gamma.c e_hypot.c e_j0.c \ - e_j1.c e_jn.c er_lgamma.c \ - e_log.c e_log10.c e_pow.c e_rem_pio2.c e_remainder.c \ - e_scalb.c e_sinh.c e_sqrt.c \ - w_acos.c w_acosh.c w_asin.c w_atan2.c \ - w_atanh.c w_cosh.c w_exp.c w_fmod.c \ - w_gamma.c wr_gamma.c w_hypot.c w_j0.c \ - w_j1.c w_jn.c w_lgamma.c wr_lgamma.c \ - w_log.c w_log10.c w_pow.c w_remainder.c \ - w_scalb.c w_sinh.c w_sqrt.c \ - w_cabs.c w_drem.c \ - s_asinh.c s_atan.c s_ceil.c \ - s_cos.c s_erf.c s_fabs.c s_floor.c \ - s_frexp.c s_isnan.c s_ldexp.c \ - s_signif.c s_sin.c \ - s_tan.c s_tanh.c \ - s_isinf.c s_infconst.c - -fsrc = kf_rem_pio2.c \ - kf_cos.c kf_sin.c kf_tan.c \ - ef_acos.c ef_acosh.c ef_asin.c ef_atan2.c \ - ef_atanh.c ef_cosh.c ef_exp.c ef_fmod.c \ - erf_gamma.c ef_hypot.c ef_j0.c \ - ef_j1.c ef_jn.c erf_lgamma.c \ - ef_log.c ef_log10.c ef_pow.c ef_rem_pio2.c ef_remainder.c \ - ef_scalb.c ef_sinh.c ef_sqrt.c \ - wf_acos.c wf_acosh.c wf_asin.c wf_atan2.c \ - wf_atanh.c wf_cosh.c wf_exp.c wf_fmod.c \ - wf_gamma.c wrf_gamma.c wf_hypot.c wf_j0.c \ - wf_j1.c wf_jn.c wf_lgamma.c wrf_lgamma.c \ - wf_log.c wf_log10.c wf_pow.c wf_remainder.c \ - wf_scalb.c wf_sinh.c wf_sqrt.c \ - wf_cabs.c wf_drem.c \ - sf_asinh.c sf_atan.c sf_ceil.c \ - sf_cos.c sf_erf.c sf_fabs.c sf_floor.c \ - sf_frexp.c sf_isnan.c sf_ldexp.c \ - sf_signif.c sf_sin.c \ - sf_tan.c sf_tanh.c \ - sf_isinf.c - -lib_a_SOURCES = $(src) $(fsrc) - -chobj = wacos.def wacosh.def wasin.def sasinh.def \ - satan.def watan2.def watanh.def wj0.def \ - wcosh.def serf.def wexp.def \ - sfabs.def sfloor.def wfmod.def sfrexp.def \ - wgamma.def whypot.def sldexp.def wlog.def \ - wlog10.def \ - wpow.def wremainder.def ssin.def wsinh.def \ - wsqrt.def stan.def stanh.def \ - sisnan.def - -SUFFIXES = .def - -CHEW = ../../doc/makedoc -f $(srcdir)/../../doc/doc.str - -TARGETDOC = ../tmp.texi - -CLEANFILES = $(chobj) *.ref -mkinstalldirs = $(SHELL) $(top_srcdir)/../../mkinstalldirs -CONFIG_CLEAN_FILES = -LIBRARIES = $(noinst_LIBRARIES) - - -DEFS = @DEFS@ -I. -I$(srcdir) -CPPFLAGS = @CPPFLAGS@ -LDFLAGS = @LDFLAGS@ -LIBS = @LIBS@ -lib_a_LIBADD = -lib_a_OBJECTS = k_standard.o k_rem_pio2.o k_cos.o k_sin.o k_tan.o \ -e_acos.o e_acosh.o e_asin.o e_atan2.o e_atanh.o e_cosh.o e_exp.o \ -e_fmod.o er_gamma.o e_hypot.o e_j0.o e_j1.o e_jn.o er_lgamma.o e_log.o \ -e_log10.o e_pow.o e_rem_pio2.o e_remainder.o e_scalb.o e_sinh.o \ -e_sqrt.o w_acos.o w_acosh.o w_asin.o w_atan2.o w_atanh.o w_cosh.o \ -w_exp.o w_fmod.o w_gamma.o wr_gamma.o w_hypot.o w_j0.o w_j1.o w_jn.o \ -w_lgamma.o wr_lgamma.o w_log.o w_log10.o w_pow.o w_remainder.o \ -w_scalb.o w_sinh.o w_sqrt.o w_cabs.o w_drem.o s_asinh.o s_atan.o \ -s_ceil.o s_cos.o s_erf.o s_fabs.o s_floor.o s_frexp.o s_isnan.o \ -s_ldexp.o s_signif.o s_sin.o s_tan.o s_tanh.o s_isinf.o s_infconst.o \ -kf_rem_pio2.o kf_cos.o kf_sin.o kf_tan.o ef_acos.o ef_acosh.o ef_asin.o \ -ef_atan2.o ef_atanh.o ef_cosh.o ef_exp.o ef_fmod.o erf_gamma.o \ -ef_hypot.o ef_j0.o ef_j1.o ef_jn.o erf_lgamma.o ef_log.o ef_log10.o \ -ef_pow.o ef_rem_pio2.o ef_remainder.o ef_scalb.o ef_sinh.o ef_sqrt.o \ -wf_acos.o wf_acosh.o wf_asin.o wf_atan2.o wf_atanh.o wf_cosh.o wf_exp.o \ -wf_fmod.o wf_gamma.o wrf_gamma.o wf_hypot.o wf_j0.o wf_j1.o wf_jn.o \ -wf_lgamma.o wrf_lgamma.o wf_log.o wf_log10.o wf_pow.o wf_remainder.o \ -wf_scalb.o wf_sinh.o wf_sqrt.o wf_cabs.o wf_drem.o sf_asinh.o sf_atan.o \ -sf_ceil.o sf_cos.o sf_erf.o sf_fabs.o sf_floor.o sf_frexp.o sf_isnan.o \ -sf_ldexp.o sf_signif.o sf_sin.o sf_tan.o sf_tanh.o sf_isinf.o -CFLAGS = @CFLAGS@ -COMPILE = $(CC) $(DEFS) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS) -LINK = $(CC) $(AM_CFLAGS) $(CFLAGS) $(LDFLAGS) -o $@ -DIST_COMMON = Makefile.am Makefile.in - - -DISTFILES = $(DIST_COMMON) $(SOURCES) $(HEADERS) $(TEXINFOS) $(EXTRA_DIST) - -TAR = tar -GZIP = --best -SOURCES = $(lib_a_SOURCES) -OBJECTS = $(lib_a_OBJECTS) - -all: Makefile $(LIBRARIES) - -.SUFFIXES: -.SUFFIXES: .S .c .def .o .s -$(srcdir)/Makefile.in: @MAINT@ Makefile.am $(top_srcdir)/configure.in $(ACLOCAL_M4) - cd $(top_srcdir) && $(AUTOMAKE) --cygnus math/Makefile - -Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status - cd $(top_builddir) \ - && CONFIG_FILES=$(subdir)/$@ CONFIG_HEADERS= $(SHELL) ./config.status - - -mostlyclean-noinstLIBRARIES: - -clean-noinstLIBRARIES: - -test -z "$(noinst_LIBRARIES)" || rm -f $(noinst_LIBRARIES) - -distclean-noinstLIBRARIES: - -maintainer-clean-noinstLIBRARIES: - -.c.o: - $(COMPILE) -c $< - -.s.o: - $(COMPILE) -c $< - -.S.o: - $(COMPILE) -c $< - -mostlyclean-compile: - -rm -f *.o core *.core - -clean-compile: - -distclean-compile: - -rm -f *.tab.c - -maintainer-clean-compile: - -lib.a: $(lib_a_OBJECTS) $(lib_a_DEPENDENCIES) - -rm -f lib.a - $(AR) cru lib.a $(lib_a_OBJECTS) $(lib_a_LIBADD) - $(RANLIB) lib.a - -tags: TAGS - -ID: $(HEADERS) $(SOURCES) $(LISP) - here=`pwd` && cd $(srcdir) \ - && mkid -f$$here/ID $(SOURCES) $(HEADERS) $(LISP) - -TAGS: $(HEADERS) $(SOURCES) $(TAGS_DEPENDENCIES) $(LISP) - tags=; \ - here=`pwd`; \ - list='$(SOURCES) $(HEADERS)'; \ - unique=`for i in $$list; do echo $$i; done | \ - awk ' { files[$$0] = 1; } \ - END { for (i in files) print i; }'`; \ - test -z "$(ETAGS_ARGS)$$unique$(LISP)$$tags" \ - || (cd $(srcdir) && etags $(ETAGS_ARGS) $$tags $$unique $(LISP) -o $$here/TAGS) - -mostlyclean-tags: - -clean-tags: - -distclean-tags: - -rm -f TAGS ID - -maintainer-clean-tags: - -distdir = $(top_builddir)/$(PACKAGE)-$(VERSION)/$(subdir) - -subdir = math - -distdir: $(DISTFILES) - @for file in $(DISTFILES); do \ - if test -f $$file; then d=.; else d=$(srcdir); fi; \ - test -f $(distdir)/$$file \ - || ln $$d/$$file $(distdir)/$$file 2> /dev/null \ - || cp -p $$d/$$file $(distdir)/$$file; \ - done -info: -dvi: -check: -installcheck: -install-info: -install-exec: - @$(NORMAL_INSTALL) - -install-data: - @$(NORMAL_INSTALL) - -install: install-exec install-data all - @: - -uninstall: - -install-strip: - $(MAKE) $(AM_MAKEFLAGS) INSTALL_PROGRAM='$(INSTALL_PROGRAM) -s' INSTALL_SCRIPT='$(INSTALL_PROGRAM)' install -installdirs: - - -mostlyclean-generic: - -clean-generic: - -test -z "$(CLEANFILES)" || rm -f $(CLEANFILES) - -distclean-generic: - -rm -f Makefile $(CONFIG_CLEAN_FILES) - -rm -f config.cache config.log stamp-h stamp-h[0-9]* - -maintainer-clean-generic: -mostlyclean: mostlyclean-noinstLIBRARIES mostlyclean-compile \ - mostlyclean-tags mostlyclean-generic - -clean: clean-noinstLIBRARIES clean-compile clean-tags clean-generic \ - mostlyclean - -distclean: distclean-noinstLIBRARIES distclean-compile distclean-tags \ - distclean-generic clean - -rm -f config.status - -maintainer-clean: maintainer-clean-noinstLIBRARIES \ - maintainer-clean-compile maintainer-clean-tags \ - maintainer-clean-generic distclean - @echo "This command is intended for maintainers to use;" - @echo "it deletes files that may require special tools to rebuild." - -.PHONY: mostlyclean-noinstLIBRARIES distclean-noinstLIBRARIES \ -clean-noinstLIBRARIES maintainer-clean-noinstLIBRARIES \ -mostlyclean-compile distclean-compile clean-compile \ -maintainer-clean-compile tags mostlyclean-tags distclean-tags \ -clean-tags maintainer-clean-tags distdir info dvi installcheck \ -install-info install-exec install-data install uninstall all \ -installdirs mostlyclean-generic distclean-generic clean-generic \ -maintainer-clean-generic clean mostlyclean distclean maintainer-clean - - -.c.def: - $(CHEW) < $< > $*.def 2> $*.ref - touch stmp-def - -doc: $(chobj) - cat $(srcdir)/math.tex >> $(TARGETDOC) - -# Texinfo does not appear to support underscores in file names, so we -# name the .def files without underscores. - -wacos.def: w_acos.c - $(CHEW) < $(srcdir)/w_acos.c >$@ 2>/dev/null - touch stmp-def -wacosh.def: w_acosh.c - $(CHEW) < $(srcdir)/w_acosh.c >$@ 2>/dev/null - touch stmp-def -wasin.def: w_asin.c - $(CHEW) < $(srcdir)/w_asin.c >$@ 2>/dev/null - touch stmp-def -sasinh.def: s_asinh.c - $(CHEW) < $(srcdir)/s_asinh.c >$@ 2>/dev/null - touch stmp-def -satan.def: s_atan.c - $(CHEW) < $(srcdir)/s_atan.c >$@ 2>/dev/null - touch stmp-def -watan2.def: w_atan2.c - $(CHEW) < $(srcdir)/w_atan2.c >$@ 2>/dev/null - touch stmp-def -watanh.def: w_atanh.c - $(CHEW) < $(srcdir)/w_atanh.c >$@ 2>/dev/null - touch stmp-def -wj0.def: w_j0.c - $(CHEW) < $(srcdir)/w_j0.c >$@ 2>/dev/null - touch stmp-def -scopysign.def: s_copysign.c - $(CHEW) < $(srcdir)/../common/s_copysign.c >$@ 2>/dev/null - touch stmp-def -wcosh.def: w_cosh.c - $(CHEW) < $(srcdir)/w_cosh.c >$@ 2>/dev/null - touch stmp-def -serf.def: s_erf.c - $(CHEW) < $(srcdir)/s_erf.c >$@ 2>/dev/null - touch stmp-def -wexp.def: w_exp.c - $(CHEW) < $(srcdir)/w_exp.c >$@ 2>/dev/null - touch stmp-def -sfabs.def: s_fabs.c - $(CHEW) < $(srcdir)/s_fabs.c >$@ 2>/dev/null - touch stmp-def -sfloor.def: s_floor.c - $(CHEW) < $(srcdir)/s_floor.c >$@ 2>/dev/null - touch stmp-def -wfmod.def: w_fmod.c - $(CHEW) < $(srcdir)/w_fmod.c >$@ 2>/dev/null - touch stmp-def -sfrexp.def: s_frexp.c - $(CHEW) < $(srcdir)/s_frexp.c >$@ 2>/dev/null - touch stmp-def -wgamma.def: w_gamma.c - $(CHEW) < $(srcdir)/w_gamma.c >$@ 2>/dev/null - touch stmp-def -whypot.def: w_hypot.c - $(CHEW) < $(srcdir)/w_hypot.c >$@ 2>/dev/null - touch stmp-def -sldexp.def: s_ldexp.c - $(CHEW) < $(srcdir)/s_ldexp.c >$@ 2>/dev/null - touch stmp-def -wlog.def: w_log.c - $(CHEW) < $(srcdir)/w_log.c >$@ 2>/dev/null - touch stmp-def -wlog10.def: w_log10.c - $(CHEW) < $(srcdir)/w_log10.c >$@ 2>/dev/null - touch stmp-def -wpow.def: w_pow.c - $(CHEW) < $(srcdir)/w_pow.c >$@ 2>/dev/null - touch stmp-def -wremainder.def: w_remainder.c - $(CHEW) < $(srcdir)/w_remainder.c >$@ 2>/dev/null - touch stmp-def -ssin.def: s_sin.c - $(CHEW) < $(srcdir)/s_sin.c >$@ 2>/dev/null - touch stmp-def -wsinh.def: w_sinh.c - $(CHEW) < $(srcdir)/w_sinh.c >$@ 2>/dev/null - touch stmp-def -wsqrt.def: w_sqrt.c - $(CHEW) < $(srcdir)/w_sqrt.c >$@ 2>/dev/null - touch stmp-def -stan.def: s_tan.c - $(CHEW) < $(srcdir)/s_tan.c >$@ 2>/dev/null - touch stmp-def -stanh.def: s_tanh.c - $(CHEW) < $(srcdir)/s_tanh.c >$@ 2>/dev/null - touch stmp-def -sisnan.def: s_isnan.c - $(CHEW) < $(srcdir)/s_isnan.c >$@ 2>/dev/null - touch stmp-def - -# A partial dependency list. - -$(lib_a_OBJECTS): $(srcdir)/../../libc/include/math.h $(srcdir)/../common/fdlibm.h - -# Tell versions [3.59,3.63) of GNU make to not export all variables. -# Otherwise a system limit (for SysV at least) may be exceeded. -.NOEXPORT: diff --git a/newlib/libm/math/e_acos.c b/newlib/libm/math/e_acos.c deleted file mode 100644 index 319b1d5..0000000 --- a/newlib/libm/math/e_acos.c +++ /dev/null @@ -1,111 +0,0 @@ - -/* @(#)e_acos.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* __ieee754_acos(x) - * Method : - * acos(x) = pi/2 - asin(x) - * acos(-x) = pi/2 + asin(x) - * For |x|<=0.5 - * acos(x) = pi/2 - (x + x*x^2*R(x^2)) (see asin.c) - * For x>0.5 - * acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2))) - * = 2asin(sqrt((1-x)/2)) - * = 2s + 2s*z*R(z) ...z=(1-x)/2, s=sqrt(z) - * = 2f + (2c + 2s*z*R(z)) - * where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term - * for f so that f+c ~ sqrt(z). - * For x<-0.5 - * acos(x) = pi - 2asin(sqrt((1-|x|)/2)) - * = pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z) - * - * Special cases: - * if x is NaN, return x itself; - * if |x|>1, return NaN with invalid signal. - * - * Function needed: sqrt - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ -static const double -#else -static double -#endif -one= 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ -pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */ -pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */ -pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */ -pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */ -pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */ -pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */ -pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */ -pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */ -pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */ -qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */ -qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */ -qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */ -qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */ - -#ifdef __STDC__ - double __ieee754_acos(double x) -#else - double __ieee754_acos(x) - double x; -#endif -{ - double z,p,q,r,w,s,c,df; - __int32_t hx,ix; - GET_HIGH_WORD(hx,x); - ix = hx&0x7fffffff; - if(ix>=0x3ff00000) { /* |x| >= 1 */ - __uint32_t lx; - GET_LOW_WORD(lx,x); - if(((ix-0x3ff00000)|lx)==0) { /* |x|==1 */ - if(hx>0) return 0.0; /* acos(1) = 0 */ - else return pi+2.0*pio2_lo; /* acos(-1)= pi */ - } - return (x-x)/(x-x); /* acos(|x|>1) is NaN */ - } - if(ix<0x3fe00000) { /* |x| < 0.5 */ - if(ix<=0x3c600000) return pio2_hi+pio2_lo;/*if|x|<2**-57*/ - z = x*x; - p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5))))); - q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4))); - r = p/q; - return pio2_hi - (x - (pio2_lo-x*r)); - } else if (hx<0) { /* x < -0.5 */ - z = (one+x)*0.5; - p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5))))); - q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4))); - s = __ieee754_sqrt(z); - r = p/q; - w = r*s-pio2_lo; - return pi - 2.0*(s+w); - } else { /* x > 0.5 */ - z = (one-x)*0.5; - s = __ieee754_sqrt(z); - df = s; - SET_LOW_WORD(df,0); - c = (z-df*df)/(s+df); - p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5))))); - q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4))); - r = p/q; - w = r*s+c; - return 2.0*(df+w); - } -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/e_acosh.c b/newlib/libm/math/e_acosh.c deleted file mode 100644 index 27984eb..0000000 --- a/newlib/libm/math/e_acosh.c +++ /dev/null @@ -1,70 +0,0 @@ - -/* @(#)e_acosh.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - * - */ - -/* __ieee754_acosh(x) - * Method : - * Based on - * acosh(x) = log [ x + sqrt(x*x-1) ] - * we have - * acosh(x) := log(x)+ln2, if x is large; else - * acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else - * acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1. - * - * Special cases: - * acosh(x) is NaN with signal if x<1. - * acosh(NaN) is NaN without signal. - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ -static const double -#else -static double -#endif -one = 1.0, -ln2 = 6.93147180559945286227e-01; /* 0x3FE62E42, 0xFEFA39EF */ - -#ifdef __STDC__ - double __ieee754_acosh(double x) -#else - double __ieee754_acosh(x) - double x; -#endif -{ - double t; - __int32_t hx; - __uint32_t lx; - EXTRACT_WORDS(hx,lx,x); - if(hx<0x3ff00000) { /* x < 1 */ - return (x-x)/(x-x); - } else if(hx >=0x41b00000) { /* x > 2**28 */ - if(hx >=0x7ff00000) { /* x is inf of NaN */ - return x+x; - } else - return __ieee754_log(x)+ln2; /* acosh(huge)=log(2x) */ - } else if(((hx-0x3ff00000)|lx)==0) { - return 0.0; /* acosh(1) = 0 */ - } else if (hx > 0x40000000) { /* 2**28 > x > 2 */ - t=x*x; - return __ieee754_log(2.0*x-one/(x+__ieee754_sqrt(t-one))); - } else { /* 1<x<2 */ - t = x-one; - return log1p(t+__ieee754_sqrt(2.0*t+t*t)); - } -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/e_asin.c b/newlib/libm/math/e_asin.c deleted file mode 100644 index 4b6f45e..0000000 --- a/newlib/libm/math/e_asin.c +++ /dev/null @@ -1,121 +0,0 @@ - -/* @(#)e_asin.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* __ieee754_asin(x) - * Method : - * Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ... - * we approximate asin(x) on [0,0.5] by - * asin(x) = x + x*x^2*R(x^2) - * where - * R(x^2) is a rational approximation of (asin(x)-x)/x^3 - * and its remez error is bounded by - * |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75) - * - * For x in [0.5,1] - * asin(x) = pi/2-2*asin(sqrt((1-x)/2)) - * Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2; - * then for x>0.98 - * asin(x) = pi/2 - 2*(s+s*z*R(z)) - * = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo) - * For x<=0.98, let pio4_hi = pio2_hi/2, then - * f = hi part of s; - * c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z) - * and - * asin(x) = pi/2 - 2*(s+s*z*R(z)) - * = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo) - * = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c)) - * - * Special cases: - * if x is NaN, return x itself; - * if |x|>1, return NaN with invalid signal. - * - */ - - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ -static const double -#else -static double -#endif -one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ -huge = 1.000e+300, -pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */ -pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */ -pio4_hi = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */ - /* coefficient for R(x^2) */ -pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */ -pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */ -pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */ -pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */ -pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */ -pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */ -qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */ -qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */ -qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */ -qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */ - -#ifdef __STDC__ - double __ieee754_asin(double x) -#else - double __ieee754_asin(x) - double x; -#endif -{ - double t,w,p,q,c,r,s; - __int32_t hx,ix; - GET_HIGH_WORD(hx,x); - ix = hx&0x7fffffff; - if(ix>= 0x3ff00000) { /* |x|>= 1 */ - __uint32_t lx; - GET_LOW_WORD(lx,x); - if(((ix-0x3ff00000)|lx)==0) - /* asin(1)=+-pi/2 with inexact */ - return x*pio2_hi+x*pio2_lo; - return (x-x)/(x-x); /* asin(|x|>1) is NaN */ - } else if (ix<0x3fe00000) { /* |x|<0.5 */ - if(ix<0x3e400000) { /* if |x| < 2**-27 */ - if(huge+x>one) return x;/* return x with inexact if x!=0*/ - } else { - t = x*x; - p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5))))); - q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4))); - w = p/q; - return x+x*w; - } - } - /* 1> |x|>= 0.5 */ - w = one-fabs(x); - t = w*0.5; - p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5))))); - q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4))); - s = __ieee754_sqrt(t); - if(ix>=0x3FEF3333) { /* if |x| > 0.975 */ - w = p/q; - t = pio2_hi-(2.0*(s+s*w)-pio2_lo); - } else { - w = s; - SET_LOW_WORD(w,0); - c = (t-w*w)/(s+w); - r = p/q; - p = 2.0*s*r-(pio2_lo-2.0*c); - q = pio4_hi-2.0*w; - t = pio4_hi-(p-q); - } - if(hx>0) return t; else return -t; -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/e_atan2.c b/newlib/libm/math/e_atan2.c deleted file mode 100644 index 268be64..0000000 --- a/newlib/libm/math/e_atan2.c +++ /dev/null @@ -1,131 +0,0 @@ - -/* @(#)e_atan2.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - * - */ - -/* __ieee754_atan2(y,x) - * Method : - * 1. Reduce y to positive by atan2(y,x)=-atan2(-y,x). - * 2. Reduce x to positive by (if x and y are unexceptional): - * ARG (x+iy) = arctan(y/x) ... if x > 0, - * ARG (x+iy) = pi - arctan[y/(-x)] ... if x < 0, - * - * Special cases: - * - * ATAN2((anything), NaN ) is NaN; - * ATAN2(NAN , (anything) ) is NaN; - * ATAN2(+-0, +(anything but NaN)) is +-0 ; - * ATAN2(+-0, -(anything but NaN)) is +-pi ; - * ATAN2(+-(anything but 0 and NaN), 0) is +-pi/2; - * ATAN2(+-(anything but INF and NaN), +INF) is +-0 ; - * ATAN2(+-(anything but INF and NaN), -INF) is +-pi; - * ATAN2(+-INF,+INF ) is +-pi/4 ; - * ATAN2(+-INF,-INF ) is +-3pi/4; - * ATAN2(+-INF, (anything but,0,NaN, and INF)) is +-pi/2; - * - * Constants: - * The hexadecimal values are the intended ones for the following - * constants. The decimal values may be used, provided that the - * compiler will convert from decimal to binary accurately enough - * to produce the hexadecimal values shown. - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ -static const double -#else -static double -#endif -tiny = 1.0e-300, -zero = 0.0, -pi_o_4 = 7.8539816339744827900E-01, /* 0x3FE921FB, 0x54442D18 */ -pi_o_2 = 1.5707963267948965580E+00, /* 0x3FF921FB, 0x54442D18 */ -pi = 3.1415926535897931160E+00, /* 0x400921FB, 0x54442D18 */ -pi_lo = 1.2246467991473531772E-16; /* 0x3CA1A626, 0x33145C07 */ - -#ifdef __STDC__ - double __ieee754_atan2(double y, double x) -#else - double __ieee754_atan2(y,x) - double y,x; -#endif -{ - double z; - __int32_t k,m,hx,hy,ix,iy; - __uint32_t lx,ly; - - EXTRACT_WORDS(hx,lx,x); - ix = hx&0x7fffffff; - EXTRACT_WORDS(hy,ly,y); - iy = hy&0x7fffffff; - if(((ix|((lx|-lx)>>31))>0x7ff00000)|| - ((iy|((ly|-ly)>>31))>0x7ff00000)) /* x or y is NaN */ - return x+y; - if((hx-0x3ff00000|lx)==0) return atan(y); /* x=1.0 */ - m = ((hy>>31)&1)|((hx>>30)&2); /* 2*sign(x)+sign(y) */ - - /* when y = 0 */ - if((iy|ly)==0) { - switch(m) { - case 0: - case 1: return y; /* atan(+-0,+anything)=+-0 */ - case 2: return pi+tiny;/* atan(+0,-anything) = pi */ - case 3: return -pi-tiny;/* atan(-0,-anything) =-pi */ - } - } - /* when x = 0 */ - if((ix|lx)==0) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny; - - /* when x is INF */ - if(ix==0x7ff00000) { - if(iy==0x7ff00000) { - switch(m) { - case 0: return pi_o_4+tiny;/* atan(+INF,+INF) */ - case 1: return -pi_o_4-tiny;/* atan(-INF,+INF) */ - case 2: return 3.0*pi_o_4+tiny;/*atan(+INF,-INF)*/ - case 3: return -3.0*pi_o_4-tiny;/*atan(-INF,-INF)*/ - } - } else { - switch(m) { - case 0: return zero ; /* atan(+...,+INF) */ - case 1: return -zero ; /* atan(-...,+INF) */ - case 2: return pi+tiny ; /* atan(+...,-INF) */ - case 3: return -pi-tiny ; /* atan(-...,-INF) */ - } - } - } - /* when y is INF */ - if(iy==0x7ff00000) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny; - - /* compute y/x */ - k = (iy-ix)>>20; - if(k > 60) z=pi_o_2+0.5*pi_lo; /* |y/x| > 2**60 */ - else if(hx<0&&k<-60) z=0.0; /* |y|/x < -2**60 */ - else z=atan(fabs(y/x)); /* safe to do y/x */ - switch (m) { - case 0: return z ; /* atan(+,+) */ - case 1: { - __uint32_t zh; - GET_HIGH_WORD(zh,z); - SET_HIGH_WORD(z,zh ^ 0x80000000); - } - return z ; /* atan(-,+) */ - case 2: return pi-(z-pi_lo);/* atan(+,-) */ - default: /* case 3 */ - return (z-pi_lo)-pi;/* atan(-,-) */ - } -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/e_atanh.c b/newlib/libm/math/e_atanh.c deleted file mode 100644 index 58ad325..0000000 --- a/newlib/libm/math/e_atanh.c +++ /dev/null @@ -1,75 +0,0 @@ - -/* @(#)e_atanh.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - * - */ - -/* __ieee754_atanh(x) - * Method : - * 1.Reduced x to positive by atanh(-x) = -atanh(x) - * 2.For x>=0.5 - * 1 2x x - * atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------) - * 2 1 - x 1 - x - * - * For x<0.5 - * atanh(x) = 0.5*log1p(2x+2x*x/(1-x)) - * - * Special cases: - * atanh(x) is NaN if |x| > 1 with signal; - * atanh(NaN) is that NaN with no signal; - * atanh(+-1) is +-INF with signal. - * - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ -static const double one = 1.0, huge = 1e300; -#else -static double one = 1.0, huge = 1e300; -#endif - -#ifdef __STDC__ -static const double zero = 0.0; -#else -static double zero = 0.0; -#endif - -#ifdef __STDC__ - double __ieee754_atanh(double x) -#else - double __ieee754_atanh(x) - double x; -#endif -{ - double t; - __int32_t hx,ix; - __uint32_t lx; - EXTRACT_WORDS(hx,lx,x); - ix = hx&0x7fffffff; - if ((ix|((lx|(-lx))>>31))>0x3ff00000) /* |x|>1 */ - return (x-x)/(x-x); - if(ix==0x3ff00000) - return x/zero; - if(ix<0x3e300000&&(huge+x)>zero) return x; /* x<2**-28 */ - SET_HIGH_WORD(x,ix); - if(ix<0x3fe00000) { /* x < 0.5 */ - t = x+x; - t = 0.5*log1p(t+t*x/(one-x)); - } else - t = 0.5*log1p((x+x)/(one-x)); - if(hx>=0) return t; else return -t; -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/e_exp.c b/newlib/libm/math/e_exp.c deleted file mode 100644 index ce093c6..0000000 --- a/newlib/libm/math/e_exp.c +++ /dev/null @@ -1,167 +0,0 @@ - -/* @(#)e_exp.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* __ieee754_exp(x) - * Returns the exponential of x. - * - * Method - * 1. Argument reduction: - * Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658. - * Given x, find r and integer k such that - * - * x = k*ln2 + r, |r| <= 0.5*ln2. - * - * Here r will be represented as r = hi-lo for better - * accuracy. - * - * 2. Approximation of exp(r) by a special rational function on - * the interval [0,0.34658]: - * Write - * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ... - * We use a special Reme algorithm on [0,0.34658] to generate - * a polynomial of degree 5 to approximate R. The maximum error - * of this polynomial approximation is bounded by 2**-59. In - * other words, - * R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5 - * (where z=r*r, and the values of P1 to P5 are listed below) - * and - * | 5 | -59 - * | 2.0+P1*z+...+P5*z - R(z) | <= 2 - * | | - * The computation of exp(r) thus becomes - * 2*r - * exp(r) = 1 + ------- - * R - r - * r*R1(r) - * = 1 + r + ----------- (for better accuracy) - * 2 - R1(r) - * where - * 2 4 10 - * R1(r) = r - (P1*r + P2*r + ... + P5*r ). - * - * 3. Scale back to obtain exp(x): - * From step 1, we have - * exp(x) = 2^k * exp(r) - * - * Special cases: - * exp(INF) is INF, exp(NaN) is NaN; - * exp(-INF) is 0, and - * for finite argument, only exp(0)=1 is exact. - * - * Accuracy: - * according to an error analysis, the error is always less than - * 1 ulp (unit in the last place). - * - * Misc. info. - * For IEEE double - * if x > 7.09782712893383973096e+02 then exp(x) overflow - * if x < -7.45133219101941108420e+02 then exp(x) underflow - * - * Constants: - * The hexadecimal values are the intended ones for the following - * constants. The decimal values may be used, provided that the - * compiler will convert from decimal to binary accurately enough - * to produce the hexadecimal values shown. - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ -static const double -#else -static double -#endif -one = 1.0, -halF[2] = {0.5,-0.5,}, -huge = 1.0e+300, -twom1000= 9.33263618503218878990e-302, /* 2**-1000=0x01700000,0*/ -o_threshold= 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */ -u_threshold= -7.45133219101941108420e+02, /* 0xc0874910, 0xD52D3051 */ -ln2HI[2] ={ 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */ - -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */ -ln2LO[2] ={ 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */ - -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */ -invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */ -P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */ -P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */ -P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */ -P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */ -P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */ - - -#ifdef __STDC__ - double __ieee754_exp(double x) /* default IEEE double exp */ -#else - double __ieee754_exp(x) /* default IEEE double exp */ - double x; -#endif -{ - double y,hi,lo,c,t; - __int32_t k,xsb; - __uint32_t hx; - - GET_HIGH_WORD(hx,x); - xsb = (hx>>31)&1; /* sign bit of x */ - hx &= 0x7fffffff; /* high word of |x| */ - - /* filter out non-finite argument */ - if(hx >= 0x40862E42) { /* if |x|>=709.78... */ - if(hx>=0x7ff00000) { - __uint32_t lx; - GET_LOW_WORD(lx,x); - if(((hx&0xfffff)|lx)!=0) - return x+x; /* NaN */ - else return (xsb==0)? x:0.0; /* exp(+-inf)={inf,0} */ - } - if(x > o_threshold) return huge*huge; /* overflow */ - if(x < u_threshold) return twom1000*twom1000; /* underflow */ - } - - /* argument reduction */ - if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */ - if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */ - hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb; - } else { - k = invln2*x+halF[xsb]; - t = k; - hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */ - lo = t*ln2LO[0]; - } - x = hi - lo; - } - else if(hx < 0x3e300000) { /* when |x|<2**-28 */ - if(huge+x>one) return one+x;/* trigger inexact */ - } - else k = 0; - - /* x is now in primary range */ - t = x*x; - c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); - if(k==0) return one-((x*c)/(c-2.0)-x); - else y = one-((lo-(x*c)/(2.0-c))-hi); - if(k >= -1021) { - __uint32_t hy; - GET_HIGH_WORD(hy,y); - SET_HIGH_WORD(y,hy+(k<<20)); /* add k to y's exponent */ - return y; - } else { - __uint32_t hy; - GET_HIGH_WORD(hy,y); - SET_HIGH_WORD(y,hy+((k+1000)<<20)); /* add k to y's exponent */ - return y*twom1000; - } -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/e_fmod.c b/newlib/libm/math/e_fmod.c deleted file mode 100644 index f9739ee..0000000 --- a/newlib/libm/math/e_fmod.c +++ /dev/null @@ -1,140 +0,0 @@ - -/* @(#)e_fmod.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* - * __ieee754_fmod(x,y) - * Return x mod y in exact arithmetic - * Method: shift and subtract - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ -static const double one = 1.0, Zero[] = {0.0, -0.0,}; -#else -static double one = 1.0, Zero[] = {0.0, -0.0,}; -#endif - -#ifdef __STDC__ - double __ieee754_fmod(double x, double y) -#else - double __ieee754_fmod(x,y) - double x,y ; -#endif -{ - __int32_t n,hx,hy,hz,ix,iy,sx,i; - __uint32_t lx,ly,lz; - - EXTRACT_WORDS(hx,lx,x); - EXTRACT_WORDS(hy,ly,y); - sx = hx&0x80000000; /* sign of x */ - hx ^=sx; /* |x| */ - hy &= 0x7fffffff; /* |y| */ - - /* purge off exception values */ - if((hy|ly)==0||(hx>=0x7ff00000)|| /* y=0,or x not finite */ - ((hy|((ly|-ly)>>31))>0x7ff00000)) /* or y is NaN */ - return (x*y)/(x*y); - if(hx<=hy) { - if((hx<hy)||(lx<ly)) return x; /* |x|<|y| return x */ - if(lx==ly) - return Zero[(__uint32_t)sx>>31]; /* |x|=|y| return x*0*/ - } - - /* determine ix = ilogb(x) */ - if(hx<0x00100000) { /* subnormal x */ - if(hx==0) { - for (ix = -1043, i=lx; i>0; i<<=1) ix -=1; - } else { - for (ix = -1022,i=(hx<<11); i>0; i<<=1) ix -=1; - } - } else ix = (hx>>20)-1023; - - /* determine iy = ilogb(y) */ - if(hy<0x00100000) { /* subnormal y */ - if(hy==0) { - for (iy = -1043, i=ly; i>0; i<<=1) iy -=1; - } else { - for (iy = -1022,i=(hy<<11); i>0; i<<=1) iy -=1; - } - } else iy = (hy>>20)-1023; - - /* set up {hx,lx}, {hy,ly} and align y to x */ - if(ix >= -1022) - hx = 0x00100000|(0x000fffff&hx); - else { /* subnormal x, shift x to normal */ - n = -1022-ix; - if(n<=31) { - hx = (hx<<n)|(lx>>(32-n)); - lx <<= n; - } else { - hx = lx<<(n-32); - lx = 0; - } - } - if(iy >= -1022) - hy = 0x00100000|(0x000fffff&hy); - else { /* subnormal y, shift y to normal */ - n = -1022-iy; - if(n<=31) { - hy = (hy<<n)|(ly>>(32-n)); - ly <<= n; - } else { - hy = ly<<(n-32); - ly = 0; - } - } - - /* fix point fmod */ - n = ix - iy; - while(n--) { - hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1; - if(hz<0){hx = hx+hx+(lx>>31); lx = lx+lx;} - else { - if((hz|lz)==0) /* return sign(x)*0 */ - return Zero[(__uint32_t)sx>>31]; - hx = hz+hz+(lz>>31); lx = lz+lz; - } - } - hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1; - if(hz>=0) {hx=hz;lx=lz;} - - /* convert back to floating value and restore the sign */ - if((hx|lx)==0) /* return sign(x)*0 */ - return Zero[(__uint32_t)sx>>31]; - while(hx<0x00100000) { /* normalize x */ - hx = hx+hx+(lx>>31); lx = lx+lx; - iy -= 1; - } - if(iy>= -1022) { /* normalize output */ - hx = ((hx-0x00100000)|((iy+1023)<<20)); - INSERT_WORDS(x,hx|sx,lx); - } else { /* subnormal output */ - n = -1022 - iy; - if(n<=20) { - lx = (lx>>n)|((__uint32_t)hx<<(32-n)); - hx >>= n; - } else if (n<=31) { - lx = (hx<<(32-n))|(lx>>n); hx = sx; - } else { - lx = hx>>(n-32); hx = sx; - } - INSERT_WORDS(x,hx|sx,lx); - x *= one; /* create necessary signal */ - } - return x; /* exact output */ -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/e_hypot.c b/newlib/libm/math/e_hypot.c deleted file mode 100644 index 03f7f51..0000000 --- a/newlib/libm/math/e_hypot.c +++ /dev/null @@ -1,128 +0,0 @@ - -/* @(#)e_hypot.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* __ieee754_hypot(x,y) - * - * Method : - * If (assume round-to-nearest) z=x*x+y*y - * has error less than sqrt(2)/2 ulp, than - * sqrt(z) has error less than 1 ulp (exercise). - * - * So, compute sqrt(x*x+y*y) with some care as - * follows to get the error below 1 ulp: - * - * Assume x>y>0; - * (if possible, set rounding to round-to-nearest) - * 1. if x > 2y use - * x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y - * where x1 = x with lower 32 bits cleared, x2 = x-x1; else - * 2. if x <= 2y use - * t1*y1+((x-y)*(x-y)+(t1*y2+t2*y)) - * where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1, - * y1= y with lower 32 bits chopped, y2 = y-y1. - * - * NOTE: scaling may be necessary if some argument is too - * large or too tiny - * - * Special cases: - * hypot(x,y) is INF if x or y is +INF or -INF; else - * hypot(x,y) is NAN if x or y is NAN. - * - * Accuracy: - * hypot(x,y) returns sqrt(x^2+y^2) with error less - * than 1 ulps (units in the last place) - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double __ieee754_hypot(double x, double y) -#else - double __ieee754_hypot(x,y) - double x, y; -#endif -{ - double a=x,b=y,t1,t2,y1,y2,w; - __int32_t j,k,ha,hb; - - GET_HIGH_WORD(ha,x); - ha &= 0x7fffffff; - GET_HIGH_WORD(hb,y); - hb &= 0x7fffffff; - if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;} - SET_HIGH_WORD(a,ha); /* a <- |a| */ - SET_HIGH_WORD(b,hb); /* b <- |b| */ - if((ha-hb)>0x3c00000) {return a+b;} /* x/y > 2**60 */ - k=0; - if(ha > 0x5f300000) { /* a>2**500 */ - if(ha >= 0x7ff00000) { /* Inf or NaN */ - __uint32_t low; - w = a+b; /* for sNaN */ - GET_LOW_WORD(low,a); - if(((ha&0xfffff)|low)==0) w = a; - GET_LOW_WORD(low,b); - if(((hb^0x7ff00000)|low)==0) w = b; - return w; - } - /* scale a and b by 2**-600 */ - ha -= 0x25800000; hb -= 0x25800000; k += 600; - SET_HIGH_WORD(a,ha); - SET_HIGH_WORD(b,hb); - } - if(hb < 0x20b00000) { /* b < 2**-500 */ - if(hb <= 0x000fffff) { /* subnormal b or 0 */ - __uint32_t low; - GET_LOW_WORD(low,b); - if((hb|low)==0) return a; - t1=0; - SET_HIGH_WORD(t1,0x7fd00000); /* t1=2^1022 */ - b *= t1; - a *= t1; - k -= 1022; - } else { /* scale a and b by 2^600 */ - ha += 0x25800000; /* a *= 2^600 */ - hb += 0x25800000; /* b *= 2^600 */ - k -= 600; - SET_HIGH_WORD(a,ha); - SET_HIGH_WORD(b,hb); - } - } - /* medium size a and b */ - w = a-b; - if (w>b) { - t1 = 0; - SET_HIGH_WORD(t1,ha); - t2 = a-t1; - w = __ieee754_sqrt(t1*t1-(b*(-b)-t2*(a+t1))); - } else { - a = a+a; - y1 = 0; - SET_HIGH_WORD(y1,hb); - y2 = b - y1; - t1 = 0; - SET_HIGH_WORD(t1,ha+0x00100000); - t2 = a - t1; - w = __ieee754_sqrt(t1*y1-(w*(-w)-(t1*y2+t2*b))); - } - if(k!=0) { - __uint32_t high; - t1 = 1.0; - GET_HIGH_WORD(high,t1); - SET_HIGH_WORD(t1,high+(k<<20)); - return t1*w; - } else return w; -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/e_j0.c b/newlib/libm/math/e_j0.c deleted file mode 100644 index 13773cb..0000000 --- a/newlib/libm/math/e_j0.c +++ /dev/null @@ -1,487 +0,0 @@ - -/* @(#)e_j0.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* __ieee754_j0(x), __ieee754_y0(x) - * Bessel function of the first and second kinds of order zero. - * Method -- j0(x): - * 1. For tiny x, we use j0(x) = 1 - x^2/4 + x^4/64 - ... - * 2. Reduce x to |x| since j0(x)=j0(-x), and - * for x in (0,2) - * j0(x) = 1-z/4+ z^2*R0/S0, where z = x*x; - * (precision: |j0-1+z/4-z^2R0/S0 |<2**-63.67 ) - * for x in (2,inf) - * j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0)) - * where x0 = x-pi/4. It is better to compute sin(x0),cos(x0) - * as follow: - * cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4) - * = 1/sqrt(2) * (cos(x) + sin(x)) - * sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4) - * = 1/sqrt(2) * (sin(x) - cos(x)) - * (To avoid cancellation, use - * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) - * to compute the worse one.) - * - * 3 Special cases - * j0(nan)= nan - * j0(0) = 1 - * j0(inf) = 0 - * - * Method -- y0(x): - * 1. For x<2. - * Since - * y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x^2/4 - ...) - * therefore y0(x)-2/pi*j0(x)*ln(x) is an even function. - * We use the following function to approximate y0, - * y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x^2 - * where - * U(z) = u00 + u01*z + ... + u06*z^6 - * V(z) = 1 + v01*z + ... + v04*z^4 - * with absolute approximation error bounded by 2**-72. - * Note: For tiny x, U/V = u0 and j0(x)~1, hence - * y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27) - * 2. For x>=2. - * y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0)) - * where x0 = x-pi/4. It is better to compute sin(x0),cos(x0) - * by the method mentioned above. - * 3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0. - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ -static double pzero(double), qzero(double); -#else -static double pzero(), qzero(); -#endif - -#ifdef __STDC__ -static const double -#else -static double -#endif -huge = 1e300, -one = 1.0, -invsqrtpi= 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */ -tpi = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */ - /* R0/S0 on [0, 2.00] */ -R02 = 1.56249999999999947958e-02, /* 0x3F8FFFFF, 0xFFFFFFFD */ -R03 = -1.89979294238854721751e-04, /* 0xBF28E6A5, 0xB61AC6E9 */ -R04 = 1.82954049532700665670e-06, /* 0x3EBEB1D1, 0x0C503919 */ -R05 = -4.61832688532103189199e-09, /* 0xBE33D5E7, 0x73D63FCE */ -S01 = 1.56191029464890010492e-02, /* 0x3F8FFCE8, 0x82C8C2A4 */ -S02 = 1.16926784663337450260e-04, /* 0x3F1EA6D2, 0xDD57DBF4 */ -S03 = 5.13546550207318111446e-07, /* 0x3EA13B54, 0xCE84D5A9 */ -S04 = 1.16614003333790000205e-09; /* 0x3E1408BC, 0xF4745D8F */ - -#ifdef __STDC__ -static const double zero = 0.0; -#else -static double zero = 0.0; -#endif - -#ifdef __STDC__ - double __ieee754_j0(double x) -#else - double __ieee754_j0(x) - double x; -#endif -{ - double z, s,c,ss,cc,r,u,v; - __int32_t hx,ix; - - GET_HIGH_WORD(hx,x); - ix = hx&0x7fffffff; - if(ix>=0x7ff00000) return one/(x*x); - x = fabs(x); - if(ix >= 0x40000000) { /* |x| >= 2.0 */ - s = sin(x); - c = cos(x); - ss = s-c; - cc = s+c; - if(ix<0x7fe00000) { /* make sure x+x not overflow */ - z = -cos(x+x); - if ((s*c)<zero) cc = z/ss; - else ss = z/cc; - } - /* - * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x) - * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x) - */ - if(ix>0x48000000) z = (invsqrtpi*cc)/__ieee754_sqrt(x); - else { - u = pzero(x); v = qzero(x); - z = invsqrtpi*(u*cc-v*ss)/__ieee754_sqrt(x); - } - return z; - } - if(ix<0x3f200000) { /* |x| < 2**-13 */ - if(huge+x>one) { /* raise inexact if x != 0 */ - if(ix<0x3e400000) return one; /* |x|<2**-27 */ - else return one - 0.25*x*x; - } - } - z = x*x; - r = z*(R02+z*(R03+z*(R04+z*R05))); - s = one+z*(S01+z*(S02+z*(S03+z*S04))); - if(ix < 0x3FF00000) { /* |x| < 1.00 */ - return one + z*(-0.25+(r/s)); - } else { - u = 0.5*x; - return((one+u)*(one-u)+z*(r/s)); - } -} - -#ifdef __STDC__ -static const double -#else -static double -#endif -u00 = -7.38042951086872317523e-02, /* 0xBFB2E4D6, 0x99CBD01F */ -u01 = 1.76666452509181115538e-01, /* 0x3FC69D01, 0x9DE9E3FC */ -u02 = -1.38185671945596898896e-02, /* 0xBF8C4CE8, 0xB16CFA97 */ -u03 = 3.47453432093683650238e-04, /* 0x3F36C54D, 0x20B29B6B */ -u04 = -3.81407053724364161125e-06, /* 0xBECFFEA7, 0x73D25CAD */ -u05 = 1.95590137035022920206e-08, /* 0x3E550057, 0x3B4EABD4 */ -u06 = -3.98205194132103398453e-11, /* 0xBDC5E43D, 0x693FB3C8 */ -v01 = 1.27304834834123699328e-02, /* 0x3F8A1270, 0x91C9C71A */ -v02 = 7.60068627350353253702e-05, /* 0x3F13ECBB, 0xF578C6C1 */ -v03 = 2.59150851840457805467e-07, /* 0x3E91642D, 0x7FF202FD */ -v04 = 4.41110311332675467403e-10; /* 0x3DFE5018, 0x3BD6D9EF */ - -#ifdef __STDC__ - double __ieee754_y0(double x) -#else - double __ieee754_y0(x) - double x; -#endif -{ - double z, s,c,ss,cc,u,v; - __int32_t hx,ix,lx; - - EXTRACT_WORDS(hx,lx,x); - ix = 0x7fffffff&hx; - /* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0 */ - if(ix>=0x7ff00000) return one/(x+x*x); - if((ix|lx)==0) return -one/zero; - if(hx<0) return zero/zero; - if(ix >= 0x40000000) { /* |x| >= 2.0 */ - /* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0)) - * where x0 = x-pi/4 - * Better formula: - * cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4) - * = 1/sqrt(2) * (sin(x) + cos(x)) - * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4) - * = 1/sqrt(2) * (sin(x) - cos(x)) - * To avoid cancellation, use - * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) - * to compute the worse one. - */ - s = sin(x); - c = cos(x); - ss = s-c; - cc = s+c; - /* - * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x) - * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x) - */ - if(ix<0x7fe00000) { /* make sure x+x not overflow */ - z = -cos(x+x); - if ((s*c)<zero) cc = z/ss; - else ss = z/cc; - } - if(ix>0x48000000) z = (invsqrtpi*ss)/__ieee754_sqrt(x); - else { - u = pzero(x); v = qzero(x); - z = invsqrtpi*(u*ss+v*cc)/__ieee754_sqrt(x); - } - return z; - } - if(ix<=0x3e400000) { /* x < 2**-27 */ - return(u00 + tpi*__ieee754_log(x)); - } - z = x*x; - u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06))))); - v = one+z*(v01+z*(v02+z*(v03+z*v04))); - return(u/v + tpi*(__ieee754_j0(x)*__ieee754_log(x))); -} - -/* The asymptotic expansions of pzero is - * 1 - 9/128 s^2 + 11025/98304 s^4 - ..., where s = 1/x. - * For x >= 2, We approximate pzero by - * pzero(x) = 1 + (R/S) - * where R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10 - * S = 1 + pS0*s^2 + ... + pS4*s^10 - * and - * | pzero(x)-1-R/S | <= 2 ** ( -60.26) - */ -#ifdef __STDC__ -static const double pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ -#else -static double pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ -#endif - 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */ - -7.03124999999900357484e-02, /* 0xBFB1FFFF, 0xFFFFFD32 */ - -8.08167041275349795626e+00, /* 0xC02029D0, 0xB44FA779 */ - -2.57063105679704847262e+02, /* 0xC0701102, 0x7B19E863 */ - -2.48521641009428822144e+03, /* 0xC0A36A6E, 0xCD4DCAFC */ - -5.25304380490729545272e+03, /* 0xC0B4850B, 0x36CC643D */ -}; -#ifdef __STDC__ -static const double pS8[5] = { -#else -static double pS8[5] = { -#endif - 1.16534364619668181717e+02, /* 0x405D2233, 0x07A96751 */ - 3.83374475364121826715e+03, /* 0x40ADF37D, 0x50596938 */ - 4.05978572648472545552e+04, /* 0x40E3D2BB, 0x6EB6B05F */ - 1.16752972564375915681e+05, /* 0x40FC810F, 0x8F9FA9BD */ - 4.76277284146730962675e+04, /* 0x40E74177, 0x4F2C49DC */ -}; - -#ifdef __STDC__ -static const double pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ -#else -static double pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ -#endif - -1.14125464691894502584e-11, /* 0xBDA918B1, 0x47E495CC */ - -7.03124940873599280078e-02, /* 0xBFB1FFFF, 0xE69AFBC6 */ - -4.15961064470587782438e+00, /* 0xC010A370, 0xF90C6BBF */ - -6.76747652265167261021e+01, /* 0xC050EB2F, 0x5A7D1783 */ - -3.31231299649172967747e+02, /* 0xC074B3B3, 0x6742CC63 */ - -3.46433388365604912451e+02, /* 0xC075A6EF, 0x28A38BD7 */ -}; -#ifdef __STDC__ -static const double pS5[5] = { -#else -static double pS5[5] = { -#endif - 6.07539382692300335975e+01, /* 0x404E6081, 0x0C98C5DE */ - 1.05125230595704579173e+03, /* 0x40906D02, 0x5C7E2864 */ - 5.97897094333855784498e+03, /* 0x40B75AF8, 0x8FBE1D60 */ - 9.62544514357774460223e+03, /* 0x40C2CCB8, 0xFA76FA38 */ - 2.40605815922939109441e+03, /* 0x40A2CC1D, 0xC70BE864 */ -}; - -#ifdef __STDC__ -static const double pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ -#else -static double pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ -#endif - -2.54704601771951915620e-09, /* 0xBE25E103, 0x6FE1AA86 */ - -7.03119616381481654654e-02, /* 0xBFB1FFF6, 0xF7C0E24B */ - -2.40903221549529611423e+00, /* 0xC00345B2, 0xAEA48074 */ - -2.19659774734883086467e+01, /* 0xC035F74A, 0x4CB94E14 */ - -5.80791704701737572236e+01, /* 0xC04D0A22, 0x420A1A45 */ - -3.14479470594888503854e+01, /* 0xC03F72AC, 0xA892D80F */ -}; -#ifdef __STDC__ -static const double pS3[5] = { -#else -static double pS3[5] = { -#endif - 3.58560338055209726349e+01, /* 0x4041ED92, 0x84077DD3 */ - 3.61513983050303863820e+02, /* 0x40769839, 0x464A7C0E */ - 1.19360783792111533330e+03, /* 0x4092A66E, 0x6D1061D6 */ - 1.12799679856907414432e+03, /* 0x40919FFC, 0xB8C39B7E */ - 1.73580930813335754692e+02, /* 0x4065B296, 0xFC379081 */ -}; - -#ifdef __STDC__ -static const double pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ -#else -static double pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ -#endif - -8.87534333032526411254e-08, /* 0xBE77D316, 0xE927026D */ - -7.03030995483624743247e-02, /* 0xBFB1FF62, 0x495E1E42 */ - -1.45073846780952986357e+00, /* 0xBFF73639, 0x8A24A843 */ - -7.63569613823527770791e+00, /* 0xC01E8AF3, 0xEDAFA7F3 */ - -1.11931668860356747786e+01, /* 0xC02662E6, 0xC5246303 */ - -3.23364579351335335033e+00, /* 0xC009DE81, 0xAF8FE70F */ -}; -#ifdef __STDC__ -static const double pS2[5] = { -#else -static double pS2[5] = { -#endif - 2.22202997532088808441e+01, /* 0x40363865, 0x908B5959 */ - 1.36206794218215208048e+02, /* 0x4061069E, 0x0EE8878F */ - 2.70470278658083486789e+02, /* 0x4070E786, 0x42EA079B */ - 1.53875394208320329881e+02, /* 0x40633C03, 0x3AB6FAFF */ - 1.46576176948256193810e+01, /* 0x402D50B3, 0x44391809 */ -}; - -#ifdef __STDC__ - static double pzero(double x) -#else - static double pzero(x) - double x; -#endif -{ -#ifdef __STDC__ - const double *p,*q; -#else - double *p,*q; -#endif - double z,r,s; - __int32_t ix; - GET_HIGH_WORD(ix,x); - ix &= 0x7fffffff; - if(ix>=0x40200000) {p = pR8; q= pS8;} - else if(ix>=0x40122E8B){p = pR5; q= pS5;} - else if(ix>=0x4006DB6D){p = pR3; q= pS3;} - else {p = pR2; q= pS2;} - z = one/(x*x); - r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); - s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4])))); - return one+ r/s; -} - - -/* For x >= 8, the asymptotic expansions of qzero is - * -1/8 s + 75/1024 s^3 - ..., where s = 1/x. - * We approximate qzero by - * qzero(x) = s*(-1.25 + (R/S)) - * where R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10 - * S = 1 + qS0*s^2 + ... + qS5*s^12 - * and - * | qzero(x)/s +1.25-R/S | <= 2 ** ( -61.22) - */ -#ifdef __STDC__ -static const double qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ -#else -static double qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ -#endif - 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */ - 7.32421874999935051953e-02, /* 0x3FB2BFFF, 0xFFFFFE2C */ - 1.17682064682252693899e+01, /* 0x40278952, 0x5BB334D6 */ - 5.57673380256401856059e+02, /* 0x40816D63, 0x15301825 */ - 8.85919720756468632317e+03, /* 0x40C14D99, 0x3E18F46D */ - 3.70146267776887834771e+04, /* 0x40E212D4, 0x0E901566 */ -}; -#ifdef __STDC__ -static const double qS8[6] = { -#else -static double qS8[6] = { -#endif - 1.63776026895689824414e+02, /* 0x406478D5, 0x365B39BC */ - 8.09834494656449805916e+03, /* 0x40BFA258, 0x4E6B0563 */ - 1.42538291419120476348e+05, /* 0x41016652, 0x54D38C3F */ - 8.03309257119514397345e+05, /* 0x412883DA, 0x83A52B43 */ - 8.40501579819060512818e+05, /* 0x4129A66B, 0x28DE0B3D */ - -3.43899293537866615225e+05, /* 0xC114FD6D, 0x2C9530C5 */ -}; - -#ifdef __STDC__ -static const double qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ -#else -static double qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ -#endif - 1.84085963594515531381e-11, /* 0x3DB43D8F, 0x29CC8CD9 */ - 7.32421766612684765896e-02, /* 0x3FB2BFFF, 0xD172B04C */ - 5.83563508962056953777e+00, /* 0x401757B0, 0xB9953DD3 */ - 1.35111577286449829671e+02, /* 0x4060E392, 0x0A8788E9 */ - 1.02724376596164097464e+03, /* 0x40900CF9, 0x9DC8C481 */ - 1.98997785864605384631e+03, /* 0x409F17E9, 0x53C6E3A6 */ -}; -#ifdef __STDC__ -static const double qS5[6] = { -#else -static double qS5[6] = { -#endif - 8.27766102236537761883e+01, /* 0x4054B1B3, 0xFB5E1543 */ - 2.07781416421392987104e+03, /* 0x40A03BA0, 0xDA21C0CE */ - 1.88472887785718085070e+04, /* 0x40D267D2, 0x7B591E6D */ - 5.67511122894947329769e+04, /* 0x40EBB5E3, 0x97E02372 */ - 3.59767538425114471465e+04, /* 0x40E19118, 0x1F7A54A0 */ - -5.35434275601944773371e+03, /* 0xC0B4EA57, 0xBEDBC609 */ -}; - -#ifdef __STDC__ -static const double qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ -#else -static double qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ -#endif - 4.37741014089738620906e-09, /* 0x3E32CD03, 0x6ADECB82 */ - 7.32411180042911447163e-02, /* 0x3FB2BFEE, 0x0E8D0842 */ - 3.34423137516170720929e+00, /* 0x400AC0FC, 0x61149CF5 */ - 4.26218440745412650017e+01, /* 0x40454F98, 0x962DAEDD */ - 1.70808091340565596283e+02, /* 0x406559DB, 0xE25EFD1F */ - 1.66733948696651168575e+02, /* 0x4064D77C, 0x81FA21E0 */ -}; -#ifdef __STDC__ -static const double qS3[6] = { -#else -static double qS3[6] = { -#endif - 4.87588729724587182091e+01, /* 0x40486122, 0xBFE343A6 */ - 7.09689221056606015736e+02, /* 0x40862D83, 0x86544EB3 */ - 3.70414822620111362994e+03, /* 0x40ACF04B, 0xE44DFC63 */ - 6.46042516752568917582e+03, /* 0x40B93C6C, 0xD7C76A28 */ - 2.51633368920368957333e+03, /* 0x40A3A8AA, 0xD94FB1C0 */ - -1.49247451836156386662e+02, /* 0xC062A7EB, 0x201CF40F */ -}; - -#ifdef __STDC__ -static const double qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ -#else -static double qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ -#endif - 1.50444444886983272379e-07, /* 0x3E84313B, 0x54F76BDB */ - 7.32234265963079278272e-02, /* 0x3FB2BEC5, 0x3E883E34 */ - 1.99819174093815998816e+00, /* 0x3FFFF897, 0xE727779C */ - 1.44956029347885735348e+01, /* 0x402CFDBF, 0xAAF96FE5 */ - 3.16662317504781540833e+01, /* 0x403FAA8E, 0x29FBDC4A */ - 1.62527075710929267416e+01, /* 0x403040B1, 0x71814BB4 */ -}; -#ifdef __STDC__ -static const double qS2[6] = { -#else -static double qS2[6] = { -#endif - 3.03655848355219184498e+01, /* 0x403E5D96, 0xF7C07AED */ - 2.69348118608049844624e+02, /* 0x4070D591, 0xE4D14B40 */ - 8.44783757595320139444e+02, /* 0x408A6645, 0x22B3BF22 */ - 8.82935845112488550512e+02, /* 0x408B977C, 0x9C5CC214 */ - 2.12666388511798828631e+02, /* 0x406A9553, 0x0E001365 */ - -5.31095493882666946917e+00, /* 0xC0153E6A, 0xF8B32931 */ -}; - -#ifdef __STDC__ - static double qzero(double x) -#else - static double qzero(x) - double x; -#endif -{ -#ifdef __STDC__ - const double *p,*q; -#else - double *p,*q; -#endif - double s,r,z; - __int32_t ix; - GET_HIGH_WORD(ix,x); - ix &= 0x7fffffff; - if(ix>=0x40200000) {p = qR8; q= qS8;} - else if(ix>=0x40122E8B){p = qR5; q= qS5;} - else if(ix>=0x4006DB6D){p = qR3; q= qS3;} - else {p = qR2; q= qS2;} - z = one/(x*x); - r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); - s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5]))))); - return (-.125 + r/s)/x; -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/e_j1.c b/newlib/libm/math/e_j1.c deleted file mode 100644 index 098eb56..0000000 --- a/newlib/libm/math/e_j1.c +++ /dev/null @@ -1,486 +0,0 @@ - -/* @(#)e_j1.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* __ieee754_j1(x), __ieee754_y1(x) - * Bessel function of the first and second kinds of order zero. - * Method -- j1(x): - * 1. For tiny x, we use j1(x) = x/2 - x^3/16 + x^5/384 - ... - * 2. Reduce x to |x| since j1(x)=-j1(-x), and - * for x in (0,2) - * j1(x) = x/2 + x*z*R0/S0, where z = x*x; - * (precision: |j1/x - 1/2 - R0/S0 |<2**-61.51 ) - * for x in (2,inf) - * j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1)) - * y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1)) - * where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1) - * as follow: - * cos(x1) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4) - * = 1/sqrt(2) * (sin(x) - cos(x)) - * sin(x1) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4) - * = -1/sqrt(2) * (sin(x) + cos(x)) - * (To avoid cancellation, use - * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) - * to compute the worse one.) - * - * 3 Special cases - * j1(nan)= nan - * j1(0) = 0 - * j1(inf) = 0 - * - * Method -- y1(x): - * 1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN - * 2. For x<2. - * Since - * y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x^3-...) - * therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function. - * We use the following function to approximate y1, - * y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x^2 - * where for x in [0,2] (abs err less than 2**-65.89) - * U(z) = U0[0] + U0[1]*z + ... + U0[4]*z^4 - * V(z) = 1 + v0[0]*z + ... + v0[4]*z^5 - * Note: For tiny x, 1/x dominate y1 and hence - * y1(tiny) = -2/pi/tiny, (choose tiny<2**-54) - * 3. For x>=2. - * y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1)) - * where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1) - * by method mentioned above. - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ -static double pone(double), qone(double); -#else -static double pone(), qone(); -#endif - -#ifdef __STDC__ -static const double -#else -static double -#endif -huge = 1e300, -one = 1.0, -invsqrtpi= 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */ -tpi = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */ - /* R0/S0 on [0,2] */ -r00 = -6.25000000000000000000e-02, /* 0xBFB00000, 0x00000000 */ -r01 = 1.40705666955189706048e-03, /* 0x3F570D9F, 0x98472C61 */ -r02 = -1.59955631084035597520e-05, /* 0xBEF0C5C6, 0xBA169668 */ -r03 = 4.96727999609584448412e-08, /* 0x3E6AAAFA, 0x46CA0BD9 */ -s01 = 1.91537599538363460805e-02, /* 0x3F939D0B, 0x12637E53 */ -s02 = 1.85946785588630915560e-04, /* 0x3F285F56, 0xB9CDF664 */ -s03 = 1.17718464042623683263e-06, /* 0x3EB3BFF8, 0x333F8498 */ -s04 = 5.04636257076217042715e-09, /* 0x3E35AC88, 0xC97DFF2C */ -s05 = 1.23542274426137913908e-11; /* 0x3DAB2ACF, 0xCFB97ED8 */ - -#ifdef __STDC__ -static const double zero = 0.0; -#else -static double zero = 0.0; -#endif - -#ifdef __STDC__ - double __ieee754_j1(double x) -#else - double __ieee754_j1(x) - double x; -#endif -{ - double z, s,c,ss,cc,r,u,v,y; - __int32_t hx,ix; - - GET_HIGH_WORD(hx,x); - ix = hx&0x7fffffff; - if(ix>=0x7ff00000) return one/x; - y = fabs(x); - if(ix >= 0x40000000) { /* |x| >= 2.0 */ - s = sin(y); - c = cos(y); - ss = -s-c; - cc = s-c; - if(ix<0x7fe00000) { /* make sure y+y not overflow */ - z = cos(y+y); - if ((s*c)>zero) cc = z/ss; - else ss = z/cc; - } - /* - * j1(x) = 1/__ieee754_sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / __ieee754_sqrt(x) - * y1(x) = 1/__ieee754_sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / __ieee754_sqrt(x) - */ - if(ix>0x48000000) z = (invsqrtpi*cc)/__ieee754_sqrt(y); - else { - u = pone(y); v = qone(y); - z = invsqrtpi*(u*cc-v*ss)/__ieee754_sqrt(y); - } - if(hx<0) return -z; - else return z; - } - if(ix<0x3e400000) { /* |x|<2**-27 */ - if(huge+x>one) return 0.5*x;/* inexact if x!=0 necessary */ - } - z = x*x; - r = z*(r00+z*(r01+z*(r02+z*r03))); - s = one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05)))); - r *= x; - return(x*0.5+r/s); -} - -#ifdef __STDC__ -static const double U0[5] = { -#else -static double U0[5] = { -#endif - -1.96057090646238940668e-01, /* 0xBFC91866, 0x143CBC8A */ - 5.04438716639811282616e-02, /* 0x3FA9D3C7, 0x76292CD1 */ - -1.91256895875763547298e-03, /* 0xBF5F55E5, 0x4844F50F */ - 2.35252600561610495928e-05, /* 0x3EF8AB03, 0x8FA6B88E */ - -9.19099158039878874504e-08, /* 0xBE78AC00, 0x569105B8 */ -}; -#ifdef __STDC__ -static const double V0[5] = { -#else -static double V0[5] = { -#endif - 1.99167318236649903973e-02, /* 0x3F94650D, 0x3F4DA9F0 */ - 2.02552581025135171496e-04, /* 0x3F2A8C89, 0x6C257764 */ - 1.35608801097516229404e-06, /* 0x3EB6C05A, 0x894E8CA6 */ - 6.22741452364621501295e-09, /* 0x3E3ABF1D, 0x5BA69A86 */ - 1.66559246207992079114e-11, /* 0x3DB25039, 0xDACA772A */ -}; - -#ifdef __STDC__ - double __ieee754_y1(double x) -#else - double __ieee754_y1(x) - double x; -#endif -{ - double z, s,c,ss,cc,u,v; - __int32_t hx,ix,lx; - - EXTRACT_WORDS(hx,lx,x); - ix = 0x7fffffff&hx; - /* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */ - if(ix>=0x7ff00000) return one/(x+x*x); - if((ix|lx)==0) return -one/zero; - if(hx<0) return zero/zero; - if(ix >= 0x40000000) { /* |x| >= 2.0 */ - s = sin(x); - c = cos(x); - ss = -s-c; - cc = s-c; - if(ix<0x7fe00000) { /* make sure x+x not overflow */ - z = cos(x+x); - if ((s*c)>zero) cc = z/ss; - else ss = z/cc; - } - /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0)) - * where x0 = x-3pi/4 - * Better formula: - * cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4) - * = 1/sqrt(2) * (sin(x) - cos(x)) - * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4) - * = -1/sqrt(2) * (cos(x) + sin(x)) - * To avoid cancellation, use - * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) - * to compute the worse one. - */ - if(ix>0x48000000) z = (invsqrtpi*ss)/__ieee754_sqrt(x); - else { - u = pone(x); v = qone(x); - z = invsqrtpi*(u*ss+v*cc)/__ieee754_sqrt(x); - } - return z; - } - if(ix<=0x3c900000) { /* x < 2**-54 */ - return(-tpi/x); - } - z = x*x; - u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4]))); - v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4])))); - return(x*(u/v) + tpi*(__ieee754_j1(x)*__ieee754_log(x)-one/x)); -} - -/* For x >= 8, the asymptotic expansions of pone is - * 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x. - * We approximate pone by - * pone(x) = 1 + (R/S) - * where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10 - * S = 1 + ps0*s^2 + ... + ps4*s^10 - * and - * | pone(x)-1-R/S | <= 2 ** ( -60.06) - */ - -#ifdef __STDC__ -static const double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ -#else -static double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ -#endif - 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */ - 1.17187499999988647970e-01, /* 0x3FBDFFFF, 0xFFFFFCCE */ - 1.32394806593073575129e+01, /* 0x402A7A9D, 0x357F7FCE */ - 4.12051854307378562225e+02, /* 0x4079C0D4, 0x652EA590 */ - 3.87474538913960532227e+03, /* 0x40AE457D, 0xA3A532CC */ - 7.91447954031891731574e+03, /* 0x40BEEA7A, 0xC32782DD */ -}; -#ifdef __STDC__ -static const double ps8[5] = { -#else -static double ps8[5] = { -#endif - 1.14207370375678408436e+02, /* 0x405C8D45, 0x8E656CAC */ - 3.65093083420853463394e+03, /* 0x40AC85DC, 0x964D274F */ - 3.69562060269033463555e+04, /* 0x40E20B86, 0x97C5BB7F */ - 9.76027935934950801311e+04, /* 0x40F7D42C, 0xB28F17BB */ - 3.08042720627888811578e+04, /* 0x40DE1511, 0x697A0B2D */ -}; - -#ifdef __STDC__ -static const double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ -#else -static double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ -#endif - 1.31990519556243522749e-11, /* 0x3DAD0667, 0xDAE1CA7D */ - 1.17187493190614097638e-01, /* 0x3FBDFFFF, 0xE2C10043 */ - 6.80275127868432871736e+00, /* 0x401B3604, 0x6E6315E3 */ - 1.08308182990189109773e+02, /* 0x405B13B9, 0x452602ED */ - 5.17636139533199752805e+02, /* 0x40802D16, 0xD052D649 */ - 5.28715201363337541807e+02, /* 0x408085B8, 0xBB7E0CB7 */ -}; -#ifdef __STDC__ -static const double ps5[5] = { -#else -static double ps5[5] = { -#endif - 5.92805987221131331921e+01, /* 0x404DA3EA, 0xA8AF633D */ - 9.91401418733614377743e+02, /* 0x408EFB36, 0x1B066701 */ - 5.35326695291487976647e+03, /* 0x40B4E944, 0x5706B6FB */ - 7.84469031749551231769e+03, /* 0x40BEA4B0, 0xB8A5BB15 */ - 1.50404688810361062679e+03, /* 0x40978030, 0x036F5E51 */ -}; - -#ifdef __STDC__ -static const double pr3[6] = { -#else -static double pr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ -#endif - 3.02503916137373618024e-09, /* 0x3E29FC21, 0xA7AD9EDD */ - 1.17186865567253592491e-01, /* 0x3FBDFFF5, 0x5B21D17B */ - 3.93297750033315640650e+00, /* 0x400F76BC, 0xE85EAD8A */ - 3.51194035591636932736e+01, /* 0x40418F48, 0x9DA6D129 */ - 9.10550110750781271918e+01, /* 0x4056C385, 0x4D2C1837 */ - 4.85590685197364919645e+01, /* 0x4048478F, 0x8EA83EE5 */ -}; -#ifdef __STDC__ -static const double ps3[5] = { -#else -static double ps3[5] = { -#endif - 3.47913095001251519989e+01, /* 0x40416549, 0xA134069C */ - 3.36762458747825746741e+02, /* 0x40750C33, 0x07F1A75F */ - 1.04687139975775130551e+03, /* 0x40905B7C, 0x5037D523 */ - 8.90811346398256432622e+02, /* 0x408BD67D, 0xA32E31E9 */ - 1.03787932439639277504e+02, /* 0x4059F26D, 0x7C2EED53 */ -}; - -#ifdef __STDC__ -static const double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ -#else -static double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ -#endif - 1.07710830106873743082e-07, /* 0x3E7CE9D4, 0xF65544F4 */ - 1.17176219462683348094e-01, /* 0x3FBDFF42, 0xBE760D83 */ - 2.36851496667608785174e+00, /* 0x4002F2B7, 0xF98FAEC0 */ - 1.22426109148261232917e+01, /* 0x40287C37, 0x7F71A964 */ - 1.76939711271687727390e+01, /* 0x4031B1A8, 0x177F8EE2 */ - 5.07352312588818499250e+00, /* 0x40144B49, 0xA574C1FE */ -}; -#ifdef __STDC__ -static const double ps2[5] = { -#else -static double ps2[5] = { -#endif - 2.14364859363821409488e+01, /* 0x40356FBD, 0x8AD5ECDC */ - 1.25290227168402751090e+02, /* 0x405F5293, 0x14F92CD5 */ - 2.32276469057162813669e+02, /* 0x406D08D8, 0xD5A2DBD9 */ - 1.17679373287147100768e+02, /* 0x405D6B7A, 0xDA1884A9 */ - 8.36463893371618283368e+00, /* 0x4020BAB1, 0xF44E5192 */ -}; - -#ifdef __STDC__ - static double pone(double x) -#else - static double pone(x) - double x; -#endif -{ -#ifdef __STDC__ - const double *p,*q; -#else - double *p,*q; -#endif - double z,r,s; - __int32_t ix; - GET_HIGH_WORD(ix,x); - ix &= 0x7fffffff; - if(ix>=0x40200000) {p = pr8; q= ps8;} - else if(ix>=0x40122E8B){p = pr5; q= ps5;} - else if(ix>=0x4006DB6D){p = pr3; q= ps3;} - else {p = pr2; q= ps2;} - z = one/(x*x); - r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); - s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4])))); - return one+ r/s; -} - - -/* For x >= 8, the asymptotic expansions of qone is - * 3/8 s - 105/1024 s^3 - ..., where s = 1/x. - * We approximate qone by - * qone(x) = s*(0.375 + (R/S)) - * where R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10 - * S = 1 + qs1*s^2 + ... + qs6*s^12 - * and - * | qone(x)/s -0.375-R/S | <= 2 ** ( -61.13) - */ - -#ifdef __STDC__ -static const double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ -#else -static double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ -#endif - 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */ - -1.02539062499992714161e-01, /* 0xBFBA3FFF, 0xFFFFFDF3 */ - -1.62717534544589987888e+01, /* 0xC0304591, 0xA26779F7 */ - -7.59601722513950107896e+02, /* 0xC087BCD0, 0x53E4B576 */ - -1.18498066702429587167e+04, /* 0xC0C724E7, 0x40F87415 */ - -4.84385124285750353010e+04, /* 0xC0E7A6D0, 0x65D09C6A */ -}; -#ifdef __STDC__ -static const double qs8[6] = { -#else -static double qs8[6] = { -#endif - 1.61395369700722909556e+02, /* 0x40642CA6, 0xDE5BCDE5 */ - 7.82538599923348465381e+03, /* 0x40BE9162, 0xD0D88419 */ - 1.33875336287249578163e+05, /* 0x4100579A, 0xB0B75E98 */ - 7.19657723683240939863e+05, /* 0x4125F653, 0x72869C19 */ - 6.66601232617776375264e+05, /* 0x412457D2, 0x7719AD5C */ - -2.94490264303834643215e+05, /* 0xC111F969, 0x0EA5AA18 */ -}; - -#ifdef __STDC__ -static const double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ -#else -static double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ -#endif - -2.08979931141764104297e-11, /* 0xBDB6FA43, 0x1AA1A098 */ - -1.02539050241375426231e-01, /* 0xBFBA3FFF, 0xCB597FEF */ - -8.05644828123936029840e+00, /* 0xC0201CE6, 0xCA03AD4B */ - -1.83669607474888380239e+02, /* 0xC066F56D, 0x6CA7B9B0 */ - -1.37319376065508163265e+03, /* 0xC09574C6, 0x6931734F */ - -2.61244440453215656817e+03, /* 0xC0A468E3, 0x88FDA79D */ -}; -#ifdef __STDC__ -static const double qs5[6] = { -#else -static double qs5[6] = { -#endif - 8.12765501384335777857e+01, /* 0x405451B2, 0xFF5A11B2 */ - 1.99179873460485964642e+03, /* 0x409F1F31, 0xE77BF839 */ - 1.74684851924908907677e+04, /* 0x40D10F1F, 0x0D64CE29 */ - 4.98514270910352279316e+04, /* 0x40E8576D, 0xAABAD197 */ - 2.79480751638918118260e+04, /* 0x40DB4B04, 0xCF7C364B */ - -4.71918354795128470869e+03, /* 0xC0B26F2E, 0xFCFFA004 */ -}; - -#ifdef __STDC__ -static const double qr3[6] = { -#else -static double qr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ -#endif - -5.07831226461766561369e-09, /* 0xBE35CFA9, 0xD38FC84F */ - -1.02537829820837089745e-01, /* 0xBFBA3FEB, 0x51AEED54 */ - -4.61011581139473403113e+00, /* 0xC01270C2, 0x3302D9FF */ - -5.78472216562783643212e+01, /* 0xC04CEC71, 0xC25D16DA */ - -2.28244540737631695038e+02, /* 0xC06C87D3, 0x4718D55F */ - -2.19210128478909325622e+02, /* 0xC06B66B9, 0x5F5C1BF6 */ -}; -#ifdef __STDC__ -static const double qs3[6] = { -#else -static double qs3[6] = { -#endif - 4.76651550323729509273e+01, /* 0x4047D523, 0xCCD367E4 */ - 6.73865112676699709482e+02, /* 0x40850EEB, 0xC031EE3E */ - 3.38015286679526343505e+03, /* 0x40AA684E, 0x448E7C9A */ - 5.54772909720722782367e+03, /* 0x40B5ABBA, 0xA61D54A6 */ - 1.90311919338810798763e+03, /* 0x409DBC7A, 0x0DD4DF4B */ - -1.35201191444307340817e+02, /* 0xC060E670, 0x290A311F */ -}; - -#ifdef __STDC__ -static const double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ -#else -static double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ -#endif - -1.78381727510958865572e-07, /* 0xBE87F126, 0x44C626D2 */ - -1.02517042607985553460e-01, /* 0xBFBA3E8E, 0x9148B010 */ - -2.75220568278187460720e+00, /* 0xC0060484, 0x69BB4EDA */ - -1.96636162643703720221e+01, /* 0xC033A9E2, 0xC168907F */ - -4.23253133372830490089e+01, /* 0xC04529A3, 0xDE104AAA */ - -2.13719211703704061733e+01, /* 0xC0355F36, 0x39CF6E52 */ -}; -#ifdef __STDC__ -static const double qs2[6] = { -#else -static double qs2[6] = { -#endif - 2.95333629060523854548e+01, /* 0x403D888A, 0x78AE64FF */ - 2.52981549982190529136e+02, /* 0x406F9F68, 0xDB821CBA */ - 7.57502834868645436472e+02, /* 0x4087AC05, 0xCE49A0F7 */ - 7.39393205320467245656e+02, /* 0x40871B25, 0x48D4C029 */ - 1.55949003336666123687e+02, /* 0x40637E5E, 0x3C3ED8D4 */ - -4.95949898822628210127e+00, /* 0xC013D686, 0xE71BE86B */ -}; - -#ifdef __STDC__ - static double qone(double x) -#else - static double qone(x) - double x; -#endif -{ -#ifdef __STDC__ - const double *p,*q; -#else - double *p,*q; -#endif - double s,r,z; - __int32_t ix; - GET_HIGH_WORD(ix,x); - ix &= 0x7fffffff; - if(ix>=0x40200000) {p = qr8; q= qs8;} - else if(ix>=0x40122E8B){p = qr5; q= qs5;} - else if(ix>=0x4006DB6D){p = qr3; q= qs3;} - else {p = qr2; q= qs2;} - z = one/(x*x); - r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); - s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5]))))); - return (.375 + r/s)/x; -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/e_jn.c b/newlib/libm/math/e_jn.c deleted file mode 100644 index 1eea27b..0000000 --- a/newlib/libm/math/e_jn.c +++ /dev/null @@ -1,281 +0,0 @@ - -/* @(#)e_jn.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* - * __ieee754_jn(n, x), __ieee754_yn(n, x) - * floating point Bessel's function of the 1st and 2nd kind - * of order n - * - * Special cases: - * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal; - * y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal. - * Note 2. About jn(n,x), yn(n,x) - * For n=0, j0(x) is called, - * for n=1, j1(x) is called, - * for n<x, forward recursion us used starting - * from values of j0(x) and j1(x). - * for n>x, a continued fraction approximation to - * j(n,x)/j(n-1,x) is evaluated and then backward - * recursion is used starting from a supposed value - * for j(n,x). The resulting value of j(0,x) is - * compared with the actual value to correct the - * supposed value of j(n,x). - * - * yn(n,x) is similar in all respects, except - * that forward recursion is used for all - * values of n>1. - * - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ -static const double -#else -static double -#endif -invsqrtpi= 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */ -two = 2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */ -one = 1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */ - -#ifdef __STDC__ -static const double zero = 0.00000000000000000000e+00; -#else -static double zero = 0.00000000000000000000e+00; -#endif - -#ifdef __STDC__ - double __ieee754_jn(int n, double x) -#else - double __ieee754_jn(n,x) - int n; double x; -#endif -{ - __int32_t i,hx,ix,lx, sgn; - double a, b, temp, di; - double z, w; - - /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x) - * Thus, J(-n,x) = J(n,-x) - */ - EXTRACT_WORDS(hx,lx,x); - ix = 0x7fffffff&hx; - /* if J(n,NaN) is NaN */ - if((ix|((__uint32_t)(lx|-lx))>>31)>0x7ff00000) return x+x; - if(n<0){ - n = -n; - x = -x; - hx ^= 0x80000000; - } - if(n==0) return(__ieee754_j0(x)); - if(n==1) return(__ieee754_j1(x)); - sgn = (n&1)&(hx>>31); /* even n -- 0, odd n -- sign(x) */ - x = fabs(x); - if((ix|lx)==0||ix>=0x7ff00000) /* if x is 0 or inf */ - b = zero; - else if((double)n<=x) { - /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */ - if(ix>=0x52D00000) { /* x > 2**302 */ - /* (x >> n**2) - * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) - * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) - * Let s=sin(x), c=cos(x), - * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then - * - * n sin(xn)*sqt2 cos(xn)*sqt2 - * ---------------------------------- - * 0 s-c c+s - * 1 -s-c -c+s - * 2 -s+c -c-s - * 3 s+c c-s - */ - switch(n&3) { - case 0: temp = cos(x)+sin(x); break; - case 1: temp = -cos(x)+sin(x); break; - case 2: temp = -cos(x)-sin(x); break; - case 3: temp = cos(x)-sin(x); break; - } - b = invsqrtpi*temp/__ieee754_sqrt(x); - } else { - a = __ieee754_j0(x); - b = __ieee754_j1(x); - for(i=1;i<n;i++){ - temp = b; - b = b*((double)(i+i)/x) - a; /* avoid underflow */ - a = temp; - } - } - } else { - if(ix<0x3e100000) { /* x < 2**-29 */ - /* x is tiny, return the first Taylor expansion of J(n,x) - * J(n,x) = 1/n!*(x/2)^n - ... - */ - if(n>33) /* underflow */ - b = zero; - else { - temp = x*0.5; b = temp; - for (a=one,i=2;i<=n;i++) { - a *= (double)i; /* a = n! */ - b *= temp; /* b = (x/2)^n */ - } - b = b/a; - } - } else { - /* use backward recurrence */ - /* x x^2 x^2 - * J(n,x)/J(n-1,x) = ---- ------ ------ ..... - * 2n - 2(n+1) - 2(n+2) - * - * 1 1 1 - * (for large x) = ---- ------ ------ ..... - * 2n 2(n+1) 2(n+2) - * -- - ------ - ------ - - * x x x - * - * Let w = 2n/x and h=2/x, then the above quotient - * is equal to the continued fraction: - * 1 - * = ----------------------- - * 1 - * w - ----------------- - * 1 - * w+h - --------- - * w+2h - ... - * - * To determine how many terms needed, let - * Q(0) = w, Q(1) = w(w+h) - 1, - * Q(k) = (w+k*h)*Q(k-1) - Q(k-2), - * When Q(k) > 1e4 good for single - * When Q(k) > 1e9 good for double - * When Q(k) > 1e17 good for quadruple - */ - /* determine k */ - double t,v; - double q0,q1,h,tmp; __int32_t k,m; - w = (n+n)/(double)x; h = 2.0/(double)x; - q0 = w; z = w+h; q1 = w*z - 1.0; k=1; - while(q1<1.0e9) { - k += 1; z += h; - tmp = z*q1 - q0; - q0 = q1; - q1 = tmp; - } - m = n+n; - for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t); - a = t; - b = one; - /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n) - * Hence, if n*(log(2n/x)) > ... - * single 8.8722839355e+01 - * double 7.09782712893383973096e+02 - * long double 1.1356523406294143949491931077970765006170e+04 - * then recurrent value may overflow and the result is - * likely underflow to zero - */ - tmp = n; - v = two/x; - tmp = tmp*__ieee754_log(fabs(v*tmp)); - if(tmp<7.09782712893383973096e+02) { - for(i=n-1,di=(double)(i+i);i>0;i--){ - temp = b; - b *= di; - b = b/x - a; - a = temp; - di -= two; - } - } else { - for(i=n-1,di=(double)(i+i);i>0;i--){ - temp = b; - b *= di; - b = b/x - a; - a = temp; - di -= two; - /* scale b to avoid spurious overflow */ - if(b>1e100) { - a /= b; - t /= b; - b = one; - } - } - } - b = (t*__ieee754_j0(x)/b); - } - } - if(sgn==1) return -b; else return b; -} - -#ifdef __STDC__ - double __ieee754_yn(int n, double x) -#else - double __ieee754_yn(n,x) - int n; double x; -#endif -{ - __int32_t i,hx,ix,lx; - __int32_t sign; - double a, b, temp; - - EXTRACT_WORDS(hx,lx,x); - ix = 0x7fffffff&hx; - /* if Y(n,NaN) is NaN */ - if((ix|((__uint32_t)(lx|-lx))>>31)>0x7ff00000) return x+x; - if((ix|lx)==0) return -one/zero; - if(hx<0) return zero/zero; - sign = 1; - if(n<0){ - n = -n; - sign = 1 - ((n&1)<<1); - } - if(n==0) return(__ieee754_y0(x)); - if(n==1) return(sign*__ieee754_y1(x)); - if(ix==0x7ff00000) return zero; - if(ix>=0x52D00000) { /* x > 2**302 */ - /* (x >> n**2) - * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) - * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) - * Let s=sin(x), c=cos(x), - * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then - * - * n sin(xn)*sqt2 cos(xn)*sqt2 - * ---------------------------------- - * 0 s-c c+s - * 1 -s-c -c+s - * 2 -s+c -c-s - * 3 s+c c-s - */ - switch(n&3) { - case 0: temp = sin(x)-cos(x); break; - case 1: temp = -sin(x)-cos(x); break; - case 2: temp = -sin(x)+cos(x); break; - case 3: temp = sin(x)+cos(x); break; - } - b = invsqrtpi*temp/__ieee754_sqrt(x); - } else { - __uint32_t high; - a = __ieee754_y0(x); - b = __ieee754_y1(x); - /* quit if b is -inf */ - GET_HIGH_WORD(high,b); - for(i=1;i<n&&high!=0xfff00000;i++){ - temp = b; - b = ((double)(i+i)/x)*b - a; - GET_HIGH_WORD(high,b); - a = temp; - } - } - if(sign>0) return b; else return -b; -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/e_log.c b/newlib/libm/math/e_log.c deleted file mode 100644 index 72cddb2..0000000 --- a/newlib/libm/math/e_log.c +++ /dev/null @@ -1,146 +0,0 @@ - -/* @(#)e_log.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* __ieee754_log(x) - * Return the logrithm of x - * - * Method : - * 1. Argument Reduction: find k and f such that - * x = 2^k * (1+f), - * where sqrt(2)/2 < 1+f < sqrt(2) . - * - * 2. Approximation of log(1+f). - * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) - * = 2s + 2/3 s**3 + 2/5 s**5 + ....., - * = 2s + s*R - * We use a special Reme algorithm on [0,0.1716] to generate - * a polynomial of degree 14 to approximate R The maximum error - * of this polynomial approximation is bounded by 2**-58.45. In - * other words, - * 2 4 6 8 10 12 14 - * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s - * (the values of Lg1 to Lg7 are listed in the program) - * and - * | 2 14 | -58.45 - * | Lg1*s +...+Lg7*s - R(z) | <= 2 - * | | - * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. - * In order to guarantee error in log below 1ulp, we compute log - * by - * log(1+f) = f - s*(f - R) (if f is not too large) - * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy) - * - * 3. Finally, log(x) = k*ln2 + log(1+f). - * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) - * Here ln2 is split into two floating point number: - * ln2_hi + ln2_lo, - * where n*ln2_hi is always exact for |n| < 2000. - * - * Special cases: - * log(x) is NaN with signal if x < 0 (including -INF) ; - * log(+INF) is +INF; log(0) is -INF with signal; - * log(NaN) is that NaN with no signal. - * - * Accuracy: - * according to an error analysis, the error is always less than - * 1 ulp (unit in the last place). - * - * Constants: - * The hexadecimal values are the intended ones for the following - * constants. The decimal values may be used, provided that the - * compiler will convert from decimal to binary accurately enough - * to produce the hexadecimal values shown. - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ -static const double -#else -static double -#endif -ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */ -ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */ -two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */ -Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */ -Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */ -Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */ -Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */ -Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */ -Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */ -Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ - -#ifdef __STDC__ -static const double zero = 0.0; -#else -static double zero = 0.0; -#endif - -#ifdef __STDC__ - double __ieee754_log(double x) -#else - double __ieee754_log(x) - double x; -#endif -{ - double hfsq,f,s,z,R,w,t1,t2,dk; - __int32_t k,hx,i,j; - __uint32_t lx; - - EXTRACT_WORDS(hx,lx,x); - - k=0; - if (hx < 0x00100000) { /* x < 2**-1022 */ - if (((hx&0x7fffffff)|lx)==0) - return -two54/zero; /* log(+-0)=-inf */ - if (hx<0) return (x-x)/zero; /* log(-#) = NaN */ - k -= 54; x *= two54; /* subnormal number, scale up x */ - GET_HIGH_WORD(hx,x); - } - if (hx >= 0x7ff00000) return x+x; - k += (hx>>20)-1023; - hx &= 0x000fffff; - i = (hx+0x95f64)&0x100000; - SET_HIGH_WORD(x,hx|(i^0x3ff00000)); /* normalize x or x/2 */ - k += (i>>20); - f = x-1.0; - if((0x000fffff&(2+hx))<3) { /* |f| < 2**-20 */ - if(f==zero) { if(k==0) return zero; else {dk=(double)k; - return dk*ln2_hi+dk*ln2_lo;}} - R = f*f*(0.5-0.33333333333333333*f); - if(k==0) return f-R; else {dk=(double)k; - return dk*ln2_hi-((R-dk*ln2_lo)-f);} - } - s = f/(2.0+f); - dk = (double)k; - z = s*s; - i = hx-0x6147a; - w = z*z; - j = 0x6b851-hx; - t1= w*(Lg2+w*(Lg4+w*Lg6)); - t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7))); - i |= j; - R = t2+t1; - if(i>0) { - hfsq=0.5*f*f; - if(k==0) return f-(hfsq-s*(hfsq+R)); else - return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f); - } else { - if(k==0) return f-s*(f-R); else - return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f); - } -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/e_log10.c b/newlib/libm/math/e_log10.c deleted file mode 100644 index f7daaa1..0000000 --- a/newlib/libm/math/e_log10.c +++ /dev/null @@ -1,98 +0,0 @@ - -/* @(#)e_log10.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* __ieee754_log10(x) - * Return the base 10 logarithm of x - * - * Method : - * Let log10_2hi = leading 40 bits of log10(2) and - * log10_2lo = log10(2) - log10_2hi, - * ivln10 = 1/log(10) rounded. - * Then - * n = ilogb(x), - * if(n<0) n = n+1; - * x = scalbn(x,-n); - * log10(x) := n*log10_2hi + (n*log10_2lo + ivln10*log(x)) - * - * Note 1: - * To guarantee log10(10**n)=n, where 10**n is normal, the rounding - * mode must set to Round-to-Nearest. - * Note 2: - * [1/log(10)] rounded to 53 bits has error .198 ulps; - * log10 is monotonic at all binary break points. - * - * Special cases: - * log10(x) is NaN with signal if x < 0; - * log10(+INF) is +INF with no signal; log10(0) is -INF with signal; - * log10(NaN) is that NaN with no signal; - * log10(10**N) = N for N=0,1,...,22. - * - * Constants: - * The hexadecimal values are the intended ones for the following constants. - * The decimal values may be used, provided that the compiler will convert - * from decimal to binary accurately enough to produce the hexadecimal values - * shown. - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ -static const double -#else -static double -#endif -two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */ -ivln10 = 4.34294481903251816668e-01, /* 0x3FDBCB7B, 0x1526E50E */ -log10_2hi = 3.01029995663611771306e-01, /* 0x3FD34413, 0x509F6000 */ -log10_2lo = 3.69423907715893078616e-13; /* 0x3D59FEF3, 0x11F12B36 */ - -#ifdef __STDC__ -static const double zero = 0.0; -#else -static double zero = 0.0; -#endif - -#ifdef __STDC__ - double __ieee754_log10(double x) -#else - double __ieee754_log10(x) - double x; -#endif -{ - double y,z; - __int32_t i,k,hx; - __uint32_t lx; - - EXTRACT_WORDS(hx,lx,x); - - k=0; - if (hx < 0x00100000) { /* x < 2**-1022 */ - if (((hx&0x7fffffff)|lx)==0) - return -two54/zero; /* log(+-0)=-inf */ - if (hx<0) return (x-x)/zero; /* log(-#) = NaN */ - k -= 54; x *= two54; /* subnormal number, scale up x */ - GET_HIGH_WORD(hx,x); - } - if (hx >= 0x7ff00000) return x+x; - k += (hx>>20)-1023; - i = ((__uint32_t)k&0x80000000)>>31; - hx = (hx&0x000fffff)|((0x3ff-i)<<20); - y = (double)(k+i); - SET_HIGH_WORD(x,hx); - z = y*log10_2lo + ivln10*__ieee754_log(x); - return z+y*log10_2hi; -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/e_pow.c b/newlib/libm/math/e_pow.c deleted file mode 100644 index 9312085..0000000 --- a/newlib/libm/math/e_pow.c +++ /dev/null @@ -1,312 +0,0 @@ - -/* @(#)e_pow.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* __ieee754_pow(x,y) return x**y - * - * n - * Method: Let x = 2 * (1+f) - * 1. Compute and return log2(x) in two pieces: - * log2(x) = w1 + w2, - * where w1 has 53-24 = 29 bit trailing zeros. - * 2. Perform y*log2(x) = n+y' by simulating muti-precision - * arithmetic, where |y'|<=0.5. - * 3. Return x**y = 2**n*exp(y'*log2) - * - * Special cases: - * 1. (anything) ** 0 is 1 - * 2. (anything) ** 1 is itself - * 3. (anything) ** NAN is NAN - * 4. NAN ** (anything except 0) is NAN - * 5. +-(|x| > 1) ** +INF is +INF - * 6. +-(|x| > 1) ** -INF is +0 - * 7. +-(|x| < 1) ** +INF is +0 - * 8. +-(|x| < 1) ** -INF is +INF - * 9. +-1 ** +-INF is NAN - * 10. +0 ** (+anything except 0, NAN) is +0 - * 11. -0 ** (+anything except 0, NAN, odd integer) is +0 - * 12. +0 ** (-anything except 0, NAN) is +INF - * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF - * 14. -0 ** (odd integer) = -( +0 ** (odd integer) ) - * 15. +INF ** (+anything except 0,NAN) is +INF - * 16. +INF ** (-anything except 0,NAN) is +0 - * 17. -INF ** (anything) = -0 ** (-anything) - * 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer) - * 19. (-anything except 0 and inf) ** (non-integer) is NAN - * - * Accuracy: - * pow(x,y) returns x**y nearly rounded. In particular - * pow(integer,integer) - * always returns the correct integer provided it is - * representable. - * - * Constants : - * The hexadecimal values are the intended ones for the following - * constants. The decimal values may be used, provided that the - * compiler will convert from decimal to binary accurately enough - * to produce the hexadecimal values shown. - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ -static const double -#else -static double -#endif -bp[] = {1.0, 1.5,}, -dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */ -dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */ -zero = 0.0, -one = 1.0, -two = 2.0, -two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */ -huge = 1.0e300, -tiny = 1.0e-300, - /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */ -L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */ -L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */ -L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */ -L4 = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */ -L5 = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */ -L6 = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */ -P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */ -P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */ -P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */ -P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */ -P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */ -lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */ -lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */ -lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */ -ovt = 8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */ -cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */ -cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */ -cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/ -ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */ -ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/ -ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/ - -#ifdef __STDC__ - double __ieee754_pow(double x, double y) -#else - double __ieee754_pow(x,y) - double x, y; -#endif -{ - double z,ax,z_h,z_l,p_h,p_l; - double y1,t1,t2,r,s,t,u,v,w; - __int32_t i,j,k,yisint,n; - __int32_t hx,hy,ix,iy; - __uint32_t lx,ly; - - EXTRACT_WORDS(hx,lx,x); - EXTRACT_WORDS(hy,ly,y); - ix = hx&0x7fffffff; iy = hy&0x7fffffff; - - /* y==zero: x**0 = 1 */ - if((iy|ly)==0) return one; - - /* +-NaN return x+y */ - if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) || - iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0))) - return x+y; - - /* determine if y is an odd int when x < 0 - * yisint = 0 ... y is not an integer - * yisint = 1 ... y is an odd int - * yisint = 2 ... y is an even int - */ - yisint = 0; - if(hx<0) { - if(iy>=0x43400000) yisint = 2; /* even integer y */ - else if(iy>=0x3ff00000) { - k = (iy>>20)-0x3ff; /* exponent */ - if(k>20) { - j = ly>>(52-k); - if((j<<(52-k))==ly) yisint = 2-(j&1); - } else if(ly==0) { - j = iy>>(20-k); - if((j<<(20-k))==iy) yisint = 2-(j&1); - } - } - } - - /* special value of y */ - if(ly==0) { - if (iy==0x7ff00000) { /* y is +-inf */ - if(((ix-0x3ff00000)|lx)==0) - return y - y; /* inf**+-1 is NaN */ - else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */ - return (hy>=0)? y: zero; - else /* (|x|<1)**-,+inf = inf,0 */ - return (hy<0)?-y: zero; - } - if(iy==0x3ff00000) { /* y is +-1 */ - if(hy<0) return one/x; else return x; - } - if(hy==0x40000000) return x*x; /* y is 2 */ - if(hy==0x3fe00000) { /* y is 0.5 */ - if(hx>=0) /* x >= +0 */ - return __ieee754_sqrt(x); - } - } - - ax = fabs(x); - /* special value of x */ - if(lx==0) { - if(ix==0x7ff00000||ix==0||ix==0x3ff00000){ - z = ax; /*x is +-0,+-inf,+-1*/ - if(hy<0) z = one/z; /* z = (1/|x|) */ - if(hx<0) { - if(((ix-0x3ff00000)|yisint)==0) { - z = (z-z)/(z-z); /* (-1)**non-int is NaN */ - } else if(yisint==1) - z = -z; /* (x<0)**odd = -(|x|**odd) */ - } - return z; - } - } - - /* (x<0)**(non-int) is NaN */ - /* CYGNUS LOCAL: This used to be - if((((hx>>31)+1)|yisint)==0) return (x-x)/(x-x); - but ANSI C says a right shift of a signed negative quantity is - implementation defined. */ - if(((((__uint32_t)hx>>31)-1)|yisint)==0) return (x-x)/(x-x); - - /* |y| is huge */ - if(iy>0x41e00000) { /* if |y| > 2**31 */ - if(iy>0x43f00000){ /* if |y| > 2**64, must o/uflow */ - if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny; - if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny; - } - /* over/underflow if x is not close to one */ - if(ix<0x3fefffff) return (hy<0)? huge*huge:tiny*tiny; - if(ix>0x3ff00000) return (hy>0)? huge*huge:tiny*tiny; - /* now |1-x| is tiny <= 2**-20, suffice to compute - log(x) by x-x^2/2+x^3/3-x^4/4 */ - t = x-1; /* t has 20 trailing zeros */ - w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25)); - u = ivln2_h*t; /* ivln2_h has 21 sig. bits */ - v = t*ivln2_l-w*ivln2; - t1 = u+v; - SET_LOW_WORD(t1,0); - t2 = v-(t1-u); - } else { - double s2,s_h,s_l,t_h,t_l; - n = 0; - /* take care subnormal number */ - if(ix<0x00100000) - {ax *= two53; n -= 53; GET_HIGH_WORD(ix,ax); } - n += ((ix)>>20)-0x3ff; - j = ix&0x000fffff; - /* determine interval */ - ix = j|0x3ff00000; /* normalize ix */ - if(j<=0x3988E) k=0; /* |x|<sqrt(3/2) */ - else if(j<0xBB67A) k=1; /* |x|<sqrt(3) */ - else {k=0;n+=1;ix -= 0x00100000;} - SET_HIGH_WORD(ax,ix); - - /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */ - u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */ - v = one/(ax+bp[k]); - s = u*v; - s_h = s; - SET_LOW_WORD(s_h,0); - /* t_h=ax+bp[k] High */ - t_h = zero; - SET_HIGH_WORD(t_h,((ix>>1)|0x20000000)+0x00080000+(k<<18)); - t_l = ax - (t_h-bp[k]); - s_l = v*((u-s_h*t_h)-s_h*t_l); - /* compute log(ax) */ - s2 = s*s; - r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6))))); - r += s_l*(s_h+s); - s2 = s_h*s_h; - t_h = 3.0+s2+r; - SET_LOW_WORD(t_h,0); - t_l = r-((t_h-3.0)-s2); - /* u+v = s*(1+...) */ - u = s_h*t_h; - v = s_l*t_h+t_l*s; - /* 2/(3log2)*(s+...) */ - p_h = u+v; - SET_LOW_WORD(p_h,0); - p_l = v-(p_h-u); - z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */ - z_l = cp_l*p_h+p_l*cp+dp_l[k]; - /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */ - t = (double)n; - t1 = (((z_h+z_l)+dp_h[k])+t); - SET_LOW_WORD(t1,0); - t2 = z_l-(((t1-t)-dp_h[k])-z_h); - } - - s = one; /* s (sign of result -ve**odd) = -1 else = 1 */ - if(((((__uint32_t)hx>>31)-1)|(yisint-1))==0) - s = -one;/* (-ve)**(odd int) */ - - /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */ - y1 = y; - SET_LOW_WORD(y1,0); - p_l = (y-y1)*t1+y*t2; - p_h = y1*t1; - z = p_l+p_h; - EXTRACT_WORDS(j,i,z); - if (j>=0x40900000) { /* z >= 1024 */ - if(((j-0x40900000)|i)!=0) /* if z > 1024 */ - return s*huge*huge; /* overflow */ - else { - if(p_l+ovt>z-p_h) return s*huge*huge; /* overflow */ - } - } else if((j&0x7fffffff)>=0x4090cc00 ) { /* z <= -1075 */ - if(((j-0xc090cc00)|i)!=0) /* z < -1075 */ - return s*tiny*tiny; /* underflow */ - else { - if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */ - } - } - /* - * compute 2**(p_h+p_l) - */ - i = j&0x7fffffff; - k = (i>>20)-0x3ff; - n = 0; - if(i>0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */ - n = j+(0x00100000>>(k+1)); - k = ((n&0x7fffffff)>>20)-0x3ff; /* new k for n */ - t = zero; - SET_HIGH_WORD(t,n&~(0x000fffff>>k)); - n = ((n&0x000fffff)|0x00100000)>>(20-k); - if(j<0) n = -n; - p_h -= t; - } - t = p_l+p_h; - SET_LOW_WORD(t,0); - u = t*lg2_h; - v = (p_l-(t-p_h))*lg2+t*lg2_l; - z = u+v; - w = v-(z-u); - t = z*z; - t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); - r = (z*t1)/(t1-two)-(w+z*w); - z = one-(r-z); - GET_HIGH_WORD(j,z); - j += (n<<20); - if((j>>20)<=0) z = scalbn(z,(int)n); /* subnormal output */ - else SET_HIGH_WORD(z,j); - return s*z; -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/e_rem_pio2.c b/newlib/libm/math/e_rem_pio2.c deleted file mode 100644 index 3e5d0f7..0000000 --- a/newlib/libm/math/e_rem_pio2.c +++ /dev/null @@ -1,185 +0,0 @@ - -/* @(#)e_rem_pio2.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - * - */ - -/* __ieee754_rem_pio2(x,y) - * - * return the remainder of x rem pi/2 in y[0]+y[1] - * use __kernel_rem_pio2() - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -/* - * Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi - */ -#ifdef __STDC__ -static const __int32_t two_over_pi[] = { -#else -static __int32_t two_over_pi[] = { -#endif -0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62, -0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A, -0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129, -0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41, -0x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8, -0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF, -0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5, -0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08, -0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3, -0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880, -0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B, -}; - -#ifdef __STDC__ -static const __int32_t npio2_hw[] = { -#else -static __int32_t npio2_hw[] = { -#endif -0x3FF921FB, 0x400921FB, 0x4012D97C, 0x401921FB, 0x401F6A7A, 0x4022D97C, -0x4025FDBB, 0x402921FB, 0x402C463A, 0x402F6A7A, 0x4031475C, 0x4032D97C, -0x40346B9C, 0x4035FDBB, 0x40378FDB, 0x403921FB, 0x403AB41B, 0x403C463A, -0x403DD85A, 0x403F6A7A, 0x40407E4C, 0x4041475C, 0x4042106C, 0x4042D97C, -0x4043A28C, 0x40446B9C, 0x404534AC, 0x4045FDBB, 0x4046C6CB, 0x40478FDB, -0x404858EB, 0x404921FB, -}; - -/* - * invpio2: 53 bits of 2/pi - * pio2_1: first 33 bit of pi/2 - * pio2_1t: pi/2 - pio2_1 - * pio2_2: second 33 bit of pi/2 - * pio2_2t: pi/2 - (pio2_1+pio2_2) - * pio2_3: third 33 bit of pi/2 - * pio2_3t: pi/2 - (pio2_1+pio2_2+pio2_3) - */ - -#ifdef __STDC__ -static const double -#else -static double -#endif -zero = 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */ -half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */ -two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */ -invpio2 = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */ -pio2_1 = 1.57079632673412561417e+00, /* 0x3FF921FB, 0x54400000 */ -pio2_1t = 6.07710050650619224932e-11, /* 0x3DD0B461, 0x1A626331 */ -pio2_2 = 6.07710050630396597660e-11, /* 0x3DD0B461, 0x1A600000 */ -pio2_2t = 2.02226624879595063154e-21, /* 0x3BA3198A, 0x2E037073 */ -pio2_3 = 2.02226624871116645580e-21, /* 0x3BA3198A, 0x2E000000 */ -pio2_3t = 8.47842766036889956997e-32; /* 0x397B839A, 0x252049C1 */ - -#ifdef __STDC__ - __int32_t __ieee754_rem_pio2(double x, double *y) -#else - __int32_t __ieee754_rem_pio2(x,y) - double x,y[]; -#endif -{ - double z,w,t,r,fn; - double tx[3]; - __int32_t i,j,n,ix,hx; - int e0,nx; - __uint32_t low; - - GET_HIGH_WORD(hx,x); /* high word of x */ - ix = hx&0x7fffffff; - if(ix<=0x3fe921fb) /* |x| ~<= pi/4 , no need for reduction */ - {y[0] = x; y[1] = 0; return 0;} - if(ix<0x4002d97c) { /* |x| < 3pi/4, special case with n=+-1 */ - if(hx>0) { - z = x - pio2_1; - if(ix!=0x3ff921fb) { /* 33+53 bit pi is good enough */ - y[0] = z - pio2_1t; - y[1] = (z-y[0])-pio2_1t; - } else { /* near pi/2, use 33+33+53 bit pi */ - z -= pio2_2; - y[0] = z - pio2_2t; - y[1] = (z-y[0])-pio2_2t; - } - return 1; - } else { /* negative x */ - z = x + pio2_1; - if(ix!=0x3ff921fb) { /* 33+53 bit pi is good enough */ - y[0] = z + pio2_1t; - y[1] = (z-y[0])+pio2_1t; - } else { /* near pi/2, use 33+33+53 bit pi */ - z += pio2_2; - y[0] = z + pio2_2t; - y[1] = (z-y[0])+pio2_2t; - } - return -1; - } - } - if(ix<=0x413921fb) { /* |x| ~<= 2^19*(pi/2), medium size */ - t = fabs(x); - n = (__int32_t) (t*invpio2+half); - fn = (double)n; - r = t-fn*pio2_1; - w = fn*pio2_1t; /* 1st round good to 85 bit */ - if(n<32&&ix!=npio2_hw[n-1]) { - y[0] = r-w; /* quick check no cancellation */ - } else { - __uint32_t high; - j = ix>>20; - y[0] = r-w; - GET_HIGH_WORD(high,y[0]); - i = j-((high>>20)&0x7ff); - if(i>16) { /* 2nd iteration needed, good to 118 */ - t = r; - w = fn*pio2_2; - r = t-w; - w = fn*pio2_2t-((t-r)-w); - y[0] = r-w; - GET_HIGH_WORD(high,y[0]); - i = j-((high>>20)&0x7ff); - if(i>49) { /* 3rd iteration need, 151 bits acc */ - t = r; /* will cover all possible cases */ - w = fn*pio2_3; - r = t-w; - w = fn*pio2_3t-((t-r)-w); - y[0] = r-w; - } - } - } - y[1] = (r-y[0])-w; - if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;} - else return n; - } - /* - * all other (large) arguments - */ - if(ix>=0x7ff00000) { /* x is inf or NaN */ - y[0]=y[1]=x-x; return 0; - } - /* set z = scalbn(|x|,ilogb(x)-23) */ - GET_LOW_WORD(low,x); - SET_LOW_WORD(z,low); - e0 = (int)((ix>>20)-1046); /* e0 = ilogb(z)-23; */ - SET_HIGH_WORD(z, ix - ((__int32_t)e0<<20)); - for(i=0;i<2;i++) { - tx[i] = (double)((__int32_t)(z)); - z = (z-tx[i])*two24; - } - tx[2] = z; - nx = 3; - while(tx[nx-1]==zero) nx--; /* skip zero term */ - n = __kernel_rem_pio2(tx,y,e0,nx,2,two_over_pi); - if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;} - return n; -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/e_remainder.c b/newlib/libm/math/e_remainder.c deleted file mode 100644 index ae7ce64..0000000 --- a/newlib/libm/math/e_remainder.c +++ /dev/null @@ -1,80 +0,0 @@ - -/* @(#)e_remainder.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* __ieee754_remainder(x,p) - * Return : - * returns x REM p = x - [x/p]*p as if in infinite - * precise arithmetic, where [x/p] is the (infinite bit) - * integer nearest x/p (in half way case choose the even one). - * Method : - * Based on fmod() return x-[x/p]chopped*p exactlp. - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ -static const double zero = 0.0; -#else -static double zero = 0.0; -#endif - - -#ifdef __STDC__ - double __ieee754_remainder(double x, double p) -#else - double __ieee754_remainder(x,p) - double x,p; -#endif -{ - __int32_t hx,hp; - __uint32_t sx,lx,lp; - double p_half; - - EXTRACT_WORDS(hx,lx,x); - EXTRACT_WORDS(hp,lp,p); - sx = hx&0x80000000; - hp &= 0x7fffffff; - hx &= 0x7fffffff; - - /* purge off exception values */ - if((hp|lp)==0) return (x*p)/(x*p); /* p = 0 */ - if((hx>=0x7ff00000)|| /* x not finite */ - ((hp>=0x7ff00000)&& /* p is NaN */ - (((hp-0x7ff00000)|lp)!=0))) - return (x*p)/(x*p); - - - if (hp<=0x7fdfffff) x = __ieee754_fmod(x,p+p); /* now x < 2p */ - if (((hx-hp)|(lx-lp))==0) return zero*x; - x = fabs(x); - p = fabs(p); - if (hp<0x00200000) { - if(x+x>p) { - x-=p; - if(x+x>=p) x -= p; - } - } else { - p_half = 0.5*p; - if(x>p_half) { - x-=p; - if(x>=p_half) x -= p; - } - } - GET_HIGH_WORD(hx,x); - SET_HIGH_WORD(x,hx^sx); - return x; -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/e_scalb.c b/newlib/libm/math/e_scalb.c deleted file mode 100644 index 0bb924b..0000000 --- a/newlib/libm/math/e_scalb.c +++ /dev/null @@ -1,55 +0,0 @@ - -/* @(#)e_scalb.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* - * __ieee754_scalb(x, fn) is provide for - * passing various standard test suite. One - * should use scalbn() instead. - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef _SCALB_INT -#ifdef __STDC__ - double __ieee754_scalb(double x, int fn) -#else - double __ieee754_scalb(x,fn) - double x; int fn; -#endif -#else -#ifdef __STDC__ - double __ieee754_scalb(double x, double fn) -#else - double __ieee754_scalb(x,fn) - double x, fn; -#endif -#endif -{ -#ifdef _SCALB_INT - return scalbn(x,fn); -#else - if (isnan(x)||isnan(fn)) return x*fn; - if (!finite(fn)) { - if(fn>0.0) return x*fn; - else return x/(-fn); - } - if (rint(fn)!=fn) return (fn-fn)/(fn-fn); - if ( fn > 65000.0) return scalbn(x, 65000); - if (-fn > 65000.0) return scalbn(x,-65000); - return scalbn(x,(int)fn); -#endif -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/e_sinh.c b/newlib/libm/math/e_sinh.c deleted file mode 100644 index cf7ebfb..0000000 --- a/newlib/libm/math/e_sinh.c +++ /dev/null @@ -1,86 +0,0 @@ - -/* @(#)e_sinh.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* __ieee754_sinh(x) - * Method : - * mathematically sinh(x) if defined to be (exp(x)-exp(-x))/2 - * 1. Replace x by |x| (sinh(-x) = -sinh(x)). - * 2. - * E + E/(E+1) - * 0 <= x <= 22 : sinh(x) := --------------, E=expm1(x) - * 2 - * - * 22 <= x <= lnovft : sinh(x) := exp(x)/2 - * lnovft <= x <= ln2ovft: sinh(x) := exp(x/2)/2 * exp(x/2) - * ln2ovft < x : sinh(x) := x*shuge (overflow) - * - * Special cases: - * sinh(x) is |x| if x is +INF, -INF, or NaN. - * only sinh(0)=0 is exact for finite x. - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ -static const double one = 1.0, shuge = 1.0e307; -#else -static double one = 1.0, shuge = 1.0e307; -#endif - -#ifdef __STDC__ - double __ieee754_sinh(double x) -#else - double __ieee754_sinh(x) - double x; -#endif -{ - double t,w,h; - __int32_t ix,jx; - __uint32_t lx; - - /* High word of |x|. */ - GET_HIGH_WORD(jx,x); - ix = jx&0x7fffffff; - - /* x is INF or NaN */ - if(ix>=0x7ff00000) return x+x; - - h = 0.5; - if (jx<0) h = -h; - /* |x| in [0,22], return sign(x)*0.5*(E+E/(E+1))) */ - if (ix < 0x40360000) { /* |x|<22 */ - if (ix<0x3e300000) /* |x|<2**-28 */ - if(shuge+x>one) return x;/* sinh(tiny) = tiny with inexact */ - t = expm1(fabs(x)); - if(ix<0x3ff00000) return h*(2.0*t-t*t/(t+one)); - return h*(t+t/(t+one)); - } - - /* |x| in [22, log(maxdouble)] return 0.5*exp(|x|) */ - if (ix < 0x40862E42) return h*__ieee754_exp(fabs(x)); - - /* |x| in [log(maxdouble), overflowthresold] */ - GET_LOW_WORD(lx,x); - if (ix<0x408633CE || (ix==0x408633ce && lx<=(__uint32_t)0x8fb9f87d)) { - w = __ieee754_exp(0.5*fabs(x)); - t = h*w; - return t*w; - } - - /* |x| > overflowthresold, sinh(x) overflow */ - return x*shuge; -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/e_sqrt.c b/newlib/libm/math/e_sqrt.c deleted file mode 100644 index 460125a..0000000 --- a/newlib/libm/math/e_sqrt.c +++ /dev/null @@ -1,452 +0,0 @@ - -/* @(#)e_sqrt.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* __ieee754_sqrt(x) - * Return correctly rounded sqrt. - * ------------------------------------------ - * | Use the hardware sqrt if you have one | - * ------------------------------------------ - * Method: - * Bit by bit method using integer arithmetic. (Slow, but portable) - * 1. Normalization - * Scale x to y in [1,4) with even powers of 2: - * find an integer k such that 1 <= (y=x*2^(2k)) < 4, then - * sqrt(x) = 2^k * sqrt(y) - * 2. Bit by bit computation - * Let q = sqrt(y) truncated to i bit after binary point (q = 1), - * i 0 - * i+1 2 - * s = 2*q , and y = 2 * ( y - q ). (1) - * i i i i - * - * To compute q from q , one checks whether - * i+1 i - * - * -(i+1) 2 - * (q + 2 ) <= y. (2) - * i - * -(i+1) - * If (2) is false, then q = q ; otherwise q = q + 2 . - * i+1 i i+1 i - * - * With some algebric manipulation, it is not difficult to see - * that (2) is equivalent to - * -(i+1) - * s + 2 <= y (3) - * i i - * - * The advantage of (3) is that s and y can be computed by - * i i - * the following recurrence formula: - * if (3) is false - * - * s = s , y = y ; (4) - * i+1 i i+1 i - * - * otherwise, - * -i -(i+1) - * s = s + 2 , y = y - s - 2 (5) - * i+1 i i+1 i i - * - * One may easily use induction to prove (4) and (5). - * Note. Since the left hand side of (3) contain only i+2 bits, - * it does not necessary to do a full (53-bit) comparison - * in (3). - * 3. Final rounding - * After generating the 53 bits result, we compute one more bit. - * Together with the remainder, we can decide whether the - * result is exact, bigger than 1/2ulp, or less than 1/2ulp - * (it will never equal to 1/2ulp). - * The rounding mode can be detected by checking whether - * huge + tiny is equal to huge, and whether huge - tiny is - * equal to huge for some floating point number "huge" and "tiny". - * - * Special cases: - * sqrt(+-0) = +-0 ... exact - * sqrt(inf) = inf - * sqrt(-ve) = NaN ... with invalid signal - * sqrt(NaN) = NaN ... with invalid signal for signaling NaN - * - * Other methods : see the appended file at the end of the program below. - *--------------- - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ -static const double one = 1.0, tiny=1.0e-300; -#else -static double one = 1.0, tiny=1.0e-300; -#endif - -#ifdef __STDC__ - double __ieee754_sqrt(double x) -#else - double __ieee754_sqrt(x) - double x; -#endif -{ - double z; - __int32_t sign = (int)0x80000000; - __uint32_t r,t1,s1,ix1,q1; - __int32_t ix0,s0,q,m,t,i; - - EXTRACT_WORDS(ix0,ix1,x); - - /* take care of Inf and NaN */ - if((ix0&0x7ff00000)==0x7ff00000) { - return x*x+x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf - sqrt(-inf)=sNaN */ - } - /* take care of zero */ - if(ix0<=0) { - if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */ - else if(ix0<0) - return (x-x)/(x-x); /* sqrt(-ve) = sNaN */ - } - /* normalize x */ - m = (ix0>>20); - if(m==0) { /* subnormal x */ - while(ix0==0) { - m -= 21; - ix0 |= (ix1>>11); ix1 <<= 21; - } - for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1; - m -= i-1; - ix0 |= (ix1>>(32-i)); - ix1 <<= i; - } - m -= 1023; /* unbias exponent */ - ix0 = (ix0&0x000fffff)|0x00100000; - if(m&1){ /* odd m, double x to make it even */ - ix0 += ix0 + ((ix1&sign)>>31); - ix1 += ix1; - } - m >>= 1; /* m = [m/2] */ - - /* generate sqrt(x) bit by bit */ - ix0 += ix0 + ((ix1&sign)>>31); - ix1 += ix1; - q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */ - r = 0x00200000; /* r = moving bit from right to left */ - - while(r!=0) { - t = s0+r; - if(t<=ix0) { - s0 = t+r; - ix0 -= t; - q += r; - } - ix0 += ix0 + ((ix1&sign)>>31); - ix1 += ix1; - r>>=1; - } - - r = sign; - while(r!=0) { - t1 = s1+r; - t = s0; - if((t<ix0)||((t==ix0)&&(t1<=ix1))) { - s1 = t1+r; - if(((t1&sign)==sign)&&(s1&sign)==0) s0 += 1; - ix0 -= t; - if (ix1 < t1) ix0 -= 1; - ix1 -= t1; - q1 += r; - } - ix0 += ix0 + ((ix1&sign)>>31); - ix1 += ix1; - r>>=1; - } - - /* use floating add to find out rounding direction */ - if((ix0|ix1)!=0) { - z = one-tiny; /* trigger inexact flag */ - if (z>=one) { - z = one+tiny; - if (q1==(__uint32_t)0xffffffff) { q1=0; q += 1;} - else if (z>one) { - if (q1==(__uint32_t)0xfffffffe) q+=1; - q1+=2; - } else - q1 += (q1&1); - } - } - ix0 = (q>>1)+0x3fe00000; - ix1 = q1>>1; - if ((q&1)==1) ix1 |= sign; - ix0 += (m <<20); - INSERT_WORDS(z,ix0,ix1); - return z; -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ - -/* -Other methods (use floating-point arithmetic) -------------- -(This is a copy of a drafted paper by Prof W. Kahan -and K.C. Ng, written in May, 1986) - - Two algorithms are given here to implement sqrt(x) - (IEEE double precision arithmetic) in software. - Both supply sqrt(x) correctly rounded. The first algorithm (in - Section A) uses newton iterations and involves four divisions. - The second one uses reciproot iterations to avoid division, but - requires more multiplications. Both algorithms need the ability - to chop results of arithmetic operations instead of round them, - and the INEXACT flag to indicate when an arithmetic operation - is executed exactly with no roundoff error, all part of the - standard (IEEE 754-1985). The ability to perform shift, add, - subtract and logical AND operations upon 32-bit words is needed - too, though not part of the standard. - -A. sqrt(x) by Newton Iteration - - (1) Initial approximation - - Let x0 and x1 be the leading and the trailing 32-bit words of - a floating point number x (in IEEE double format) respectively - - 1 11 52 ...widths - ------------------------------------------------------ - x: |s| e | f | - ------------------------------------------------------ - msb lsb msb lsb ...order - - - ------------------------ ------------------------ - x0: |s| e | f1 | x1: | f2 | - ------------------------ ------------------------ - - By performing shifts and subtracts on x0 and x1 (both regarded - as integers), we obtain an 8-bit approximation of sqrt(x) as - follows. - - k := (x0>>1) + 0x1ff80000; - y0 := k - T1[31&(k>>15)]. ... y ~ sqrt(x) to 8 bits - Here k is a 32-bit integer and T1[] is an integer array containing - correction terms. Now magically the floating value of y (y's - leading 32-bit word is y0, the value of its trailing word is 0) - approximates sqrt(x) to almost 8-bit. - - Value of T1: - static int T1[32]= { - 0, 1024, 3062, 5746, 9193, 13348, 18162, 23592, - 29598, 36145, 43202, 50740, 58733, 67158, 75992, 85215, - 83599, 71378, 60428, 50647, 41945, 34246, 27478, 21581, - 16499, 12183, 8588, 5674, 3403, 1742, 661, 130,}; - - (2) Iterative refinement - - Apply Heron's rule three times to y, we have y approximates - sqrt(x) to within 1 ulp (Unit in the Last Place): - - y := (y+x/y)/2 ... almost 17 sig. bits - y := (y+x/y)/2 ... almost 35 sig. bits - y := y-(y-x/y)/2 ... within 1 ulp - - - Remark 1. - Another way to improve y to within 1 ulp is: - - y := (y+x/y) ... almost 17 sig. bits to 2*sqrt(x) - y := y - 0x00100006 ... almost 18 sig. bits to sqrt(x) - - 2 - (x-y )*y - y := y + 2* ---------- ...within 1 ulp - 2 - 3y + x - - - This formula has one division fewer than the one above; however, - it requires more multiplications and additions. Also x must be - scaled in advance to avoid spurious overflow in evaluating the - expression 3y*y+x. Hence it is not recommended uless division - is slow. If division is very slow, then one should use the - reciproot algorithm given in section B. - - (3) Final adjustment - - By twiddling y's last bit it is possible to force y to be - correctly rounded according to the prevailing rounding mode - as follows. Let r and i be copies of the rounding mode and - inexact flag before entering the square root program. Also we - use the expression y+-ulp for the next representable floating - numbers (up and down) of y. Note that y+-ulp = either fixed - point y+-1, or multiply y by nextafter(1,+-inf) in chopped - mode. - - I := FALSE; ... reset INEXACT flag I - R := RZ; ... set rounding mode to round-toward-zero - z := x/y; ... chopped quotient, possibly inexact - If(not I) then { ... if the quotient is exact - if(z=y) { - I := i; ... restore inexact flag - R := r; ... restore rounded mode - return sqrt(x):=y. - } else { - z := z - ulp; ... special rounding - } - } - i := TRUE; ... sqrt(x) is inexact - If (r=RN) then z=z+ulp ... rounded-to-nearest - If (r=RP) then { ... round-toward-+inf - y = y+ulp; z=z+ulp; - } - y := y+z; ... chopped sum - y0:=y0-0x00100000; ... y := y/2 is correctly rounded. - I := i; ... restore inexact flag - R := r; ... restore rounded mode - return sqrt(x):=y. - - (4) Special cases - - Square root of +inf, +-0, or NaN is itself; - Square root of a negative number is NaN with invalid signal. - - -B. sqrt(x) by Reciproot Iteration - - (1) Initial approximation - - Let x0 and x1 be the leading and the trailing 32-bit words of - a floating point number x (in IEEE double format) respectively - (see section A). By performing shifs and subtracts on x0 and y0, - we obtain a 7.8-bit approximation of 1/sqrt(x) as follows. - - k := 0x5fe80000 - (x0>>1); - y0:= k - T2[63&(k>>14)]. ... y ~ 1/sqrt(x) to 7.8 bits - - Here k is a 32-bit integer and T2[] is an integer array - containing correction terms. Now magically the floating - value of y (y's leading 32-bit word is y0, the value of - its trailing word y1 is set to zero) approximates 1/sqrt(x) - to almost 7.8-bit. - - Value of T2: - static int T2[64]= { - 0x1500, 0x2ef8, 0x4d67, 0x6b02, 0x87be, 0xa395, 0xbe7a, 0xd866, - 0xf14a, 0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f, - 0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d, - 0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0, - 0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989, - 0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd, - 0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e, - 0x1527f,0x1334a,0x11051,0xe951, 0xbe01, 0x8e0d, 0x5924, 0x1edd,}; - - (2) Iterative refinement - - Apply Reciproot iteration three times to y and multiply the - result by x to get an approximation z that matches sqrt(x) - to about 1 ulp. To be exact, we will have - -1ulp < sqrt(x)-z<1.0625ulp. - - ... set rounding mode to Round-to-nearest - y := y*(1.5-0.5*x*y*y) ... almost 15 sig. bits to 1/sqrt(x) - y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x) - ... special arrangement for better accuracy - z := x*y ... 29 bits to sqrt(x), with z*y<1 - z := z + 0.5*z*(1-z*y) ... about 1 ulp to sqrt(x) - - Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that - (a) the term z*y in the final iteration is always less than 1; - (b) the error in the final result is biased upward so that - -1 ulp < sqrt(x) - z < 1.0625 ulp - instead of |sqrt(x)-z|<1.03125ulp. - - (3) Final adjustment - - By twiddling y's last bit it is possible to force y to be - correctly rounded according to the prevailing rounding mode - as follows. Let r and i be copies of the rounding mode and - inexact flag before entering the square root program. Also we - use the expression y+-ulp for the next representable floating - numbers (up and down) of y. Note that y+-ulp = either fixed - point y+-1, or multiply y by nextafter(1,+-inf) in chopped - mode. - - R := RZ; ... set rounding mode to round-toward-zero - switch(r) { - case RN: ... round-to-nearest - if(x<= z*(z-ulp)...chopped) z = z - ulp; else - if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp; - break; - case RZ:case RM: ... round-to-zero or round-to--inf - R:=RP; ... reset rounding mod to round-to-+inf - if(x<z*z ... rounded up) z = z - ulp; else - if(x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp; - break; - case RP: ... round-to-+inf - if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else - if(x>z*z ...chopped) z = z+ulp; - break; - } - - Remark 3. The above comparisons can be done in fixed point. For - example, to compare x and w=z*z chopped, it suffices to compare - x1 and w1 (the trailing parts of x and w), regarding them as - two's complement integers. - - ...Is z an exact square root? - To determine whether z is an exact square root of x, let z1 be the - trailing part of z, and also let x0 and x1 be the leading and - trailing parts of x. - - If ((z1&0x03ffffff)!=0) ... not exact if trailing 26 bits of z!=0 - I := 1; ... Raise Inexact flag: z is not exact - else { - j := 1 - [(x0>>20)&1] ... j = logb(x) mod 2 - k := z1 >> 26; ... get z's 25-th and 26-th - fraction bits - I := i or (k&j) or ((k&(j+j+1))!=(x1&3)); - } - R:= r ... restore rounded mode - return sqrt(x):=z. - - If multiplication is cheaper then the foregoing red tape, the - Inexact flag can be evaluated by - - I := i; - I := (z*z!=x) or I. - - Note that z*z can overwrite I; this value must be sensed if it is - True. - - Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be - zero. - - -------------------- - z1: | f2 | - -------------------- - bit 31 bit 0 - - Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd - or even of logb(x) have the following relations: - - ------------------------------------------------- - bit 27,26 of z1 bit 1,0 of x1 logb(x) - ------------------------------------------------- - 00 00 odd and even - 01 01 even - 10 10 odd - 10 00 even - 11 01 even - ------------------------------------------------- - - (4) Special cases (see (4) of Section A). - - */ diff --git a/newlib/libm/math/ef_acos.c b/newlib/libm/math/ef_acos.c deleted file mode 100644 index f73f97d..0000000 --- a/newlib/libm/math/ef_acos.c +++ /dev/null @@ -1,84 +0,0 @@ -/* ef_acos.c -- float version of e_acos.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -#include "fdlibm.h" - -#ifdef __STDC__ -static const float -#else -static float -#endif -one = 1.0000000000e+00, /* 0x3F800000 */ -pi = 3.1415925026e+00, /* 0x40490fda */ -pio2_hi = 1.5707962513e+00, /* 0x3fc90fda */ -pio2_lo = 7.5497894159e-08, /* 0x33a22168 */ -pS0 = 1.6666667163e-01, /* 0x3e2aaaab */ -pS1 = -3.2556581497e-01, /* 0xbea6b090 */ -pS2 = 2.0121252537e-01, /* 0x3e4e0aa8 */ -pS3 = -4.0055535734e-02, /* 0xbd241146 */ -pS4 = 7.9153501429e-04, /* 0x3a4f7f04 */ -pS5 = 3.4793309169e-05, /* 0x3811ef08 */ -qS1 = -2.4033949375e+00, /* 0xc019d139 */ -qS2 = 2.0209457874e+00, /* 0x4001572d */ -qS3 = -6.8828397989e-01, /* 0xbf303361 */ -qS4 = 7.7038154006e-02; /* 0x3d9dc62e */ - -#ifdef __STDC__ - float __ieee754_acosf(float x) -#else - float __ieee754_acosf(x) - float x; -#endif -{ - float z,p,q,r,w,s,c,df; - __int32_t hx,ix; - GET_FLOAT_WORD(hx,x); - ix = hx&0x7fffffff; - if(ix==0x3f800000) { /* |x|==1 */ - if(hx>0) return 0.0; /* acos(1) = 0 */ - else return pi+(float)2.0*pio2_lo; /* acos(-1)= pi */ - } else if(ix>0x3f800000) { /* |x| >= 1 */ - return (x-x)/(x-x); /* acos(|x|>1) is NaN */ - } - if(ix<0x3f000000) { /* |x| < 0.5 */ - if(ix<=0x23000000) return pio2_hi+pio2_lo;/*if|x|<2**-57*/ - z = x*x; - p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5))))); - q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4))); - r = p/q; - return pio2_hi - (x - (pio2_lo-x*r)); - } else if (hx<0) { /* x < -0.5 */ - z = (one+x)*(float)0.5; - p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5))))); - q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4))); - s = __ieee754_sqrtf(z); - r = p/q; - w = r*s-pio2_lo; - return pi - (float)2.0*(s+w); - } else { /* x > 0.5 */ - __int32_t idf; - z = (one-x)*(float)0.5; - s = __ieee754_sqrtf(z); - df = s; - GET_FLOAT_WORD(idf,df); - SET_FLOAT_WORD(df,idf&0xfffff000); - c = (z-df*df)/(s+df); - p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5))))); - q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4))); - r = p/q; - w = r*s+c; - return (float)2.0*(df+w); - } -} diff --git a/newlib/libm/math/ef_acosh.c b/newlib/libm/math/ef_acosh.c deleted file mode 100644 index 37c7885..0000000 --- a/newlib/libm/math/ef_acosh.c +++ /dev/null @@ -1,53 +0,0 @@ -/* ef_acosh.c -- float version of e_acosh.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - * - */ - -#include "fdlibm.h" - -#ifdef __STDC__ -static const float -#else -static float -#endif -one = 1.0, -ln2 = 6.9314718246e-01; /* 0x3f317218 */ - -#ifdef __STDC__ - float __ieee754_acoshf(float x) -#else - float __ieee754_acoshf(x) - float x; -#endif -{ - float t; - __int32_t hx; - GET_FLOAT_WORD(hx,x); - if(hx<0x3f800000) { /* x < 1 */ - return (x-x)/(x-x); - } else if(hx >=0x4d800000) { /* x > 2**28 */ - if(hx >=0x7f800000) { /* x is inf of NaN */ - return x+x; - } else - return __ieee754_logf(x)+ln2; /* acosh(huge)=log(2x) */ - } else if (hx==0x3f800000) { - return 0.0; /* acosh(1) = 0 */ - } else if (hx > 0x40000000) { /* 2**28 > x > 2 */ - t=x*x; - return __ieee754_logf((float)2.0*x-one/(x+__ieee754_sqrtf(t-one))); - } else { /* 1<x<2 */ - t = x-one; - return log1pf(t+__ieee754_sqrtf((float)2.0*t+t*t)); - } -} diff --git a/newlib/libm/math/ef_asin.c b/newlib/libm/math/ef_asin.c deleted file mode 100644 index 64f3608..0000000 --- a/newlib/libm/math/ef_asin.c +++ /dev/null @@ -1,88 +0,0 @@ -/* ef_asin.c -- float version of e_asin.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -#include "fdlibm.h" - -#ifdef __STDC__ -static const float -#else -static float -#endif -one = 1.0000000000e+00, /* 0x3F800000 */ -huge = 1.000e+30, -pio2_hi = 1.5707962513e+00, /* 0x3fc90fda */ -pio2_lo = 7.5497894159e-08, /* 0x33a22168 */ -pio4_hi = 7.8539818525e-01, /* 0x3f490fdb */ - /* coefficient for R(x^2) */ -pS0 = 1.6666667163e-01, /* 0x3e2aaaab */ -pS1 = -3.2556581497e-01, /* 0xbea6b090 */ -pS2 = 2.0121252537e-01, /* 0x3e4e0aa8 */ -pS3 = -4.0055535734e-02, /* 0xbd241146 */ -pS4 = 7.9153501429e-04, /* 0x3a4f7f04 */ -pS5 = 3.4793309169e-05, /* 0x3811ef08 */ -qS1 = -2.4033949375e+00, /* 0xc019d139 */ -qS2 = 2.0209457874e+00, /* 0x4001572d */ -qS3 = -6.8828397989e-01, /* 0xbf303361 */ -qS4 = 7.7038154006e-02; /* 0x3d9dc62e */ - -#ifdef __STDC__ - float __ieee754_asinf(float x) -#else - float __ieee754_asinf(x) - float x; -#endif -{ - float t,w,p,q,c,r,s; - __int32_t hx,ix; - GET_FLOAT_WORD(hx,x); - ix = hx&0x7fffffff; - if(ix==0x3f800000) { - /* asin(1)=+-pi/2 with inexact */ - return x*pio2_hi+x*pio2_lo; - } else if(ix> 0x3f800000) { /* |x|>= 1 */ - return (x-x)/(x-x); /* asin(|x|>1) is NaN */ - } else if (ix<0x3f000000) { /* |x|<0.5 */ - if(ix<0x32000000) { /* if |x| < 2**-27 */ - if(huge+x>one) return x;/* return x with inexact if x!=0*/ - } else { - t = x*x; - p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5))))); - q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4))); - w = p/q; - return x+x*w; - } - } - /* 1> |x|>= 0.5 */ - w = one-fabsf(x); - t = w*(float)0.5; - p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5))))); - q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4))); - s = __ieee754_sqrtf(t); - if(ix>=0x3F79999A) { /* if |x| > 0.975 */ - w = p/q; - t = pio2_hi-((float)2.0*(s+s*w)-pio2_lo); - } else { - __int32_t iw; - w = s; - GET_FLOAT_WORD(iw,w); - SET_FLOAT_WORD(w,iw&0xfffff000); - c = (t-w*w)/(s+w); - r = p/q; - p = (float)2.0*s*r-(pio2_lo-(float)2.0*c); - q = pio4_hi-(float)2.0*w; - t = pio4_hi-(p-q); - } - if(hx>0) return t; else return -t; -} diff --git a/newlib/libm/math/ef_atan2.c b/newlib/libm/math/ef_atan2.c deleted file mode 100644 index 25e86b3..0000000 --- a/newlib/libm/math/ef_atan2.c +++ /dev/null @@ -1,101 +0,0 @@ -/* ef_atan2.c -- float version of e_atan2.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - * - */ - -#include "fdlibm.h" - -#ifdef __STDC__ -static const float -#else -static float -#endif -tiny = 1.0e-30, -zero = 0.0, -pi_o_4 = 7.8539818525e-01, /* 0x3f490fdb */ -pi_o_2 = 1.5707963705e+00, /* 0x3fc90fdb */ -pi = 3.1415925026e+00, /* 0x40490fda */ -pi_lo = 1.5099578832e-07; /* 0x34222168 */ - -#ifdef __STDC__ - float __ieee754_atan2f(float y, float x) -#else - float __ieee754_atan2f(y,x) - float y,x; -#endif -{ - float z; - __int32_t k,m,hx,hy,ix,iy; - - GET_FLOAT_WORD(hx,x); - ix = hx&0x7fffffff; - GET_FLOAT_WORD(hy,y); - iy = hy&0x7fffffff; - if((ix>0x7f800000)|| - (iy>0x7f800000)) /* x or y is NaN */ - return x+y; - if(hx==0x3f800000) return atanf(y); /* x=1.0 */ - m = ((hy>>31)&1)|((hx>>30)&2); /* 2*sign(x)+sign(y) */ - - /* when y = 0 */ - if(iy==0) { - switch(m) { - case 0: - case 1: return y; /* atan(+-0,+anything)=+-0 */ - case 2: return pi+tiny;/* atan(+0,-anything) = pi */ - case 3: return -pi-tiny;/* atan(-0,-anything) =-pi */ - } - } - /* when x = 0 */ - if(ix==0) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny; - - /* when x is INF */ - if(ix==0x7f800000) { - if(iy==0x7f800000) { - switch(m) { - case 0: return pi_o_4+tiny;/* atan(+INF,+INF) */ - case 1: return -pi_o_4-tiny;/* atan(-INF,+INF) */ - case 2: return (float)3.0*pi_o_4+tiny;/*atan(+INF,-INF)*/ - case 3: return (float)-3.0*pi_o_4-tiny;/*atan(-INF,-INF)*/ - } - } else { - switch(m) { - case 0: return zero ; /* atan(+...,+INF) */ - case 1: return -zero ; /* atan(-...,+INF) */ - case 2: return pi+tiny ; /* atan(+...,-INF) */ - case 3: return -pi-tiny ; /* atan(-...,-INF) */ - } - } - } - /* when y is INF */ - if(iy==0x7f800000) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny; - - /* compute y/x */ - k = (iy-ix)>>23; - if(k > 60) z=pi_o_2+(float)0.5*pi_lo; /* |y/x| > 2**60 */ - else if(hx<0&&k<-60) z=0.0; /* |y|/x < -2**60 */ - else z=atanf(fabsf(y/x)); /* safe to do y/x */ - switch (m) { - case 0: return z ; /* atan(+,+) */ - case 1: { - __uint32_t zh; - GET_FLOAT_WORD(zh,z); - SET_FLOAT_WORD(z,zh ^ 0x80000000); - } - return z ; /* atan(-,+) */ - case 2: return pi-(z-pi_lo);/* atan(+,-) */ - default: /* case 3 */ - return (z-pi_lo)-pi;/* atan(-,-) */ - } -} diff --git a/newlib/libm/math/ef_atanh.c b/newlib/libm/math/ef_atanh.c deleted file mode 100644 index 74b3d3d..0000000 --- a/newlib/libm/math/ef_atanh.c +++ /dev/null @@ -1,54 +0,0 @@ -/* ef_atanh.c -- float version of e_atanh.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - * - */ - -#include "fdlibm.h" - -#ifdef __STDC__ -static const float one = 1.0, huge = 1e30; -#else -static float one = 1.0, huge = 1e30; -#endif - -#ifdef __STDC__ -static const float zero = 0.0; -#else -static float zero = 0.0; -#endif - -#ifdef __STDC__ - float __ieee754_atanhf(float x) -#else - float __ieee754_atanhf(x) - float x; -#endif -{ - float t; - __int32_t hx,ix; - GET_FLOAT_WORD(hx,x); - ix = hx&0x7fffffff; - if (ix>0x3f800000) /* |x|>1 */ - return (x-x)/(x-x); - if(ix==0x3f800000) - return x/zero; - if(ix<0x31800000&&(huge+x)>zero) return x; /* x<2**-28 */ - SET_FLOAT_WORD(x,ix); - if(ix<0x3f000000) { /* x < 0.5 */ - t = x+x; - t = (float)0.5*log1pf(t+t*x/(one-x)); - } else - t = (float)0.5*log1pf((x+x)/(one-x)); - if(hx>=0) return t; else return -t; -} diff --git a/newlib/libm/math/ef_cosh.c b/newlib/libm/math/ef_cosh.c deleted file mode 100644 index 68e59f8..0000000 --- a/newlib/libm/math/ef_cosh.c +++ /dev/null @@ -1,70 +0,0 @@ -/* ef_cosh.c -- float version of e_cosh.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -#include "fdlibm.h" - -#ifdef __v810__ -#define const -#endif - -#ifdef __STDC__ -static const float one = 1.0, half=0.5, huge = 1.0e30; -#else -static float one = 1.0, half=0.5, huge = 1.0e30; -#endif - -#ifdef __STDC__ - float __ieee754_coshf(float x) -#else - float __ieee754_coshf(x) - float x; -#endif -{ - float t,w; - __int32_t ix; - - GET_FLOAT_WORD(ix,x); - ix &= 0x7fffffff; - - /* x is INF or NaN */ - if(ix>=0x7f800000) return x*x; - - /* |x| in [0,0.5*ln2], return 1+expm1(|x|)^2/(2*exp(|x|)) */ - if(ix<0x3eb17218) { - t = expm1f(fabsf(x)); - w = one+t; - if (ix<0x24000000) return w; /* cosh(tiny) = 1 */ - return one+(t*t)/(w+w); - } - - /* |x| in [0.5*ln2,22], return (exp(|x|)+1/exp(|x|)/2; */ - if (ix < 0x41b00000) { - t = __ieee754_expf(fabsf(x)); - return half*t+half/t; - } - - /* |x| in [22, log(maxdouble)] return half*exp(|x|) */ - if (ix < 0x42b17180) return half*__ieee754_expf(fabsf(x)); - - /* |x| in [log(maxdouble), overflowthresold] */ - if (ix<=0x42b2d4fc) { - w = __ieee754_expf(half*fabsf(x)); - t = half*w; - return t*w; - } - - /* |x| > overflowthresold, cosh(x) overflow */ - return huge*huge; -} diff --git a/newlib/libm/math/ef_exp.c b/newlib/libm/math/ef_exp.c deleted file mode 100644 index 04331a5..0000000 --- a/newlib/libm/math/ef_exp.c +++ /dev/null @@ -1,102 +0,0 @@ -/* ef_exp.c -- float version of e_exp.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -#include "fdlibm.h" - -#ifdef __v810__ -#define const -#endif - -#ifdef __STDC__ -static const float -#else -static float -#endif -one = 1.0, -halF[2] = {0.5,-0.5,}, -huge = 1.0e+30, -twom100 = 7.8886090522e-31, /* 2**-100=0x0d800000 */ -o_threshold= 8.8721679688e+01, /* 0x42b17180 */ -u_threshold= -1.0397208405e+02, /* 0xc2cff1b5 */ -ln2HI[2] ={ 6.9313812256e-01, /* 0x3f317180 */ - -6.9313812256e-01,}, /* 0xbf317180 */ -ln2LO[2] ={ 9.0580006145e-06, /* 0x3717f7d1 */ - -9.0580006145e-06,}, /* 0xb717f7d1 */ -invln2 = 1.4426950216e+00, /* 0x3fb8aa3b */ -P1 = 1.6666667163e-01, /* 0x3e2aaaab */ -P2 = -2.7777778450e-03, /* 0xbb360b61 */ -P3 = 6.6137559770e-05, /* 0x388ab355 */ -P4 = -1.6533901999e-06, /* 0xb5ddea0e */ -P5 = 4.1381369442e-08; /* 0x3331bb4c */ - -#ifdef __STDC__ - float __ieee754_expf(float x) /* default IEEE double exp */ -#else - float __ieee754_expf(x) /* default IEEE double exp */ - float x; -#endif -{ - float y,hi,lo,c,t; - __int32_t k,xsb; - __uint32_t hx; - - GET_FLOAT_WORD(hx,x); - xsb = (hx>>31)&1; /* sign bit of x */ - hx &= 0x7fffffff; /* high word of |x| */ - - /* filter out non-finite argument */ - if(hx >= 0x42b17218) { /* if |x|>=88.721... */ - if(hx>0x7f800000) - return x+x; /* NaN */ - if(hx==0x7f800000) - return (xsb==0)? x:0.0; /* exp(+-inf)={inf,0} */ - if(x > o_threshold) return huge*huge; /* overflow */ - if(x < u_threshold) return twom100*twom100; /* underflow */ - } - - /* argument reduction */ - if(hx > 0x3eb17218) { /* if |x| > 0.5 ln2 */ - if(hx < 0x3F851592) { /* and |x| < 1.5 ln2 */ - hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb; - } else { - k = invln2*x+halF[xsb]; - t = k; - hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */ - lo = t*ln2LO[0]; - } - x = hi - lo; - } - else if(hx < 0x31800000) { /* when |x|<2**-28 */ - if(huge+x>one) return one+x;/* trigger inexact */ - } - else k = 0; - - /* x is now in primary range */ - t = x*x; - c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); - if(k==0) return one-((x*c)/(c-(float)2.0)-x); - else y = one-((lo-(x*c)/((float)2.0-c))-hi); - if(k >= -125) { - __uint32_t hy; - GET_FLOAT_WORD(hy,y); - SET_FLOAT_WORD(y,hy+(k<<23)); /* add k to y's exponent */ - return y; - } else { - __uint32_t hy; - GET_FLOAT_WORD(hy,y); - SET_FLOAT_WORD(y,hy+((k+100)<<23)); /* add k to y's exponent */ - return y*twom100; - } -} diff --git a/newlib/libm/math/ef_fmod.c b/newlib/libm/math/ef_fmod.c deleted file mode 100644 index d5d28e0..0000000 --- a/newlib/libm/math/ef_fmod.c +++ /dev/null @@ -1,108 +0,0 @@ -/* ef_fmod.c -- float version of e_fmod.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* - * __ieee754_fmodf(x,y) - * Return x mod y in exact arithmetic - * Method: shift and subtract - */ - -#include "fdlibm.h" - -#ifdef __STDC__ -static const float one = 1.0, Zero[] = {0.0, -0.0,}; -#else -static float one = 1.0, Zero[] = {0.0, -0.0,}; -#endif - -#ifdef __STDC__ - float __ieee754_fmodf(float x, float y) -#else - float __ieee754_fmodf(x,y) - float x,y ; -#endif -{ - __int32_t n,hx,hy,hz,ix,iy,sx,i; - - GET_FLOAT_WORD(hx,x); - GET_FLOAT_WORD(hy,y); - sx = hx&0x80000000; /* sign of x */ - hx ^=sx; /* |x| */ - hy &= 0x7fffffff; /* |y| */ - - /* purge off exception values */ - if(hy==0||(hx>=0x7f800000)|| /* y=0,or x not finite */ - (hy>0x7f800000)) /* or y is NaN */ - return (x*y)/(x*y); - if(hx<hy) return x; /* |x|<|y| return x */ - if(hx==hy) - return Zero[(__uint32_t)sx>>31]; /* |x|=|y| return x*0*/ - - /* determine ix = ilogb(x) */ - if(hx<0x00800000) { /* subnormal x */ - for (ix = -126,i=(hx<<8); i>0; i<<=1) ix -=1; - } else ix = (hx>>23)-127; - - /* determine iy = ilogb(y) */ - if(hy<0x00800000) { /* subnormal y */ - for (iy = -126,i=(hy<<8); i>=0; i<<=1) iy -=1; - } else iy = (hy>>23)-127; - - /* set up {hx,lx}, {hy,ly} and align y to x */ - if(ix >= -126) - hx = 0x00800000|(0x007fffff&hx); - else { /* subnormal x, shift x to normal */ - n = -126-ix; - hx = hx<<n; - } - if(iy >= -126) - hy = 0x00800000|(0x007fffff&hy); - else { /* subnormal y, shift y to normal */ - n = -126-iy; - hy = hy<<n; - } - - /* fix point fmod */ - n = ix - iy; - while(n--) { - hz=hx-hy; - if(hz<0){hx = hx+hx;} - else { - if(hz==0) /* return sign(x)*0 */ - return Zero[(__uint32_t)sx>>31]; - hx = hz+hz; - } - } - hz=hx-hy; - if(hz>=0) {hx=hz;} - - /* convert back to floating value and restore the sign */ - if(hx==0) /* return sign(x)*0 */ - return Zero[(__uint32_t)sx>>31]; - while(hx<0x00800000) { /* normalize x */ - hx = hx+hx; - iy -= 1; - } - if(iy>= -126) { /* normalize output */ - hx = ((hx-0x00800000)|((iy+127)<<23)); - SET_FLOAT_WORD(x,hx|sx); - } else { /* subnormal output */ - n = -126 - iy; - hx >>= n; - SET_FLOAT_WORD(x,hx|sx); - x *= one; /* create necessary signal */ - } - return x; /* exact output */ -} diff --git a/newlib/libm/math/ef_hypot.c b/newlib/libm/math/ef_hypot.c deleted file mode 100644 index a87fa48..0000000 --- a/newlib/libm/math/ef_hypot.c +++ /dev/null @@ -1,82 +0,0 @@ -/* ef_hypot.c -- float version of e_hypot.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -#include "fdlibm.h" - -#ifdef __STDC__ - float __ieee754_hypotf(float x, float y) -#else - float __ieee754_hypotf(x,y) - float x, y; -#endif -{ - float a=x,b=y,t1,t2,y1,y2,w; - __int32_t j,k,ha,hb; - - GET_FLOAT_WORD(ha,x); - ha &= 0x7fffffffL; - GET_FLOAT_WORD(hb,y); - hb &= 0x7fffffffL; - if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;} - SET_FLOAT_WORD(a,ha); /* a <- |a| */ - SET_FLOAT_WORD(b,hb); /* b <- |b| */ - if((ha-hb)>0xf000000L) {return a+b;} /* x/y > 2**30 */ - k=0; - if(ha > 0x58800000L) { /* a>2**50 */ - if(ha >= 0x7f800000L) { /* Inf or NaN */ - w = a+b; /* for sNaN */ - if(ha == 0x7f800000L) w = a; - if(hb == 0x7f800000L) w = b; - return w; - } - /* scale a and b by 2**-60 */ - ha -= 0x5d800000L; hb -= 0x5d800000L; k += 60; - SET_FLOAT_WORD(a,ha); - SET_FLOAT_WORD(b,hb); - } - if(hb < 0x26800000L) { /* b < 2**-50 */ - if(hb <= 0x007fffffL) { /* subnormal b or 0 */ - if(hb==0) return a; - SET_FLOAT_WORD(t1,0x3f000000L); /* t1=2^126 */ - b *= t1; - a *= t1; - k -= 126; - } else { /* scale a and b by 2^60 */ - ha += 0x5d800000; /* a *= 2^60 */ - hb += 0x5d800000; /* b *= 2^60 */ - k -= 60; - SET_FLOAT_WORD(a,ha); - SET_FLOAT_WORD(b,hb); - } - } - /* medium size a and b */ - w = a-b; - if (w>b) { - SET_FLOAT_WORD(t1,ha&0xfffff000L); - t2 = a-t1; - w = __ieee754_sqrtf(t1*t1-(b*(-b)-t2*(a+t1))); - } else { - a = a+a; - SET_FLOAT_WORD(y1,hb&0xfffff000L); - y2 = b - y1; - SET_FLOAT_WORD(t1,ha+0x00800000L); - t2 = a - t1; - w = __ieee754_sqrtf(t1*y1-(w*(-w)-(t1*y2+t2*b))); - } - if(k!=0) { - SET_FLOAT_WORD(t1,0x3f800000L+(k<<23)); - return t1*w; - } else return w; -} diff --git a/newlib/libm/math/ef_j0.c b/newlib/libm/math/ef_j0.c deleted file mode 100644 index e7ee6e7..0000000 --- a/newlib/libm/math/ef_j0.c +++ /dev/null @@ -1,439 +0,0 @@ -/* ef_j0.c -- float version of e_j0.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -#include "fdlibm.h" - -#ifdef __STDC__ -static float pzerof(float), qzerof(float); -#else -static float pzerof(), qzerof(); -#endif - -#ifdef __STDC__ -static const float -#else -static float -#endif -huge = 1e30, -one = 1.0, -invsqrtpi= 5.6418961287e-01, /* 0x3f106ebb */ -tpi = 6.3661974669e-01, /* 0x3f22f983 */ - /* R0/S0 on [0, 2.00] */ -R02 = 1.5625000000e-02, /* 0x3c800000 */ -R03 = -1.8997929874e-04, /* 0xb947352e */ -R04 = 1.8295404516e-06, /* 0x35f58e88 */ -R05 = -4.6183270541e-09, /* 0xb19eaf3c */ -S01 = 1.5619102865e-02, /* 0x3c7fe744 */ -S02 = 1.1692678527e-04, /* 0x38f53697 */ -S03 = 5.1354652442e-07, /* 0x3509daa6 */ -S04 = 1.1661400734e-09; /* 0x30a045e8 */ - -#ifdef __STDC__ -static const float zero = 0.0; -#else -static float zero = 0.0; -#endif - -#ifdef __STDC__ - float __ieee754_j0f(float x) -#else - float __ieee754_j0f(x) - float x; -#endif -{ - float z, s,c,ss,cc,r,u,v; - __int32_t hx,ix; - - GET_FLOAT_WORD(hx,x); - ix = hx&0x7fffffff; - if(ix>=0x7f800000) return one/(x*x); - x = fabsf(x); - if(ix >= 0x40000000) { /* |x| >= 2.0 */ - s = sinf(x); - c = cosf(x); - ss = s-c; - cc = s+c; - if(ix<0x7f000000) { /* make sure x+x not overflow */ - z = -cosf(x+x); - if ((s*c)<zero) cc = z/ss; - else ss = z/cc; - } - /* - * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x) - * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x) - */ - if(ix>0x80000000) z = (invsqrtpi*cc)/__ieee754_sqrtf(x); - else { - u = pzerof(x); v = qzerof(x); - z = invsqrtpi*(u*cc-v*ss)/__ieee754_sqrtf(x); - } - return z; - } - if(ix<0x39000000) { /* |x| < 2**-13 */ - if(huge+x>one) { /* raise inexact if x != 0 */ - if(ix<0x32000000) return one; /* |x|<2**-27 */ - else return one - (float)0.25*x*x; - } - } - z = x*x; - r = z*(R02+z*(R03+z*(R04+z*R05))); - s = one+z*(S01+z*(S02+z*(S03+z*S04))); - if(ix < 0x3F800000) { /* |x| < 1.00 */ - return one + z*((float)-0.25+(r/s)); - } else { - u = (float)0.5*x; - return((one+u)*(one-u)+z*(r/s)); - } -} - -#ifdef __STDC__ -static const float -#else -static float -#endif -u00 = -7.3804296553e-02, /* 0xbd9726b5 */ -u01 = 1.7666645348e-01, /* 0x3e34e80d */ -u02 = -1.3818567619e-02, /* 0xbc626746 */ -u03 = 3.4745343146e-04, /* 0x39b62a69 */ -u04 = -3.8140706238e-06, /* 0xb67ff53c */ -u05 = 1.9559013964e-08, /* 0x32a802ba */ -u06 = -3.9820518410e-11, /* 0xae2f21eb */ -v01 = 1.2730483897e-02, /* 0x3c509385 */ -v02 = 7.6006865129e-05, /* 0x389f65e0 */ -v03 = 2.5915085189e-07, /* 0x348b216c */ -v04 = 4.4111031494e-10; /* 0x2ff280c2 */ - -#ifdef __STDC__ - float __ieee754_y0f(float x) -#else - float __ieee754_y0f(x) - float x; -#endif -{ - float z, s,c,ss,cc,u,v; - __int32_t hx,ix; - - GET_FLOAT_WORD(hx,x); - ix = 0x7fffffff&hx; - /* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0 */ - if(ix>=0x7f800000) return one/(x+x*x); - if(ix==0) return -one/zero; - if(hx<0) return zero/zero; - if(ix >= 0x40000000) { /* |x| >= 2.0 */ - /* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0)) - * where x0 = x-pi/4 - * Better formula: - * cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4) - * = 1/sqrt(2) * (sin(x) + cos(x)) - * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4) - * = 1/sqrt(2) * (sin(x) - cos(x)) - * To avoid cancellation, use - * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) - * to compute the worse one. - */ - s = sinf(x); - c = cosf(x); - ss = s-c; - cc = s+c; - /* - * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x) - * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x) - */ - if(ix<0x7f000000) { /* make sure x+x not overflow */ - z = -cosf(x+x); - if ((s*c)<zero) cc = z/ss; - else ss = z/cc; - } - if(ix>0x80000000) z = (invsqrtpi*ss)/__ieee754_sqrtf(x); - else { - u = pzerof(x); v = qzerof(x); - z = invsqrtpi*(u*ss+v*cc)/__ieee754_sqrtf(x); - } - return z; - } - if(ix<=0x32000000) { /* x < 2**-27 */ - return(u00 + tpi*__ieee754_logf(x)); - } - z = x*x; - u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06))))); - v = one+z*(v01+z*(v02+z*(v03+z*v04))); - return(u/v + tpi*(__ieee754_j0f(x)*__ieee754_logf(x))); -} - -/* The asymptotic expansions of pzero is - * 1 - 9/128 s^2 + 11025/98304 s^4 - ..., where s = 1/x. - * For x >= 2, We approximate pzero by - * pzero(x) = 1 + (R/S) - * where R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10 - * S = 1 + pS0*s^2 + ... + pS4*s^10 - * and - * | pzero(x)-1-R/S | <= 2 ** ( -60.26) - */ -#ifdef __STDC__ -static const float pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ -#else -static float pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ -#endif - 0.0000000000e+00, /* 0x00000000 */ - -7.0312500000e-02, /* 0xbd900000 */ - -8.0816707611e+00, /* 0xc1014e86 */ - -2.5706311035e+02, /* 0xc3808814 */ - -2.4852163086e+03, /* 0xc51b5376 */ - -5.2530439453e+03, /* 0xc5a4285a */ -}; -#ifdef __STDC__ -static const float pS8[5] = { -#else -static float pS8[5] = { -#endif - 1.1653436279e+02, /* 0x42e91198 */ - 3.8337448730e+03, /* 0x456f9beb */ - 4.0597855469e+04, /* 0x471e95db */ - 1.1675296875e+05, /* 0x47e4087c */ - 4.7627726562e+04, /* 0x473a0bba */ -}; -#ifdef __STDC__ -static const float pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ -#else -static float pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ -#endif - -1.1412546255e-11, /* 0xad48c58a */ - -7.0312492549e-02, /* 0xbd8fffff */ - -4.1596107483e+00, /* 0xc0851b88 */ - -6.7674766541e+01, /* 0xc287597b */ - -3.3123129272e+02, /* 0xc3a59d9b */ - -3.4643338013e+02, /* 0xc3ad3779 */ -}; -#ifdef __STDC__ -static const float pS5[5] = { -#else -static float pS5[5] = { -#endif - 6.0753936768e+01, /* 0x42730408 */ - 1.0512523193e+03, /* 0x44836813 */ - 5.9789707031e+03, /* 0x45bad7c4 */ - 9.6254453125e+03, /* 0x461665c8 */ - 2.4060581055e+03, /* 0x451660ee */ -}; - -#ifdef __STDC__ -static const float pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ -#else -static float pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ -#endif - -2.5470459075e-09, /* 0xb12f081b */ - -7.0311963558e-02, /* 0xbd8fffb8 */ - -2.4090321064e+00, /* 0xc01a2d95 */ - -2.1965976715e+01, /* 0xc1afba52 */ - -5.8079170227e+01, /* 0xc2685112 */ - -3.1447946548e+01, /* 0xc1fb9565 */ -}; -#ifdef __STDC__ -static const float pS3[5] = { -#else -static float pS3[5] = { -#endif - 3.5856033325e+01, /* 0x420f6c94 */ - 3.6151397705e+02, /* 0x43b4c1ca */ - 1.1936077881e+03, /* 0x44953373 */ - 1.1279968262e+03, /* 0x448cffe6 */ - 1.7358093262e+02, /* 0x432d94b8 */ -}; - -#ifdef __STDC__ -static const float pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ -#else -static float pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ -#endif - -8.8753431271e-08, /* 0xb3be98b7 */ - -7.0303097367e-02, /* 0xbd8ffb12 */ - -1.4507384300e+00, /* 0xbfb9b1cc */ - -7.6356959343e+00, /* 0xc0f4579f */ - -1.1193166733e+01, /* 0xc1331736 */ - -3.2336456776e+00, /* 0xc04ef40d */ -}; -#ifdef __STDC__ -static const float pS2[5] = { -#else -static float pS2[5] = { -#endif - 2.2220300674e+01, /* 0x41b1c32d */ - 1.3620678711e+02, /* 0x430834f0 */ - 2.7047027588e+02, /* 0x43873c32 */ - 1.5387539673e+02, /* 0x4319e01a */ - 1.4657617569e+01, /* 0x416a859a */ -}; - -#ifdef __STDC__ - static float pzerof(float x) -#else - static float pzerof(x) - float x; -#endif -{ -#ifdef __STDC__ - const float *p,*q; -#else - float *p,*q; -#endif - float z,r,s; - __int32_t ix; - GET_FLOAT_WORD(ix,x); - ix &= 0x7fffffff; - if(ix>=0x41000000) {p = pR8; q= pS8;} - else if(ix>=0x40f71c58){p = pR5; q= pS5;} - else if(ix>=0x4036db68){p = pR3; q= pS3;} - else {p = pR2; q= pS2;} - z = one/(x*x); - r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); - s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4])))); - return one+ r/s; -} - - -/* For x >= 8, the asymptotic expansions of qzero is - * -1/8 s + 75/1024 s^3 - ..., where s = 1/x. - * We approximate qzero by - * qzero(x) = s*(-1.25 + (R/S)) - * where R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10 - * S = 1 + qS0*s^2 + ... + qS5*s^12 - * and - * | qzero(x)/s +1.25-R/S | <= 2 ** ( -61.22) - */ -#ifdef __STDC__ -static const float qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ -#else -static float qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ -#endif - 0.0000000000e+00, /* 0x00000000 */ - 7.3242187500e-02, /* 0x3d960000 */ - 1.1768206596e+01, /* 0x413c4a93 */ - 5.5767340088e+02, /* 0x440b6b19 */ - 8.8591972656e+03, /* 0x460a6cca */ - 3.7014625000e+04, /* 0x471096a0 */ -}; -#ifdef __STDC__ -static const float qS8[6] = { -#else -static float qS8[6] = { -#endif - 1.6377603149e+02, /* 0x4323c6aa */ - 8.0983447266e+03, /* 0x45fd12c2 */ - 1.4253829688e+05, /* 0x480b3293 */ - 8.0330925000e+05, /* 0x49441ed4 */ - 8.4050156250e+05, /* 0x494d3359 */ - -3.4389928125e+05, /* 0xc8a7eb69 */ -}; - -#ifdef __STDC__ -static const float qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ -#else -static float qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ -#endif - 1.8408595828e-11, /* 0x2da1ec79 */ - 7.3242180049e-02, /* 0x3d95ffff */ - 5.8356351852e+00, /* 0x40babd86 */ - 1.3511157227e+02, /* 0x43071c90 */ - 1.0272437744e+03, /* 0x448067cd */ - 1.9899779053e+03, /* 0x44f8bf4b */ -}; -#ifdef __STDC__ -static const float qS5[6] = { -#else -static float qS5[6] = { -#endif - 8.2776611328e+01, /* 0x42a58da0 */ - 2.0778142090e+03, /* 0x4501dd07 */ - 1.8847289062e+04, /* 0x46933e94 */ - 5.6751113281e+04, /* 0x475daf1d */ - 3.5976753906e+04, /* 0x470c88c1 */ - -5.3543427734e+03, /* 0xc5a752be */ -}; - -#ifdef __STDC__ -static const float qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ -#else -static float qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ -#endif - 4.3774099900e-09, /* 0x3196681b */ - 7.3241114616e-02, /* 0x3d95ff70 */ - 3.3442313671e+00, /* 0x405607e3 */ - 4.2621845245e+01, /* 0x422a7cc5 */ - 1.7080809021e+02, /* 0x432acedf */ - 1.6673394775e+02, /* 0x4326bbe4 */ -}; -#ifdef __STDC__ -static const float qS3[6] = { -#else -static float qS3[6] = { -#endif - 4.8758872986e+01, /* 0x42430916 */ - 7.0968920898e+02, /* 0x44316c1c */ - 3.7041481934e+03, /* 0x4567825f */ - 6.4604252930e+03, /* 0x45c9e367 */ - 2.5163337402e+03, /* 0x451d4557 */ - -1.4924745178e+02, /* 0xc3153f59 */ -}; - -#ifdef __STDC__ -static const float qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ -#else -static float qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ -#endif - 1.5044444979e-07, /* 0x342189db */ - 7.3223426938e-02, /* 0x3d95f62a */ - 1.9981917143e+00, /* 0x3fffc4bf */ - 1.4495602608e+01, /* 0x4167edfd */ - 3.1666231155e+01, /* 0x41fd5471 */ - 1.6252708435e+01, /* 0x4182058c */ -}; -#ifdef __STDC__ -static const float qS2[6] = { -#else -static float qS2[6] = { -#endif - 3.0365585327e+01, /* 0x41f2ecb8 */ - 2.6934811401e+02, /* 0x4386ac8f */ - 8.4478375244e+02, /* 0x44533229 */ - 8.8293585205e+02, /* 0x445cbbe5 */ - 2.1266638184e+02, /* 0x4354aa98 */ - -5.3109550476e+00, /* 0xc0a9f358 */ -}; - -#ifdef __STDC__ - static float qzerof(float x) -#else - static float qzerof(x) - float x; -#endif -{ -#ifdef __STDC__ - const float *p,*q; -#else - float *p,*q; -#endif - float s,r,z; - __int32_t ix; - GET_FLOAT_WORD(ix,x); - ix &= 0x7fffffff; - if(ix>=0x41000000) {p = qR8; q= qS8;} - else if(ix>=0x40f71c58){p = qR5; q= qS5;} - else if(ix>=0x4036db68){p = qR3; q= qS3;} - else {p = qR2; q= qS2;} - z = one/(x*x); - r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); - s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5]))))); - return (-(float).125 + r/s)/x; -} diff --git a/newlib/libm/math/ef_j1.c b/newlib/libm/math/ef_j1.c deleted file mode 100644 index e11cf1f..0000000 --- a/newlib/libm/math/ef_j1.c +++ /dev/null @@ -1,439 +0,0 @@ -/* ef_j1.c -- float version of e_j1.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -#include "fdlibm.h" - -#ifdef __STDC__ -static float ponef(float), qonef(float); -#else -static float ponef(), qonef(); -#endif - -#ifdef __STDC__ -static const float -#else -static float -#endif -huge = 1e30, -one = 1.0, -invsqrtpi= 5.6418961287e-01, /* 0x3f106ebb */ -tpi = 6.3661974669e-01, /* 0x3f22f983 */ - /* R0/S0 on [0,2] */ -r00 = -6.2500000000e-02, /* 0xbd800000 */ -r01 = 1.4070566976e-03, /* 0x3ab86cfd */ -r02 = -1.5995563444e-05, /* 0xb7862e36 */ -r03 = 4.9672799207e-08, /* 0x335557d2 */ -s01 = 1.9153760746e-02, /* 0x3c9ce859 */ -s02 = 1.8594678841e-04, /* 0x3942fab6 */ -s03 = 1.1771846857e-06, /* 0x359dffc2 */ -s04 = 5.0463624390e-09, /* 0x31ad6446 */ -s05 = 1.2354227016e-11; /* 0x2d59567e */ - -#ifdef __STDC__ -static const float zero = 0.0; -#else -static float zero = 0.0; -#endif - -#ifdef __STDC__ - float __ieee754_j1f(float x) -#else - float __ieee754_j1f(x) - float x; -#endif -{ - float z, s,c,ss,cc,r,u,v,y; - __int32_t hx,ix; - - GET_FLOAT_WORD(hx,x); - ix = hx&0x7fffffff; - if(ix>=0x7f800000) return one/x; - y = fabsf(x); - if(ix >= 0x40000000) { /* |x| >= 2.0 */ - s = sinf(y); - c = cosf(y); - ss = -s-c; - cc = s-c; - if(ix<0x7f000000) { /* make sure y+y not overflow */ - z = cosf(y+y); - if ((s*c)>zero) cc = z/ss; - else ss = z/cc; - } - /* - * j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x) - * y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x) - */ - if(ix>0x80000000) z = (invsqrtpi*cc)/__ieee754_sqrtf(y); - else { - u = ponef(y); v = qonef(y); - z = invsqrtpi*(u*cc-v*ss)/__ieee754_sqrtf(y); - } - if(hx<0) return -z; - else return z; - } - if(ix<0x32000000) { /* |x|<2**-27 */ - if(huge+x>one) return (float)0.5*x;/* inexact if x!=0 necessary */ - } - z = x*x; - r = z*(r00+z*(r01+z*(r02+z*r03))); - s = one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05)))); - r *= x; - return(x*(float)0.5+r/s); -} - -#ifdef __STDC__ -static const float U0[5] = { -#else -static float U0[5] = { -#endif - -1.9605709612e-01, /* 0xbe48c331 */ - 5.0443872809e-02, /* 0x3d4e9e3c */ - -1.9125689287e-03, /* 0xbafaaf2a */ - 2.3525259166e-05, /* 0x37c5581c */ - -9.1909917899e-08, /* 0xb3c56003 */ -}; -#ifdef __STDC__ -static const float V0[5] = { -#else -static float V0[5] = { -#endif - 1.9916731864e-02, /* 0x3ca3286a */ - 2.0255257550e-04, /* 0x3954644b */ - 1.3560879779e-06, /* 0x35b602d4 */ - 6.2274145840e-09, /* 0x31d5f8eb */ - 1.6655924903e-11, /* 0x2d9281cf */ -}; - -#ifdef __STDC__ - float __ieee754_y1f(float x) -#else - float __ieee754_y1f(x) - float x; -#endif -{ - float z, s,c,ss,cc,u,v; - __int32_t hx,ix; - - GET_FLOAT_WORD(hx,x); - ix = 0x7fffffff&hx; - /* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */ - if(ix>=0x7f800000) return one/(x+x*x); - if(ix==0) return -one/zero; - if(hx<0) return zero/zero; - if(ix >= 0x40000000) { /* |x| >= 2.0 */ - s = sinf(x); - c = cosf(x); - ss = -s-c; - cc = s-c; - if(ix<0x7f000000) { /* make sure x+x not overflow */ - z = cosf(x+x); - if ((s*c)>zero) cc = z/ss; - else ss = z/cc; - } - /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0)) - * where x0 = x-3pi/4 - * Better formula: - * cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4) - * = 1/sqrt(2) * (sin(x) - cos(x)) - * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4) - * = -1/sqrt(2) * (cos(x) + sin(x)) - * To avoid cancellation, use - * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) - * to compute the worse one. - */ - if(ix>0x48000000) z = (invsqrtpi*ss)/__ieee754_sqrtf(x); - else { - u = ponef(x); v = qonef(x); - z = invsqrtpi*(u*ss+v*cc)/__ieee754_sqrtf(x); - } - return z; - } - if(ix<=0x24800000) { /* x < 2**-54 */ - return(-tpi/x); - } - z = x*x; - u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4]))); - v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4])))); - return(x*(u/v) + tpi*(__ieee754_j1f(x)*__ieee754_logf(x)-one/x)); -} - -/* For x >= 8, the asymptotic expansions of pone is - * 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x. - * We approximate pone by - * pone(x) = 1 + (R/S) - * where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10 - * S = 1 + ps0*s^2 + ... + ps4*s^10 - * and - * | pone(x)-1-R/S | <= 2 ** ( -60.06) - */ - -#ifdef __STDC__ -static const float pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ -#else -static float pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ -#endif - 0.0000000000e+00, /* 0x00000000 */ - 1.1718750000e-01, /* 0x3df00000 */ - 1.3239480972e+01, /* 0x4153d4ea */ - 4.1205184937e+02, /* 0x43ce06a3 */ - 3.8747453613e+03, /* 0x45722bed */ - 7.9144794922e+03, /* 0x45f753d6 */ -}; -#ifdef __STDC__ -static const float ps8[5] = { -#else -static float ps8[5] = { -#endif - 1.1420736694e+02, /* 0x42e46a2c */ - 3.6509309082e+03, /* 0x45642ee5 */ - 3.6956207031e+04, /* 0x47105c35 */ - 9.7602796875e+04, /* 0x47bea166 */ - 3.0804271484e+04, /* 0x46f0a88b */ -}; - -#ifdef __STDC__ -static const float pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ -#else -static float pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ -#endif - 1.3199052094e-11, /* 0x2d68333f */ - 1.1718749255e-01, /* 0x3defffff */ - 6.8027510643e+00, /* 0x40d9b023 */ - 1.0830818176e+02, /* 0x42d89dca */ - 5.1763616943e+02, /* 0x440168b7 */ - 5.2871520996e+02, /* 0x44042dc6 */ -}; -#ifdef __STDC__ -static const float ps5[5] = { -#else -static float ps5[5] = { -#endif - 5.9280597687e+01, /* 0x426d1f55 */ - 9.9140142822e+02, /* 0x4477d9b1 */ - 5.3532670898e+03, /* 0x45a74a23 */ - 7.8446904297e+03, /* 0x45f52586 */ - 1.5040468750e+03, /* 0x44bc0180 */ -}; - -#ifdef __STDC__ -static const float pr3[6] = { -#else -static float pr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ -#endif - 3.0250391081e-09, /* 0x314fe10d */ - 1.1718686670e-01, /* 0x3defffab */ - 3.9329774380e+00, /* 0x407bb5e7 */ - 3.5119403839e+01, /* 0x420c7a45 */ - 9.1055007935e+01, /* 0x42b61c2a */ - 4.8559066772e+01, /* 0x42423c7c */ -}; -#ifdef __STDC__ -static const float ps3[5] = { -#else -static float ps3[5] = { -#endif - 3.4791309357e+01, /* 0x420b2a4d */ - 3.3676245117e+02, /* 0x43a86198 */ - 1.0468714600e+03, /* 0x4482dbe3 */ - 8.9081134033e+02, /* 0x445eb3ed */ - 1.0378793335e+02, /* 0x42cf936c */ -}; - -#ifdef __STDC__ -static const float pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ -#else -static float pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ -#endif - 1.0771083225e-07, /* 0x33e74ea8 */ - 1.1717621982e-01, /* 0x3deffa16 */ - 2.3685150146e+00, /* 0x401795c0 */ - 1.2242610931e+01, /* 0x4143e1bc */ - 1.7693971634e+01, /* 0x418d8d41 */ - 5.0735230446e+00, /* 0x40a25a4d */ -}; -#ifdef __STDC__ -static const float ps2[5] = { -#else -static float ps2[5] = { -#endif - 2.1436485291e+01, /* 0x41ab7dec */ - 1.2529022980e+02, /* 0x42fa9499 */ - 2.3227647400e+02, /* 0x436846c7 */ - 1.1767937469e+02, /* 0x42eb5bd7 */ - 8.3646392822e+00, /* 0x4105d590 */ -}; - -#ifdef __STDC__ - static float ponef(float x) -#else - static float ponef(x) - float x; -#endif -{ -#ifdef __STDC__ - const float *p,*q; -#else - float *p,*q; -#endif - float z,r,s; - __int32_t ix; - GET_FLOAT_WORD(ix,x); - ix &= 0x7fffffff; - if(ix>=0x41000000) {p = pr8; q= ps8;} - else if(ix>=0x40f71c58){p = pr5; q= ps5;} - else if(ix>=0x4036db68){p = pr3; q= ps3;} - else {p = pr2; q= ps2;} - z = one/(x*x); - r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); - s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4])))); - return one+ r/s; -} - - -/* For x >= 8, the asymptotic expansions of qone is - * 3/8 s - 105/1024 s^3 - ..., where s = 1/x. - * We approximate qone by - * qone(x) = s*(0.375 + (R/S)) - * where R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10 - * S = 1 + qs1*s^2 + ... + qs6*s^12 - * and - * | qone(x)/s -0.375-R/S | <= 2 ** ( -61.13) - */ - -#ifdef __STDC__ -static const float qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ -#else -static float qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ -#endif - 0.0000000000e+00, /* 0x00000000 */ - -1.0253906250e-01, /* 0xbdd20000 */ - -1.6271753311e+01, /* 0xc1822c8d */ - -7.5960174561e+02, /* 0xc43de683 */ - -1.1849806641e+04, /* 0xc639273a */ - -4.8438511719e+04, /* 0xc73d3683 */ -}; -#ifdef __STDC__ -static const float qs8[6] = { -#else -static float qs8[6] = { -#endif - 1.6139537048e+02, /* 0x43216537 */ - 7.8253862305e+03, /* 0x45f48b17 */ - 1.3387534375e+05, /* 0x4802bcd6 */ - 7.1965775000e+05, /* 0x492fb29c */ - 6.6660125000e+05, /* 0x4922be94 */ - -2.9449025000e+05, /* 0xc88fcb48 */ -}; - -#ifdef __STDC__ -static const float qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ -#else -static float qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ -#endif - -2.0897993405e-11, /* 0xadb7d219 */ - -1.0253904760e-01, /* 0xbdd1fffe */ - -8.0564479828e+00, /* 0xc100e736 */ - -1.8366960144e+02, /* 0xc337ab6b */ - -1.3731937256e+03, /* 0xc4aba633 */ - -2.6124443359e+03, /* 0xc523471c */ -}; -#ifdef __STDC__ -static const float qs5[6] = { -#else -static float qs5[6] = { -#endif - 8.1276550293e+01, /* 0x42a28d98 */ - 1.9917987061e+03, /* 0x44f8f98f */ - 1.7468484375e+04, /* 0x468878f8 */ - 4.9851425781e+04, /* 0x4742bb6d */ - 2.7948074219e+04, /* 0x46da5826 */ - -4.7191835938e+03, /* 0xc5937978 */ -}; - -#ifdef __STDC__ -static const float qr3[6] = { -#else -static float qr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */ -#endif - -5.0783124372e-09, /* 0xb1ae7d4f */ - -1.0253783315e-01, /* 0xbdd1ff5b */ - -4.6101160049e+00, /* 0xc0938612 */ - -5.7847221375e+01, /* 0xc267638e */ - -2.2824453735e+02, /* 0xc3643e9a */ - -2.1921012878e+02, /* 0xc35b35cb */ -}; -#ifdef __STDC__ -static const float qs3[6] = { -#else -static float qs3[6] = { -#endif - 4.7665153503e+01, /* 0x423ea91e */ - 6.7386511230e+02, /* 0x4428775e */ - 3.3801528320e+03, /* 0x45534272 */ - 5.5477290039e+03, /* 0x45ad5dd5 */ - 1.9031191406e+03, /* 0x44ede3d0 */ - -1.3520118713e+02, /* 0xc3073381 */ -}; - -#ifdef __STDC__ -static const float qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ -#else -static float qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ -#endif - -1.7838172539e-07, /* 0xb43f8932 */ - -1.0251704603e-01, /* 0xbdd1f475 */ - -2.7522056103e+00, /* 0xc0302423 */ - -1.9663616180e+01, /* 0xc19d4f16 */ - -4.2325313568e+01, /* 0xc2294d1f */ - -2.1371921539e+01, /* 0xc1aaf9b2 */ -}; -#ifdef __STDC__ -static const float qs2[6] = { -#else -static float qs2[6] = { -#endif - 2.9533363342e+01, /* 0x41ec4454 */ - 2.5298155212e+02, /* 0x437cfb47 */ - 7.5750280762e+02, /* 0x443d602e */ - 7.3939318848e+02, /* 0x4438d92a */ - 1.5594900513e+02, /* 0x431bf2f2 */ - -4.9594988823e+00, /* 0xc09eb437 */ -}; - -#ifdef __STDC__ - static float qonef(float x) -#else - static float qonef(x) - float x; -#endif -{ -#ifdef __STDC__ - const float *p,*q; -#else - float *p,*q; -#endif - float s,r,z; - __int32_t ix; - GET_FLOAT_WORD(ix,x); - ix &= 0x7fffffff; - if(ix>=0x40200000) {p = qr8; q= qs8;} - else if(ix>=0x40f71c58){p = qr5; q= qs5;} - else if(ix>=0x4036db68){p = qr3; q= qs3;} - else {p = qr2; q= qs2;} - z = one/(x*x); - r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); - s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5]))))); - return ((float).375 + r/s)/x; -} diff --git a/newlib/libm/math/ef_jn.c b/newlib/libm/math/ef_jn.c deleted file mode 100644 index 04a93b6..0000000 --- a/newlib/libm/math/ef_jn.c +++ /dev/null @@ -1,207 +0,0 @@ -/* ef_jn.c -- float version of e_jn.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -#include "fdlibm.h" - -#ifdef __STDC__ -static const float -#else -static float -#endif -invsqrtpi= 5.6418961287e-01, /* 0x3f106ebb */ -two = 2.0000000000e+00, /* 0x40000000 */ -one = 1.0000000000e+00; /* 0x3F800000 */ - -#ifdef __STDC__ -static const float zero = 0.0000000000e+00; -#else -static float zero = 0.0000000000e+00; -#endif - -#ifdef __STDC__ - float __ieee754_jnf(int n, float x) -#else - float __ieee754_jnf(n,x) - int n; float x; -#endif -{ - __int32_t i,hx,ix, sgn; - float a, b, temp, di; - float z, w; - - /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x) - * Thus, J(-n,x) = J(n,-x) - */ - GET_FLOAT_WORD(hx,x); - ix = 0x7fffffff&hx; - /* if J(n,NaN) is NaN */ - if(ix>0x7f800000) return x+x; - if(n<0){ - n = -n; - x = -x; - hx ^= 0x80000000; - } - if(n==0) return(__ieee754_j0f(x)); - if(n==1) return(__ieee754_j1f(x)); - sgn = (n&1)&(hx>>31); /* even n -- 0, odd n -- sign(x) */ - x = fabsf(x); - if(ix==0||ix>=0x7f800000) /* if x is 0 or inf */ - b = zero; - else if((float)n<=x) { - /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */ - a = __ieee754_j0f(x); - b = __ieee754_j1f(x); - for(i=1;i<n;i++){ - temp = b; - b = b*((float)(i+i)/x) - a; /* avoid underflow */ - a = temp; - } - } else { - if(ix<0x30800000) { /* x < 2**-29 */ - /* x is tiny, return the first Taylor expansion of J(n,x) - * J(n,x) = 1/n!*(x/2)^n - ... - */ - if(n>33) /* underflow */ - b = zero; - else { - temp = x*(float)0.5; b = temp; - for (a=one,i=2;i<=n;i++) { - a *= (float)i; /* a = n! */ - b *= temp; /* b = (x/2)^n */ - } - b = b/a; - } - } else { - /* use backward recurrence */ - /* x x^2 x^2 - * J(n,x)/J(n-1,x) = ---- ------ ------ ..... - * 2n - 2(n+1) - 2(n+2) - * - * 1 1 1 - * (for large x) = ---- ------ ------ ..... - * 2n 2(n+1) 2(n+2) - * -- - ------ - ------ - - * x x x - * - * Let w = 2n/x and h=2/x, then the above quotient - * is equal to the continued fraction: - * 1 - * = ----------------------- - * 1 - * w - ----------------- - * 1 - * w+h - --------- - * w+2h - ... - * - * To determine how many terms needed, let - * Q(0) = w, Q(1) = w(w+h) - 1, - * Q(k) = (w+k*h)*Q(k-1) - Q(k-2), - * When Q(k) > 1e4 good for single - * When Q(k) > 1e9 good for double - * When Q(k) > 1e17 good for quadruple - */ - /* determine k */ - float t,v; - float q0,q1,h,tmp; __int32_t k,m; - w = (n+n)/(float)x; h = (float)2.0/(float)x; - q0 = w; z = w+h; q1 = w*z - (float)1.0; k=1; - while(q1<(float)1.0e9) { - k += 1; z += h; - tmp = z*q1 - q0; - q0 = q1; - q1 = tmp; - } - m = n+n; - for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t); - a = t; - b = one; - /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n) - * Hence, if n*(log(2n/x)) > ... - * single 8.8722839355e+01 - * double 7.09782712893383973096e+02 - * long double 1.1356523406294143949491931077970765006170e+04 - * then recurrent value may overflow and the result is - * likely underflow to zero - */ - tmp = n; - v = two/x; - tmp = tmp*__ieee754_logf(fabsf(v*tmp)); - if(tmp<(float)8.8721679688e+01) { - for(i=n-1,di=(float)(i+i);i>0;i--){ - temp = b; - b *= di; - b = b/x - a; - a = temp; - di -= two; - } - } else { - for(i=n-1,di=(float)(i+i);i>0;i--){ - temp = b; - b *= di; - b = b/x - a; - a = temp; - di -= two; - /* scale b to avoid spurious overflow */ - if(b>(float)1e10) { - a /= b; - t /= b; - b = one; - } - } - } - b = (t*__ieee754_j0f(x)/b); - } - } - if(sgn==1) return -b; else return b; -} - -#ifdef __STDC__ - float __ieee754_ynf(int n, float x) -#else - float __ieee754_ynf(n,x) - int n; float x; -#endif -{ - __int32_t i,hx,ix,ib; - __int32_t sign; - float a, b, temp; - - GET_FLOAT_WORD(hx,x); - ix = 0x7fffffff&hx; - /* if Y(n,NaN) is NaN */ - if(ix>0x7f800000) return x+x; - if(ix==0) return -one/zero; - if(hx<0) return zero/zero; - sign = 1; - if(n<0){ - n = -n; - sign = 1 - ((n&1)<<1); - } - if(n==0) return(__ieee754_y0f(x)); - if(n==1) return(sign*__ieee754_y1f(x)); - if(ix==0x7f800000) return zero; - - a = __ieee754_y0f(x); - b = __ieee754_y1f(x); - /* quit if b is -inf */ - GET_FLOAT_WORD(ib,b); - for(i=1;i<n&&ib!=0xff800000;i++){ - temp = b; - b = ((float)(i+i)/x)*b - a; - GET_FLOAT_WORD(ib,b); - a = temp; - } - if(sign>0) return b; else return -b; -} diff --git a/newlib/libm/math/ef_log.c b/newlib/libm/math/ef_log.c deleted file mode 100644 index 87d6af2..0000000 --- a/newlib/libm/math/ef_log.c +++ /dev/null @@ -1,92 +0,0 @@ -/* ef_log.c -- float version of e_log.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -#include "fdlibm.h" - -#ifdef __STDC__ -static const float -#else -static float -#endif -ln2_hi = 6.9313812256e-01, /* 0x3f317180 */ -ln2_lo = 9.0580006145e-06, /* 0x3717f7d1 */ -two25 = 3.355443200e+07, /* 0x4c000000 */ -Lg1 = 6.6666668653e-01, /* 3F2AAAAB */ -Lg2 = 4.0000000596e-01, /* 3ECCCCCD */ -Lg3 = 2.8571429849e-01, /* 3E924925 */ -Lg4 = 2.2222198546e-01, /* 3E638E29 */ -Lg5 = 1.8183572590e-01, /* 3E3A3325 */ -Lg6 = 1.5313838422e-01, /* 3E1CD04F */ -Lg7 = 1.4798198640e-01; /* 3E178897 */ - -#ifdef __STDC__ -static const float zero = 0.0; -#else -static float zero = 0.0; -#endif - -#ifdef __STDC__ - float __ieee754_logf(float x) -#else - float __ieee754_logf(x) - float x; -#endif -{ - float hfsq,f,s,z,R,w,t1,t2,dk; - __int32_t k,ix,i,j; - - GET_FLOAT_WORD(ix,x); - - k=0; - if (ix < 0x00800000) { /* x < 2**-126 */ - if ((ix&0x7fffffff)==0) - return -two25/zero; /* log(+-0)=-inf */ - if (ix<0) return (x-x)/zero; /* log(-#) = NaN */ - k -= 25; x *= two25; /* subnormal number, scale up x */ - GET_FLOAT_WORD(ix,x); - } - if (ix >= 0x7f800000) return x+x; - k += (ix>>23)-127; - ix &= 0x007fffff; - i = (ix+(0x95f64<<3))&0x800000; - SET_FLOAT_WORD(x,ix|(i^0x3f800000)); /* normalize x or x/2 */ - k += (i>>23); - f = x-(float)1.0; - if((0x007fffff&(15+ix))<16) { /* |f| < 2**-20 */ - if(f==zero) { if(k==0) return zero; else {dk=(float)k; - return dk*ln2_hi+dk*ln2_lo;}} - R = f*f*((float)0.5-(float)0.33333333333333333*f); - if(k==0) return f-R; else {dk=(float)k; - return dk*ln2_hi-((R-dk*ln2_lo)-f);} - } - s = f/((float)2.0+f); - dk = (float)k; - z = s*s; - i = ix-(0x6147a<<3); - w = z*z; - j = (0x6b851<<3)-ix; - t1= w*(Lg2+w*(Lg4+w*Lg6)); - t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7))); - i |= j; - R = t2+t1; - if(i>0) { - hfsq=(float)0.5*f*f; - if(k==0) return f-(hfsq-s*(hfsq+R)); else - return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f); - } else { - if(k==0) return f-s*(f-R); else - return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f); - } -} diff --git a/newlib/libm/math/ef_log10.c b/newlib/libm/math/ef_log10.c deleted file mode 100644 index 63fee9b..0000000 --- a/newlib/libm/math/ef_log10.c +++ /dev/null @@ -1,62 +0,0 @@ -/* ef_log10.c -- float version of e_log10.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -#include "fdlibm.h" - -#ifdef __STDC__ -static const float -#else -static float -#endif -two25 = 3.3554432000e+07, /* 0x4c000000 */ -ivln10 = 4.3429449201e-01, /* 0x3ede5bd9 */ -log10_2hi = 3.0102920532e-01, /* 0x3e9a2080 */ -log10_2lo = 7.9034151668e-07; /* 0x355427db */ - -#ifdef __STDC__ -static const float zero = 0.0; -#else -static float zero = 0.0; -#endif - -#ifdef __STDC__ - float __ieee754_log10f(float x) -#else - float __ieee754_log10f(x) - float x; -#endif -{ - float y,z; - __int32_t i,k,hx; - - GET_FLOAT_WORD(hx,x); - - k=0; - if (hx < 0x00800000) { /* x < 2**-126 */ - if ((hx&0x7fffffff)==0) - return -two25/zero; /* log(+-0)=-inf */ - if (hx<0) return (x-x)/zero; /* log(-#) = NaN */ - k -= 25; x *= two25; /* subnormal number, scale up x */ - GET_FLOAT_WORD(hx,x); - } - if (hx >= 0x7f800000) return x+x; - k += (hx>>23)-127; - i = ((__uint32_t)k&0x80000000)>>31; - hx = (hx&0x007fffff)|((0x7f-i)<<23); - y = (float)(k+i); - SET_FLOAT_WORD(x,hx); - z = y*log10_2lo + ivln10*__ieee754_logf(x); - return z+y*log10_2hi; -} diff --git a/newlib/libm/math/ef_pow.c b/newlib/libm/math/ef_pow.c deleted file mode 100644 index 40b679d..0000000 --- a/newlib/libm/math/ef_pow.c +++ /dev/null @@ -1,252 +0,0 @@ -/* ef_pow.c -- float version of e_pow.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -#include "fdlibm.h" - -#ifdef __v810__ -#define const -#endif - -#ifdef __STDC__ -static const float -#else -static float -#endif -bp[] = {1.0, 1.5,}, -dp_h[] = { 0.0, 5.84960938e-01,}, /* 0x3f15c000 */ -dp_l[] = { 0.0, 1.56322085e-06,}, /* 0x35d1cfdc */ -zero = 0.0, -one = 1.0, -two = 2.0, -two24 = 16777216.0, /* 0x4b800000 */ -huge = 1.0e30, -tiny = 1.0e-30, - /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */ -L1 = 6.0000002384e-01, /* 0x3f19999a */ -L2 = 4.2857143283e-01, /* 0x3edb6db7 */ -L3 = 3.3333334327e-01, /* 0x3eaaaaab */ -L4 = 2.7272811532e-01, /* 0x3e8ba305 */ -L5 = 2.3066075146e-01, /* 0x3e6c3255 */ -L6 = 2.0697501302e-01, /* 0x3e53f142 */ -P1 = 1.6666667163e-01, /* 0x3e2aaaab */ -P2 = -2.7777778450e-03, /* 0xbb360b61 */ -P3 = 6.6137559770e-05, /* 0x388ab355 */ -P4 = -1.6533901999e-06, /* 0xb5ddea0e */ -P5 = 4.1381369442e-08, /* 0x3331bb4c */ -lg2 = 6.9314718246e-01, /* 0x3f317218 */ -lg2_h = 6.93145752e-01, /* 0x3f317200 */ -lg2_l = 1.42860654e-06, /* 0x35bfbe8c */ -ovt = 4.2995665694e-08, /* -(128-log2(ovfl+.5ulp)) */ -cp = 9.6179670095e-01, /* 0x3f76384f =2/(3ln2) */ -cp_h = 9.6179199219e-01, /* 0x3f763800 =head of cp */ -cp_l = 4.7017383622e-06, /* 0x369dc3a0 =tail of cp_h */ -ivln2 = 1.4426950216e+00, /* 0x3fb8aa3b =1/ln2 */ -ivln2_h = 1.4426879883e+00, /* 0x3fb8aa00 =16b 1/ln2*/ -ivln2_l = 7.0526075433e-06; /* 0x36eca570 =1/ln2 tail*/ - -#ifdef __STDC__ - float __ieee754_powf(float x, float y) -#else - float __ieee754_powf(x,y) - float x, y; -#endif -{ - float z,ax,z_h,z_l,p_h,p_l; - float y1,t1,t2,r,s,t,u,v,w; - __int32_t i,j,k,yisint,n; - __int32_t hx,hy,ix,iy,is; - - GET_FLOAT_WORD(hx,x); - GET_FLOAT_WORD(hy,y); - ix = hx&0x7fffffff; iy = hy&0x7fffffff; - - /* y==zero: x**0 = 1 */ - if(iy==0) return one; - - /* +-NaN return x+y */ - if(ix > 0x7f800000 || - iy > 0x7f800000) - return x+y; - - /* determine if y is an odd int when x < 0 - * yisint = 0 ... y is not an integer - * yisint = 1 ... y is an odd int - * yisint = 2 ... y is an even int - */ - yisint = 0; - if(hx<0) { - if(iy>=0x4b800000) yisint = 2; /* even integer y */ - else if(iy>=0x3f800000) { - k = (iy>>23)-0x7f; /* exponent */ - j = iy>>(23-k); - if((j<<(23-k))==iy) yisint = 2-(j&1); - } - } - - /* special value of y */ - if (iy==0x7f800000) { /* y is +-inf */ - if (ix==0x3f800000) - return y - y; /* inf**+-1 is NaN */ - else if (ix > 0x3f800000)/* (|x|>1)**+-inf = inf,0 */ - return (hy>=0)? y: zero; - else /* (|x|<1)**-,+inf = inf,0 */ - return (hy<0)?-y: zero; - } - if(iy==0x3f800000) { /* y is +-1 */ - if(hy<0) return one/x; else return x; - } - if(hy==0x40000000) return x*x; /* y is 2 */ - if(hy==0x3f000000) { /* y is 0.5 */ - if(hx>=0) /* x >= +0 */ - return __ieee754_sqrtf(x); - } - - ax = fabsf(x); - /* special value of x */ - if(ix==0x7f800000||ix==0||ix==0x3f800000){ - z = ax; /*x is +-0,+-inf,+-1*/ - if(hy<0) z = one/z; /* z = (1/|x|) */ - if(hx<0) { - if(((ix-0x3f800000)|yisint)==0) { - z = (z-z)/(z-z); /* (-1)**non-int is NaN */ - } else if(yisint==1) - z = -z; /* (x<0)**odd = -(|x|**odd) */ - } - return z; - } - - /* (x<0)**(non-int) is NaN */ - if(((((__uint32_t)hx>>31)-1)|yisint)==0) return (x-x)/(x-x); - - /* |y| is huge */ - if(iy>0x4d000000) { /* if |y| > 2**27 */ - /* over/underflow if x is not close to one */ - if(ix<0x3f7ffff8) return (hy<0)? huge*huge:tiny*tiny; - if(ix>0x3f800007) return (hy>0)? huge*huge:tiny*tiny; - /* now |1-x| is tiny <= 2**-20, suffice to compute - log(x) by x-x^2/2+x^3/3-x^4/4 */ - t = x-1; /* t has 20 trailing zeros */ - w = (t*t)*((float)0.5-t*((float)0.333333333333-t*(float)0.25)); - u = ivln2_h*t; /* ivln2_h has 16 sig. bits */ - v = t*ivln2_l-w*ivln2; - t1 = u+v; - GET_FLOAT_WORD(is,t1); - SET_FLOAT_WORD(t1,is&0xfffff000); - t2 = v-(t1-u); - } else { - float s2,s_h,s_l,t_h,t_l; - n = 0; - /* take care subnormal number */ - if(ix<0x00800000) - {ax *= two24; n -= 24; GET_FLOAT_WORD(ix,ax); } - n += ((ix)>>23)-0x7f; - j = ix&0x007fffff; - /* determine interval */ - ix = j|0x3f800000; /* normalize ix */ - if(j<=0x1cc471) k=0; /* |x|<sqrt(3/2) */ - else if(j<0x5db3d7) k=1; /* |x|<sqrt(3) */ - else {k=0;n+=1;ix -= 0x00800000;} - SET_FLOAT_WORD(ax,ix); - - /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */ - u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */ - v = one/(ax+bp[k]); - s = u*v; - s_h = s; - GET_FLOAT_WORD(is,s_h); - SET_FLOAT_WORD(s_h,is&0xfffff000); - /* t_h=ax+bp[k] High */ - SET_FLOAT_WORD(t_h,((ix>>1)|0x20000000)+0x0040000+(k<<21)); - t_l = ax - (t_h-bp[k]); - s_l = v*((u-s_h*t_h)-s_h*t_l); - /* compute log(ax) */ - s2 = s*s; - r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6))))); - r += s_l*(s_h+s); - s2 = s_h*s_h; - t_h = (float)3.0+s2+r; - GET_FLOAT_WORD(is,t_h); - SET_FLOAT_WORD(t_h,is&0xfffff000); - t_l = r-((t_h-(float)3.0)-s2); - /* u+v = s*(1+...) */ - u = s_h*t_h; - v = s_l*t_h+t_l*s; - /* 2/(3log2)*(s+...) */ - p_h = u+v; - GET_FLOAT_WORD(is,p_h); - SET_FLOAT_WORD(p_h,is&0xfffff000); - p_l = v-(p_h-u); - z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */ - z_l = cp_l*p_h+p_l*cp+dp_l[k]; - /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */ - t = (float)n; - t1 = (((z_h+z_l)+dp_h[k])+t); - GET_FLOAT_WORD(is,t1); - SET_FLOAT_WORD(t1,is&0xfffff000); - t2 = z_l-(((t1-t)-dp_h[k])-z_h); - } - - s = one; /* s (sign of result -ve**odd) = -1 else = 1 */ - if(((((__uint32_t)hx>>31)-1)|(yisint-1))==0) - s = -one; /* (-ve)**(odd int) */ - - /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */ - GET_FLOAT_WORD(is,y); - SET_FLOAT_WORD(y1,is&0xfffff000); - p_l = (y-y1)*t1+y*t2; - p_h = y1*t1; - z = p_l+p_h; - GET_FLOAT_WORD(j,z); - if (j>0x43000000) /* if z > 128 */ - return s*huge*huge; /* overflow */ - else if (j==0x43000000) { /* if z == 128 */ - if(p_l+ovt>z-p_h) return s*huge*huge; /* overflow */ - } - else if ((j&0x7fffffff)>0x43160000) /* z <= -150 */ - return s*tiny*tiny; /* underflow */ - else if (j==0xc3160000){ /* z == -150 */ - if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */ - } - /* - * compute 2**(p_h+p_l) - */ - i = j&0x7fffffff; - k = (i>>23)-0x7f; - n = 0; - if(i>0x3f000000) { /* if |z| > 0.5, set n = [z+0.5] */ - n = j+(0x00800000>>(k+1)); - k = ((n&0x7fffffff)>>23)-0x7f; /* new k for n */ - SET_FLOAT_WORD(t,n&~(0x007fffff>>k)); - n = ((n&0x007fffff)|0x00800000)>>(23-k); - if(j<0) n = -n; - p_h -= t; - } - t = p_l+p_h; - GET_FLOAT_WORD(is,t); - SET_FLOAT_WORD(t,is&0xfffff000); - u = t*lg2_h; - v = (p_l-(t-p_h))*lg2+t*lg2_l; - z = u+v; - w = v-(z-u); - t = z*z; - t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); - r = (z*t1)/(t1-two)-(w+z*w); - z = one-(r-z); - GET_FLOAT_WORD(j,z); - j += (n<<23); - if((j>>23)<=0) z = scalbnf(z,(int)n); /* subnormal output */ - else SET_FLOAT_WORD(z,j); - return s*z; -} diff --git a/newlib/libm/math/ef_rem_pio2.c b/newlib/libm/math/ef_rem_pio2.c deleted file mode 100644 index e91aa47..0000000 --- a/newlib/libm/math/ef_rem_pio2.c +++ /dev/null @@ -1,193 +0,0 @@ -/* ef_rem_pio2.c -- float version of e_rem_pio2.c - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - * - */ - -/* __ieee754_rem_pio2f(x,y) - * - * return the remainder of x rem pi/2 in y[0]+y[1] - * use __kernel_rem_pio2f() - */ - -#include "fdlibm.h" - -/* - * Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi - */ -#ifdef __STDC__ -static const __int32_t two_over_pi[] = { -#else -static __int32_t two_over_pi[] = { -#endif -0xA2, 0xF9, 0x83, 0x6E, 0x4E, 0x44, 0x15, 0x29, 0xFC, -0x27, 0x57, 0xD1, 0xF5, 0x34, 0xDD, 0xC0, 0xDB, 0x62, -0x95, 0x99, 0x3C, 0x43, 0x90, 0x41, 0xFE, 0x51, 0x63, -0xAB, 0xDE, 0xBB, 0xC5, 0x61, 0xB7, 0x24, 0x6E, 0x3A, -0x42, 0x4D, 0xD2, 0xE0, 0x06, 0x49, 0x2E, 0xEA, 0x09, -0xD1, 0x92, 0x1C, 0xFE, 0x1D, 0xEB, 0x1C, 0xB1, 0x29, -0xA7, 0x3E, 0xE8, 0x82, 0x35, 0xF5, 0x2E, 0xBB, 0x44, -0x84, 0xE9, 0x9C, 0x70, 0x26, 0xB4, 0x5F, 0x7E, 0x41, -0x39, 0x91, 0xD6, 0x39, 0x83, 0x53, 0x39, 0xF4, 0x9C, -0x84, 0x5F, 0x8B, 0xBD, 0xF9, 0x28, 0x3B, 0x1F, 0xF8, -0x97, 0xFF, 0xDE, 0x05, 0x98, 0x0F, 0xEF, 0x2F, 0x11, -0x8B, 0x5A, 0x0A, 0x6D, 0x1F, 0x6D, 0x36, 0x7E, 0xCF, -0x27, 0xCB, 0x09, 0xB7, 0x4F, 0x46, 0x3F, 0x66, 0x9E, -0x5F, 0xEA, 0x2D, 0x75, 0x27, 0xBA, 0xC7, 0xEB, 0xE5, -0xF1, 0x7B, 0x3D, 0x07, 0x39, 0xF7, 0x8A, 0x52, 0x92, -0xEA, 0x6B, 0xFB, 0x5F, 0xB1, 0x1F, 0x8D, 0x5D, 0x08, -0x56, 0x03, 0x30, 0x46, 0xFC, 0x7B, 0x6B, 0xAB, 0xF0, -0xCF, 0xBC, 0x20, 0x9A, 0xF4, 0x36, 0x1D, 0xA9, 0xE3, -0x91, 0x61, 0x5E, 0xE6, 0x1B, 0x08, 0x65, 0x99, 0x85, -0x5F, 0x14, 0xA0, 0x68, 0x40, 0x8D, 0xFF, 0xD8, 0x80, -0x4D, 0x73, 0x27, 0x31, 0x06, 0x06, 0x15, 0x56, 0xCA, -0x73, 0xA8, 0xC9, 0x60, 0xE2, 0x7B, 0xC0, 0x8C, 0x6B, -}; - -/* This array is like the one in e_rem_pio2.c, but the numbers are - single precision and the last 8 bits are forced to 0. */ -#ifdef __STDC__ -static const __int32_t npio2_hw[] = { -#else -static __int32_t npio2_hw[] = { -#endif -0x3fc90f00, 0x40490f00, 0x4096cb00, 0x40c90f00, 0x40fb5300, 0x4116cb00, -0x412fed00, 0x41490f00, 0x41623100, 0x417b5300, 0x418a3a00, 0x4196cb00, -0x41a35c00, 0x41afed00, 0x41bc7e00, 0x41c90f00, 0x41d5a000, 0x41e23100, -0x41eec200, 0x41fb5300, 0x4203f200, 0x420a3a00, 0x42108300, 0x4216cb00, -0x421d1400, 0x42235c00, 0x4229a500, 0x422fed00, 0x42363600, 0x423c7e00, -0x4242c700, 0x42490f00 -}; - -/* - * invpio2: 24 bits of 2/pi - * pio2_1: first 17 bit of pi/2 - * pio2_1t: pi/2 - pio2_1 - * pio2_2: second 17 bit of pi/2 - * pio2_2t: pi/2 - (pio2_1+pio2_2) - * pio2_3: third 17 bit of pi/2 - * pio2_3t: pi/2 - (pio2_1+pio2_2+pio2_3) - */ - -#ifdef __STDC__ -static const float -#else -static float -#endif -zero = 0.0000000000e+00, /* 0x00000000 */ -half = 5.0000000000e-01, /* 0x3f000000 */ -two8 = 2.5600000000e+02, /* 0x43800000 */ -invpio2 = 6.3661980629e-01, /* 0x3f22f984 */ -pio2_1 = 1.5707855225e+00, /* 0x3fc90f80 */ -pio2_1t = 1.0804334124e-05, /* 0x37354443 */ -pio2_2 = 1.0804273188e-05, /* 0x37354400 */ -pio2_2t = 6.0770999344e-11, /* 0x2e85a308 */ -pio2_3 = 6.0770943833e-11, /* 0x2e85a300 */ -pio2_3t = 6.1232342629e-17; /* 0x248d3132 */ - -#ifdef __STDC__ - __int32_t __ieee754_rem_pio2f(float x, float *y) -#else - __int32_t __ieee754_rem_pio2f(x,y) - float x,y[]; -#endif -{ - float z,w,t,r,fn; - float tx[3]; - __int32_t i,j,n,ix,hx; - int e0,nx; - - GET_FLOAT_WORD(hx,x); - ix = hx&0x7fffffff; - if(ix<=0x3f490fd8) /* |x| ~<= pi/4 , no need for reduction */ - {y[0] = x; y[1] = 0; return 0;} - if(ix<0x4016cbe4) { /* |x| < 3pi/4, special case with n=+-1 */ - if(hx>0) { - z = x - pio2_1; - if((ix&0xfffffff0)!=0x3fc90fd0) { /* 24+24 bit pi OK */ - y[0] = z - pio2_1t; - y[1] = (z-y[0])-pio2_1t; - } else { /* near pi/2, use 24+24+24 bit pi */ - z -= pio2_2; - y[0] = z - pio2_2t; - y[1] = (z-y[0])-pio2_2t; - } - return 1; - } else { /* negative x */ - z = x + pio2_1; - if((ix&0xfffffff0)!=0x3fc90fd0) { /* 24+24 bit pi OK */ - y[0] = z + pio2_1t; - y[1] = (z-y[0])+pio2_1t; - } else { /* near pi/2, use 24+24+24 bit pi */ - z += pio2_2; - y[0] = z + pio2_2t; - y[1] = (z-y[0])+pio2_2t; - } - return -1; - } - } - if(ix<=0x43490f80) { /* |x| ~<= 2^7*(pi/2), medium size */ - t = fabsf(x); - n = (__int32_t) (t*invpio2+half); - fn = (float)n; - r = t-fn*pio2_1; - w = fn*pio2_1t; /* 1st round good to 40 bit */ - if(n<32&&(ix&0xffffff00)!=npio2_hw[n-1]) { - y[0] = r-w; /* quick check no cancellation */ - } else { - __uint32_t high; - j = ix>>23; - y[0] = r-w; - GET_FLOAT_WORD(high,y[0]); - i = j-((high>>23)&0xff); - if(i>8) { /* 2nd iteration needed, good to 57 */ - t = r; - w = fn*pio2_2; - r = t-w; - w = fn*pio2_2t-((t-r)-w); - y[0] = r-w; - GET_FLOAT_WORD(high,y[0]); - i = j-((high>>23)&0xff); - if(i>25) { /* 3rd iteration need, 74 bits acc */ - t = r; /* will cover all possible cases */ - w = fn*pio2_3; - r = t-w; - w = fn*pio2_3t-((t-r)-w); - y[0] = r-w; - } - } - } - y[1] = (r-y[0])-w; - if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;} - else return n; - } - /* - * all other (large) arguments - */ - if(ix>=0x7f800000) { /* x is inf or NaN */ - y[0]=y[1]=x-x; return 0; - } - /* set z = scalbn(|x|,ilogb(x)-7) */ - e0 = (int)((ix>>23)-134); /* e0 = ilogb(z)-7; */ - SET_FLOAT_WORD(z, ix - ((__int32_t)e0<<23)); - for(i=0;i<2;i++) { - tx[i] = (float)((__int32_t)(z)); - z = (z-tx[i])*two8; - } - tx[2] = z; - nx = 3; - while(tx[nx-1]==zero) nx--; /* skip zero term */ - n = __kernel_rem_pio2f(tx,y,e0,nx,2,two_over_pi); - if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;} - return n; -} diff --git a/newlib/libm/math/ef_remainder.c b/newlib/libm/math/ef_remainder.c deleted file mode 100644 index 8ce7fac..0000000 --- a/newlib/libm/math/ef_remainder.c +++ /dev/null @@ -1,68 +0,0 @@ -/* ef_remainder.c -- float version of e_remainder.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -#include "fdlibm.h" - -#ifdef __STDC__ -static const float zero = 0.0; -#else -static float zero = 0.0; -#endif - - -#ifdef __STDC__ - float __ieee754_remainderf(float x, float p) -#else - float __ieee754_remainderf(x,p) - float x,p; -#endif -{ - __int32_t hx,hp; - __uint32_t sx; - float p_half; - - GET_FLOAT_WORD(hx,x); - GET_FLOAT_WORD(hp,p); - sx = hx&0x80000000; - hp &= 0x7fffffff; - hx &= 0x7fffffff; - - /* purge off exception values */ - if(hp==0) return (x*p)/(x*p); /* p = 0 */ - if((hx>=0x7f800000)|| /* x not finite */ - ((hp>0x7f800000))) /* p is NaN */ - return (x*p)/(x*p); - - - if (hp<=0x7effffff) x = __ieee754_fmodf(x,p+p); /* now x < 2p */ - if ((hx-hp)==0) return zero*x; - x = fabsf(x); - p = fabsf(p); - if (hp<0x01000000) { - if(x+x>p) { - x-=p; - if(x+x>=p) x -= p; - } - } else { - p_half = (float)0.5*p; - if(x>p_half) { - x-=p; - if(x>=p_half) x -= p; - } - } - GET_FLOAT_WORD(hx,x); - SET_FLOAT_WORD(x,hx^sx); - return x; -} diff --git a/newlib/libm/math/ef_scalb.c b/newlib/libm/math/ef_scalb.c deleted file mode 100644 index 3677a3b..0000000 --- a/newlib/libm/math/ef_scalb.c +++ /dev/null @@ -1,53 +0,0 @@ -/* ef_scalb.c -- float version of e_scalb.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -#include "fdlibm.h" -#include <limits.h> - -#ifdef _SCALB_INT -#ifdef __STDC__ - float __ieee754_scalbf(float x, int fn) -#else - float __ieee754_scalbf(x,fn) - float x; int fn; -#endif -#else -#ifdef __STDC__ - float __ieee754_scalbf(float x, float fn) -#else - float __ieee754_scalbf(x,fn) - float x, fn; -#endif -#endif -{ -#ifdef _SCALB_INT - return scalbnf(x,fn); -#else - if (isnanf(x)||isnanf(fn)) return x*fn; - if (!finitef(fn)) { - if(fn>(float)0.0) return x*fn; - else return x/(-fn); - } - if (rintf(fn)!=fn) return (fn-fn)/(fn-fn); -#if INT_MAX > 65000 - if ( fn > (float)65000.0) return scalbnf(x, 65000); - if (-fn > (float)65000.0) return scalbnf(x,-65000); -#else - if ( fn > (float)32000.0) return scalbnf(x, 32000); - if (-fn > (float)32000.0) return scalbnf(x,-32000); -#endif - return scalbnf(x,(int)fn); -#endif -} diff --git a/newlib/libm/math/ef_sinh.c b/newlib/libm/math/ef_sinh.c deleted file mode 100644 index 3751983..0000000 --- a/newlib/libm/math/ef_sinh.c +++ /dev/null @@ -1,63 +0,0 @@ -/* ef_sinh.c -- float version of e_sinh.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -#include "fdlibm.h" - -#ifdef __STDC__ -static const float one = 1.0, shuge = 1.0e37; -#else -static float one = 1.0, shuge = 1.0e37; -#endif - -#ifdef __STDC__ - float __ieee754_sinhf(float x) -#else - float __ieee754_sinhf(x) - float x; -#endif -{ - float t,w,h; - __int32_t ix,jx; - - GET_FLOAT_WORD(jx,x); - ix = jx&0x7fffffff; - - /* x is INF or NaN */ - if(ix>=0x7f800000) return x+x; - - h = 0.5; - if (jx<0) h = -h; - /* |x| in [0,22], return sign(x)*0.5*(E+E/(E+1))) */ - if (ix < 0x41b00000) { /* |x|<22 */ - if (ix<0x31800000) /* |x|<2**-28 */ - if(shuge+x>one) return x;/* sinh(tiny) = tiny with inexact */ - t = expm1f(fabsf(x)); - if(ix<0x3f800000) return h*((float)2.0*t-t*t/(t+one)); - return h*(t+t/(t+one)); - } - - /* |x| in [22, log(maxdouble)] return 0.5*exp(|x|) */ - if (ix < 0x42b17180) return h*__ieee754_expf(fabsf(x)); - - /* |x| in [log(maxdouble), overflowthresold] */ - if (ix<=0x42b2d4fc) { - w = __ieee754_expf((float)0.5*fabsf(x)); - t = h*w; - return t*w; - } - - /* |x| > overflowthresold, sinh(x) overflow */ - return x*shuge; -} diff --git a/newlib/libm/math/ef_sqrt.c b/newlib/libm/math/ef_sqrt.c deleted file mode 100644 index aabbc51..0000000 --- a/newlib/libm/math/ef_sqrt.c +++ /dev/null @@ -1,92 +0,0 @@ -/* ef_sqrtf.c -- float version of e_sqrt.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -#include "fdlibm.h" - -#ifdef __STDC__ -static const float one = 1.0, tiny=1.0e-30; -#else -static float one = 1.0, tiny=1.0e-30; -#endif - -#ifdef __STDC__ - float __ieee754_sqrtf(float x) -#else - float __ieee754_sqrtf(x) - float x; -#endif -{ - float z; - __int32_t sign = (__int32_t)0x80000000; - __uint32_t r; - __int32_t ix,s,q,m,t,i; - - GET_FLOAT_WORD(ix,x); - - /* take care of Inf and NaN */ - if((ix&0x7f800000L)==0x7f800000L) { - return x*x+x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf - sqrt(-inf)=sNaN */ - } - /* take care of zero */ - if(ix<=0) { - if((ix&(~sign))==0) return x;/* sqrt(+-0) = +-0 */ - else if(ix<0) - return (x-x)/(x-x); /* sqrt(-ve) = sNaN */ - } - /* normalize x */ - m = (ix>>23); - if(m==0) { /* subnormal x */ - for(i=0;(ix&0x00800000L)==0;i++) ix<<=1; - m -= i-1; - } - m -= 127; /* unbias exponent */ - ix = (ix&0x007fffffL)|0x00800000L; - if(m&1) /* odd m, double x to make it even */ - ix += ix; - m >>= 1; /* m = [m/2] */ - - /* generate sqrt(x) bit by bit */ - ix += ix; - q = s = 0; /* q = sqrt(x) */ - r = 0x01000000L; /* r = moving bit from right to left */ - - while(r!=0) { - t = s+r; - if(t<=ix) { - s = t+r; - ix -= t; - q += r; - } - ix += ix; - r>>=1; - } - - /* use floating add to find out rounding direction */ - if(ix!=0) { - z = one-tiny; /* trigger inexact flag */ - if (z>=one) { - z = one+tiny; - if (z>one) - q += 2; - else - q += (q&1); - } - } - ix = (q>>1)+0x3f000000L; - ix += (m <<23); - SET_FLOAT_WORD(z,ix); - return z; -} diff --git a/newlib/libm/math/er_gamma.c b/newlib/libm/math/er_gamma.c deleted file mode 100644 index a7183c5..0000000 --- a/newlib/libm/math/er_gamma.c +++ /dev/null @@ -1,32 +0,0 @@ - -/* @(#)er_gamma.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - * - */ - -/* __ieee754_gamma_r(x, signgamp) - * Reentrant version of the logarithm of the Gamma function - * with user provide pointer for the sign of Gamma(x). - * - * Method: See __ieee754_lgamma_r - */ - -#include "fdlibm.h" - -#ifdef __STDC__ - double __ieee754_gamma_r(double x, int *signgamp) -#else - double __ieee754_gamma_r(x,signgamp) - double x; int *signgamp; -#endif -{ - return __ieee754_lgamma_r(x,signgamp); -} diff --git a/newlib/libm/math/er_lgamma.c b/newlib/libm/math/er_lgamma.c deleted file mode 100644 index 7c9a153..0000000 --- a/newlib/libm/math/er_lgamma.c +++ /dev/null @@ -1,309 +0,0 @@ - -/* @(#)er_lgamma.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - * - */ - -/* __ieee754_lgamma_r(x, signgamp) - * Reentrant version of the logarithm of the Gamma function - * with user provide pointer for the sign of Gamma(x). - * - * Method: - * 1. Argument Reduction for 0 < x <= 8 - * Since gamma(1+s)=s*gamma(s), for x in [0,8], we may - * reduce x to a number in [1.5,2.5] by - * lgamma(1+s) = log(s) + lgamma(s) - * for example, - * lgamma(7.3) = log(6.3) + lgamma(6.3) - * = log(6.3*5.3) + lgamma(5.3) - * = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3) - * 2. Polynomial approximation of lgamma around its - * minimun ymin=1.461632144968362245 to maintain monotonicity. - * On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use - * Let z = x-ymin; - * lgamma(x) = -1.214862905358496078218 + z^2*poly(z) - * where - * poly(z) is a 14 degree polynomial. - * 2. Rational approximation in the primary interval [2,3] - * We use the following approximation: - * s = x-2.0; - * lgamma(x) = 0.5*s + s*P(s)/Q(s) - * with accuracy - * |P/Q - (lgamma(x)-0.5s)| < 2**-61.71 - * Our algorithms are based on the following observation - * - * zeta(2)-1 2 zeta(3)-1 3 - * lgamma(2+s) = s*(1-Euler) + --------- * s - --------- * s + ... - * 2 3 - * - * where Euler = 0.5771... is the Euler constant, which is very - * close to 0.5. - * - * 3. For x>=8, we have - * lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+.... - * (better formula: - * lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...) - * Let z = 1/x, then we approximation - * f(z) = lgamma(x) - (x-0.5)(log(x)-1) - * by - * 3 5 11 - * w = w0 + w1*z + w2*z + w3*z + ... + w6*z - * where - * |w - f(z)| < 2**-58.74 - * - * 4. For negative x, since (G is gamma function) - * -x*G(-x)*G(x) = pi/sin(pi*x), - * we have - * G(x) = pi/(sin(pi*x)*(-x)*G(-x)) - * since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0 - * Hence, for x<0, signgam = sign(sin(pi*x)) and - * lgamma(x) = log(|Gamma(x)|) - * = log(pi/(|x*sin(pi*x)|)) - lgamma(-x); - * Note: one should avoid compute pi*(-x) directly in the - * computation of sin(pi*(-x)). - * - * 5. Special Cases - * lgamma(2+s) ~ s*(1-Euler) for tiny s - * lgamma(1)=lgamma(2)=0 - * lgamma(x) ~ -log(x) for tiny x - * lgamma(0) = lgamma(inf) = inf - * lgamma(-integer) = +-inf - * - */ - -#include "fdlibm.h" - -#ifdef __STDC__ -static const double -#else -static double -#endif -two52= 4.50359962737049600000e+15, /* 0x43300000, 0x00000000 */ -half= 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */ -one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ -pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */ -a0 = 7.72156649015328655494e-02, /* 0x3FB3C467, 0xE37DB0C8 */ -a1 = 3.22467033424113591611e-01, /* 0x3FD4A34C, 0xC4A60FAD */ -a2 = 6.73523010531292681824e-02, /* 0x3FB13E00, 0x1A5562A7 */ -a3 = 2.05808084325167332806e-02, /* 0x3F951322, 0xAC92547B */ -a4 = 7.38555086081402883957e-03, /* 0x3F7E404F, 0xB68FEFE8 */ -a5 = 2.89051383673415629091e-03, /* 0x3F67ADD8, 0xCCB7926B */ -a6 = 1.19270763183362067845e-03, /* 0x3F538A94, 0x116F3F5D */ -a7 = 5.10069792153511336608e-04, /* 0x3F40B6C6, 0x89B99C00 */ -a8 = 2.20862790713908385557e-04, /* 0x3F2CF2EC, 0xED10E54D */ -a9 = 1.08011567247583939954e-04, /* 0x3F1C5088, 0x987DFB07 */ -a10 = 2.52144565451257326939e-05, /* 0x3EFA7074, 0x428CFA52 */ -a11 = 4.48640949618915160150e-05, /* 0x3F07858E, 0x90A45837 */ -tc = 1.46163214496836224576e+00, /* 0x3FF762D8, 0x6356BE3F */ -tf = -1.21486290535849611461e-01, /* 0xBFBF19B9, 0xBCC38A42 */ -/* tt = -(tail of tf) */ -tt = -3.63867699703950536541e-18, /* 0xBC50C7CA, 0xA48A971F */ -t0 = 4.83836122723810047042e-01, /* 0x3FDEF72B, 0xC8EE38A2 */ -t1 = -1.47587722994593911752e-01, /* 0xBFC2E427, 0x8DC6C509 */ -t2 = 6.46249402391333854778e-02, /* 0x3FB08B42, 0x94D5419B */ -t3 = -3.27885410759859649565e-02, /* 0xBFA0C9A8, 0xDF35B713 */ -t4 = 1.79706750811820387126e-02, /* 0x3F9266E7, 0x970AF9EC */ -t5 = -1.03142241298341437450e-02, /* 0xBF851F9F, 0xBA91EC6A */ -t6 = 6.10053870246291332635e-03, /* 0x3F78FCE0, 0xE370E344 */ -t7 = -3.68452016781138256760e-03, /* 0xBF6E2EFF, 0xB3E914D7 */ -t8 = 2.25964780900612472250e-03, /* 0x3F6282D3, 0x2E15C915 */ -t9 = -1.40346469989232843813e-03, /* 0xBF56FE8E, 0xBF2D1AF1 */ -t10 = 8.81081882437654011382e-04, /* 0x3F4CDF0C, 0xEF61A8E9 */ -t11 = -5.38595305356740546715e-04, /* 0xBF41A610, 0x9C73E0EC */ -t12 = 3.15632070903625950361e-04, /* 0x3F34AF6D, 0x6C0EBBF7 */ -t13 = -3.12754168375120860518e-04, /* 0xBF347F24, 0xECC38C38 */ -t14 = 3.35529192635519073543e-04, /* 0x3F35FD3E, 0xE8C2D3F4 */ -u0 = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */ -u1 = 6.32827064025093366517e-01, /* 0x3FE4401E, 0x8B005DFF */ -u2 = 1.45492250137234768737e+00, /* 0x3FF7475C, 0xD119BD6F */ -u3 = 9.77717527963372745603e-01, /* 0x3FEF4976, 0x44EA8450 */ -u4 = 2.28963728064692451092e-01, /* 0x3FCD4EAE, 0xF6010924 */ -u5 = 1.33810918536787660377e-02, /* 0x3F8B678B, 0xBF2BAB09 */ -v1 = 2.45597793713041134822e+00, /* 0x4003A5D7, 0xC2BD619C */ -v2 = 2.12848976379893395361e+00, /* 0x40010725, 0xA42B18F5 */ -v3 = 7.69285150456672783825e-01, /* 0x3FE89DFB, 0xE45050AF */ -v4 = 1.04222645593369134254e-01, /* 0x3FBAAE55, 0xD6537C88 */ -v5 = 3.21709242282423911810e-03, /* 0x3F6A5ABB, 0x57D0CF61 */ -s0 = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */ -s1 = 2.14982415960608852501e-01, /* 0x3FCB848B, 0x36E20878 */ -s2 = 3.25778796408930981787e-01, /* 0x3FD4D98F, 0x4F139F59 */ -s3 = 1.46350472652464452805e-01, /* 0x3FC2BB9C, 0xBEE5F2F7 */ -s4 = 2.66422703033638609560e-02, /* 0x3F9B481C, 0x7E939961 */ -s5 = 1.84028451407337715652e-03, /* 0x3F5E26B6, 0x7368F239 */ -s6 = 3.19475326584100867617e-05, /* 0x3F00BFEC, 0xDD17E945 */ -r1 = 1.39200533467621045958e+00, /* 0x3FF645A7, 0x62C4AB74 */ -r2 = 7.21935547567138069525e-01, /* 0x3FE71A18, 0x93D3DCDC */ -r3 = 1.71933865632803078993e-01, /* 0x3FC601ED, 0xCCFBDF27 */ -r4 = 1.86459191715652901344e-02, /* 0x3F9317EA, 0x742ED475 */ -r5 = 7.77942496381893596434e-04, /* 0x3F497DDA, 0xCA41A95B */ -r6 = 7.32668430744625636189e-06, /* 0x3EDEBAF7, 0xA5B38140 */ -w0 = 4.18938533204672725052e-01, /* 0x3FDACFE3, 0x90C97D69 */ -w1 = 8.33333333333329678849e-02, /* 0x3FB55555, 0x5555553B */ -w2 = -2.77777777728775536470e-03, /* 0xBF66C16C, 0x16B02E5C */ -w3 = 7.93650558643019558500e-04, /* 0x3F4A019F, 0x98CF38B6 */ -w4 = -5.95187557450339963135e-04, /* 0xBF4380CB, 0x8C0FE741 */ -w5 = 8.36339918996282139126e-04, /* 0x3F4B67BA, 0x4CDAD5D1 */ -w6 = -1.63092934096575273989e-03; /* 0xBF5AB89D, 0x0B9E43E4 */ - -#ifdef __STDC__ -static const double zero= 0.00000000000000000000e+00; -#else -static double zero= 0.00000000000000000000e+00; -#endif - -#ifdef __STDC__ - static double sin_pi(double x) -#else - static double sin_pi(x) - double x; -#endif -{ - double y,z; - __int32_t n,ix; - - GET_HIGH_WORD(ix,x); - ix &= 0x7fffffff; - - if(ix<0x3fd00000) return __kernel_sin(pi*x,zero,0); - y = -x; /* x is assume negative */ - - /* - * argument reduction, make sure inexact flag not raised if input - * is an integer - */ - z = floor(y); - if(z!=y) { /* inexact anyway */ - y *= 0.5; - y = 2.0*(y - floor(y)); /* y = |x| mod 2.0 */ - n = (__int32_t) (y*4.0); - } else { - if(ix>=0x43400000) { - y = zero; n = 0; /* y must be even */ - } else { - if(ix<0x43300000) z = y+two52; /* exact */ - GET_LOW_WORD(n,z); - n &= 1; - y = n; - n<<= 2; - } - } - switch (n) { - case 0: y = __kernel_sin(pi*y,zero,0); break; - case 1: - case 2: y = __kernel_cos(pi*(0.5-y),zero); break; - case 3: - case 4: y = __kernel_sin(pi*(one-y),zero,0); break; - case 5: - case 6: y = -__kernel_cos(pi*(y-1.5),zero); break; - default: y = __kernel_sin(pi*(y-2.0),zero,0); break; - } - return -y; -} - - -#ifdef __STDC__ - double __ieee754_lgamma_r(double x, int *signgamp) -#else - double __ieee754_lgamma_r(x,signgamp) - double x; int *signgamp; -#endif -{ - double t,y,z,nadj,p,p1,p2,p3,q,r,w; - __int32_t i,hx,lx,ix; - - EXTRACT_WORDS(hx,lx,x); - - /* purge off +-inf, NaN, +-0, and negative arguments */ - *signgamp = 1; - ix = hx&0x7fffffff; - if(ix>=0x7ff00000) return x*x; - if((ix|lx)==0) return one/zero; - if(ix<0x3b900000) { /* |x|<2**-70, return -log(|x|) */ - if(hx<0) { - *signgamp = -1; - return -__ieee754_log(-x); - } else return -__ieee754_log(x); - } - if(hx<0) { - if(ix>=0x43300000) /* |x|>=2**52, must be -integer */ - return one/zero; - t = sin_pi(x); - if(t==zero) return one/zero; /* -integer */ - nadj = __ieee754_log(pi/fabs(t*x)); - if(t<zero) *signgamp = -1; - x = -x; - } - - /* purge off 1 and 2 */ - if((((ix-0x3ff00000)|lx)==0)||(((ix-0x40000000)|lx)==0)) r = 0; - /* for x < 2.0 */ - else if(ix<0x40000000) { - if(ix<=0x3feccccc) { /* lgamma(x) = lgamma(x+1)-log(x) */ - r = -__ieee754_log(x); - if(ix>=0x3FE76944) {y = one-x; i= 0;} - else if(ix>=0x3FCDA661) {y= x-(tc-one); i=1;} - else {y = x; i=2;} - } else { - r = zero; - if(ix>=0x3FFBB4C3) {y=2.0-x;i=0;} /* [1.7316,2] */ - else if(ix>=0x3FF3B4C4) {y=x-tc;i=1;} /* [1.23,1.73] */ - else {y=x-one;i=2;} - } - switch(i) { - case 0: - z = y*y; - p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10)))); - p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11))))); - p = y*p1+p2; - r += (p-0.5*y); break; - case 1: - z = y*y; - w = z*y; - p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12))); /* parallel comp */ - p2 = t1+w*(t4+w*(t7+w*(t10+w*t13))); - p3 = t2+w*(t5+w*(t8+w*(t11+w*t14))); - p = z*p1-(tt-w*(p2+y*p3)); - r += (tf + p); break; - case 2: - p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5))))); - p2 = one+y*(v1+y*(v2+y*(v3+y*(v4+y*v5)))); - r += (-0.5*y + p1/p2); - } - } - else if(ix<0x40200000) { /* x < 8.0 */ - i = (__int32_t)x; - t = zero; - y = x-(double)i; - p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6)))))); - q = one+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6))))); - r = half*y+p/q; - z = one; /* lgamma(1+s) = log(s) + lgamma(s) */ - switch(i) { - case 7: z *= (y+6.0); /* FALLTHRU */ - case 6: z *= (y+5.0); /* FALLTHRU */ - case 5: z *= (y+4.0); /* FALLTHRU */ - case 4: z *= (y+3.0); /* FALLTHRU */ - case 3: z *= (y+2.0); /* FALLTHRU */ - r += __ieee754_log(z); break; - } - /* 8.0 <= x < 2**58 */ - } else if (ix < 0x43900000) { - t = __ieee754_log(x); - z = one/x; - y = z*z; - w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6))))); - r = (x-half)*(t-one)+w; - } else - /* 2**58 <= x <= inf */ - r = x*(__ieee754_log(x)-one); - if(hx<0) r = nadj - r; - return r; -} diff --git a/newlib/libm/math/erf_gamma.c b/newlib/libm/math/erf_gamma.c deleted file mode 100644 index c619dfb..0000000 --- a/newlib/libm/math/erf_gamma.c +++ /dev/null @@ -1,34 +0,0 @@ -/* erf_gamma.c -- float version of er_gamma.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - * - */ - -/* __ieee754_gammaf_r(x, signgamp) - * Reentrant version of the logarithm of the Gamma function - * with user provide pointer for the sign of Gamma(x). - * - * Method: See __ieee754_lgammaf_r - */ - -#include "fdlibm.h" - -#ifdef __STDC__ - float __ieee754_gammaf_r(float x, int *signgamp) -#else - float __ieee754_gammaf_r(x,signgamp) - float x; int *signgamp; -#endif -{ - return __ieee754_lgammaf_r(x,signgamp); -} diff --git a/newlib/libm/math/erf_lgamma.c b/newlib/libm/math/erf_lgamma.c deleted file mode 100644 index 90cc542..0000000 --- a/newlib/libm/math/erf_lgamma.c +++ /dev/null @@ -1,244 +0,0 @@ -/* erf_lgamma.c -- float version of er_lgamma.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - * - */ - -#include "fdlibm.h" - -#ifdef __STDC__ -static const float -#else -static float -#endif -two23= 8.3886080000e+06, /* 0x4b000000 */ -half= 5.0000000000e-01, /* 0x3f000000 */ -one = 1.0000000000e+00, /* 0x3f800000 */ -pi = 3.1415927410e+00, /* 0x40490fdb */ -a0 = 7.7215664089e-02, /* 0x3d9e233f */ -a1 = 3.2246702909e-01, /* 0x3ea51a66 */ -a2 = 6.7352302372e-02, /* 0x3d89f001 */ -a3 = 2.0580807701e-02, /* 0x3ca89915 */ -a4 = 7.3855509982e-03, /* 0x3bf2027e */ -a5 = 2.8905137442e-03, /* 0x3b3d6ec6 */ -a6 = 1.1927076848e-03, /* 0x3a9c54a1 */ -a7 = 5.1006977446e-04, /* 0x3a05b634 */ -a8 = 2.2086278477e-04, /* 0x39679767 */ -a9 = 1.0801156895e-04, /* 0x38e28445 */ -a10 = 2.5214456400e-05, /* 0x37d383a2 */ -a11 = 4.4864096708e-05, /* 0x383c2c75 */ -tc = 1.4616321325e+00, /* 0x3fbb16c3 */ -tf = -1.2148628384e-01, /* 0xbdf8cdcd */ -/* tt = -(tail of tf) */ -tt = 6.6971006518e-09, /* 0x31e61c52 */ -t0 = 4.8383611441e-01, /* 0x3ef7b95e */ -t1 = -1.4758771658e-01, /* 0xbe17213c */ -t2 = 6.4624942839e-02, /* 0x3d845a15 */ -t3 = -3.2788541168e-02, /* 0xbd064d47 */ -t4 = 1.7970675603e-02, /* 0x3c93373d */ -t5 = -1.0314224288e-02, /* 0xbc28fcfe */ -t6 = 6.1005386524e-03, /* 0x3bc7e707 */ -t7 = -3.6845202558e-03, /* 0xbb7177fe */ -t8 = 2.2596477065e-03, /* 0x3b141699 */ -t9 = -1.4034647029e-03, /* 0xbab7f476 */ -t10 = 8.8108185446e-04, /* 0x3a66f867 */ -t11 = -5.3859531181e-04, /* 0xba0d3085 */ -t12 = 3.1563205994e-04, /* 0x39a57b6b */ -t13 = -3.1275415677e-04, /* 0xb9a3f927 */ -t14 = 3.3552918467e-04, /* 0x39afe9f7 */ -u0 = -7.7215664089e-02, /* 0xbd9e233f */ -u1 = 6.3282704353e-01, /* 0x3f2200f4 */ -u2 = 1.4549225569e+00, /* 0x3fba3ae7 */ -u3 = 9.7771751881e-01, /* 0x3f7a4bb2 */ -u4 = 2.2896373272e-01, /* 0x3e6a7578 */ -u5 = 1.3381091878e-02, /* 0x3c5b3c5e */ -v1 = 2.4559779167e+00, /* 0x401d2ebe */ -v2 = 2.1284897327e+00, /* 0x4008392d */ -v3 = 7.6928514242e-01, /* 0x3f44efdf */ -v4 = 1.0422264785e-01, /* 0x3dd572af */ -v5 = 3.2170924824e-03, /* 0x3b52d5db */ -s0 = -7.7215664089e-02, /* 0xbd9e233f */ -s1 = 2.1498242021e-01, /* 0x3e5c245a */ -s2 = 3.2577878237e-01, /* 0x3ea6cc7a */ -s3 = 1.4635047317e-01, /* 0x3e15dce6 */ -s4 = 2.6642270386e-02, /* 0x3cda40e4 */ -s5 = 1.8402845599e-03, /* 0x3af135b4 */ -s6 = 3.1947532989e-05, /* 0x3805ff67 */ -r1 = 1.3920053244e+00, /* 0x3fb22d3b */ -r2 = 7.2193557024e-01, /* 0x3f38d0c5 */ -r3 = 1.7193385959e-01, /* 0x3e300f6e */ -r4 = 1.8645919859e-02, /* 0x3c98bf54 */ -r5 = 7.7794247773e-04, /* 0x3a4beed6 */ -r6 = 7.3266842264e-06, /* 0x36f5d7bd */ -w0 = 4.1893854737e-01, /* 0x3ed67f1d */ -w1 = 8.3333335817e-02, /* 0x3daaaaab */ -w2 = -2.7777778450e-03, /* 0xbb360b61 */ -w3 = 7.9365057172e-04, /* 0x3a500cfd */ -w4 = -5.9518753551e-04, /* 0xba1c065c */ -w5 = 8.3633989561e-04, /* 0x3a5b3dd2 */ -w6 = -1.6309292987e-03; /* 0xbad5c4e8 */ - -#ifdef __STDC__ -static const float zero= 0.0000000000e+00; -#else -static float zero= 0.0000000000e+00; -#endif - -#ifdef __STDC__ - static float sin_pif(float x) -#else - static float sin_pif(x) - float x; -#endif -{ - float y,z; - __int32_t n,ix; - - GET_FLOAT_WORD(ix,x); - ix &= 0x7fffffff; - - if(ix<0x3e800000) return __kernel_sinf(pi*x,zero,0); - y = -x; /* x is assume negative */ - - /* - * argument reduction, make sure inexact flag not raised if input - * is an integer - */ - z = floorf(y); - if(z!=y) { /* inexact anyway */ - y *= (float)0.5; - y = (float)2.0*(y - floorf(y)); /* y = |x| mod 2.0 */ - n = (__int32_t) (y*(float)4.0); - } else { - if(ix>=0x4b800000) { - y = zero; n = 0; /* y must be even */ - } else { - if(ix<0x4b000000) z = y+two23; /* exact */ - GET_FLOAT_WORD(n,z); - n &= 1; - y = n; - n<<= 2; - } - } - switch (n) { - case 0: y = __kernel_sinf(pi*y,zero,0); break; - case 1: - case 2: y = __kernel_cosf(pi*((float)0.5-y),zero); break; - case 3: - case 4: y = __kernel_sinf(pi*(one-y),zero,0); break; - case 5: - case 6: y = -__kernel_cosf(pi*(y-(float)1.5),zero); break; - default: y = __kernel_sinf(pi*(y-(float)2.0),zero,0); break; - } - return -y; -} - - -#ifdef __STDC__ - float __ieee754_lgammaf_r(float x, int *signgamp) -#else - float __ieee754_lgammaf_r(x,signgamp) - float x; int *signgamp; -#endif -{ - float t,y,z,nadj,p,p1,p2,p3,q,r,w; - __int32_t i,hx,ix; - - GET_FLOAT_WORD(hx,x); - - /* purge off +-inf, NaN, +-0, and negative arguments */ - *signgamp = 1; - ix = hx&0x7fffffff; - if(ix>=0x7f800000) return x*x; - if(ix==0) return one/zero; - if(ix<0x1c800000) { /* |x|<2**-70, return -log(|x|) */ - if(hx<0) { - *signgamp = -1; - return -__ieee754_logf(-x); - } else return -__ieee754_logf(x); - } - if(hx<0) { - if(ix>=0x4b000000) /* |x|>=2**23, must be -integer */ - return one/zero; - t = sin_pif(x); - if(t==zero) return one/zero; /* -integer */ - nadj = __ieee754_logf(pi/fabsf(t*x)); - if(t<zero) *signgamp = -1; - x = -x; - } - - /* purge off 1 and 2 */ - if (ix==0x3f800000||ix==0x40000000) r = 0; - /* for x < 2.0 */ - else if(ix<0x40000000) { - if(ix<=0x3f666666) { /* lgamma(x) = lgamma(x+1)-log(x) */ - r = -__ieee754_logf(x); - if(ix>=0x3f3b4a20) {y = one-x; i= 0;} - else if(ix>=0x3e6d3308) {y= x-(tc-one); i=1;} - else {y = x; i=2;} - } else { - r = zero; - if(ix>=0x3fdda618) {y=(float)2.0-x;i=0;} /* [1.7316,2] */ - else if(ix>=0x3F9da620) {y=x-tc;i=1;} /* [1.23,1.73] */ - else {y=x-one;i=2;} - } - switch(i) { - case 0: - z = y*y; - p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10)))); - p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11))))); - p = y*p1+p2; - r += (p-(float)0.5*y); break; - case 1: - z = y*y; - w = z*y; - p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12))); /* parallel comp */ - p2 = t1+w*(t4+w*(t7+w*(t10+w*t13))); - p3 = t2+w*(t5+w*(t8+w*(t11+w*t14))); - p = z*p1-(tt-w*(p2+y*p3)); - r += (tf + p); break; - case 2: - p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5))))); - p2 = one+y*(v1+y*(v2+y*(v3+y*(v4+y*v5)))); - r += (-(float)0.5*y + p1/p2); - } - } - else if(ix<0x41000000) { /* x < 8.0 */ - i = (__int32_t)x; - t = zero; - y = x-(float)i; - p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6)))))); - q = one+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6))))); - r = half*y+p/q; - z = one; /* lgamma(1+s) = log(s) + lgamma(s) */ - switch(i) { - case 7: z *= (y+(float)6.0); /* FALLTHRU */ - case 6: z *= (y+(float)5.0); /* FALLTHRU */ - case 5: z *= (y+(float)4.0); /* FALLTHRU */ - case 4: z *= (y+(float)3.0); /* FALLTHRU */ - case 3: z *= (y+(float)2.0); /* FALLTHRU */ - r += __ieee754_logf(z); break; - } - /* 8.0 <= x < 2**58 */ - } else if (ix < 0x5c800000) { - t = __ieee754_logf(x); - z = one/x; - y = z*z; - w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6))))); - r = (x-half)*(t-one)+w; - } else - /* 2**58 <= x <= inf */ - r = x*(__ieee754_logf(x)-one); - if(hx<0) r = nadj - r; - return r; -} diff --git a/newlib/libm/math/k_cos.c b/newlib/libm/math/k_cos.c deleted file mode 100644 index 6c60c24..0000000 --- a/newlib/libm/math/k_cos.c +++ /dev/null @@ -1,96 +0,0 @@ - -/* @(#)k_cos.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* - * __kernel_cos( x, y ) - * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164 - * Input x is assumed to be bounded by ~pi/4 in magnitude. - * Input y is the tail of x. - * - * Algorithm - * 1. Since cos(-x) = cos(x), we need only to consider positive x. - * 2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0. - * 3. cos(x) is approximated by a polynomial of degree 14 on - * [0,pi/4] - * 4 14 - * cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x - * where the remez error is - * - * | 2 4 6 8 10 12 14 | -58 - * |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2 - * | | - * - * 4 6 8 10 12 14 - * 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then - * cos(x) = 1 - x*x/2 + r - * since cos(x+y) ~ cos(x) - sin(x)*y - * ~ cos(x) - x*y, - * a correction term is necessary in cos(x) and hence - * cos(x+y) = 1 - (x*x/2 - (r - x*y)) - * For better accuracy when x > 0.3, let qx = |x|/4 with - * the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125. - * Then - * cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)). - * Note that 1-qx and (x*x/2-qx) is EXACT here, and the - * magnitude of the latter is at least a quarter of x*x/2, - * thus, reducing the rounding error in the subtraction. - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ -static const double -#else -static double -#endif -one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ -C1 = 4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */ -C2 = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */ -C3 = 2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */ -C4 = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */ -C5 = 2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */ -C6 = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */ - -#ifdef __STDC__ - double __kernel_cos(double x, double y) -#else - double __kernel_cos(x, y) - double x,y; -#endif -{ - double a,hz,z,r,qx; - __int32_t ix; - GET_HIGH_WORD(ix,x); - ix &= 0x7fffffff; /* ix = |x|'s high word*/ - if(ix<0x3e400000) { /* if x < 2**27 */ - if(((int)x)==0) return one; /* generate inexact */ - } - z = x*x; - r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6))))); - if(ix < 0x3FD33333) /* if |x| < 0.3 */ - return one - (0.5*z - (z*r - x*y)); - else { - if(ix > 0x3fe90000) { /* x > 0.78125 */ - qx = 0.28125; - } else { - INSERT_WORDS(qx,ix-0x00200000,0); /* x/4 */ - } - hz = 0.5*z-qx; - a = one-qx; - return a - (hz - (z*r-x*y)); - } -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/k_rem_pio2.c b/newlib/libm/math/k_rem_pio2.c deleted file mode 100644 index 8569256..0000000 --- a/newlib/libm/math/k_rem_pio2.c +++ /dev/null @@ -1,320 +0,0 @@ - -/* @(#)k_rem_pio2.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* - * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2) - * double x[],y[]; int e0,nx,prec; int ipio2[]; - * - * __kernel_rem_pio2 return the last three digits of N with - * y = x - N*pi/2 - * so that |y| < pi/2. - * - * The method is to compute the integer (mod 8) and fraction parts of - * (2/pi)*x without doing the full multiplication. In general we - * skip the part of the product that are known to be a huge integer ( - * more accurately, = 0 mod 8 ). Thus the number of operations are - * independent of the exponent of the input. - * - * (2/pi) is represented by an array of 24-bit integers in ipio2[]. - * - * Input parameters: - * x[] The input value (must be positive) is broken into nx - * pieces of 24-bit integers in double precision format. - * x[i] will be the i-th 24 bit of x. The scaled exponent - * of x[0] is given in input parameter e0 (i.e., x[0]*2^e0 - * match x's up to 24 bits. - * - * Example of breaking a double positive z into x[0]+x[1]+x[2]: - * e0 = ilogb(z)-23 - * z = scalbn(z,-e0) - * for i = 0,1,2 - * x[i] = floor(z) - * z = (z-x[i])*2**24 - * - * - * y[] ouput result in an array of double precision numbers. - * The dimension of y[] is: - * 24-bit precision 1 - * 53-bit precision 2 - * 64-bit precision 2 - * 113-bit precision 3 - * The actual value is the sum of them. Thus for 113-bit - * precison, one may have to do something like: - * - * long double t,w,r_head, r_tail; - * t = (long double)y[2] + (long double)y[1]; - * w = (long double)y[0]; - * r_head = t+w; - * r_tail = w - (r_head - t); - * - * e0 The exponent of x[0] - * - * nx dimension of x[] - * - * prec an integer indicating the precision: - * 0 24 bits (single) - * 1 53 bits (double) - * 2 64 bits (extended) - * 3 113 bits (quad) - * - * ipio2[] - * integer array, contains the (24*i)-th to (24*i+23)-th - * bit of 2/pi after binary point. The corresponding - * floating value is - * - * ipio2[i] * 2^(-24(i+1)). - * - * External function: - * double scalbn(), floor(); - * - * - * Here is the description of some local variables: - * - * jk jk+1 is the initial number of terms of ipio2[] needed - * in the computation. The recommended value is 2,3,4, - * 6 for single, double, extended,and quad. - * - * jz local integer variable indicating the number of - * terms of ipio2[] used. - * - * jx nx - 1 - * - * jv index for pointing to the suitable ipio2[] for the - * computation. In general, we want - * ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8 - * is an integer. Thus - * e0-3-24*jv >= 0 or (e0-3)/24 >= jv - * Hence jv = max(0,(e0-3)/24). - * - * jp jp+1 is the number of terms in PIo2[] needed, jp = jk. - * - * q[] double array with integral value, representing the - * 24-bits chunk of the product of x and 2/pi. - * - * q0 the corresponding exponent of q[0]. Note that the - * exponent for q[i] would be q0-24*i. - * - * PIo2[] double precision array, obtained by cutting pi/2 - * into 24 bits chunks. - * - * f[] ipio2[] in floating point - * - * iq[] integer array by breaking up q[] in 24-bits chunk. - * - * fq[] final product of x*(2/pi) in fq[0],..,fq[jk] - * - * ih integer. If >0 it indicates q[] is >= 0.5, hence - * it also indicates the *sign* of the result. - * - */ - - -/* - * Constants: - * The hexadecimal values are the intended ones for the following - * constants. The decimal values may be used, provided that the - * compiler will convert from decimal to binary accurately enough - * to produce the hexadecimal values shown. - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ -static const int init_jk[] = {2,3,4,6}; /* initial value for jk */ -#else -static int init_jk[] = {2,3,4,6}; -#endif - -#ifdef __STDC__ -static const double PIo2[] = { -#else -static double PIo2[] = { -#endif - 1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */ - 7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */ - 5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */ - 3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */ - 1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */ - 1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */ - 2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */ - 2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */ -}; - -#ifdef __STDC__ -static const double -#else -static double -#endif -zero = 0.0, -one = 1.0, -two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */ -twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */ - -#ifdef __STDC__ - int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const __int32_t *ipio2) -#else - int __kernel_rem_pio2(x,y,e0,nx,prec,ipio2) - double x[], y[]; int e0,nx,prec; __int32_t ipio2[]; -#endif -{ - __int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih; - double z,fw,f[20],fq[20],q[20]; - - /* initialize jk*/ - jk = init_jk[prec]; - jp = jk; - - /* determine jx,jv,q0, note that 3>q0 */ - jx = nx-1; - jv = (e0-3)/24; if(jv<0) jv=0; - q0 = e0-24*(jv+1); - - /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */ - j = jv-jx; m = jx+jk; - for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j]; - - /* compute q[0],q[1],...q[jk] */ - for (i=0;i<=jk;i++) { - for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw; - } - - jz = jk; -recompute: - /* distill q[] into iq[] reversingly */ - for(i=0,j=jz,z=q[jz];j>0;i++,j--) { - fw = (double)((__int32_t)(twon24* z)); - iq[i] = (__int32_t)(z-two24*fw); - z = q[j-1]+fw; - } - - /* compute n */ - z = scalbn(z,(int)q0); /* actual value of z */ - z -= 8.0*floor(z*0.125); /* trim off integer >= 8 */ - n = (__int32_t) z; - z -= (double)n; - ih = 0; - if(q0>0) { /* need iq[jz-1] to determine n */ - i = (iq[jz-1]>>(24-q0)); n += i; - iq[jz-1] -= i<<(24-q0); - ih = iq[jz-1]>>(23-q0); - } - else if(q0==0) ih = iq[jz-1]>>23; - else if(z>=0.5) ih=2; - - if(ih>0) { /* q > 0.5 */ - n += 1; carry = 0; - for(i=0;i<jz ;i++) { /* compute 1-q */ - j = iq[i]; - if(carry==0) { - if(j!=0) { - carry = 1; iq[i] = 0x1000000- j; - } - } else iq[i] = 0xffffff - j; - } - if(q0>0) { /* rare case: chance is 1 in 12 */ - switch(q0) { - case 1: - iq[jz-1] &= 0x7fffff; break; - case 2: - iq[jz-1] &= 0x3fffff; break; - } - } - if(ih==2) { - z = one - z; - if(carry!=0) z -= scalbn(one,(int)q0); - } - } - - /* check if recomputation is needed */ - if(z==zero) { - j = 0; - for (i=jz-1;i>=jk;i--) j |= iq[i]; - if(j==0) { /* need recomputation */ - for(k=1;iq[jk-k]==0;k++); /* k = no. of terms needed */ - - for(i=jz+1;i<=jz+k;i++) { /* add q[jz+1] to q[jz+k] */ - f[jx+i] = (double) ipio2[jv+i]; - for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; - q[i] = fw; - } - jz += k; - goto recompute; - } - } - - /* chop off zero terms */ - if(z==0.0) { - jz -= 1; q0 -= 24; - while(iq[jz]==0) { jz--; q0-=24;} - } else { /* break z into 24-bit if necessary */ - z = scalbn(z,-(int)q0); - if(z>=two24) { - fw = (double)((__int32_t)(twon24*z)); - iq[jz] = (__int32_t)(z-two24*fw); - jz += 1; q0 += 24; - iq[jz] = (__int32_t) fw; - } else iq[jz] = (__int32_t) z ; - } - - /* convert integer "bit" chunk to floating-point value */ - fw = scalbn(one,(int)q0); - for(i=jz;i>=0;i--) { - q[i] = fw*(double)iq[i]; fw*=twon24; - } - - /* compute PIo2[0,...,jp]*q[jz,...,0] */ - for(i=jz;i>=0;i--) { - for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k]; - fq[jz-i] = fw; - } - - /* compress fq[] into y[] */ - switch(prec) { - case 0: - fw = 0.0; - for (i=jz;i>=0;i--) fw += fq[i]; - y[0] = (ih==0)? fw: -fw; - break; - case 1: - case 2: - fw = 0.0; - for (i=jz;i>=0;i--) fw += fq[i]; - y[0] = (ih==0)? fw: -fw; - fw = fq[0]-fw; - for (i=1;i<=jz;i++) fw += fq[i]; - y[1] = (ih==0)? fw: -fw; - break; - case 3: /* painful */ - for (i=jz;i>0;i--) { - fw = fq[i-1]+fq[i]; - fq[i] += fq[i-1]-fw; - fq[i-1] = fw; - } - for (i=jz;i>1;i--) { - fw = fq[i-1]+fq[i]; - fq[i] += fq[i-1]-fw; - fq[i-1] = fw; - } - for (fw=0.0,i=jz;i>=2;i--) fw += fq[i]; - if(ih==0) { - y[0] = fq[0]; y[1] = fq[1]; y[2] = fw; - } else { - y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw; - } - } - return n&7; -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/k_sin.c b/newlib/libm/math/k_sin.c deleted file mode 100644 index f119916..0000000 --- a/newlib/libm/math/k_sin.c +++ /dev/null @@ -1,79 +0,0 @@ - -/* @(#)k_sin.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* __kernel_sin( x, y, iy) - * kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854 - * Input x is assumed to be bounded by ~pi/4 in magnitude. - * Input y is the tail of x. - * Input iy indicates whether y is 0. (if iy=0, y assume to be 0). - * - * Algorithm - * 1. Since sin(-x) = -sin(x), we need only to consider positive x. - * 2. if x < 2^-27 (hx<0x3e400000 0), return x with inexact if x!=0. - * 3. sin(x) is approximated by a polynomial of degree 13 on - * [0,pi/4] - * 3 13 - * sin(x) ~ x + S1*x + ... + S6*x - * where - * - * |sin(x) 2 4 6 8 10 12 | -58 - * |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2 - * | x | - * - * 4. sin(x+y) = sin(x) + sin'(x')*y - * ~ sin(x) + (1-x*x/2)*y - * For better accuracy, let - * 3 2 2 2 2 - * r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6)))) - * then 3 2 - * sin(x) = x + (S1*x + (x *(r-y/2)+y)) - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ -static const double -#else -static double -#endif -half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */ -S1 = -1.66666666666666324348e-01, /* 0xBFC55555, 0x55555549 */ -S2 = 8.33333333332248946124e-03, /* 0x3F811111, 0x1110F8A6 */ -S3 = -1.98412698298579493134e-04, /* 0xBF2A01A0, 0x19C161D5 */ -S4 = 2.75573137070700676789e-06, /* 0x3EC71DE3, 0x57B1FE7D */ -S5 = -2.50507602534068634195e-08, /* 0xBE5AE5E6, 0x8A2B9CEB */ -S6 = 1.58969099521155010221e-10; /* 0x3DE5D93A, 0x5ACFD57C */ - -#ifdef __STDC__ - double __kernel_sin(double x, double y, int iy) -#else - double __kernel_sin(x, y, iy) - double x,y; int iy; /* iy=0 if y is zero */ -#endif -{ - double z,r,v; - __int32_t ix; - GET_HIGH_WORD(ix,x); - ix &= 0x7fffffff; /* high word of x */ - if(ix<0x3e400000) /* |x| < 2**-27 */ - {if((int)x==0) return x;} /* generate inexact */ - z = x*x; - v = z*x; - r = S2+z*(S3+z*(S4+z*(S5+z*S6))); - if(iy==0) return x+v*(S1+z*r); - else return x-((z*(half*y-v*r)-y)-v*S1); -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/k_standard.c b/newlib/libm/math/k_standard.c deleted file mode 100644 index 0d72f1a..0000000 --- a/newlib/libm/math/k_standard.c +++ /dev/null @@ -1,784 +0,0 @@ - -/* @(#)k_standard.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - * - */ - -#include "fdlibm.h" -#include <errno.h> - -#ifndef _USE_WRITE -#include <stdio.h> /* fputs(), stderr */ -#define WRITE2(u,v) fputs(u, stderr) -#else /* !defined(_USE_WRITE) */ -#include <unistd.h> /* write */ -#define WRITE2(u,v) write(2, u, v) -#undef fflush -#endif /* !defined(_USE_WRITE) */ - -#ifdef __STDC__ -static const double zero = 0.0; /* used as const */ -#else -static double zero = 0.0; /* used as const */ -#endif - -/* - * Standard conformance (non-IEEE) on exception cases. - * Mapping: - * 1 -- acos(|x|>1) - * 2 -- asin(|x|>1) - * 3 -- atan2(+-0,+-0) - * 4 -- hypot overflow - * 5 -- cosh overflow - * 6 -- exp overflow - * 7 -- exp underflow - * 8 -- y0(0) - * 9 -- y0(-ve) - * 10-- y1(0) - * 11-- y1(-ve) - * 12-- yn(0) - * 13-- yn(-ve) - * 14-- lgamma(finite) overflow - * 15-- lgamma(-integer) - * 16-- log(0) - * 17-- log(x<0) - * 18-- log10(0) - * 19-- log10(x<0) - * 20-- pow(0.0,0.0) - * 21-- pow(x,y) overflow - * 22-- pow(x,y) underflow - * 23-- pow(0,negative) - * 24-- pow(neg,non-integral) - * 25-- sinh(finite) overflow - * 26-- sqrt(negative) - * 27-- fmod(x,0) - * 28-- remainder(x,0) - * 29-- acosh(x<1) - * 30-- atanh(|x|>1) - * 31-- atanh(|x|=1) - * 32-- scalb overflow - * 33-- scalb underflow - * 34-- j0(|x|>X_TLOSS) - * 35-- y0(x>X_TLOSS) - * 36-- j1(|x|>X_TLOSS) - * 37-- y1(x>X_TLOSS) - * 38-- jn(|x|>X_TLOSS, n) - * 39-- yn(x>X_TLOSS, n) - * 40-- gamma(finite) overflow - * 41-- gamma(-integer) - * 42-- pow(NaN,0.0) - */ - - -#ifdef __STDC__ - double __kernel_standard(double x, double y, int type) -#else - double __kernel_standard(x,y,type) - double x,y; int type; -#endif -{ - struct exception exc; -#ifndef HUGE_VAL /* this is the only routine that uses HUGE_VAL */ -#define HUGE_VAL inf - double inf = 0.0; - - SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ -#endif - -#ifdef _USE_WRITE - /* (void) fflush(_stdout_r(p)); */ -#endif - exc.arg1 = x; - exc.arg2 = y; - exc.err = 0; - switch(type) { - case 1: - case 101: - /* acos(|x|>1) */ - exc.type = DOMAIN; - exc.name = type < 100 ? "acos" : "acosf"; - exc.retval = zero; - if (_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - /* if(_LIB_VERSION == _SVID_) { - (void) WRITE2("acos: DOMAIN error\n", 19); - } */ - errno = EDOM; - } - break; - case 2: - case 102: - /* asin(|x|>1) */ - exc.type = DOMAIN; - exc.name = type < 100 ? "asin" : "asinf"; - exc.retval = zero; - if(_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - /* if(_LIB_VERSION == _SVID_) { - (void) WRITE2("asin: DOMAIN error\n", 19); - } */ - errno = EDOM; - } - break; - case 3: - case 103: - /* atan2(+-0,+-0) */ - exc.arg1 = y; - exc.arg2 = x; - exc.type = DOMAIN; - exc.name = type < 100 ? "atan2" : "atan2f"; - exc.retval = zero; - if(_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - /* if(_LIB_VERSION == _SVID_) { - (void) WRITE2("atan2: DOMAIN error\n", 20); - } */ - errno = EDOM; - } - break; - case 4: - case 104: - /* hypot(finite,finite) overflow */ - exc.type = OVERFLOW; - exc.name = type < 100 ? "hypot" : "hypotf"; - if (_LIB_VERSION == _SVID_) - exc.retval = HUGE; - else - exc.retval = HUGE_VAL; - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - errno = ERANGE; - } - break; - case 5: - case 105: - /* cosh(finite) overflow */ - exc.type = OVERFLOW; - exc.name = type < 100 ? "cosh" : "coshf"; - if (_LIB_VERSION == _SVID_) - exc.retval = HUGE; - else - exc.retval = HUGE_VAL; - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - errno = ERANGE; - } - break; - case 6: - case 106: - /* exp(finite) overflow */ - exc.type = OVERFLOW; - exc.name = type < 100 ? "exp" : "expf"; - if (_LIB_VERSION == _SVID_) - exc.retval = HUGE; - else - exc.retval = HUGE_VAL; - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - errno = ERANGE; - } - break; - case 7: - case 107: - /* exp(finite) underflow */ - exc.type = UNDERFLOW; - exc.name = type < 100 ? "exp" : "expf"; - exc.retval = zero; - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - errno = ERANGE; - } - break; - case 8: - case 108: - /* y0(0) = -inf */ - exc.type = DOMAIN; /* should be SING for IEEE */ - exc.name = type < 100 ? "y0" : "y0f"; - if (_LIB_VERSION == _SVID_) - exc.retval = -HUGE; - else - exc.retval = -HUGE_VAL; - if (_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - /* if (_LIB_VERSION == _SVID_) { - (void) WRITE2("y0: DOMAIN error\n", 17); - } */ - errno = EDOM; - } - break; - case 9: - case 109: - /* y0(x<0) = NaN */ - exc.type = DOMAIN; - exc.name = type < 100 ? "y0" : "y0f"; - if (_LIB_VERSION == _SVID_) - exc.retval = -HUGE; - else - exc.retval = -HUGE_VAL; - if (_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - /*if (_LIB_VERSION == _SVID_) { - (void) WRITE2("y0: DOMAIN error\n", 17); - } */ - errno = EDOM; - } - break; - case 10: - case 110: - /* y1(0) = -inf */ - exc.type = DOMAIN; /* should be SING for IEEE */ - exc.name = type < 100 ? "y1" : "y1f"; - if (_LIB_VERSION == _SVID_) - exc.retval = -HUGE; - else - exc.retval = -HUGE_VAL; - if (_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - /* if (_LIB_VERSION == _SVID_) { - (void) WRITE2("y1: DOMAIN error\n", 17); - } */ - errno = EDOM; - } - break; - case 11: - case 111: - /* y1(x<0) = NaN */ - exc.type = DOMAIN; - exc.name = type < 100 ? "y1" : "y1f"; - if (_LIB_VERSION == _SVID_) - exc.retval = -HUGE; - else - exc.retval = -HUGE_VAL; - if (_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - /* if (_LIB_VERSION == _SVID_) { - (void) WRITE2("y1: DOMAIN error\n", 17); - } */ - errno = EDOM; - } - break; - case 12: - case 112: - /* yn(n,0) = -inf */ - exc.type = DOMAIN; /* should be SING for IEEE */ - exc.name = type < 100 ? "yn" : "ynf"; - if (_LIB_VERSION == _SVID_) - exc.retval = -HUGE; - else - exc.retval = -HUGE_VAL; - if (_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - /* if (_LIB_VERSION == _SVID_) { - (void) WRITE2("yn: DOMAIN error\n", 17); - } */ - errno = EDOM; - } - break; - case 13: - case 113: - /* yn(x<0) = NaN */ - exc.type = DOMAIN; - exc.name = type < 100 ? "yn" : "ynf"; - if (_LIB_VERSION == _SVID_) - exc.retval = -HUGE; - else - exc.retval = -HUGE_VAL; - if (_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - /* if (_LIB_VERSION == _SVID_) { - (void) WRITE2("yn: DOMAIN error\n", 17); - } */ - errno = EDOM; - } - break; - case 14: - case 114: - /* lgamma(finite) overflow */ - exc.type = OVERFLOW; - exc.name = type < 100 ? "lgamma" : "lgammaf"; - if (_LIB_VERSION == _SVID_) - exc.retval = HUGE; - else - exc.retval = HUGE_VAL; - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - errno = ERANGE; - } - break; - case 15: - case 115: - /* lgamma(-integer) or lgamma(0) */ - exc.type = SING; - exc.name = type < 100 ? "lgamma" : "lgammaf"; - if (_LIB_VERSION == _SVID_) - exc.retval = HUGE; - else - exc.retval = HUGE_VAL; - if (_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - /* if (_LIB_VERSION == _SVID_) { - (void) WRITE2("lgamma: SING error\n", 19); - } */ - errno = EDOM; - } - break; - case 16: - case 116: - /* log(0) */ - exc.type = SING; - exc.name = type < 100 ? "log" : "logf"; - if (_LIB_VERSION == _SVID_) - exc.retval = -HUGE; - else - exc.retval = -HUGE_VAL; - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - /* if (_LIB_VERSION == _SVID_) { - (void) WRITE2("log: SING error\n", 16); - } */ - errno = EDOM; - } - break; - case 17: - case 117: - /* log(x<0) */ - exc.type = DOMAIN; - exc.name = type < 100 ? "log" : "logf"; - if (_LIB_VERSION == _SVID_) - exc.retval = -HUGE; - else - exc.retval = -HUGE_VAL; - if (_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - /* if (_LIB_VERSION == _SVID_) { - (void) WRITE2("log: DOMAIN error\n", 18); - } */ - errno = EDOM; - } - break; - case 18: - case 118: - /* log10(0) */ - exc.type = SING; - exc.name = type < 100 ? "log10" : "log10f"; - if (_LIB_VERSION == _SVID_) - exc.retval = -HUGE; - else - exc.retval = -HUGE_VAL; - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - /* if (_LIB_VERSION == _SVID_) { - (void) WRITE2("log10: SING error\n", 18); - } */ - errno = EDOM; - } - break; - case 19: - case 119: - /* log10(x<0) */ - exc.type = DOMAIN; - exc.name = type < 100 ? "log10" : "log10f"; - if (_LIB_VERSION == _SVID_) - exc.retval = -HUGE; - else - exc.retval = -HUGE_VAL; - if (_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - /* if (_LIB_VERSION == _SVID_) { - (void) WRITE2("log10: DOMAIN error\n", 20); - } */ - errno = EDOM; - } - break; - case 20: - case 120: - /* pow(0.0,0.0) */ - /* error only if _LIB_VERSION == _SVID_ */ - exc.type = DOMAIN; - exc.name = type < 100 ? "pow" : "powf"; - exc.retval = zero; - if (_LIB_VERSION != _SVID_) exc.retval = 1.0; - else if (!matherr(&exc)) { - /* (void) WRITE2("pow(0,0): DOMAIN error\n", 23); */ - errno = EDOM; - } - break; - case 21: - case 121: - /* pow(x,y) overflow */ - exc.type = OVERFLOW; - exc.name = type < 100 ? "pow" : "powf"; - if (_LIB_VERSION == _SVID_) { - exc.retval = HUGE; - y *= 0.5; - if(x<zero&&rint(y)!=y) exc.retval = -HUGE; - } else { - exc.retval = HUGE_VAL; - y *= 0.5; - if(x<zero&&rint(y)!=y) exc.retval = -HUGE_VAL; - } - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - errno = ERANGE; - } - break; - case 22: - case 122: - /* pow(x,y) underflow */ - exc.type = UNDERFLOW; - exc.name = type < 100 ? "pow" : "powf"; - exc.retval = zero; - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - errno = ERANGE; - } - break; - case 23: - case 123: - /* 0**neg */ - exc.type = DOMAIN; - exc.name = type < 100 ? "pow" : "powf"; - if (_LIB_VERSION == _SVID_) - exc.retval = zero; - else - exc.retval = -HUGE_VAL; - if (_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - /* if (_LIB_VERSION == _SVID_) { - (void) WRITE2("pow(0,neg): DOMAIN error\n", 25); - } */ - errno = EDOM; - } - break; - case 24: - case 124: - /* neg**non-integral */ - exc.type = DOMAIN; - exc.name = type < 100 ? "pow" : "powf"; - if (_LIB_VERSION == _SVID_) - exc.retval = zero; - else - exc.retval = zero/zero; /* X/Open allow NaN */ - if (_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - /* if (_LIB_VERSION == _SVID_) { - (void) WRITE2("neg**non-integral: DOMAIN error\n", 32); - } */ - errno = EDOM; - } - break; - case 25: - case 125: - /* sinh(finite) overflow */ - exc.type = OVERFLOW; - exc.name = type < 100 ? "sinh" : "sinhf"; - if (_LIB_VERSION == _SVID_) - exc.retval = ( (x>zero) ? HUGE : -HUGE); - else - exc.retval = ( (x>zero) ? HUGE_VAL : -HUGE_VAL); - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - errno = ERANGE; - } - break; - case 26: - case 126: - /* sqrt(x<0) */ - exc.type = DOMAIN; - exc.name = type < 100 ? "sqrt" : "sqrtf"; - if (_LIB_VERSION == _SVID_) - exc.retval = zero; - else - exc.retval = zero/zero; - if (_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - /* if (_LIB_VERSION == _SVID_) { - (void) WRITE2("sqrt: DOMAIN error\n", 19); - } */ - errno = EDOM; - } - break; - case 27: - case 127: - /* fmod(x,0) */ - exc.type = DOMAIN; - exc.name = type < 100 ? "fmod" : "fmodf"; - if (_LIB_VERSION == _SVID_) - exc.retval = x; - else - exc.retval = zero/zero; - if (_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - /* if (_LIB_VERSION == _SVID_) { - (void) WRITE2("fmod: DOMAIN error\n", 20); - } */ - errno = EDOM; - } - break; - case 28: - case 128: - /* remainder(x,0) */ - exc.type = DOMAIN; - exc.name = type < 100 ? "remainder" : "remainderf"; - exc.retval = zero/zero; - if (_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - /* if (_LIB_VERSION == _SVID_) { - (void) WRITE2("remainder: DOMAIN error\n", 24); - } */ - errno = EDOM; - } - break; - case 29: - case 129: - /* acosh(x<1) */ - exc.type = DOMAIN; - exc.name = type < 100 ? "acosh" : "acoshf"; - exc.retval = zero/zero; - if (_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - /* if (_LIB_VERSION == _SVID_) { - (void) WRITE2("acosh: DOMAIN error\n", 20); - } */ - errno = EDOM; - } - break; - case 30: - case 130: - /* atanh(|x|>1) */ - exc.type = DOMAIN; - exc.name = type < 100 ? "atanh" : "atanhf"; - exc.retval = zero/zero; - if (_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - /* if (_LIB_VERSION == _SVID_) { - (void) WRITE2("atanh: DOMAIN error\n", 20); - } */ - errno = EDOM; - } - break; - case 31: - case 131: - /* atanh(|x|=1) */ - exc.type = SING; - exc.name = type < 100 ? "atanh" : "atanhf"; - exc.retval = x/zero; /* sign(x)*inf */ - if (_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - /* if (_LIB_VERSION == _SVID_) { - (void) WRITE2("atanh: SING error\n", 18); - } */ - errno = EDOM; - } - break; - case 32: - case 132: - /* scalb overflow; SVID also returns +-HUGE_VAL */ - exc.type = OVERFLOW; - exc.name = type < 100 ? "scalb" : "scalbf"; - exc.retval = x > zero ? HUGE_VAL : -HUGE_VAL; - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - errno = ERANGE; - } - break; - case 33: - case 133: - /* scalb underflow */ - exc.type = UNDERFLOW; - exc.name = type < 100 ? "scalb" : "scalbf"; - exc.retval = copysign(zero,x); - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - errno = ERANGE; - } - break; - case 34: - case 134: - /* j0(|x|>X_TLOSS) */ - exc.type = TLOSS; - exc.name = type < 100 ? "j0" : "j0f"; - exc.retval = zero; - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - /* if (_LIB_VERSION == _SVID_) { - (void) WRITE2(exc.name, 2); - (void) WRITE2(": TLOSS error\n", 14); - } */ - errno = ERANGE; - } - break; - case 35: - case 135: - /* y0(x>X_TLOSS) */ - exc.type = TLOSS; - exc.name = type < 100 ? "y0" : "y0f"; - exc.retval = zero; - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - /* if (_LIB_VERSION == _SVID_) { - (void) WRITE2(exc.name, 2); - (void) WRITE2(": TLOSS error\n", 14); - } */ - errno = ERANGE; - } - break; - case 36: - case 136: - /* j1(|x|>X_TLOSS) */ - exc.type = TLOSS; - exc.name = type < 100 ? "j1" : "j1f"; - exc.retval = zero; - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - /* if (_LIB_VERSION == _SVID_) { - (void) WRITE2(exc.name, 2); - (void) WRITE2(": TLOSS error\n", 14); - } */ - errno = ERANGE; - } - break; - case 37: - case 137: - /* y1(x>X_TLOSS) */ - exc.type = TLOSS; - exc.name = type < 100 ? "y1" : "y1f"; - exc.retval = zero; - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - /* if (_LIB_VERSION == _SVID_) { - (void) WRITE2(exc.name, 2); - (void) WRITE2(": TLOSS error\n", 14); - } */ - errno = ERANGE; - } - break; - case 38: - case 138: - /* jn(|x|>X_TLOSS) */ - exc.type = TLOSS; - exc.name = type < 100 ? "jn" : "jnf"; - exc.retval = zero; - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - /* if (_LIB_VERSION == _SVID_) { - (void) WRITE2(exc.name, 2); - (void) WRITE2(": TLOSS error\n", 14); - } */ - errno = ERANGE; - } - break; - case 39: - case 139: - /* yn(x>X_TLOSS) */ - exc.type = TLOSS; - exc.name = type < 100 ? "yn" : "ynf"; - exc.retval = zero; - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - /* if (_LIB_VERSION == _SVID_) { - (void) WRITE2(exc.name, 2); - (void) WRITE2(": TLOSS error\n", 14); - } */ - errno = ERANGE; - } - break; - case 40: - case 140: - /* gamma(finite) overflow */ - exc.type = OVERFLOW; - exc.name = type < 100 ? "gamma" : "gammaf"; - if (_LIB_VERSION == _SVID_) - exc.retval = HUGE; - else - exc.retval = HUGE_VAL; - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - errno = ERANGE; - } - break; - case 41: - case 141: - /* gamma(-integer) or gamma(0) */ - exc.type = SING; - exc.name = type < 100 ? "gamma" : "gammaf"; - if (_LIB_VERSION == _SVID_) - exc.retval = HUGE; - else - exc.retval = HUGE_VAL; - if (_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - /* if (_LIB_VERSION == _SVID_) { - (void) WRITE2("gamma: SING error\n", 18); - } */ - errno = EDOM; - } - break; - case 42: - case 142: - /* pow(NaN,0.0) */ - /* error only if _LIB_VERSION == _SVID_ & _XOPEN_ */ - exc.type = DOMAIN; - exc.name = type < 100 ? "pow" : "powf"; - exc.retval = x; - if (_LIB_VERSION == _IEEE_ || - _LIB_VERSION == _POSIX_) exc.retval = 1.0; - else if (!matherr(&exc)) { - errno = EDOM; - } - break; - } - if (exc.err != 0) - errno = exc.err; - return exc.retval; -} - - diff --git a/newlib/libm/math/k_tan.c b/newlib/libm/math/k_tan.c deleted file mode 100644 index 9f5b307..0000000 --- a/newlib/libm/math/k_tan.c +++ /dev/null @@ -1,132 +0,0 @@ - -/* @(#)k_tan.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* __kernel_tan( x, y, k ) - * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854 - * Input x is assumed to be bounded by ~pi/4 in magnitude. - * Input y is the tail of x. - * Input k indicates whether tan (if k=1) or - * -1/tan (if k= -1) is returned. - * - * Algorithm - * 1. Since tan(-x) = -tan(x), we need only to consider positive x. - * 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0. - * 3. tan(x) is approximated by a odd polynomial of degree 27 on - * [0,0.67434] - * 3 27 - * tan(x) ~ x + T1*x + ... + T13*x - * where - * - * |tan(x) 2 4 26 | -59.2 - * |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2 - * | x | - * - * Note: tan(x+y) = tan(x) + tan'(x)*y - * ~ tan(x) + (1+x*x)*y - * Therefore, for better accuracy in computing tan(x+y), let - * 3 2 2 2 2 - * r = x *(T2+x *(T3+x *(...+x *(T12+x *T13)))) - * then - * 3 2 - * tan(x+y) = x + (T1*x + (x *(r+y)+y)) - * - * 4. For x in [0.67434,pi/4], let y = pi/4 - x, then - * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y)) - * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y))) - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ -static const double -#else -static double -#endif -one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ -pio4 = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */ -pio4lo= 3.06161699786838301793e-17, /* 0x3C81A626, 0x33145C07 */ -T[] = { - 3.33333333333334091986e-01, /* 0x3FD55555, 0x55555563 */ - 1.33333333333201242699e-01, /* 0x3FC11111, 0x1110FE7A */ - 5.39682539762260521377e-02, /* 0x3FABA1BA, 0x1BB341FE */ - 2.18694882948595424599e-02, /* 0x3F9664F4, 0x8406D637 */ - 8.86323982359930005737e-03, /* 0x3F8226E3, 0xE96E8493 */ - 3.59207910759131235356e-03, /* 0x3F6D6D22, 0xC9560328 */ - 1.45620945432529025516e-03, /* 0x3F57DBC8, 0xFEE08315 */ - 5.88041240820264096874e-04, /* 0x3F4344D8, 0xF2F26501 */ - 2.46463134818469906812e-04, /* 0x3F3026F7, 0x1A8D1068 */ - 7.81794442939557092300e-05, /* 0x3F147E88, 0xA03792A6 */ - 7.14072491382608190305e-05, /* 0x3F12B80F, 0x32F0A7E9 */ - -1.85586374855275456654e-05, /* 0xBEF375CB, 0xDB605373 */ - 2.59073051863633712884e-05, /* 0x3EFB2A70, 0x74BF7AD4 */ -}; - -#ifdef __STDC__ - double __kernel_tan(double x, double y, int iy) -#else - double __kernel_tan(x, y, iy) - double x,y; int iy; -#endif -{ - double z,r,v,w,s; - __int32_t ix,hx; - GET_HIGH_WORD(hx,x); - ix = hx&0x7fffffff; /* high word of |x| */ - if(ix<0x3e300000) /* x < 2**-28 */ - {if((int)x==0) { /* generate inexact */ - __uint32_t low; - GET_LOW_WORD(low,x); - if(((ix|low)|(iy+1))==0) return one/fabs(x); - else return (iy==1)? x: -one/x; - } - } - if(ix>=0x3FE59428) { /* |x|>=0.6744 */ - if(hx<0) {x = -x; y = -y;} - z = pio4-x; - w = pio4lo-y; - x = z+w; y = 0.0; - } - z = x*x; - w = z*z; - /* Break x^5*(T[1]+x^2*T[2]+...) into - * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) + - * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12])) - */ - r = T[1]+w*(T[3]+w*(T[5]+w*(T[7]+w*(T[9]+w*T[11])))); - v = z*(T[2]+w*(T[4]+w*(T[6]+w*(T[8]+w*(T[10]+w*T[12]))))); - s = z*x; - r = y + z*(s*(r+v)+y); - r += T[0]*s; - w = x+r; - if(ix>=0x3FE59428) { - v = (double)iy; - return (double)(1-((hx>>30)&2))*(v-2.0*(x-(w*w/(w+v)-r))); - } - if(iy==1) return w; - else { /* if allow error up to 2 ulp, - simply return -1.0/(x+r) here */ - /* compute -1.0/(x+r) accurately */ - double a,t; - z = w; - SET_LOW_WORD(z,0); - v = r-(z - x); /* z+v = r+x */ - t = a = -1.0/w; /* a = -1.0/w */ - SET_LOW_WORD(t,0); - s = 1.0+t*z; - return t+a*(s+t*v); - } -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/kf_cos.c b/newlib/libm/math/kf_cos.c deleted file mode 100644 index 4f71af2..0000000 --- a/newlib/libm/math/kf_cos.c +++ /dev/null @@ -1,59 +0,0 @@ -/* kf_cos.c -- float version of k_cos.c - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -#include "fdlibm.h" - -#ifdef __STDC__ -static const float -#else -static float -#endif -one = 1.0000000000e+00, /* 0x3f800000 */ -C1 = 4.1666667908e-02, /* 0x3d2aaaab */ -C2 = -1.3888889225e-03, /* 0xbab60b61 */ -C3 = 2.4801587642e-05, /* 0x37d00d01 */ -C4 = -2.7557314297e-07, /* 0xb493f27c */ -C5 = 2.0875723372e-09, /* 0x310f74f6 */ -C6 = -1.1359647598e-11; /* 0xad47d74e */ - -#ifdef __STDC__ - float __kernel_cosf(float x, float y) -#else - float __kernel_cosf(x, y) - float x,y; -#endif -{ - float a,hz,z,r,qx; - __int32_t ix; - GET_FLOAT_WORD(ix,x); - ix &= 0x7fffffff; /* ix = |x|'s high word*/ - if(ix<0x32000000) { /* if x < 2**27 */ - if(((int)x)==0) return one; /* generate inexact */ - } - z = x*x; - r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6))))); - if(ix < 0x3e99999a) /* if |x| < 0.3 */ - return one - ((float)0.5*z - (z*r - x*y)); - else { - if(ix > 0x3f480000) { /* x > 0.78125 */ - qx = (float)0.28125; - } else { - SET_FLOAT_WORD(qx,ix-0x01000000); /* x/4 */ - } - hz = (float)0.5*z-qx; - a = one-qx; - return a - (hz - (z*r-x*y)); - } -} diff --git a/newlib/libm/math/kf_rem_pio2.c b/newlib/libm/math/kf_rem_pio2.c deleted file mode 100644 index 261c481..0000000 --- a/newlib/libm/math/kf_rem_pio2.c +++ /dev/null @@ -1,208 +0,0 @@ -/* kf_rem_pio2.c -- float version of k_rem_pio2.c - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -#include "fdlibm.h" - -/* In the float version, the input parameter x contains 8 bit - integers, not 24 bit integers. 113 bit precision is not supported. */ - -#ifdef __STDC__ -static const int init_jk[] = {4,7,9}; /* initial value for jk */ -#else -static int init_jk[] = {4,7,9}; -#endif - -#ifdef __STDC__ -static const float PIo2[] = { -#else -static float PIo2[] = { -#endif - 1.5703125000e+00, /* 0x3fc90000 */ - 4.5776367188e-04, /* 0x39f00000 */ - 2.5987625122e-05, /* 0x37da0000 */ - 7.5437128544e-08, /* 0x33a20000 */ - 6.0026650317e-11, /* 0x2e840000 */ - 7.3896444519e-13, /* 0x2b500000 */ - 5.3845816694e-15, /* 0x27c20000 */ - 5.6378512969e-18, /* 0x22d00000 */ - 8.3009228831e-20, /* 0x1fc40000 */ - 3.2756352257e-22, /* 0x1bc60000 */ - 6.3331015649e-25, /* 0x17440000 */ -}; - -#ifdef __STDC__ -static const float -#else -static float -#endif -zero = 0.0, -one = 1.0, -two8 = 2.5600000000e+02, /* 0x43800000 */ -twon8 = 3.9062500000e-03; /* 0x3b800000 */ - -#ifdef __STDC__ - int __kernel_rem_pio2f(float *x, float *y, int e0, int nx, int prec, const __int32_t *ipio2) -#else - int __kernel_rem_pio2f(x,y,e0,nx,prec,ipio2) - float x[], y[]; int e0,nx,prec; __int32_t ipio2[]; -#endif -{ - __int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih; - float z,fw,f[20],fq[20],q[20]; - - /* initialize jk*/ - jk = init_jk[prec]; - jp = jk; - - /* determine jx,jv,q0, note that 3>q0 */ - jx = nx-1; - jv = (e0-3)/8; if(jv<0) jv=0; - q0 = e0-8*(jv+1); - - /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */ - j = jv-jx; m = jx+jk; - for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (float) ipio2[j]; - - /* compute q[0],q[1],...q[jk] */ - for (i=0;i<=jk;i++) { - for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw; - } - - jz = jk; -recompute: - /* distill q[] into iq[] reversingly */ - for(i=0,j=jz,z=q[jz];j>0;i++,j--) { - fw = (float)((__int32_t)(twon8* z)); - iq[i] = (__int32_t)(z-two8*fw); - z = q[j-1]+fw; - } - - /* compute n */ - z = scalbnf(z,(int)q0); /* actual value of z */ - z -= (float)8.0*floorf(z*(float)0.125); /* trim off integer >= 8 */ - n = (__int32_t) z; - z -= (float)n; - ih = 0; - if(q0>0) { /* need iq[jz-1] to determine n */ - i = (iq[jz-1]>>(8-q0)); n += i; - iq[jz-1] -= i<<(8-q0); - ih = iq[jz-1]>>(7-q0); - } - else if(q0==0) ih = iq[jz-1]>>8; - else if(z>=(float)0.5) ih=2; - - if(ih>0) { /* q > 0.5 */ - n += 1; carry = 0; - for(i=0;i<jz ;i++) { /* compute 1-q */ - j = iq[i]; - if(carry==0) { - if(j!=0) { - carry = 1; iq[i] = 0x100- j; - } - } else iq[i] = 0xff - j; - } - if(q0>0) { /* rare case: chance is 1 in 12 */ - switch(q0) { - case 1: - iq[jz-1] &= 0x7f; break; - case 2: - iq[jz-1] &= 0x3f; break; - } - } - if(ih==2) { - z = one - z; - if(carry!=0) z -= scalbnf(one,(int)q0); - } - } - - /* check if recomputation is needed */ - if(z==zero) { - j = 0; - for (i=jz-1;i>=jk;i--) j |= iq[i]; - if(j==0) { /* need recomputation */ - for(k=1;iq[jk-k]==0;k++); /* k = no. of terms needed */ - - for(i=jz+1;i<=jz+k;i++) { /* add q[jz+1] to q[jz+k] */ - f[jx+i] = (float) ipio2[jv+i]; - for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; - q[i] = fw; - } - jz += k; - goto recompute; - } - } - - /* chop off zero terms */ - if(z==(float)0.0) { - jz -= 1; q0 -= 8; - while(iq[jz]==0) { jz--; q0-=8;} - } else { /* break z into 8-bit if necessary */ - z = scalbnf(z,-(int)q0); - if(z>=two8) { - fw = (float)((__int32_t)(twon8*z)); - iq[jz] = (__int32_t)(z-two8*fw); - jz += 1; q0 += 8; - iq[jz] = (__int32_t) fw; - } else iq[jz] = (__int32_t) z ; - } - - /* convert integer "bit" chunk to floating-point value */ - fw = scalbnf(one,(int)q0); - for(i=jz;i>=0;i--) { - q[i] = fw*(float)iq[i]; fw*=twon8; - } - - /* compute PIo2[0,...,jp]*q[jz,...,0] */ - for(i=jz;i>=0;i--) { - for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k]; - fq[jz-i] = fw; - } - - /* compress fq[] into y[] */ - switch(prec) { - case 0: - fw = 0.0; - for (i=jz;i>=0;i--) fw += fq[i]; - y[0] = (ih==0)? fw: -fw; - break; - case 1: - case 2: - fw = 0.0; - for (i=jz;i>=0;i--) fw += fq[i]; - y[0] = (ih==0)? fw: -fw; - fw = fq[0]-fw; - for (i=1;i<=jz;i++) fw += fq[i]; - y[1] = (ih==0)? fw: -fw; - break; - case 3: /* painful */ - for (i=jz;i>0;i--) { - fw = fq[i-1]+fq[i]; - fq[i] += fq[i-1]-fw; - fq[i-1] = fw; - } - for (i=jz;i>1;i--) { - fw = fq[i-1]+fq[i]; - fq[i] += fq[i-1]-fw; - fq[i-1] = fw; - } - for (fw=0.0,i=jz;i>=2;i--) fw += fq[i]; - if(ih==0) { - y[0] = fq[0]; y[1] = fq[1]; y[2] = fw; - } else { - y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw; - } - } - return n&7; -} diff --git a/newlib/libm/math/kf_sin.c b/newlib/libm/math/kf_sin.c deleted file mode 100644 index e81fa0b..0000000 --- a/newlib/libm/math/kf_sin.c +++ /dev/null @@ -1,49 +0,0 @@ -/* kf_sin.c -- float version of k_sin.c - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -#include "fdlibm.h" - -#ifdef __STDC__ -static const float -#else -static float -#endif -half = 5.0000000000e-01,/* 0x3f000000 */ -S1 = -1.6666667163e-01, /* 0xbe2aaaab */ -S2 = 8.3333337680e-03, /* 0x3c088889 */ -S3 = -1.9841270114e-04, /* 0xb9500d01 */ -S4 = 2.7557314297e-06, /* 0x3638ef1b */ -S5 = -2.5050759689e-08, /* 0xb2d72f34 */ -S6 = 1.5896910177e-10; /* 0x2f2ec9d3 */ - -#ifdef __STDC__ - float __kernel_sinf(float x, float y, int iy) -#else - float __kernel_sinf(x, y, iy) - float x,y; int iy; /* iy=0 if y is zero */ -#endif -{ - float z,r,v; - __int32_t ix; - GET_FLOAT_WORD(ix,x); - ix &= 0x7fffffff; /* high word of x */ - if(ix<0x32000000) /* |x| < 2**-27 */ - {if((int)x==0) return x;} /* generate inexact */ - z = x*x; - v = z*x; - r = S2+z*(S3+z*(S4+z*(S5+z*S6))); - if(iy==0) return x+v*(S1+z*r); - else return x-((z*(half*y-v*r)-y)-v*S1); -} diff --git a/newlib/libm/math/kf_tan.c b/newlib/libm/math/kf_tan.c deleted file mode 100644 index 285d7f6..0000000 --- a/newlib/libm/math/kf_tan.c +++ /dev/null @@ -1,96 +0,0 @@ -/* kf_tan.c -- float version of k_tan.c - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -#include "fdlibm.h" -#ifdef __STDC__ -static const float -#else -static float -#endif -one = 1.0000000000e+00, /* 0x3f800000 */ -pio4 = 7.8539812565e-01, /* 0x3f490fda */ -pio4lo= 3.7748947079e-08, /* 0x33222168 */ -T[] = { - 3.3333334327e-01, /* 0x3eaaaaab */ - 1.3333334029e-01, /* 0x3e088889 */ - 5.3968254477e-02, /* 0x3d5d0dd1 */ - 2.1869488060e-02, /* 0x3cb327a4 */ - 8.8632395491e-03, /* 0x3c11371f */ - 3.5920790397e-03, /* 0x3b6b6916 */ - 1.4562094584e-03, /* 0x3abede48 */ - 5.8804126456e-04, /* 0x3a1a26c8 */ - 2.4646313977e-04, /* 0x398137b9 */ - 7.8179444245e-05, /* 0x38a3f445 */ - 7.1407252108e-05, /* 0x3895c07a */ - -1.8558637748e-05, /* 0xb79bae5f */ - 2.5907305826e-05, /* 0x37d95384 */ -}; - -#ifdef __STDC__ - float __kernel_tanf(float x, float y, int iy) -#else - float __kernel_tanf(x, y, iy) - float x,y; int iy; -#endif -{ - float z,r,v,w,s; - __int32_t ix,hx; - GET_FLOAT_WORD(hx,x); - ix = hx&0x7fffffff; /* high word of |x| */ - if(ix<0x31800000) /* x < 2**-28 */ - {if((int)x==0) { /* generate inexact */ - if((ix|(iy+1))==0) return one/fabsf(x); - else return (iy==1)? x: -one/x; - } - } - if(ix>=0x3f2ca140) { /* |x|>=0.6744 */ - if(hx<0) {x = -x; y = -y;} - z = pio4-x; - w = pio4lo-y; - x = z+w; y = 0.0; - } - z = x*x; - w = z*z; - /* Break x^5*(T[1]+x^2*T[2]+...) into - * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) + - * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12])) - */ - r = T[1]+w*(T[3]+w*(T[5]+w*(T[7]+w*(T[9]+w*T[11])))); - v = z*(T[2]+w*(T[4]+w*(T[6]+w*(T[8]+w*(T[10]+w*T[12]))))); - s = z*x; - r = y + z*(s*(r+v)+y); - r += T[0]*s; - w = x+r; - if(ix>=0x3f2ca140) { - v = (float)iy; - return (float)(1-((hx>>30)&2))*(v-(float)2.0*(x-(w*w/(w+v)-r))); - } - if(iy==1) return w; - else { /* if allow error up to 2 ulp, - simply return -1.0/(x+r) here */ - /* compute -1.0/(x+r) accurately */ - float a,t; - __int32_t i; - z = w; - GET_FLOAT_WORD(i,z); - SET_FLOAT_WORD(z,i&0xfffff000); - v = r-(z - x); /* z+v = r+x */ - t = a = -(float)1.0/w; /* a = -1.0/w */ - GET_FLOAT_WORD(i,t); - SET_FLOAT_WORD(t,i&0xfffff000); - s = (float)1.0+t*z; - return t+a*(s+t*v); - } -} diff --git a/newlib/libm/math/math.tex b/newlib/libm/math/math.tex deleted file mode 100644 index c6035de..0000000 --- a/newlib/libm/math/math.tex +++ /dev/null @@ -1,199 +0,0 @@ -@node Math -@chapter Mathematical Functions (@file{math.h}) - -This chapter groups a wide variety of mathematical functions. The -corresponding definitions and declarations are in @file{math.h}. -Two definitions from @file{math.h} are of particular interest. - -@enumerate -@item -The representation of infinity as a @code{double} is defined as -@code{HUGE_VAL}; this number is returned on overflow by many functions. - -@item -The structure @code{exception} is used when you write customized error -handlers for the mathematical functions. You can customize error -handling for most of these functions by defining your own version of -@code{matherr}; see the section on @code{matherr} for details. -@end enumerate - -@cindex system calls -@cindex support subroutines -@cindex stubs -@cindex OS stubs -Since the error handling code calls @code{fputs}, the mathematical -subroutines require stubs or minimal implementations for the same list -of OS subroutines as @code{fputs}: @code{close}, @code{fstat}, -@code{isatty}, @code{lseek}, @code{read}, @code{sbrk}, @code{write}. -@xref{syscalls,,System Calls, libc.info, The Cygnus C Support Library}, -for a discussion and for sample minimal implementations of these support -subroutines. - -Alternative declarations of the mathematical functions, which exploit -specific machine capabilities to operate faster---but generally have -less error checking and may reflect additional limitations on some -machines---are available when you include @file{fastmath.h} instead of -@file{math.h}. - -@menu -* version:: Version of library -* acos:: Arccosine -* acosh:: Inverse hyperbolic cosine -* asin:: Arcsine -* asinh:: Inverse hyperbolic sine -* atan:: Arctangent -* atan2:: Arctangent of y/x -* atanh:: Inverse hyperbolic tangent -* jN:: Bessel functions (jN, yN) -* cbrt:: Cube root -* copysign:: Sign of Y, magnitude of X -* cosh:: Hyperbolic cosine -* erf:: Error function (erf, erfc) -* exp:: Exponential -* expm1:: Exponential of x, - 1 -* fabs:: Absolute value (magnitude) -* floor:: Floor and ceiling (floor, ceil) -* fmod:: Floating-point remainder (modulo) -* frexp:: Split floating-point number -* gamma:: Logarithmic gamma function -* hypot:: Distance from origin -* ilogb:: Get exponent -* infinity:: Floating infinity -* isnan:: Check type of number -* ldexp:: Load exponent -* log:: Natural logarithms -* log10:: Base 10 logarithms -* log1p:: Log of 1 + X -* matherr:: Modifiable math error handler -* modf:: Split fractional and integer parts -* nan:: Floating Not a Number -* nextafter:: Get next representable number -* pow:: X to the power Y -* remainder:: remainder of X divided by Y -* scalbn:: scalbn -* sin:: Sine or cosine (sin, cos) -* sinh:: Hyperbolic sine -* sqrt:: Positive square root -* tan:: Tangent -* tanh:: Hyperbolic tangent -@end menu - -@page -@node version -@section Version of library - -There are four different versions of the math library routines: IEEE, -POSIX, X/Open, or SVID. The version may be selected at runtime by -setting the global variable @code{_LIB_VERSION}, defined in -@file{math.h}. It may be set to one of the following constants defined -in @file{math.h}: @code{_IEEE_}, @code{_POSIX_}, @code{_XOPEN_}, or -@code{_SVID_}. The @code{_LIB_VERSION} variable is not specific to any -thread, and changing it will affect all threads. - -The versions of the library differ only in how errors are handled. - -In IEEE mode, the @code{matherr} function is never called, no warning -messages are printed, and @code{errno} is never set. - -In POSIX mode, @code{errno} is set correctly, but the @code{matherr} -function is never called and no warning messages are printed. - -In X/Open mode, @code{errno} is set correctly, and @code{matherr} is -called, but warning message are not printed. - -In SVID mode, functions which overflow return 3.40282346638528860e+38, -the maximum single precision floating point value, rather than infinity. -Also, @code{errno} is set correctly, @code{matherr} is called, and, if -@code{matherr} returns 0, warning messages are printed for some errors. -For example, by default @samp{log(-1.0)} writes this message on standard -error output: - -@example -log: DOMAIN error -@end example - -The library is set to X/Open mode by default. - -@page -@include math/wacos.def - -@page -@include math/wacosh.def - -@page -@include math/wasin.def - -@page -@include math/sasinh.def - -@page -@include math/satan.def - -@page -@include math/watan2.def - -@page -@include math/watanh.def - -@page -@include math/wj0.def - -@page -@include math/wcosh.def - -@page -@include math/serf.def - -@page -@include math/wexp.def - -@page -@include math/sfabs.def - -@page -@include math/sfloor.def - -@page -@include math/wfmod.def - -@page -@include math/sfrexp.def - -@page -@include math/wgamma.def - -@page -@include math/whypot.def - -@page -@include math/sisnan.def - -@page -@include math/sldexp.def - -@page -@include math/wlog.def - -@page -@include math/wlog10.def - -@page -@include math/wpow.def - -@page -@include math/wremainder.def - -@page -@include math/wsqrt.def - -@page -@include math/ssin.def - -@page -@include math/wsinh.def - -@page -@include math/stan.def - -@page -@include math/stanh.def diff --git a/newlib/libm/math/s_asinh.c b/newlib/libm/math/s_asinh.c deleted file mode 100644 index 958b71f..0000000 --- a/newlib/libm/math/s_asinh.c +++ /dev/null @@ -1,107 +0,0 @@ - -/* @(#)s_asinh.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* -FUNCTION - <<asinh>>, <<asinhf>>---inverse hyperbolic sine - -INDEX - asinh -INDEX - asinhf - -ANSI_SYNOPSIS - #include <math.h> - double asinh(double <[x]>); - float asinhf(float <[x]>); - -TRAD_SYNOPSIS - #include <math.h> - double asinh(<[x]>) - double <[x]>; - - float asinhf(<[x]>) - float <[x]>; - -DESCRIPTION -<<asinh>> calculates the inverse hyperbolic sine of <[x]>. -<<asinh>> is defined as -@ifinfo -. sgn(<[x]>) * log(abs(<[x]>) + sqrt(1+<[x]>*<[x]>)) -@end ifinfo -@tex -$$sign(x) \times ln\Bigl(|x| + \sqrt{1+x^2}\Bigr)$$ -@end tex - -<<asinhf>> is identical, other than taking and returning floats. - -RETURNS -<<asinh>> and <<asinhf>> return the calculated value. - -PORTABILITY -Neither <<asinh>> nor <<asinhf>> are ANSI C. - -*/ - -/* asinh(x) - * Method : - * Based on - * asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ] - * we have - * asinh(x) := x if 1+x*x=1, - * := sign(x)*(log(x)+ln2)) for large |x|, else - * := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else - * := sign(x)*log1p(|x| + x^2/(1 + sqrt(1+x^2))) - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ -static const double -#else -static double -#endif -one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ -ln2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */ -huge= 1.00000000000000000000e+300; - -#ifdef __STDC__ - double asinh(double x) -#else - double asinh(x) - double x; -#endif -{ - double t,w; - __int32_t hx,ix; - GET_HIGH_WORD(hx,x); - ix = hx&0x7fffffff; - if(ix>=0x7ff00000) return x+x; /* x is inf or NaN */ - if(ix< 0x3e300000) { /* |x|<2**-28 */ - if(huge+x>one) return x; /* return x inexact except 0 */ - } - if(ix>0x41b00000) { /* |x| > 2**28 */ - w = __ieee754_log(fabs(x))+ln2; - } else if (ix>0x40000000) { /* 2**28 > |x| > 2.0 */ - t = fabs(x); - w = __ieee754_log(2.0*t+one/(__ieee754_sqrt(x*x+one)+t)); - } else { /* 2.0 > |x| > 2**-28 */ - t = x*x; - w =log1p(fabs(x)+t/(one+__ieee754_sqrt(one+t))); - } - if(hx>0) return w; else return -w; -} - -#endif /* _DOUBLE_IS_32BITS */ diff --git a/newlib/libm/math/s_atan.c b/newlib/libm/math/s_atan.c deleted file mode 100644 index b1410ec..0000000 --- a/newlib/libm/math/s_atan.c +++ /dev/null @@ -1,181 +0,0 @@ - -/* @(#)s_atan.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - * - */ - -/* -FUNCTION - <<atan>>, <<atanf>>---arc tangent - -INDEX - atan -INDEX - atanf - -ANSI_SYNOPSIS - #include <math.h> - double atan(double <[x]>); - float atanf(float <[x]>); - -TRAD_SYNOPSIS - #include <math.h> - double atan(<[x]>); - double <[x]>; - - float atanf(<[x]>); - float <[x]>; - -DESCRIPTION - -<<atan>> computes the inverse tangent (arc tangent) of the input value. - -<<atanf>> is identical to <<atan>>, save that it operates on <<floats>>. - -RETURNS -@ifinfo -<<atan>> returns a value in radians, in the range of -pi/2 to pi/2. -@end ifinfo -@tex -<<atan>> returns a value in radians, in the range of $-\pi/2$ to $\pi/2$. -@end tex - -PORTABILITY -<<atan>> is ANSI C. <<atanf>> is an extension. - -*/ - -/* atan(x) - * Method - * 1. Reduce x to positive by atan(x) = -atan(-x). - * 2. According to the integer k=4t+0.25 chopped, t=x, the argument - * is further reduced to one of the following intervals and the - * arctangent of t is evaluated by the corresponding formula: - * - * [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...) - * [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) ) - * [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) ) - * [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) ) - * [39/16,INF] atan(x) = atan(INF) + atan( -1/t ) - * - * Constants: - * The hexadecimal values are the intended ones for the following - * constants. The decimal values may be used, provided that the - * compiler will convert from decimal to binary accurately enough - * to produce the hexadecimal values shown. - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ -static const double atanhi[] = { -#else -static double atanhi[] = { -#endif - 4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */ - 7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */ - 9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */ - 1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */ -}; - -#ifdef __STDC__ -static const double atanlo[] = { -#else -static double atanlo[] = { -#endif - 2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */ - 3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */ - 1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */ - 6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */ -}; - -#ifdef __STDC__ -static const double aT[] = { -#else -static double aT[] = { -#endif - 3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */ - -1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */ - 1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */ - -1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */ - 9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */ - -7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */ - 6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */ - -5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */ - 4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */ - -3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */ - 1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */ -}; - -#ifdef __STDC__ - static const double -#else - static double -#endif -one = 1.0, -huge = 1.0e300; - -#ifdef __STDC__ - double atan(double x) -#else - double atan(x) - double x; -#endif -{ - double w,s1,s2,z; - __int32_t ix,hx,id; - - GET_HIGH_WORD(hx,x); - ix = hx&0x7fffffff; - if(ix>=0x44100000) { /* if |x| >= 2^66 */ - __uint32_t low; - GET_LOW_WORD(low,x); - if(ix>0x7ff00000|| - (ix==0x7ff00000&&(low!=0))) - return x+x; /* NaN */ - if(hx>0) return atanhi[3]+atanlo[3]; - else return -atanhi[3]-atanlo[3]; - } if (ix < 0x3fdc0000) { /* |x| < 0.4375 */ - if (ix < 0x3e200000) { /* |x| < 2^-29 */ - if(huge+x>one) return x; /* raise inexact */ - } - id = -1; - } else { - x = fabs(x); - if (ix < 0x3ff30000) { /* |x| < 1.1875 */ - if (ix < 0x3fe60000) { /* 7/16 <=|x|<11/16 */ - id = 0; x = (2.0*x-one)/(2.0+x); - } else { /* 11/16<=|x|< 19/16 */ - id = 1; x = (x-one)/(x+one); - } - } else { - if (ix < 0x40038000) { /* |x| < 2.4375 */ - id = 2; x = (x-1.5)/(one+1.5*x); - } else { /* 2.4375 <= |x| < 2^66 */ - id = 3; x = -1.0/x; - } - }} - /* end of argument reduction */ - z = x*x; - w = z*z; - /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */ - s1 = z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10]))))); - s2 = w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9])))); - if (id<0) return x - x*(s1+s2); - else { - z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x); - return (hx<0)? -z:z; - } -} - -#endif /* _DOUBLE_IS_32BITS */ diff --git a/newlib/libm/math/s_ceil.c b/newlib/libm/math/s_ceil.c deleted file mode 100644 index 24d6916..0000000 --- a/newlib/libm/math/s_ceil.c +++ /dev/null @@ -1,80 +0,0 @@ - -/* @(#)s_ceil.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* - * ceil(x) - * Return x rounded toward -inf to integral value - * Method: - * Bit twiddling. - * Exception: - * Inexact flag raised if x not equal to ceil(x). - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ -static const double huge = 1.0e300; -#else -static double huge = 1.0e300; -#endif - -#ifdef __STDC__ - double ceil(double x) -#else - double ceil(x) - double x; -#endif -{ - __int32_t i0,i1,j0; - __uint32_t i,j; - EXTRACT_WORDS(i0,i1,x); - j0 = ((i0>>20)&0x7ff)-0x3ff; - if(j0<20) { - if(j0<0) { /* raise inexact if x != 0 */ - if(huge+x>0.0) {/* return 0*sign(x) if |x|<1 */ - if(i0<0) {i0=0x80000000;i1=0;} - else if((i0|i1)!=0) { i0=0x3ff00000;i1=0;} - } - } else { - i = (0x000fffff)>>j0; - if(((i0&i)|i1)==0) return x; /* x is integral */ - if(huge+x>0.0) { /* raise inexact flag */ - if(i0>0) i0 += (0x00100000)>>j0; - i0 &= (~i); i1=0; - } - } - } else if (j0>51) { - if(j0==0x400) return x+x; /* inf or NaN */ - else return x; /* x is integral */ - } else { - i = ((__uint32_t)(0xffffffff))>>(j0-20); - if((i1&i)==0) return x; /* x is integral */ - if(huge+x>0.0) { /* raise inexact flag */ - if(i0>0) { - if(j0==20) i0+=1; - else { - j = i1 + (1<<(52-j0)); - if(j<i1) i0+=1; /* got a carry */ - i1 = j; - } - } - i1 &= (~i); - } - } - INSERT_WORDS(x,i0,i1); - return x; -} - -#endif /* _DOUBLE_IS_32BITS */ diff --git a/newlib/libm/math/s_cos.c b/newlib/libm/math/s_cos.c deleted file mode 100644 index c471233..0000000 --- a/newlib/libm/math/s_cos.c +++ /dev/null @@ -1,82 +0,0 @@ - -/* @(#)s_cos.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* cos(x) - * Return cosine function of x. - * - * kernel function: - * __kernel_sin ... sine function on [-pi/4,pi/4] - * __kernel_cos ... cosine function on [-pi/4,pi/4] - * __ieee754_rem_pio2 ... argument reduction routine - * - * Method. - * Let S,C and T denote the sin, cos and tan respectively on - * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 - * in [-pi/4 , +pi/4], and let n = k mod 4. - * We have - * - * n sin(x) cos(x) tan(x) - * ---------------------------------------------------------- - * 0 S C T - * 1 C -S -1/T - * 2 -S -C T - * 3 -C S -1/T - * ---------------------------------------------------------- - * - * Special cases: - * Let trig be any of sin, cos, or tan. - * trig(+-INF) is NaN, with signals; - * trig(NaN) is that NaN; - * - * Accuracy: - * TRIG(x) returns trig(x) nearly rounded - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double cos(double x) -#else - double cos(x) - double x; -#endif -{ - double y[2],z=0.0; - __int32_t n,ix; - - /* High word of x. */ - GET_HIGH_WORD(ix,x); - - /* |x| ~< pi/4 */ - ix &= 0x7fffffff; - if(ix <= 0x3fe921fb) return __kernel_cos(x,z); - - /* cos(Inf or NaN) is NaN */ - else if (ix>=0x7ff00000) return x-x; - - /* argument reduction needed */ - else { - n = __ieee754_rem_pio2(x,y); - switch(n&3) { - case 0: return __kernel_cos(y[0],y[1]); - case 1: return -__kernel_sin(y[0],y[1],1); - case 2: return -__kernel_cos(y[0],y[1]); - default: - return __kernel_sin(y[0],y[1],1); - } - } -} - -#endif /* _DOUBLE_IS_32BITS */ diff --git a/newlib/libm/math/s_erf.c b/newlib/libm/math/s_erf.c deleted file mode 100644 index 825309d..0000000 --- a/newlib/libm/math/s_erf.c +++ /dev/null @@ -1,373 +0,0 @@ - -/* @(#)s_erf.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* -FUNCTION - <<erf>>, <<erff>>, <<erfc>>, <<erfcf>>---error function -INDEX - erf -INDEX - erff -INDEX - erfc -INDEX - erfcf - -ANSI_SYNOPSIS - #include <math.h> - double erf(double <[x]>); - float erff(float <[x]>); - double erfc(double <[x]>); - float erfcf(float <[x]>); -TRAD_SYNOPSIS - #include <math.h> - - double erf(<[x]>) - double <[x]>; - - float erff(<[x]>) - float <[x]>; - - double erfc(<[x]>) - double <[x]>; - - float erfcf(<[x]>) - float <[x]>; - -DESCRIPTION - <<erf>> calculates an approximation to the ``error function'', - which estimates the probability that an observation will fall within - <[x]> standard deviations of the mean (assuming a normal - distribution). - @tex - The error function is defined as - $${2\over\sqrt\pi}\times\int_0^x e^{-t^2}dt$$ - @end tex - - <<erfc>> calculates the complementary probability; that is, - <<erfc(<[x]>)>> is <<1 - erf(<[x]>)>>. <<erfc>> is computed directly, - so that you can use it to avoid the loss of precision that would - result from subtracting large probabilities (on large <[x]>) from 1. - - <<erff>> and <<erfcf>> differ from <<erf>> and <<erfc>> only in the - argument and result types. - -RETURNS - For positive arguments, <<erf>> and all its variants return a - probability---a number between 0 and 1. - -PORTABILITY - None of the variants of <<erf>> are ANSI C. -*/ - -/* double erf(double x) - * double erfc(double x) - * x - * 2 |\ - * erf(x) = --------- | exp(-t*t)dt - * sqrt(pi) \| - * 0 - * - * erfc(x) = 1-erf(x) - * Note that - * erf(-x) = -erf(x) - * erfc(-x) = 2 - erfc(x) - * - * Method: - * 1. For |x| in [0, 0.84375] - * erf(x) = x + x*R(x^2) - * erfc(x) = 1 - erf(x) if x in [-.84375,0.25] - * = 0.5 + ((0.5-x)-x*R) if x in [0.25,0.84375] - * where R = P/Q where P is an odd poly of degree 8 and - * Q is an odd poly of degree 10. - * -57.90 - * | R - (erf(x)-x)/x | <= 2 - * - * - * Remark. The formula is derived by noting - * erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....) - * and that - * 2/sqrt(pi) = 1.128379167095512573896158903121545171688 - * is close to one. The interval is chosen because the fix - * point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is - * near 0.6174), and by some experiment, 0.84375 is chosen to - * guarantee the error is less than one ulp for erf. - * - * 2. For |x| in [0.84375,1.25], let s = |x| - 1, and - * c = 0.84506291151 rounded to single (24 bits) - * erf(x) = sign(x) * (c + P1(s)/Q1(s)) - * erfc(x) = (1-c) - P1(s)/Q1(s) if x > 0 - * 1+(c+P1(s)/Q1(s)) if x < 0 - * |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06 - * Remark: here we use the taylor series expansion at x=1. - * erf(1+s) = erf(1) + s*Poly(s) - * = 0.845.. + P1(s)/Q1(s) - * That is, we use rational approximation to approximate - * erf(1+s) - (c = (single)0.84506291151) - * Note that |P1/Q1|< 0.078 for x in [0.84375,1.25] - * where - * P1(s) = degree 6 poly in s - * Q1(s) = degree 6 poly in s - * - * 3. For x in [1.25,1/0.35(~2.857143)], - * erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1) - * erf(x) = 1 - erfc(x) - * where - * R1(z) = degree 7 poly in z, (z=1/x^2) - * S1(z) = degree 8 poly in z - * - * 4. For x in [1/0.35,28] - * erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0 - * = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0 - * = 2.0 - tiny (if x <= -6) - * erf(x) = sign(x)*(1.0 - erfc(x)) if x < 6, else - * erf(x) = sign(x)*(1.0 - tiny) - * where - * R2(z) = degree 6 poly in z, (z=1/x^2) - * S2(z) = degree 7 poly in z - * - * Note1: - * To compute exp(-x*x-0.5625+R/S), let s be a single - * precision number and s := x; then - * -x*x = -s*s + (s-x)*(s+x) - * exp(-x*x-0.5626+R/S) = - * exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S); - * Note2: - * Here 4 and 5 make use of the asymptotic series - * exp(-x*x) - * erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) ) - * x*sqrt(pi) - * We use rational approximation to approximate - * g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625 - * Here is the error bound for R1/S1 and R2/S2 - * |R1/S1 - f(x)| < 2**(-62.57) - * |R2/S2 - f(x)| < 2**(-61.52) - * - * 5. For inf > x >= 28 - * erf(x) = sign(x) *(1 - tiny) (raise inexact) - * erfc(x) = tiny*tiny (raise underflow) if x > 0 - * = 2 - tiny if x<0 - * - * 7. Special case: - * erf(0) = 0, erf(inf) = 1, erf(-inf) = -1, - * erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2, - * erfc/erf(NaN) is NaN - */ - - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ -static const double -#else -static double -#endif -tiny = 1e-300, -half= 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */ -one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ -two = 2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */ - /* c = (float)0.84506291151 */ -erx = 8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */ -/* - * Coefficients for approximation to erf on [0,0.84375] - */ -efx = 1.28379167095512586316e-01, /* 0x3FC06EBA, 0x8214DB69 */ -efx8= 1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */ -pp0 = 1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */ -pp1 = -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */ -pp2 = -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */ -pp3 = -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */ -pp4 = -2.37630166566501626084e-05, /* 0xBEF8EAD6, 0x120016AC */ -qq1 = 3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */ -qq2 = 6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */ -qq3 = 5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */ -qq4 = 1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */ -qq5 = -3.96022827877536812320e-06, /* 0xBED09C43, 0x42A26120 */ -/* - * Coefficients for approximation to erf in [0.84375,1.25] - */ -pa0 = -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */ -pa1 = 4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */ -pa2 = -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */ -pa3 = 3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */ -pa4 = -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */ -pa5 = 3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */ -pa6 = -2.16637559486879084300e-03, /* 0xBF61BF38, 0x0A96073F */ -qa1 = 1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */ -qa2 = 5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */ -qa3 = 7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */ -qa4 = 1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */ -qa5 = 1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */ -qa6 = 1.19844998467991074170e-02, /* 0x3F888B54, 0x5735151D */ -/* - * Coefficients for approximation to erfc in [1.25,1/0.35] - */ -ra0 = -9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */ -ra1 = -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */ -ra2 = -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */ -ra3 = -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */ -ra4 = -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */ -ra5 = -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */ -ra6 = -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */ -ra7 = -9.81432934416914548592e+00, /* 0xC023A0EF, 0xC69AC25C */ -sa1 = 1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */ -sa2 = 1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */ -sa3 = 4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */ -sa4 = 6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */ -sa5 = 4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */ -sa6 = 1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */ -sa7 = 6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */ -sa8 = -6.04244152148580987438e-02, /* 0xBFAEEFF2, 0xEE749A62 */ -/* - * Coefficients for approximation to erfc in [1/.35,28] - */ -rb0 = -9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */ -rb1 = -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */ -rb2 = -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */ -rb3 = -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */ -rb4 = -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */ -rb5 = -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */ -rb6 = -4.83519191608651397019e+02, /* 0xC07E384E, 0x9BDC383F */ -sb1 = 3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */ -sb2 = 3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */ -sb3 = 1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */ -sb4 = 3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */ -sb5 = 2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */ -sb6 = 4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */ -sb7 = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */ - -#ifdef __STDC__ - double erf(double x) -#else - double erf(x) - double x; -#endif -{ - __int32_t hx,ix,i; - double R,S,P,Q,s,y,z,r; - GET_HIGH_WORD(hx,x); - ix = hx&0x7fffffff; - if(ix>=0x7ff00000) { /* erf(nan)=nan */ - i = ((__uint32_t)hx>>31)<<1; - return (double)(1-i)+one/x; /* erf(+-inf)=+-1 */ - } - - if(ix < 0x3feb0000) { /* |x|<0.84375 */ - if(ix < 0x3e300000) { /* |x|<2**-28 */ - if (ix < 0x00800000) - return 0.125*(8.0*x+efx8*x); /*avoid underflow */ - return x + efx*x; - } - z = x*x; - r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4))); - s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5)))); - y = r/s; - return x + x*y; - } - if(ix < 0x3ff40000) { /* 0.84375 <= |x| < 1.25 */ - s = fabs(x)-one; - P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6))))); - Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6))))); - if(hx>=0) return erx + P/Q; else return -erx - P/Q; - } - if (ix >= 0x40180000) { /* inf>|x|>=6 */ - if(hx>=0) return one-tiny; else return tiny-one; - } - x = fabs(x); - s = one/(x*x); - if(ix< 0x4006DB6E) { /* |x| < 1/0.35 */ - R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*( - ra5+s*(ra6+s*ra7)))))); - S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*( - sa5+s*(sa6+s*(sa7+s*sa8))))))); - } else { /* |x| >= 1/0.35 */ - R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*( - rb5+s*rb6))))); - S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*( - sb5+s*(sb6+s*sb7)))))); - } - z = x; - SET_LOW_WORD(z,0); - r = __ieee754_exp(-z*z-0.5625)*__ieee754_exp((z-x)*(z+x)+R/S); - if(hx>=0) return one-r/x; else return r/x-one; -} - -#ifdef __STDC__ - double erfc(double x) -#else - double erfc(x) - double x; -#endif -{ - __int32_t hx,ix; - double R,S,P,Q,s,y,z,r; - GET_HIGH_WORD(hx,x); - ix = hx&0x7fffffff; - if(ix>=0x7ff00000) { /* erfc(nan)=nan */ - /* erfc(+-inf)=0,2 */ - return (double)(((__uint32_t)hx>>31)<<1)+one/x; - } - - if(ix < 0x3feb0000) { /* |x|<0.84375 */ - if(ix < 0x3c700000) /* |x|<2**-56 */ - return one-x; - z = x*x; - r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4))); - s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5)))); - y = r/s; - if(hx < 0x3fd00000) { /* x<1/4 */ - return one-(x+x*y); - } else { - r = x*y; - r += (x-half); - return half - r ; - } - } - if(ix < 0x3ff40000) { /* 0.84375 <= |x| < 1.25 */ - s = fabs(x)-one; - P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6))))); - Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6))))); - if(hx>=0) { - z = one-erx; return z - P/Q; - } else { - z = erx+P/Q; return one+z; - } - } - if (ix < 0x403c0000) { /* |x|<28 */ - x = fabs(x); - s = one/(x*x); - if(ix< 0x4006DB6D) { /* |x| < 1/.35 ~ 2.857143*/ - R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*( - ra5+s*(ra6+s*ra7)))))); - S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*( - sa5+s*(sa6+s*(sa7+s*sa8))))))); - } else { /* |x| >= 1/.35 ~ 2.857143 */ - if(hx<0&&ix>=0x40180000) return two-tiny;/* x < -6 */ - R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*( - rb5+s*rb6))))); - S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*( - sb5+s*(sb6+s*sb7)))))); - } - z = x; - SET_LOW_WORD(z,0); - r = __ieee754_exp(-z*z-0.5625)* - __ieee754_exp((z-x)*(z+x)+R/S); - if(hx>0) return r/x; else return two-r/x; - } else { - if(hx>0) return tiny*tiny; else return two-tiny; - } -} - -#endif /* _DOUBLE_IS_32BITS */ diff --git a/newlib/libm/math/s_fabs.c b/newlib/libm/math/s_fabs.c deleted file mode 100644 index 95b871c..0000000 --- a/newlib/libm/math/s_fabs.c +++ /dev/null @@ -1,73 +0,0 @@ - -/* @(#)s_fabs.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* -FUNCTION - <<fabs>>, <<fabsf>>---absolute value (magnitude) -INDEX - fabs -INDEX - fabsf - -ANSI_SYNOPSIS - #include <math.h> - double fabs(double <[x]>); - float fabsf(float <[x]>); - -TRAD_SYNOPSIS - #include <math.h> - double fabs(<[x]>) - double <[x]>; - - float fabsf(<[x]>) - float <[x]>; - -DESCRIPTION -<<fabs>> and <<fabsf>> calculate -@tex -$|x|$, -@end tex -the absolute value (magnitude) of the argument <[x]>, by direct -manipulation of the bit representation of <[x]>. - -RETURNS -The calculated value is returned. No errors are detected. - -PORTABILITY -<<fabs>> is ANSI. -<<fabsf>> is an extension. - -*/ - -/* - * fabs(x) returns the absolute value of x. - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double fabs(double x) -#else - double fabs(x) - double x; -#endif -{ - __uint32_t high; - GET_HIGH_WORD(high,x); - SET_HIGH_WORD(x,high&0x7fffffff); - return x; -} - -#endif /* _DOUBLE_IS_32BITS */ diff --git a/newlib/libm/math/s_floor.c b/newlib/libm/math/s_floor.c deleted file mode 100644 index 65e234e..0000000 --- a/newlib/libm/math/s_floor.c +++ /dev/null @@ -1,134 +0,0 @@ - -/* @(#)s_floor.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* -FUNCTION -<<floor>>, <<floorf>>, <<ceil>>, <<ceilf>>---floor and ceiling -INDEX - floor -INDEX - floorf -INDEX - ceil -INDEX - ceilf - -ANSI_SYNOPSIS - #include <math.h> - double floor(double <[x]>); - float floorf(float <[x]>); - double ceil(double <[x]>); - float ceilf(float <[x]>); - -TRAD_SYNOPSIS - #include <math.h> - double floor(<[x]>) - double <[x]>; - float floorf(<[x]>) - float <[x]>; - double ceil(<[x]>) - double <[x]>; - float ceilf(<[x]>) - float <[x]>; - -DESCRIPTION -<<floor>> and <<floorf>> find -@tex -$\lfloor x \rfloor$, -@end tex -the nearest integer less than or equal to <[x]>. -<<ceil>> and <<ceilf>> find -@tex -$\lceil x\rceil$, -@end tex -the nearest integer greater than or equal to <[x]>. - -RETURNS -<<floor>> and <<ceil>> return the integer result as a double. -<<floorf>> and <<ceilf>> return the integer result as a float. - -PORTABILITY -<<floor>> and <<ceil>> are ANSI. -<<floorf>> and <<ceilf>> are extensions. - - -*/ - -/* - * floor(x) - * Return x rounded toward -inf to integral value - * Method: - * Bit twiddling. - * Exception: - * Inexact flag raised if x not equal to floor(x). - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ -static const double huge = 1.0e300; -#else -static double huge = 1.0e300; -#endif - -#ifdef __STDC__ - double floor(double x) -#else - double floor(x) - double x; -#endif -{ - __int32_t i0,i1,j0; - __uint32_t i,j; - EXTRACT_WORDS(i0,i1,x); - j0 = ((i0>>20)&0x7ff)-0x3ff; - if(j0<20) { - if(j0<0) { /* raise inexact if x != 0 */ - if(huge+x>0.0) {/* return 0*sign(x) if |x|<1 */ - if(i0>=0) {i0=i1=0;} - else if(((i0&0x7fffffff)|i1)!=0) - { i0=0xbff00000;i1=0;} - } - } else { - i = (0x000fffff)>>j0; - if(((i0&i)|i1)==0) return x; /* x is integral */ - if(huge+x>0.0) { /* raise inexact flag */ - if(i0<0) i0 += (0x00100000)>>j0; - i0 &= (~i); i1=0; - } - } - } else if (j0>51) { - if(j0==0x400) return x+x; /* inf or NaN */ - else return x; /* x is integral */ - } else { - i = ((__uint32_t)(0xffffffff))>>(j0-20); - if((i1&i)==0) return x; /* x is integral */ - if(huge+x>0.0) { /* raise inexact flag */ - if(i0<0) { - if(j0==20) i0+=1; - else { - j = i1+(1<<(52-j0)); - if(j<i1) i0 +=1 ; /* got a carry */ - i1=j; - } - } - i1 &= (~i); - } - } - INSERT_WORDS(x,i0,i1); - return x; -} - -#endif /* _DOUBLE_IS_32BITS */ diff --git a/newlib/libm/math/s_frexp.c b/newlib/libm/math/s_frexp.c deleted file mode 100644 index aaa3606..0000000 --- a/newlib/libm/math/s_frexp.c +++ /dev/null @@ -1,114 +0,0 @@ - -/* @(#)s_frexp.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* -FUNCTION - <<frexp>>, <<frexpf>>---split floating-point number -INDEX - frexp -INDEX - frexpf - -ANSI_SYNOPSIS - #include <math.h> - double frexp(double <[val]>, int *<[exp]>); - float frexpf(float <[val]>, int *<[exp]>); - -TRAD_SYNOPSIS - #include <math.h> - double frexp(<[val]>, <[exp]>) - double <[val]>; - int *<[exp]>; - - float frexpf(<[val]>, <[exp]>) - float <[val]>; - int *<[exp]>; - - -DESCRIPTION - All non zero, normal numbers can be described as <[m]> * 2**<[p]>. - <<frexp>> represents the double <[val]> as a mantissa <[m]> - and a power of two <[p]>. The resulting mantissa will always - be greater than or equal to <<0.5>>, and less than <<1.0>> (as - long as <[val]> is nonzero). The power of two will be stored - in <<*>><[exp]>. - -@ifinfo -<[m]> and <[p]> are calculated so that -<[val]> is <[m]> times <<2>> to the power <[p]>. -@end ifinfo -@tex -<[m]> and <[p]> are calculated so that -$ val = m \times 2^p $. -@end tex - -<<frexpf>> is identical, other than taking and returning -floats rather than doubles. - -RETURNS -<<frexp>> returns the mantissa <[m]>. If <[val]> is <<0>>, infinity, -or Nan, <<frexp>> will set <<*>><[exp]> to <<0>> and return <[val]>. - -PORTABILITY -<<frexp>> is ANSI. -<<frexpf>> is an extension. - - -*/ - -/* - * for non-zero x - * x = frexp(arg,&exp); - * return a double fp quantity x such that 0.5 <= |x| <1.0 - * and the corresponding binary exponent "exp". That is - * arg = x*2^exp. - * If arg is inf, 0.0, or NaN, then frexp(arg,&exp) returns arg - * with *exp=0. - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ -static const double -#else -static double -#endif -two54 = 1.80143985094819840000e+16; /* 0x43500000, 0x00000000 */ - -#ifdef __STDC__ - double frexp(double x, int *eptr) -#else - double frexp(x, eptr) - double x; int *eptr; -#endif -{ - __int32_t hx, ix, lx; - EXTRACT_WORDS(hx,lx,x); - ix = 0x7fffffff&hx; - *eptr = 0; - if(ix>=0x7ff00000||((ix|lx)==0)) return x; /* 0,inf,nan */ - if (ix<0x00100000) { /* subnormal */ - x *= two54; - GET_HIGH_WORD(hx,x); - ix = hx&0x7fffffff; - *eptr = -54; - } - *eptr += (ix>>20)-1022; - hx = (hx&0x800fffff)|0x3fe00000; - SET_HIGH_WORD(x,hx); - return x; -} - -#endif /* _DOUBLE_IS_32BITS */ diff --git a/newlib/libm/math/s_infconst.c b/newlib/libm/math/s_infconst.c deleted file mode 100644 index 6b63afb..0000000 --- a/newlib/libm/math/s_infconst.c +++ /dev/null @@ -1,15 +0,0 @@ -/* Infinity as a constant value. This is used for HUGE_VAL. - * Added by Cygnus Support. - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS -#ifdef __IEEE_BIG_ENDIAN -const union __dmath __infinity[1] = {{{ 0x7ff00000, 0 }}}; -#else -const union __dmath __infinity[1] = {{{ 0, 0x7ff00000 }}}; -#endif -#else /* defined (_DOUBLE_IS_32BITS) */ -const union __dmath __infinity[1] = {{{ 0x7f800000, 0 }}}; -#endif /* defined (_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/s_isinf.c b/newlib/libm/math/s_isinf.c deleted file mode 100644 index 87f0995..0000000 --- a/newlib/libm/math/s_isinf.c +++ /dev/null @@ -1,26 +0,0 @@ -/* - * isinf(x) returns 1 if x is infinity, else 0; - * no branching! - * Added by Cygnus Support. - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - int isinf(double x) -#else - int isinf(x) - double x; -#endif -{ - __int32_t hx,lx; - EXTRACT_WORDS(hx,lx,x); - hx &= 0x7fffffff; - hx |= (__uint32_t)(lx|(-lx))>>31; - hx = 0x7ff00000 - hx; - return 1 - (int)((__uint32_t)(hx|(-hx))>>31); -} - -#endif /* _DOUBLE_IS_32BITS */ diff --git a/newlib/libm/math/s_isnan.c b/newlib/libm/math/s_isnan.c deleted file mode 100644 index 5d83fc0..0000000 --- a/newlib/libm/math/s_isnan.c +++ /dev/null @@ -1,122 +0,0 @@ - -/* @(#)s_isnan.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* -FUNCTION - <<isnan>>,<<isnanf>>,<<isinf>>,<<isinff>>,<<finite>>,<<finitef>>---test for exceptional numbers - -INDEX - isnan -INDEX - isinf -INDEX - finite - -INDEX - isnanf -INDEX - isinff -INDEX - finitef - -ANSI_SYNOPSIS - #include <ieeefp.h> - int isnan(double <[arg]>); - int isinf(double <[arg]>); - int finite(double <[arg]>); - int isnanf(float <[arg]>); - int isinff(float <[arg]>); - int finitef(float <[arg]>); - -TRAD_SYNOPSIS - #include <ieeefp.h> - int isnan(<[arg]>) - double <[arg]>; - int isinf(<[arg]>) - double <[arg]>; - int finite(<[arg]>); - double <[arg]>; - int isnanf(<[arg]>); - float <[arg]>; - int isinff(<[arg]>); - float <[arg]>; - int finitef(<[arg]>); - float <[arg]>; - - -DESCRIPTION - These functions provide information on the floating point - argument supplied. - - There are five major number formats - - o+ - o zero - a number which contains all zero bits. - o subnormal - Is used to represent number with a zero exponent, but a non zero fraction. - o normal - A number with an exponent, and a fraction - o infinity - A number with an all 1's exponent and a zero fraction. - o NAN - A number with an all 1's exponent and a non zero fraction. - - o- - - <<isnan>> returns 1 if the argument is a nan. <<isinf>> - returns 1 if the argument is infinity. <<finite>> returns 1 if the - argument is zero, subnormal or normal. - - The <<isnanf>>, <<isinff>> and <<finitef>> perform the same - operations as their <<isnan>>, <<isinf>> and <<finite>> - counterparts, but on single precision floating point numbers. - -QUICKREF - isnan - pure -QUICKREF - isinf - pure -QUICKREF - finite - pure -QUICKREF - isnan - pure -QUICKREF - isinf - pure -QUICKREF - finite - pure -*/ - -/* - * isnan(x) returns 1 is x is nan, else 0; - * no branching! - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - int isnan(double x) -#else - int isnan(x) - double x; -#endif -{ - __int32_t hx,lx; - EXTRACT_WORDS(hx,lx,x); - hx &= 0x7fffffff; - hx |= (__uint32_t)(lx|(-lx))>>31; - hx = 0x7ff00000 - hx; - return (int)(((__uint32_t)(hx))>>31); -} - -#endif /* _DOUBLE_IS_32BITS */ diff --git a/newlib/libm/math/s_ldexp.c b/newlib/libm/math/s_ldexp.c deleted file mode 100644 index ccf7171..0000000 --- a/newlib/libm/math/s_ldexp.c +++ /dev/null @@ -1,81 +0,0 @@ - -/* @(#)s_ldexp.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* -FUNCTION - <<ldexp>>, <<ldexpf>>---load exponent - -INDEX - ldexp -INDEX - ldexpf - -ANSI_SYNOPSIS - #include <math.h> - double ldexp(double <[val]>, int <[exp]>); - float ldexpf(float <[val]>, int <[exp]>); - -TRAD_SYNOPSIS - #include <math.h> - - double ldexp(<[val]>, <[exp]>) - double <[val]>; - int <[exp]>; - - float ldexpf(<[val]>, <[exp]>) - float <[val]>; - int <[exp]>; - - -DESCRIPTION -<<ldexp>> calculates the value -@ifinfo -<[val]> times 2 to the power <[exp]>. -@end ifinfo -@tex -$val\times 2^{exp}$. -@end tex -<<ldexpf>> is identical, save that it takes and returns <<float>> -rather than <<double>> values. - -RETURNS -<<ldexp>> returns the calculated value. - -Underflow and overflow both set <<errno>> to <<ERANGE>>. -On underflow, <<ldexp>> and <<ldexpf>> return 0.0. -On overflow, <<ldexp>> returns plus or minus <<HUGE_VAL>>. - -PORTABILITY -<<ldexp>> is ANSI, <<ldexpf>> is an extension. - -*/ - -#include "fdlibm.h" -#include <errno.h> - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double ldexp(double value, int exp) -#else - double ldexp(value, exp) - double value; int exp; -#endif -{ - if(!finite(value)||value==0.0) return value; - value = scalbn(value,exp); - if(!finite(value)||value==0.0) errno = ERANGE; - return value; -} - -#endif /* _DOUBLE_IS_32BITS */ diff --git a/newlib/libm/math/s_signif.c b/newlib/libm/math/s_signif.c deleted file mode 100644 index f68046b..0000000 --- a/newlib/libm/math/s_signif.c +++ /dev/null @@ -1,34 +0,0 @@ - -/* @(#)s_signif.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* - * significand(x) computes just - * scalb(x, (double) -ilogb(x)), - * for exercising the fraction-part(F) IEEE 754-1985 test vector. - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double significand(double x) -#else - double significand(x) - double x; -#endif -{ - return __ieee754_scalb(x,(double) -ilogb(x)); -} - -#endif /* _DOUBLE_IS_32BITS */ diff --git a/newlib/libm/math/s_sin.c b/newlib/libm/math/s_sin.c deleted file mode 100644 index 28259f3..0000000 --- a/newlib/libm/math/s_sin.c +++ /dev/null @@ -1,132 +0,0 @@ - -/* @(#)s_sin.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* -FUNCTION - <<sin>>, <<sinf>>, <<cos>>, <<cosf>>---sine or cosine -INDEX -sin -INDEX -sinf -INDEX -cos -INDEX -cosf -ANSI_SYNOPSIS - #include <math.h> - double sin(double <[x]>); - float sinf(float <[x]>); - double cos(double <[x]>); - float cosf(float <[x]>); - -TRAD_SYNOPSIS - #include <math.h> - double sin(<[x]>) - double <[x]>; - float sinf(<[x]>) - float <[x]>; - - double cos(<[x]>) - double <[x]>; - float cosf(<[x]>) - float <[x]>; - -DESCRIPTION - <<sin>> and <<cos>> compute (respectively) the sine and cosine - of the argument <[x]>. Angles are specified in radians. - - <<sinf>> and <<cosf>> are identical, save that they take and - return <<float>> values. - - -RETURNS - The sine or cosine of <[x]> is returned. - -PORTABILITY - <<sin>> and <<cos>> are ANSI C. - <<sinf>> and <<cosf>> are extensions. - -QUICKREF - sin ansi pure - sinf - pure -*/ - -/* sin(x) - * Return sine function of x. - * - * kernel function: - * __kernel_sin ... sine function on [-pi/4,pi/4] - * __kernel_cos ... cose function on [-pi/4,pi/4] - * __ieee754_rem_pio2 ... argument reduction routine - * - * Method. - * Let S,C and T denote the sin, cos and tan respectively on - * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 - * in [-pi/4 , +pi/4], and let n = k mod 4. - * We have - * - * n sin(x) cos(x) tan(x) - * ---------------------------------------------------------- - * 0 S C T - * 1 C -S -1/T - * 2 -S -C T - * 3 -C S -1/T - * ---------------------------------------------------------- - * - * Special cases: - * Let trig be any of sin, cos, or tan. - * trig(+-INF) is NaN, with signals; - * trig(NaN) is that NaN; - * - * Accuracy: - * TRIG(x) returns trig(x) nearly rounded - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double sin(double x) -#else - double sin(x) - double x; -#endif -{ - double y[2],z=0.0; - __int32_t n,ix; - - /* High word of x. */ - GET_HIGH_WORD(ix,x); - - /* |x| ~< pi/4 */ - ix &= 0x7fffffff; - if(ix <= 0x3fe921fb) return __kernel_sin(x,z,0); - - /* sin(Inf or NaN) is NaN */ - else if (ix>=0x7ff00000) return x-x; - - /* argument reduction needed */ - else { - n = __ieee754_rem_pio2(x,y); - switch(n&3) { - case 0: return __kernel_sin(y[0],y[1],1); - case 1: return __kernel_cos(y[0],y[1]); - case 2: return -__kernel_sin(y[0],y[1],1); - default: - return -__kernel_cos(y[0],y[1]); - } - } -} - -#endif /* _DOUBLE_IS_32BITS */ diff --git a/newlib/libm/math/s_tan.c b/newlib/libm/math/s_tan.c deleted file mode 100644 index 2959f41..0000000 --- a/newlib/libm/math/s_tan.c +++ /dev/null @@ -1,114 +0,0 @@ - -/* @(#)s_tan.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - - -/* - -FUNCTION - <<tan>>, <<tanf>>---tangent - -INDEX -tan -INDEX -tanf - -ANSI_SYNOPSIS - #include <math.h> - double tan(double <[x]>); - float tanf(float <[x]>); - -TRAD_SYNOPSIS - #include <math.h> - double tan(<[x]>) - double <[x]>; - - float tanf(<[x]>) - float <[x]>; - - -DESCRIPTION -<<tan>> computes the tangent of the argument <[x]>. -Angles are specified in radians. - -<<tanf>> is identical, save that it takes and returns <<float>> values. - -RETURNS -The tangent of <[x]> is returned. - -PORTABILITY -<<tan>> is ANSI. <<tanf>> is an extension. -*/ - -/* tan(x) - * Return tangent function of x. - * - * kernel function: - * __kernel_tan ... tangent function on [-pi/4,pi/4] - * __ieee754_rem_pio2 ... argument reduction routine - * - * Method. - * Let S,C and T denote the sin, cos and tan respectively on - * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 - * in [-pi/4 , +pi/4], and let n = k mod 4. - * We have - * - * n sin(x) cos(x) tan(x) - * ---------------------------------------------------------- - * 0 S C T - * 1 C -S -1/T - * 2 -S -C T - * 3 -C S -1/T - * ---------------------------------------------------------- - * - * Special cases: - * Let trig be any of sin, cos, or tan. - * trig(+-INF) is NaN, with signals; - * trig(NaN) is that NaN; - * - * Accuracy: - * TRIG(x) returns trig(x) nearly rounded - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double tan(double x) -#else - double tan(x) - double x; -#endif -{ - double y[2],z=0.0; - __int32_t n,ix; - - /* High word of x. */ - GET_HIGH_WORD(ix,x); - - /* |x| ~< pi/4 */ - ix &= 0x7fffffff; - if(ix <= 0x3fe921fb) return __kernel_tan(x,z,1); - - /* tan(Inf or NaN) is NaN */ - else if (ix>=0x7ff00000) return x-x; /* NaN */ - - /* argument reduction needed */ - else { - n = __ieee754_rem_pio2(x,y); - return __kernel_tan(y[0],y[1],1-((n&1)<<1)); /* 1 -- n even - -1 -- n odd */ - } -} - -#endif /* _DOUBLE_IS_32BITS */ diff --git a/newlib/libm/math/s_tanh.c b/newlib/libm/math/s_tanh.c deleted file mode 100644 index b5541d0..0000000 --- a/newlib/libm/math/s_tanh.c +++ /dev/null @@ -1,128 +0,0 @@ - -/* @(#)s_tanh.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* - -FUNCTION - <<tanh>>, <<tanhf>>---hyperbolic tangent - -INDEX -tanh -INDEX -tanhf - -ANSI_SYNOPSIS - #include <math.h> - double tanh(double <[x]>); - float tanhf(float <[x]>); - -TRAD_SYNOPSIS - #include <math.h> - double tanh(<[x]>) - double <[x]>; - - float tanhf(<[x]>) - float <[x]>; - - -DESCRIPTION - -<<tanh>> computes the hyperbolic tangent of -the argument <[x]>. Angles are specified in radians. - -<<tanh(<[x]>)>> is defined as -. sinh(<[x]>)/cosh(<[x]>) - -<<tanhf>> is identical, save that it takes and returns <<float>> values. - -RETURNS -The hyperbolic tangent of <[x]> is returned. - -PORTABILITY -<<tanh>> is ANSI C. <<tanhf>> is an extension. - -*/ - -/* Tanh(x) - * Return the Hyperbolic Tangent of x - * - * Method : - * x -x - * e - e - * 0. tanh(x) is defined to be ----------- - * x -x - * e + e - * 1. reduce x to non-negative by tanh(-x) = -tanh(x). - * 2. 0 <= x <= 2**-55 : tanh(x) := x*(one+x) - * -t - * 2**-55 < x <= 1 : tanh(x) := -----; t = expm1(-2x) - * t + 2 - * 2 - * 1 <= x <= 22.0 : tanh(x) := 1- ----- ; t=expm1(2x) - * t + 2 - * 22.0 < x <= INF : tanh(x) := 1. - * - * Special cases: - * tanh(NaN) is NaN; - * only tanh(0)=0 is exact for finite argument. - */ - -#include "fdlibm.h" - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ -static const double one=1.0, two=2.0, tiny = 1.0e-300; -#else -static double one=1.0, two=2.0, tiny = 1.0e-300; -#endif - -#ifdef __STDC__ - double tanh(double x) -#else - double tanh(x) - double x; -#endif -{ - double t,z; - __int32_t jx,ix; - - /* High word of |x|. */ - GET_HIGH_WORD(jx,x); - ix = jx&0x7fffffff; - - /* x is INF or NaN */ - if(ix>=0x7ff00000) { - if (jx>=0) return one/x+one; /* tanh(+-inf)=+-1 */ - else return one/x-one; /* tanh(NaN) = NaN */ - } - - /* |x| < 22 */ - if (ix < 0x40360000) { /* |x|<22 */ - if (ix<0x3c800000) /* |x|<2**-55 */ - return x*(one+x); /* tanh(small) = small */ - if (ix>=0x3ff00000) { /* |x|>=1 */ - t = expm1(two*fabs(x)); - z = one - two/(t+two); - } else { - t = expm1(-two*fabs(x)); - z= -t/(t+two); - } - /* |x| > 22, return +-1 */ - } else { - z = one - tiny; /* raised inexact flag */ - } - return (jx>=0)? z: -z; -} - -#endif /* _DOUBLE_IS_32BITS */ diff --git a/newlib/libm/math/sf_asinh.c b/newlib/libm/math/sf_asinh.c deleted file mode 100644 index d5dfef8..0000000 --- a/newlib/libm/math/sf_asinh.c +++ /dev/null @@ -1,66 +0,0 @@ -/* sf_asinh.c -- float version of s_asinh.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -#include "fdlibm.h" - -#ifdef __STDC__ -static const float -#else -static float -#endif -one = 1.0000000000e+00, /* 0x3F800000 */ -ln2 = 6.9314718246e-01, /* 0x3f317218 */ -huge= 1.0000000000e+30; - -#ifdef __STDC__ - float asinhf(float x) -#else - float asinhf(x) - float x; -#endif -{ - float t,w; - __int32_t hx,ix; - GET_FLOAT_WORD(hx,x); - ix = hx&0x7fffffff; - if(ix>=0x7f800000) return x+x; /* x is inf or NaN */ - if(ix< 0x31800000) { /* |x|<2**-28 */ - if(huge+x>one) return x; /* return x inexact except 0 */ - } - if(ix>0x4d800000) { /* |x| > 2**28 */ - w = __ieee754_logf(fabsf(x))+ln2; - } else if (ix>0x40000000) { /* 2**28 > |x| > 2.0 */ - t = fabsf(x); - w = __ieee754_logf((float)2.0*t+one/(__ieee754_sqrtf(x*x+one)+t)); - } else { /* 2.0 > |x| > 2**-28 */ - t = x*x; - w =log1pf(fabsf(x)+t/(one+__ieee754_sqrtf(one+t))); - } - if(hx>0) return w; else return -w; -} - -#ifdef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double asinh(double x) -#else - double asinh(x) - double x; -#endif -{ - return (double) asinhf((float) x); -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/sf_atan.c b/newlib/libm/math/sf_atan.c deleted file mode 100644 index 7ea664f..0000000 --- a/newlib/libm/math/sf_atan.c +++ /dev/null @@ -1,129 +0,0 @@ -/* sf_atan.c -- float version of s_atan.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - * - */ - -#include "fdlibm.h" - -#ifdef __STDC__ -static const float atanhi[] = { -#else -static float atanhi[] = { -#endif - 4.6364760399e-01, /* atan(0.5)hi 0x3eed6338 */ - 7.8539812565e-01, /* atan(1.0)hi 0x3f490fda */ - 9.8279368877e-01, /* atan(1.5)hi 0x3f7b985e */ - 1.5707962513e+00, /* atan(inf)hi 0x3fc90fda */ -}; - -#ifdef __STDC__ -static const float atanlo[] = { -#else -static float atanlo[] = { -#endif - 5.0121582440e-09, /* atan(0.5)lo 0x31ac3769 */ - 3.7748947079e-08, /* atan(1.0)lo 0x33222168 */ - 3.4473217170e-08, /* atan(1.5)lo 0x33140fb4 */ - 7.5497894159e-08, /* atan(inf)lo 0x33a22168 */ -}; - -#ifdef __STDC__ -static const float aT[] = { -#else -static float aT[] = { -#endif - 3.3333334327e-01, /* 0x3eaaaaaa */ - -2.0000000298e-01, /* 0xbe4ccccd */ - 1.4285714924e-01, /* 0x3e124925 */ - -1.1111110449e-01, /* 0xbde38e38 */ - 9.0908870101e-02, /* 0x3dba2e6e */ - -7.6918758452e-02, /* 0xbd9d8795 */ - 6.6610731184e-02, /* 0x3d886b35 */ - -5.8335702866e-02, /* 0xbd6ef16b */ - 4.9768779427e-02, /* 0x3d4bda59 */ - -3.6531571299e-02, /* 0xbd15a221 */ - 1.6285819933e-02, /* 0x3c8569d7 */ -}; - -#ifdef __STDC__ - static const float -#else - static float -#endif -one = 1.0, -huge = 1.0e30; - -#ifdef __STDC__ - float atanf(float x) -#else - float atanf(x) - float x; -#endif -{ - float w,s1,s2,z; - __int32_t ix,hx,id; - - GET_FLOAT_WORD(hx,x); - ix = hx&0x7fffffff; - if(ix>=0x50800000) { /* if |x| >= 2^34 */ - if(ix>0x7f800000) - return x+x; /* NaN */ - if(hx>0) return atanhi[3]+atanlo[3]; - else return -atanhi[3]-atanlo[3]; - } if (ix < 0x3ee00000) { /* |x| < 0.4375 */ - if (ix < 0x31000000) { /* |x| < 2^-29 */ - if(huge+x>one) return x; /* raise inexact */ - } - id = -1; - } else { - x = fabsf(x); - if (ix < 0x3f980000) { /* |x| < 1.1875 */ - if (ix < 0x3f300000) { /* 7/16 <=|x|<11/16 */ - id = 0; x = ((float)2.0*x-one)/((float)2.0+x); - } else { /* 11/16<=|x|< 19/16 */ - id = 1; x = (x-one)/(x+one); - } - } else { - if (ix < 0x401c0000) { /* |x| < 2.4375 */ - id = 2; x = (x-(float)1.5)/(one+(float)1.5*x); - } else { /* 2.4375 <= |x| < 2^66 */ - id = 3; x = -(float)1.0/x; - } - }} - /* end of argument reduction */ - z = x*x; - w = z*z; - /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */ - s1 = z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10]))))); - s2 = w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9])))); - if (id<0) return x - x*(s1+s2); - else { - z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x); - return (hx<0)? -z:z; - } -} - -#ifdef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double atan(double x) -#else - double atan(x) - double x; -#endif -{ - return (double) atanf((float) x); -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/sf_ceil.c b/newlib/libm/math/sf_ceil.c deleted file mode 100644 index 85f0e97..0000000 --- a/newlib/libm/math/sf_ceil.c +++ /dev/null @@ -1,69 +0,0 @@ -/* sf_ceil.c -- float version of s_ceil.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -#include "fdlibm.h" - -#ifdef __STDC__ -static const float huge = 1.0e30; -#else -static float huge = 1.0e30; -#endif - -#ifdef __STDC__ - float ceilf(float x) -#else - float ceilf(x) - float x; -#endif -{ - __int32_t i0,j0; - __uint32_t i; - GET_FLOAT_WORD(i0,x); - j0 = ((i0>>23)&0xff)-0x7f; - if(j0<23) { - if(j0<0) { /* raise inexact if x != 0 */ - if(huge+x>(float)0.0) {/* return 0*sign(x) if |x|<1 */ - if(i0<0) {i0=0x80000000;} - else if(i0!=0) { i0=0x3f800000;} - } - } else { - i = (0x007fffff)>>j0; - if((i0&i)==0) return x; /* x is integral */ - if(huge+x>(float)0.0) { /* raise inexact flag */ - if(i0>0) i0 += (0x00800000)>>j0; - i0 &= (~i); - } - } - } else { - if(j0==0x80) return x+x; /* inf or NaN */ - else return x; /* x is integral */ - } - SET_FLOAT_WORD(x,i0); - return x; -} - -#ifdef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double ceil(double x) -#else - double ceil(x) - double x; -#endif -{ - return (double) ceilf((float) x); -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/sf_cos.c b/newlib/libm/math/sf_cos.c deleted file mode 100644 index 8f3a8af..0000000 --- a/newlib/libm/math/sf_cos.c +++ /dev/null @@ -1,68 +0,0 @@ -/* sf_cos.c -- float version of s_cos.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -#include "fdlibm.h" - -#ifdef __STDC__ -static const float one=1.0; -#else -static float one=1.0; -#endif - -#ifdef __STDC__ - float cosf(float x) -#else - float cosf(x) - float x; -#endif -{ - float y[2],z=0.0; - __int32_t n,ix; - - GET_FLOAT_WORD(ix,x); - - /* |x| ~< pi/4 */ - ix &= 0x7fffffff; - if(ix <= 0x3f490fd8) return __kernel_cosf(x,z); - - /* cos(Inf or NaN) is NaN */ - else if (ix>=0x7f800000) return x-x; - - /* argument reduction needed */ - else { - n = __ieee754_rem_pio2f(x,y); - switch(n&3) { - case 0: return __kernel_cosf(y[0],y[1]); - case 1: return -__kernel_sinf(y[0],y[1],1); - case 2: return -__kernel_cosf(y[0],y[1]); - default: - return __kernel_sinf(y[0],y[1],1); - } - } -} - -#ifdef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double cos(double x) -#else - double cos(x) - double x; -#endif -{ - return (double) cosf((float) x); -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/sf_erf.c b/newlib/libm/math/sf_erf.c deleted file mode 100644 index 1a9fa8d..0000000 --- a/newlib/libm/math/sf_erf.c +++ /dev/null @@ -1,246 +0,0 @@ -/* sf_erf.c -- float version of s_erf.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -#include "fdlibm.h" - -#ifdef __v810__ -#define const -#endif - -#ifdef __STDC__ -static const float -#else -static float -#endif -tiny = 1e-30, -half= 5.0000000000e-01, /* 0x3F000000 */ -one = 1.0000000000e+00, /* 0x3F800000 */ -two = 2.0000000000e+00, /* 0x40000000 */ - /* c = (subfloat)0.84506291151 */ -erx = 8.4506291151e-01, /* 0x3f58560b */ -/* - * Coefficients for approximation to erf on [0,0.84375] - */ -efx = 1.2837916613e-01, /* 0x3e0375d4 */ -efx8= 1.0270333290e+00, /* 0x3f8375d4 */ -pp0 = 1.2837916613e-01, /* 0x3e0375d4 */ -pp1 = -3.2504209876e-01, /* 0xbea66beb */ -pp2 = -2.8481749818e-02, /* 0xbce9528f */ -pp3 = -5.7702702470e-03, /* 0xbbbd1489 */ -pp4 = -2.3763017452e-05, /* 0xb7c756b1 */ -qq1 = 3.9791721106e-01, /* 0x3ecbbbce */ -qq2 = 6.5022252500e-02, /* 0x3d852a63 */ -qq3 = 5.0813062117e-03, /* 0x3ba68116 */ -qq4 = 1.3249473704e-04, /* 0x390aee49 */ -qq5 = -3.9602282413e-06, /* 0xb684e21a */ -/* - * Coefficients for approximation to erf in [0.84375,1.25] - */ -pa0 = -2.3621185683e-03, /* 0xbb1acdc6 */ -pa1 = 4.1485610604e-01, /* 0x3ed46805 */ -pa2 = -3.7220788002e-01, /* 0xbebe9208 */ -pa3 = 3.1834661961e-01, /* 0x3ea2fe54 */ -pa4 = -1.1089469492e-01, /* 0xbde31cc2 */ -pa5 = 3.5478305072e-02, /* 0x3d1151b3 */ -pa6 = -2.1663755178e-03, /* 0xbb0df9c0 */ -qa1 = 1.0642088205e-01, /* 0x3dd9f331 */ -qa2 = 5.4039794207e-01, /* 0x3f0a5785 */ -qa3 = 7.1828655899e-02, /* 0x3d931ae7 */ -qa4 = 1.2617121637e-01, /* 0x3e013307 */ -qa5 = 1.3637083583e-02, /* 0x3c5f6e13 */ -qa6 = 1.1984500103e-02, /* 0x3c445aa3 */ -/* - * Coefficients for approximation to erfc in [1.25,1/0.35] - */ -ra0 = -9.8649440333e-03, /* 0xbc21a093 */ -ra1 = -6.9385856390e-01, /* 0xbf31a0b7 */ -ra2 = -1.0558626175e+01, /* 0xc128f022 */ -ra3 = -6.2375331879e+01, /* 0xc2798057 */ -ra4 = -1.6239666748e+02, /* 0xc322658c */ -ra5 = -1.8460508728e+02, /* 0xc3389ae7 */ -ra6 = -8.1287437439e+01, /* 0xc2a2932b */ -ra7 = -9.8143291473e+00, /* 0xc11d077e */ -sa1 = 1.9651271820e+01, /* 0x419d35ce */ -sa2 = 1.3765776062e+02, /* 0x4309a863 */ -sa3 = 4.3456588745e+02, /* 0x43d9486f */ -sa4 = 6.4538726807e+02, /* 0x442158c9 */ -sa5 = 4.2900814819e+02, /* 0x43d6810b */ -sa6 = 1.0863500214e+02, /* 0x42d9451f */ -sa7 = 6.5702495575e+00, /* 0x40d23f7c */ -sa8 = -6.0424413532e-02, /* 0xbd777f97 */ -/* - * Coefficients for approximation to erfc in [1/.35,28] - */ -rb0 = -9.8649431020e-03, /* 0xbc21a092 */ -rb1 = -7.9928326607e-01, /* 0xbf4c9dd4 */ -rb2 = -1.7757955551e+01, /* 0xc18e104b */ -rb3 = -1.6063638306e+02, /* 0xc320a2ea */ -rb4 = -6.3756646729e+02, /* 0xc41f6441 */ -rb5 = -1.0250950928e+03, /* 0xc480230b */ -rb6 = -4.8351919556e+02, /* 0xc3f1c275 */ -sb1 = 3.0338060379e+01, /* 0x41f2b459 */ -sb2 = 3.2579251099e+02, /* 0x43a2e571 */ -sb3 = 1.5367296143e+03, /* 0x44c01759 */ -sb4 = 3.1998581543e+03, /* 0x4547fdbb */ -sb5 = 2.5530502930e+03, /* 0x451f90ce */ -sb6 = 4.7452853394e+02, /* 0x43ed43a7 */ -sb7 = -2.2440952301e+01; /* 0xc1b38712 */ - -#ifdef __STDC__ - float erff(float x) -#else - float erff(x) - float x; -#endif -{ - __int32_t hx,ix,i; - float R,S,P,Q,s,y,z,r; - GET_FLOAT_WORD(hx,x); - ix = hx&0x7fffffff; - if(ix>=0x7f800000) { /* erf(nan)=nan */ - i = ((__uint32_t)hx>>31)<<1; - return (float)(1-i)+one/x; /* erf(+-inf)=+-1 */ - } - - if(ix < 0x3f580000) { /* |x|<0.84375 */ - if(ix < 0x31800000) { /* |x|<2**-28 */ - if (ix < 0x04000000) - /*avoid underflow */ - return (float)0.125*((float)8.0*x+efx8*x); - return x + efx*x; - } - z = x*x; - r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4))); - s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5)))); - y = r/s; - return x + x*y; - } - if(ix < 0x3fa00000) { /* 0.84375 <= |x| < 1.25 */ - s = fabsf(x)-one; - P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6))))); - Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6))))); - if(hx>=0) return erx + P/Q; else return -erx - P/Q; - } - if (ix >= 0x40c00000) { /* inf>|x|>=6 */ - if(hx>=0) return one-tiny; else return tiny-one; - } - x = fabsf(x); - s = one/(x*x); - if(ix< 0x4036DB6E) { /* |x| < 1/0.35 */ - R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*( - ra5+s*(ra6+s*ra7)))))); - S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*( - sa5+s*(sa6+s*(sa7+s*sa8))))))); - } else { /* |x| >= 1/0.35 */ - R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*( - rb5+s*rb6))))); - S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*( - sb5+s*(sb6+s*sb7)))))); - } - GET_FLOAT_WORD(ix,x); - SET_FLOAT_WORD(z,ix&0xfffff000); - r = __ieee754_expf(-z*z-(float)0.5625)*__ieee754_expf((z-x)*(z+x)+R/S); - if(hx>=0) return one-r/x; else return r/x-one; -} - -#ifdef __STDC__ - float erfcf(float x) -#else - float erfcf(x) - float x; -#endif -{ - __int32_t hx,ix; - float R,S,P,Q,s,y,z,r; - GET_FLOAT_WORD(hx,x); - ix = hx&0x7fffffff; - if(ix>=0x7f800000) { /* erfc(nan)=nan */ - /* erfc(+-inf)=0,2 */ - return (float)(((__uint32_t)hx>>31)<<1)+one/x; - } - - if(ix < 0x3f580000) { /* |x|<0.84375 */ - if(ix < 0x23800000) /* |x|<2**-56 */ - return one-x; - z = x*x; - r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4))); - s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5)))); - y = r/s; - if(hx < 0x3e800000) { /* x<1/4 */ - return one-(x+x*y); - } else { - r = x*y; - r += (x-half); - return half - r ; - } - } - if(ix < 0x3fa00000) { /* 0.84375 <= |x| < 1.25 */ - s = fabsf(x)-one; - P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6))))); - Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6))))); - if(hx>=0) { - z = one-erx; return z - P/Q; - } else { - z = erx+P/Q; return one+z; - } - } - if (ix < 0x41e00000) { /* |x|<28 */ - x = fabsf(x); - s = one/(x*x); - if(ix< 0x4036DB6D) { /* |x| < 1/.35 ~ 2.857143*/ - R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*( - ra5+s*(ra6+s*ra7)))))); - S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*( - sa5+s*(sa6+s*(sa7+s*sa8))))))); - } else { /* |x| >= 1/.35 ~ 2.857143 */ - if(hx<0&&ix>=0x40c00000) return two-tiny;/* x < -6 */ - R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*( - rb5+s*rb6))))); - S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*( - sb5+s*(sb6+s*sb7)))))); - } - GET_FLOAT_WORD(ix,x); - SET_FLOAT_WORD(z,ix&0xfffff000); - r = __ieee754_expf(-z*z-(float)0.5625)* - __ieee754_expf((z-x)*(z+x)+R/S); - if(hx>0) return r/x; else return two-r/x; - } else { - if(hx>0) return tiny*tiny; else return two-tiny; - } -} - -#ifdef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double erf(double x) -#else - double erf(x) - double x; -#endif -{ - return (double) erff((float) x); -} - -#ifdef __STDC__ - double erfc(double x) -#else - double erfc(x) - double x; -#endif -{ - return (double) erfcf((float) x); -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/sf_fabs.c b/newlib/libm/math/sf_fabs.c deleted file mode 100644 index 2aaed32..0000000 --- a/newlib/libm/math/sf_fabs.c +++ /dev/null @@ -1,47 +0,0 @@ -/* sf_fabs.c -- float version of s_fabs.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* - * fabsf(x) returns the absolute value of x. - */ - -#include "fdlibm.h" - -#ifdef __STDC__ - float fabsf(float x) -#else - float fabsf(x) - float x; -#endif -{ - __uint32_t ix; - GET_FLOAT_WORD(ix,x); - SET_FLOAT_WORD(x,ix&0x7fffffff); - return x; -} - -#ifdef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double fabs(double x) -#else - double fabs(x) - double x; -#endif -{ - return (double) fabsf((float) x); -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/sf_floor.c b/newlib/libm/math/sf_floor.c deleted file mode 100644 index 787f2fd..0000000 --- a/newlib/libm/math/sf_floor.c +++ /dev/null @@ -1,79 +0,0 @@ -/* sf_floor.c -- float version of s_floor.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* - * floorf(x) - * Return x rounded toward -inf to integral value - * Method: - * Bit twiddling. - * Exception: - * Inexact flag raised if x not equal to floorf(x). - */ - -#include "fdlibm.h" - -#ifdef __STDC__ -static const float huge = 1.0e30; -#else -static float huge = 1.0e30; -#endif - -#ifdef __STDC__ - float floorf(float x) -#else - float floorf(x) - float x; -#endif -{ - __int32_t i0,j0; - __uint32_t i; - GET_FLOAT_WORD(i0,x); - j0 = ((i0>>23)&0xff)-0x7f; - if(j0<23) { - if(j0<0) { /* raise inexact if x != 0 */ - if(huge+x>(float)0.0) {/* return 0*sign(x) if |x|<1 */ - if(i0>=0) {i0=0;} - else if((i0&0x7fffffff)!=0) - { i0=0xbf800000;} - } - } else { - i = (0x007fffff)>>j0; - if((i0&i)==0) return x; /* x is integral */ - if(huge+x>(float)0.0) { /* raise inexact flag */ - if(i0<0) i0 += (0x00800000)>>j0; - i0 &= (~i); - } - } - } else { - if(j0==0x80) return x+x; /* inf or NaN */ - else return x; /* x is integral */ - } - SET_FLOAT_WORD(x,i0); - return x; -} - -#ifdef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double floor(double x) -#else - double floor(x) - double x; -#endif -{ - return (double) floorf((float) x); -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/sf_frexp.c b/newlib/libm/math/sf_frexp.c deleted file mode 100644 index 271fb9d..0000000 --- a/newlib/libm/math/sf_frexp.c +++ /dev/null @@ -1,61 +0,0 @@ -/* sf_frexp.c -- float version of s_frexp.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -#include "fdlibm.h" - -#ifdef __STDC__ -static const float -#else -static float -#endif -two25 = 3.3554432000e+07; /* 0x4c000000 */ - -#ifdef __STDC__ - float frexpf(float x, int *eptr) -#else - float frexpf(x, eptr) - float x; int *eptr; -#endif -{ - __int32_t hx, ix; - GET_FLOAT_WORD(hx,x); - ix = 0x7fffffff&hx; - *eptr = 0; - if(ix>=0x7f800000||(ix==0)) return x; /* 0,inf,nan */ - if (ix<0x00800000) { /* subnormal */ - x *= two25; - GET_FLOAT_WORD(hx,x); - ix = hx&0x7fffffff; - *eptr = -25; - } - *eptr += (ix>>23)-126; - hx = (hx&0x807fffff)|0x3f000000; - SET_FLOAT_WORD(x,hx); - return x; -} - -#ifdef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double frexp(double x, int *eptr) -#else - double frexp(x, eptr) - double x; int *eptr; -#endif -{ - return (double) frexpf((float) x, eptr); -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/sf_isinf.c b/newlib/libm/math/sf_isinf.c deleted file mode 100644 index 1af4aab..0000000 --- a/newlib/libm/math/sf_isinf.c +++ /dev/null @@ -1,35 +0,0 @@ -/* - * isinff(x) returns 1 if x is infinity, else 0; - * no branching! - * Added by Cygnus Support. - */ - -#include "fdlibm.h" - -#ifdef __STDC__ - int isinff(float x) -#else - int isinff(x) - float x; -#endif -{ - __int32_t ix; - GET_FLOAT_WORD(ix,x); - ix &= 0x7fffffff; - ix = 0x7f800000 - ix; - return 1 - (int)((__uint32_t)(ix|(-ix))>>31); -} - -#ifdef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - int isinf(double x) -#else - int isinf(x) - double x; -#endif -{ - return isinff((float) x); -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/sf_isnan.c b/newlib/libm/math/sf_isnan.c deleted file mode 100644 index 8fdb6ad..0000000 --- a/newlib/libm/math/sf_isnan.c +++ /dev/null @@ -1,49 +0,0 @@ -/* sf_isnan.c -- float version of s_isnan.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* - * isnanf(x) returns 1 is x is nan, else 0; - * no branching! - */ - -#include "fdlibm.h" - -#ifdef __STDC__ - int isnanf(float x) -#else - int isnanf(x) - float x; -#endif -{ - __int32_t ix; - GET_FLOAT_WORD(ix,x); - ix &= 0x7fffffff; - ix = 0x7f800000 - ix; - return (int)(((__uint32_t)(ix))>>31); -} - -#ifdef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - int isnan(double x) -#else - int isnan(x) - double x; -#endif -{ - return isnanf((float) x); -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/sf_ldexp.c b/newlib/libm/math/sf_ldexp.c deleted file mode 100644 index 2781304..0000000 --- a/newlib/libm/math/sf_ldexp.c +++ /dev/null @@ -1,44 +0,0 @@ -/* sf_ldexp.c -- float version of s_ldexp.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -#include "fdlibm.h" -#include <errno.h> - -#ifdef __STDC__ - float ldexpf(float value, int exp) -#else - float ldexpf(value, exp) - float value; int exp; -#endif -{ - if(!finitef(value)||value==(float)0.0) return value; - value = scalbnf(value,exp); - if(!finitef(value)||value==(float)0.0) errno = ERANGE; - return value; -} - -#ifdef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double ldexp(double value, int exp) -#else - double ldexp(value, exp) - double value; int exp; -#endif -{ - return (double) ldexpf((float) value, exp); -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/sf_signif.c b/newlib/libm/math/sf_signif.c deleted file mode 100644 index fd4a072..0000000 --- a/newlib/libm/math/sf_signif.c +++ /dev/null @@ -1,40 +0,0 @@ -/* sf_signif.c -- float version of s_signif.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -#include "fdlibm.h" - -#ifdef __STDC__ - float significandf(float x) -#else - float significandf(x) - float x; -#endif -{ - return __ieee754_scalbf(x,(float) -ilogbf(x)); -} - -#ifdef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double significand(double x) -#else - double significand(x) - double x; -#endif -{ - return (double) significandf((float) x); -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/sf_sin.c b/newlib/libm/math/sf_sin.c deleted file mode 100644 index 315d4b4..0000000 --- a/newlib/libm/math/sf_sin.c +++ /dev/null @@ -1,62 +0,0 @@ -/* sf_sin.c -- float version of s_sin.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -#include "fdlibm.h" - -#ifdef __STDC__ - float sinf(float x) -#else - float sinf(x) - float x; -#endif -{ - float y[2],z=0.0; - __int32_t n,ix; - - GET_FLOAT_WORD(ix,x); - - /* |x| ~< pi/4 */ - ix &= 0x7fffffff; - if(ix <= 0x3f490fd8) return __kernel_sinf(x,z,0); - - /* sin(Inf or NaN) is NaN */ - else if (ix>=0x7f800000) return x-x; - - /* argument reduction needed */ - else { - n = __ieee754_rem_pio2f(x,y); - switch(n&3) { - case 0: return __kernel_sinf(y[0],y[1],1); - case 1: return __kernel_cosf(y[0],y[1]); - case 2: return -__kernel_sinf(y[0],y[1],1); - default: - return -__kernel_cosf(y[0],y[1]); - } - } -} - -#ifdef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double sin(double x) -#else - double sin(x) - double x; -#endif -{ - return (double) sinf((float) x); -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/sf_tan.c b/newlib/libm/math/sf_tan.c deleted file mode 100644 index ade1cb2..0000000 --- a/newlib/libm/math/sf_tan.c +++ /dev/null @@ -1,57 +0,0 @@ -/* sf_tan.c -- float version of s_tan.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -#include "fdlibm.h" - -#ifdef __STDC__ - float tanf(float x) -#else - float tanf(x) - float x; -#endif -{ - float y[2],z=0.0; - __int32_t n,ix; - - GET_FLOAT_WORD(ix,x); - - /* |x| ~< pi/4 */ - ix &= 0x7fffffff; - if(ix <= 0x3f490fda) return __kernel_tanf(x,z,1); - - /* tan(Inf or NaN) is NaN */ - else if (ix>=0x7f800000) return x-x; /* NaN */ - - /* argument reduction needed */ - else { - n = __ieee754_rem_pio2f(x,y); - return __kernel_tanf(y[0],y[1],1-((n&1)<<1)); /* 1 -- n even - -1 -- n odd */ - } -} - -#ifdef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double tan(double x) -#else - double tan(x) - double x; -#endif -{ - return (double) tanf((float) x); -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/sf_tanh.c b/newlib/libm/math/sf_tanh.c deleted file mode 100644 index ba9edf5..0000000 --- a/newlib/libm/math/sf_tanh.c +++ /dev/null @@ -1,73 +0,0 @@ -/* sf_tanh.c -- float version of s_tanh.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -#include "fdlibm.h" - -#ifdef __STDC__ -static const float one=1.0, two=2.0, tiny = 1.0e-30; -#else -static float one=1.0, two=2.0, tiny = 1.0e-30; -#endif - -#ifdef __STDC__ - float tanhf(float x) -#else - float tanhf(x) - float x; -#endif -{ - float t,z; - __int32_t jx,ix; - - GET_FLOAT_WORD(jx,x); - ix = jx&0x7fffffff; - - /* x is INF or NaN */ - if(ix>=0x7f800000) { - if (jx>=0) return one/x+one; /* tanh(+-inf)=+-1 */ - else return one/x-one; /* tanh(NaN) = NaN */ - } - - /* |x| < 22 */ - if (ix < 0x41b00000) { /* |x|<22 */ - if (ix<0x24000000) /* |x|<2**-55 */ - return x*(one+x); /* tanh(small) = small */ - if (ix>=0x3f800000) { /* |x|>=1 */ - t = expm1f(two*fabsf(x)); - z = one - two/(t+two); - } else { - t = expm1f(-two*fabsf(x)); - z= -t/(t+two); - } - /* |x| > 22, return +-1 */ - } else { - z = one - tiny; /* raised inexact flag */ - } - return (jx>=0)? z: -z; -} - -#ifdef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double tanh(double x) -#else - double tanh(x) - double x; -#endif -{ - return (double) tanhf((float) x); -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/w_acos.c b/newlib/libm/math/w_acos.c deleted file mode 100644 index c9ca99c..0000000 --- a/newlib/libm/math/w_acos.c +++ /dev/null @@ -1,118 +0,0 @@ - -/* @(#)w_acos.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* -FUNCTION - <<acos>>, <<acosf>>---arc cosine - -INDEX - acos -INDEX - acosf - -ANSI_SYNOPSIS - #include <math.h> - double acos(double <[x]>); - float acosf(float <[x]>); - -TRAD_SYNOPSIS - #include <math.h> - double acos(<[x]>) - double <[x]>; - - float acosf(<[x]>) - float <[x]>; - - - -DESCRIPTION - - <<acos>> computes the inverse cosine (arc cosine) of the input value. - Arguments to <<acos>> must be in the range @minus{}1 to 1. - - <<acosf>> is identical to <<acos>>, except that it performs - its calculations on <<floats>>. - -RETURNS - @ifinfo - <<acos>> and <<acosf>> return values in radians, in the range of 0 to pi. - @end ifinfo - @tex - <<acos>> and <<acosf>> return values in radians, in the range of <<0>> to $\pi$. - @end tex - - If <[x]> is not between @minus{}1 and 1, the returned value is NaN - (not a number) the global variable <<errno>> is set to <<EDOM>>, and a - <<DOMAIN error>> message is sent as standard error output. - - You can modify error handling for these functions using <<matherr>>. - - -QUICKREF ANSI SVID POSIX RENTRANT - acos y,y,y,m - acosf n,n,n,m - -MATHREF - acos, [-1,1], acos(arg),,, - acos, NAN, arg,DOMAIN,EDOM - -MATHREF - acosf, [-1,1], acosf(arg),,, - acosf, NAN, argf,DOMAIN,EDOM - -*/ - -/* - * wrap_acos(x) - */ - -#include "fdlibm.h" -#include <errno.h> - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double acos(double x) /* wrapper acos */ -#else - double acos(x) /* wrapper acos */ - double x; -#endif -{ -#ifdef _IEEE_LIBM - return __ieee754_acos(x); -#else - double z; - struct exception exc; - z = __ieee754_acos(x); - if(_LIB_VERSION == _IEEE_ || isnan(x)) return z; - if(fabs(x)>1.0) { - /* acos(|x|>1) */ - exc.type = DOMAIN; - exc.name = "acos"; - exc.err = 0; - exc.arg1 = exc.arg2 = x; - exc.retval = 0.0; - if (_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - errno = EDOM; - } - if (exc.err != 0) - errno = exc.err; - return exc.retval; - } else - return z; -#endif -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/w_acosh.c b/newlib/libm/math/w_acosh.c deleted file mode 100644 index 4120d7b..0000000 --- a/newlib/libm/math/w_acosh.c +++ /dev/null @@ -1,122 +0,0 @@ - -/* @(#)w_acosh.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - * - */ - -/* -FUNCTION -<<acosh>>, <<acoshf>>---inverse hyperbolic cosine - -INDEX -acosh -INDEX -acoshf - -ANSI_SYNOPSIS - #include <math.h> - double acosh(double <[x]>); - float acoshf(float <[x]>); - -TRAD_SYNOPSIS - #include <math.h> - double acosh(<[x]>) - double <[x]>; - - float acoshf(<[x]>) - float <[x]>; - -DESCRIPTION -<<acosh>> calculates the inverse hyperbolic cosine of <[x]>. -<<acosh>> is defined as -@ifinfo -. log(<[x]> + sqrt(<[x]>*<[x]>-1)) -@end ifinfo -@tex -$$ln\Bigl(x + \sqrt{x^2-1}\Bigr)$$ -@end tex - -<[x]> must be a number greater than or equal to 1. - -<<acoshf>> is identical, other than taking and returning floats. - -RETURNS -<<acosh>> and <<acoshf>> return the calculated value. If <[x]> -less than 1, the return value is NaN and <<errno>> is set to <<EDOM>>. - -You can change the error-handling behavior with the non-ANSI -<<matherr>> function. - -PORTABILITY -Neither <<acosh>> nor <<acoshf>> are ANSI C. They are not recommended -for portable programs. - - -QUICKREF ANSI SVID POSIX RENTRANT - acos n,n,n,m - acosf n,n,n,m - -MATHREF - acosh, NAN, arg,DOMAIN,EDOM - acosh, < 1.0, NAN,DOMAIN,EDOM - acosh, >=1.0, acosh(arg),,, - -MATHREF - acoshf, NAN, arg,DOMAIN,EDOM - acoshf, < 1.0, NAN,DOMAIN,EDOM - acoshf, >=1.0, acosh(arg),,, - -*/ - -/* - * wrapper acosh(x) - */ - -#include "fdlibm.h" -#include <errno.h> - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double acosh(double x) /* wrapper acosh */ -#else - double acosh(x) /* wrapper acosh */ - double x; -#endif -{ -#ifdef _IEEE_LIBM - return __ieee754_acosh(x); -#else - double z; - struct exception exc; - z = __ieee754_acosh(x); - if(_LIB_VERSION == _IEEE_ || isnan(x)) return z; - if(x<1.0) { - /* acosh(x<1) */ - exc.type = DOMAIN; - exc.name = "acosh"; - exc.err = 0; - exc.arg1 = exc.arg2 = x; - exc.retval = 0.0/0.0; - if (_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - errno = EDOM; - } - if (exc.err != 0) - errno = exc.err; - return exc.retval; - } else - return z; -#endif -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/w_asin.c b/newlib/libm/math/w_asin.c deleted file mode 100644 index f6cb271..0000000 --- a/newlib/libm/math/w_asin.c +++ /dev/null @@ -1,121 +0,0 @@ - -/* @(#)w_asin.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - * - */ - -/* -FUNCTION - <<asin>>, <<asinf>>---arc sine - -INDEX - asin -INDEX - asinf - -ANSI_SYNOPSIS - #include <math.h> - double asin(double <[x]>); - float asinf(float <[x]>); - -TRAD_SYNOPSIS - #include <math.h> - double asin(<[x]>) - double <[x]>; - - float asinf(<[x]>) - float <[x]>; - - -DESCRIPTION - -<<asin>> computes the inverse sine (arc sine) of the argument <[x]>. -Arguments to <<asin>> must be in the range @minus{}1 to 1. - -<<asinf>> is identical to <<asin>>, other than taking and -returning floats. - -You can modify error handling for these routines using <<matherr>>. - -RETURNS -@ifinfo -<<asin>> returns values in radians, in the range of -pi/2 to pi/2. -@end ifinfo -@tex -<<asin>> returns values in radians, in the range of $-\pi/2$ to $\pi/2$. -@end tex - -If <[x]> is not in the range @minus{}1 to 1, <<asin>> and <<asinf>> -return NaN (not a number), set the global variable <<errno>> to -<<EDOM>>, and issue a <<DOMAIN error>> message. - -You can change this error treatment using <<matherr>>. - -QUICKREF ANSI SVID POSIX RENTRANT - asin y,y,y,m - asinf n,n,n,m - -MATHREF - asin, -1<=arg<=1, asin(arg),,, - asin, NAN, arg,EDOM, DOMAIN - -MATHREF - asinf, -1<=arg<=1, asin(arg),,, - asinf, NAN, arg,EDOM, DOMAIN - - -*/ - -/* - * wrapper asin(x) - */ - - -#include "fdlibm.h" -#include <errno.h> - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double asin(double x) /* wrapper asin */ -#else - double asin(x) /* wrapper asin */ - double x; -#endif -{ -#ifdef _IEEE_LIBM - return __ieee754_asin(x); -#else - double z; - struct exception exc; - z = __ieee754_asin(x); - if(_LIB_VERSION == _IEEE_ || isnan(x)) return z; - if(fabs(x)>1.0) { - /* asin(|x|>1) */ - exc.type = DOMAIN; - exc.name = "asin"; - exc.err = 0; - exc.arg1 = exc.arg2 = x; - exc.retval = 0.0; - if(_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - errno = EDOM; - } - if (exc.err != 0) - errno = exc.err; - return exc.retval; - } else - return z; -#endif -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/w_atan2.c b/newlib/libm/math/w_atan2.c deleted file mode 100644 index 91742c7..0000000 --- a/newlib/libm/math/w_atan2.c +++ /dev/null @@ -1,117 +0,0 @@ - -/* @(#)w_atan2.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - * - */ - -/* -FUNCTION - <<atan2>>, <<atan2f>>---arc tangent of y/x - -INDEX - atan2 -INDEX - atan2f - -ANSI_SYNOPSIS - #include <math.h> - double atan2(double <[y]>,double <[x]>); - float atan2f(float <[y]>,float <[x]>); - -TRAD_SYNOPSIS - #include <math.h> - double atan2(<[y]>,<[x]>); - double <[y]>; - double <[x]>; - - float atan2f(<[y]>,<[x]>); - float <[y]>; - float <[x]>; - -DESCRIPTION - -<<atan2>> computes the inverse tangent (arc tangent) of <[y]>/<[x]>. -<<atan2>> produces the correct result even for angles near -@ifinfo -pi/2 or -pi/2 -@end ifinfo -@tex -$\pi/2$ or $-\pi/2$ -@end tex -(that is, when <[x]> is near 0). - -<<atan2f>> is identical to <<atan2>>, save that it takes and returns -<<float>>. - -RETURNS -<<atan2>> and <<atan2f>> return a value in radians, in the range of -@ifinfo --pi to pi. -@end ifinfo -@tex -$-\pi$ to $\pi$. -@end tex - -If both <[x]> and <[y]> are 0.0, <<atan2>> causes a <<DOMAIN>> error. - -You can modify error handling for these functions using <<matherr>>. - -PORTABILITY -<<atan2>> is ANSI C. <<atan2f>> is an extension. - - -*/ - -/* - * wrapper atan2(y,x) - */ - -#include "fdlibm.h" -#include <errno.h> - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double atan2(double y, double x) /* wrapper atan2 */ -#else - double atan2(y,x) /* wrapper atan2 */ - double y,x; -#endif -{ -#ifdef _IEEE_LIBM - return __ieee754_atan2(y,x); -#else - double z; - struct exception exc; - z = __ieee754_atan2(y,x); - if(_LIB_VERSION == _IEEE_||isnan(x)||isnan(y)) return z; - if(x==0.0&&y==0.0) { - /* atan2(+-0,+-0) */ - exc.arg1 = y; - exc.arg2 = x; - exc.type = DOMAIN; - exc.name = "atan2"; - exc.err = 0; - exc.retval = 0.0; - if(_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - errno = EDOM; - } - if (exc.err != 0) - errno = exc.err; - return exc.retval; - } else - return z; -#endif -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/w_atanh.c b/newlib/libm/math/w_atanh.c deleted file mode 100644 index b89d4f0..0000000 --- a/newlib/libm/math/w_atanh.c +++ /dev/null @@ -1,140 +0,0 @@ - -/* @(#)w_atanh.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* -FUNCTION - <<atanh>>, <<atanhf>>---inverse hyperbolic tangent - -INDEX - atanh -INDEX - atanhf - -ANSI_SYNOPSIS - #include <math.h> - double atanh(double <[x]>); - float atanhf(float <[x]>); - -TRAD_SYNOPSIS - #include <math.h> - double atanh(<[x]>) - double <[x]>; - - float atanhf(<[x]>) - float <[x]>; - -DESCRIPTION - <<atanh>> calculates the inverse hyperbolic tangent of <[x]>. - - <<atanhf>> is identical, other than taking and returning - <<float>> values. - -RETURNS - <<atanh>> and <<atanhf>> return the calculated value. - - If - @ifinfo - |<[x]>| - @end ifinfo - @tex - $|x|$ - @end tex - is greater than 1, the global <<errno>> is set to <<EDOM>> and - the result is a NaN. A <<DOMAIN error>> is reported. - - If - @ifinfo - |<[x]>| - @end ifinfo - @tex - $|x|$ - @end tex - is 1, the global <<errno>> is set to <<EDOM>>; and the result is - infinity with the same sign as <<x>>. A <<SING error>> is reported. - - You can modify the error handling for these routines using - <<matherr>>. - -PORTABILITY - Neither <<atanh>> nor <<atanhf>> are ANSI C. - -QUICKREF - atanh - pure - atanhf - pure - - -*/ - -/* - * wrapper atanh(x) - */ - -#include "fdlibm.h" -#include <errno.h> - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double atanh(double x) /* wrapper atanh */ -#else - double atanh(x) /* wrapper atanh */ - double x; -#endif -{ -#ifdef _IEEE_LIBM - return __ieee754_atanh(x); -#else - double z,y; - struct exception exc; - z = __ieee754_atanh(x); - if(_LIB_VERSION == _IEEE_ || isnan(x)) return z; - y = fabs(x); - if(y>=1.0) { - if(y>1.0) { - /* atanh(|x|>1) */ - exc.type = DOMAIN; - exc.name = "atanh"; - exc.err = 0; - exc.arg1 = exc.arg2 = x; - exc.retval = 0.0/0.0; - if (_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - errno = EDOM; - } - } else { - /* atanh(|x|=1) */ - exc.type = SING; - exc.name = "atanh"; - exc.err = 0; - exc.arg1 = exc.arg2 = x; - exc.retval = x/0.0; /* sign(x)*inf */ - if (_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - errno = EDOM; - } - } - if (exc.err != 0) - errno = exc.err; - return exc.retval; - } else - return z; -#endif -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ - - - - diff --git a/newlib/libm/math/w_cabs.c b/newlib/libm/math/w_cabs.c deleted file mode 100644 index bef7668..0000000 --- a/newlib/libm/math/w_cabs.c +++ /dev/null @@ -1,20 +0,0 @@ -/* - * cabs() wrapper for hypot(). - * - * Written by J.T. Conklin, <jtc@wimsey.com> - * Placed into the Public Domain, 1994. - */ - -#include "fdlibm.h" - -struct complex { - double x; - double y; -}; - -double -cabs(z) - struct complex z; -{ - return hypot(z.x, z.y); -} diff --git a/newlib/libm/math/w_cosh.c b/newlib/libm/math/w_cosh.c deleted file mode 100644 index 7b38dcb..0000000 --- a/newlib/libm/math/w_cosh.c +++ /dev/null @@ -1,116 +0,0 @@ - -/* @(#)w_cosh.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* - -FUNCTION - <<cosh>>, <<coshf>>---hyperbolic cosine - -ANSI_SYNOPSIS - #include <math.h> - double cosh(double <[x]>); - float coshf(float <[x]>) - -TRAD_SYNOPSIS - #include <math.h> - double cosh(<[x]>) - double <[x]>; - - float coshf(<[x]>) - float <[x]>; - -DESCRIPTION - - <<cosh>> computes the hyperbolic cosine of the argument <[x]>. - <<cosh(<[x]>)>> is defined as - @ifinfo - . (exp(x) + exp(-x))/2 - @end ifinfo - @tex - $${(e^x + e^{-x})} \over 2$$ - @end tex - - Angles are specified in radians. - - <<coshf>> is identical, save that it takes and returns <<float>>. - -RETURNS - The computed value is returned. When the correct value would create - an overflow, <<cosh>> returns the value <<HUGE_VAL>> with the - appropriate sign, and the global value <<errno>> is set to <<ERANGE>>. - - You can modify error handling for these functions using the - function <<matherr>>. - -PORTABILITY - <<cosh>> is ANSI. - <<coshf>> is an extension. - -QUICKREF - cosh ansi pure - coshf - pure -*/ - -/* - * wrapper cosh(x) - */ - -#include "fdlibm.h" -#include <errno.h> - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double cosh(double x) /* wrapper cosh */ -#else - double cosh(x) /* wrapper cosh */ - double x; -#endif -{ -#ifdef _IEEE_LIBM - return __ieee754_cosh(x); -#else - double z; - struct exception exc; - z = __ieee754_cosh(x); - if(_LIB_VERSION == _IEEE_ || isnan(x)) return z; - if(fabs(x)>7.10475860073943863426e+02) { - /* cosh(finite) overflow */ -#ifndef HUGE_VAL -#define HUGE_VAL inf - double inf = 0.0; - - SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ -#endif - exc.type = OVERFLOW; - exc.name = "cosh"; - exc.err = 0; - exc.arg1 = exc.arg2 = x; - if (_LIB_VERSION == _SVID_) - exc.retval = HUGE; - else - exc.retval = HUGE_VAL; - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - errno = ERANGE; - } - if (exc.err != 0) - errno = exc.err; - return exc.retval; - } else - return z; -#endif -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/w_drem.c b/newlib/libm/math/w_drem.c deleted file mode 100644 index d289bda..0000000 --- a/newlib/libm/math/w_drem.c +++ /dev/null @@ -1,15 +0,0 @@ -/* - * drem() wrapper for remainder(). - * - * Written by J.T. Conklin, <jtc@wimsey.com> - * Placed into the Public Domain, 1994. - */ - -#include "fdlibm.h" - -double -drem(x, y) - double x, y; -{ - return remainder(x, y); -} diff --git a/newlib/libm/math/w_exp.c b/newlib/libm/math/w_exp.c deleted file mode 100644 index ae792a8..0000000 --- a/newlib/libm/math/w_exp.c +++ /dev/null @@ -1,136 +0,0 @@ - -/* @(#)w_exp.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* -FUNCTION - <<exp>>, <<expf>>---exponential -INDEX - exp -INDEX - expf - -ANSI_SYNOPSIS - #include <math.h> - double exp(double <[x]>); - float expf(float <[x]>); - -TRAD_SYNOPSIS - #include <math.h> - double exp(<[x]>); - double <[x]>; - - float expf(<[x]>); - float <[x]>; - -DESCRIPTION - <<exp>> and <<expf>> calculate the exponential of <[x]>, that is, - @ifinfo - e raised to the power <[x]> (where e - @end ifinfo - @tex - $e^x$ (where $e$ - @end tex - is the base of the natural system of logarithms, approximately 2.71828). - - You can use the (non-ANSI) function <<matherr>> to specify - error handling for these functions. - -RETURNS - On success, <<exp>> and <<expf>> return the calculated value. - If the result underflows, the returned value is <<0>>. If the - result overflows, the returned value is <<HUGE_VAL>>. In - either case, <<errno>> is set to <<ERANGE>>. - -PORTABILITY - <<exp>> is ANSI C. <<expf>> is an extension. - -*/ - -/* - * wrapper exp(x) - */ - -#include "fdlibm.h" -#include <errno.h> - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ -static const double -#else -static double -#endif -o_threshold= 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */ -u_threshold= -7.45133219101941108420e+02; /* 0xc0874910, 0xD52D3051 */ - -#ifdef __STDC__ - double exp(double x) /* wrapper exp */ -#else - double exp(x) /* wrapper exp */ - double x; -#endif -{ -#ifdef _IEEE_LIBM - return __ieee754_exp(x); -#else - double z; - struct exception exc; - z = __ieee754_exp(x); - if(_LIB_VERSION == _IEEE_) return z; - if(finite(x)) { - if(x>o_threshold) { - /* exp(finite) overflow */ -#ifndef HUGE_VAL -#define HUGE_VAL inf - double inf = 0.0; - - SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ -#endif - exc.type = OVERFLOW; - exc.name = "exp"; - exc.err = 0; - exc.arg1 = exc.arg2 = x; - if (_LIB_VERSION == _SVID_) - exc.retval = HUGE; - else - exc.retval = HUGE_VAL; - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - errno = ERANGE; - } - if (exc.err != 0) - errno = exc.err; - return exc.retval; - } else if(x<u_threshold) { - /* exp(finite) underflow */ - exc.type = UNDERFLOW; - exc.name = "exp"; - exc.err = 0; - exc.arg1 = exc.arg2 = x; - exc.retval = 0.0; - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - errno = ERANGE; - } - if (exc.err != 0) - errno = exc.err; - return exc.retval; - } - } - return z; -#endif -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/w_fmod.c b/newlib/libm/math/w_fmod.c deleted file mode 100644 index b6b36cb..0000000 --- a/newlib/libm/math/w_fmod.c +++ /dev/null @@ -1,107 +0,0 @@ - -/* @(#)w_fmod.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* -FUNCTION -<<fmod>>, <<fmodf>>---floating-point remainder (modulo) - -INDEX -fmod -INDEX -fmodf - -ANSI_SYNOPSIS -#include <math.h> -double fmod(double <[x]>, double <[y]>) -float fmodf(float <[x]>, float <[y]>) - -TRAD_SYNOPSIS -#include <math.h> -double fmod(<[x]>, <[y]>) -double (<[x]>, <[y]>); - -float fmodf(<[x]>, <[y]>) -float (<[x]>, <[y]>); - -DESCRIPTION -The <<fmod>> and <<fmodf>> functions compute the floating-point -remainder of <[x]>/<[y]> (<[x]> modulo <[y]>). - -RETURNS -The <<fmod>> function returns the value -@ifinfo -<[x]>-<[i]>*<[y]>, -@end ifinfo -@tex -$x-i\times y$, -@end tex -for the largest integer <[i]> such that, if <[y]> is nonzero, the -result has the same sign as <[x]> and magnitude less than the -magnitude of <[y]>. - -<<fmod(<[x]>,0)>> returns NaN, and sets <<errno>> to <<EDOM>>. - -You can modify error treatment for these functions using <<matherr>>. - -PORTABILITY -<<fmod>> is ANSI C. <<fmodf>> is an extension. -*/ - -/* - * wrapper fmod(x,y) - */ - -#include "fdlibm.h" -#include <errno.h> - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double fmod(double x, double y) /* wrapper fmod */ -#else - double fmod(x,y) /* wrapper fmod */ - double x,y; -#endif -{ -#ifdef _IEEE_LIBM - return __ieee754_fmod(x,y); -#else - double z; - struct exception exc; - z = __ieee754_fmod(x,y); - if(_LIB_VERSION == _IEEE_ ||isnan(y)||isnan(x)) return z; - if(y==0.0) { - /* fmod(x,0) */ - exc.type = DOMAIN; - exc.name = "fmod"; - exc.arg1 = x; - exc.arg2 = y; - exc.err = 0; - if (_LIB_VERSION == _SVID_) - exc.retval = x; - else - exc.retval = 0.0/0.0; - if (_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - errno = EDOM; - } - if (exc.err != 0) - errno = exc.err; - return exc.retval; - } else - return z; -#endif -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/w_gamma.c b/newlib/libm/math/w_gamma.c deleted file mode 100644 index da02115..0000000 --- a/newlib/libm/math/w_gamma.c +++ /dev/null @@ -1,193 +0,0 @@ - -/* @(#)w_gamma.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - * - */ - -/* -FUNCTION - <<gamma>>, <<gammaf>>, <<lgamma>>, <<lgammaf>>, <<gamma_r>>, - <<gammaf_r>>, <<lgamma_r>>, <<lgammaf_r>>---logarithmic gamma - function -INDEX -gamma -INDEX -gammaf -INDEX -lgamma -INDEX -lgammaf -INDEX -gamma_r -INDEX -gammaf_r -INDEX -lgamma_r -INDEX -lgammaf_r - -ANSI_SYNOPSIS -#include <math.h> -double gamma(double <[x]>); -float gammaf(float <[x]>); -double lgamma(double <[x]>); -float lgammaf(float <[x]>); -double gamma_r(double <[x]>, int *<[signgamp]>); -float gammaf_r(float <[x]>, int *<[signgamp]>); -double lgamma_r(double <[x]>, int *<[signgamp]>); -float lgammaf_r(float <[x]>, int *<[signgamp]>); - -TRAD_SYNOPSIS -#include <math.h> -double gamma(<[x]>) -double <[x]>; -float gammaf(<[x]>) -float <[x]>; -double lgamma(<[x]>) -double <[x]>; -float lgammaf(<[x]>) -float <[x]>; -double gamma_r(<[x]>, <[signgamp]>) -double <[x]>; -int <[signgamp]>; -float gammaf_r(<[x]>, <[signgamp]>) -float <[x]>; -int <[signgamp]>; -double lgamma_r(<[x]>, <[signgamp]>) -double <[x]>; -int <[signgamp]>; -float lgammaf_r(<[x]>, <[signgamp]>) -float <[x]>; -int <[signgamp]>; - -DESCRIPTION -<<gamma>> calculates -@tex -$\mit ln\bigl(\Gamma(x)\bigr)$, -@end tex -the natural logarithm of the gamma function of <[x]>. The gamma function -(<<exp(gamma(<[x]>))>>) is a generalization of factorial, and retains -the property that -@ifinfo -<<exp(gamma(N))>> is equivalent to <<N*exp(gamma(N-1))>>. -@end ifinfo -@tex -$\mit \Gamma(N)\equiv N\times\Gamma(N-1)$. -@end tex -Accordingly, the results of the gamma function itself grow very -quickly. <<gamma>> is defined as -@tex -$\mit ln\bigl(\Gamma(x)\bigr)$ rather than simply $\mit \Gamma(x)$ -@end tex -@ifinfo -the natural log of the gamma function, rather than the gamma function -itself, -@end ifinfo -to extend the useful range of results representable. - -The sign of the result is returned in the global variable <<signgam>>, -which is declared in math.h. - -<<gammaf>> performs the same calculation as <<gamma>>, but uses and -returns <<float>> values. - -<<lgamma>> and <<lgammaf>> are alternate names for <<gamma>> and -<<gammaf>>. The use of <<lgamma>> instead of <<gamma>> is a reminder -that these functions compute the log of the gamma function, rather -than the gamma function itself. - -The functions <<gamma_r>>, <<gammaf_r>>, <<lgamma_r>>, and -<<lgammaf_r>> are just like <<gamma>>, <<gammaf>>, <<lgamma>>, and -<<lgammaf>>, respectively, but take an additional argument. This -additional argument is a pointer to an integer. This additional -argument is used to return the sign of the result, and the global -variable <<signgam>> is not used. These functions may be used for -reentrant calls (but they will still set the global variable <<errno>> -if an error occurs). - -RETURNS -Normally, the computed result is returned. - -When <[x]> is a nonpositive integer, <<gamma>> returns <<HUGE_VAL>> -and <<errno>> is set to <<EDOM>>. If the result overflows, <<gamma>> -returns <<HUGE_VAL>> and <<errno>> is set to <<ERANGE>>. - -You can modify this error treatment using <<matherr>>. - -PORTABILITY -Neither <<gamma>> nor <<gammaf>> is ANSI C. */ - -/* double gamma(double x) - * Return the logarithm of the Gamma function of x. - * - * Method: call gamma_r - */ - -#include "fdlibm.h" -#include <reent.h> -#include <errno.h> - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double gamma(double x) -#else - double gamma(x) - double x; -#endif -{ -#ifdef _IEEE_LIBM - return __ieee754_gamma_r(x,&(_REENT->_new._reent._gamma_signgam)); -#else - double y; - struct exception exc; - y = __ieee754_gamma_r(x,&(_REENT->_new._reent._gamma_signgam)); - if(_LIB_VERSION == _IEEE_) return y; - if(!finite(y)&&finite(x)) { -#ifndef HUGE_VAL -#define HUGE_VAL inf - double inf = 0.0; - - SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ -#endif - exc.name = "gamma"; - exc.err = 0; - exc.arg1 = exc.arg2 = x; - if (_LIB_VERSION == _SVID_) - exc.retval = HUGE; - else - exc.retval = HUGE_VAL; - if(floor(x)==x&&x<=0.0) { - /* gamma(-integer) or gamma(0) */ - exc.type = SING; - if (_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - errno = EDOM; - } - } else { - /* gamma(finite) overflow */ - exc.type = OVERFLOW; - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - errno = ERANGE; - } - } - if (exc.err != 0) - errno = exc.err; - return exc.retval; - } else - return y; -#endif -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/w_hypot.c b/newlib/libm/math/w_hypot.c deleted file mode 100644 index 318853d..0000000 --- a/newlib/libm/math/w_hypot.c +++ /dev/null @@ -1,109 +0,0 @@ - -/* @(#)w_hypot.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* -FUNCTION - <<hypot>>, <<hypotf>>---distance from origin -INDEX - hypot -INDEX - hypotf - -ANSI_SYNOPSIS - #include <math.h> - double hypot(double <[x]>, double <[y]>); - float hypotf(float <[x]>, float <[y]>); - -TRAD_SYNOPSIS - double hypot(<[x]>, <[y]>) - double <[x]>, <[y]>; - - float hypotf(<[x]>, <[y]>) - float <[x]>, <[y]>; - -DESCRIPTION - <<hypot>> calculates the Euclidean distance - @tex - $\sqrt{x^2+y^2}$ - @end tex - @ifinfo - <<sqrt(<[x]>*<[x]> + <[y]>*<[y]>)>> - @end ifinfo - between the origin (0,0) and a point represented by the - Cartesian coordinates (<[x]>,<[y]>). <<hypotf>> differs only - in the type of its arguments and result. - -RETURNS - Normally, the distance value is returned. On overflow, - <<hypot>> returns <<HUGE_VAL>> and sets <<errno>> to - <<ERANGE>>. - - You can change the error treatment with <<matherr>>. - -PORTABILITY - <<hypot>> and <<hypotf>> are not ANSI C. */ - -/* - * wrapper hypot(x,y) - */ - -#include "fdlibm.h" -#include <errno.h> - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double hypot(double x, double y)/* wrapper hypot */ -#else - double hypot(x,y) /* wrapper hypot */ - double x,y; -#endif -{ -#ifdef _IEEE_LIBM - return __ieee754_hypot(x,y); -#else - double z; - struct exception exc; - z = __ieee754_hypot(x,y); - if(_LIB_VERSION == _IEEE_) return z; - if((!finite(z))&&finite(x)&&finite(y)) { - /* hypot(finite,finite) overflow */ -#ifndef HUGE_VAL -#define HUGE_VAL inf - double inf = 0.0; - - SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ -#endif - exc.type = OVERFLOW; - exc.name = "hypot"; - exc.err = 0; - exc.arg1 = x; - exc.arg2 = y; - if (_LIB_VERSION == _SVID_) - exc.retval = HUGE; - else - exc.retval = HUGE_VAL; - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - errno = ERANGE; - } - if (exc.err != 0) - errno = exc.err; - return exc.retval; - } else - return z; -#endif -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/w_j0.c b/newlib/libm/math/w_j0.c deleted file mode 100644 index 4f07908..0000000 --- a/newlib/libm/math/w_j0.c +++ /dev/null @@ -1,229 +0,0 @@ - -/* @(#)w_j0.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* -FUNCTION -<<jN>>,<<jNf>>,<<yN>>,<<yNf>>---Bessel functions - -INDEX -j0 -INDEX -j0f -INDEX -j1 -INDEX -j1f -INDEX -jn -INDEX -jnf -INDEX -y0 -INDEX -y0f -INDEX -y1 -INDEX -y1f -INDEX -yn -INDEX -ynf - -ANSI_SYNOPSIS -#include <math.h> -double j0(double <[x]>); -float j0f(float <[x]>); -double j1(double <[x]>); -float j1f(float <[x]>); -double jn(int <[n]>, double <[x]>); -float jnf(int <[n]>, float <[x]>); -double y0(double <[x]>); -float y0f(float <[x]>); -double y1(double <[x]>); -float y1f(float <[x]>); -double yn(int <[n]>, double <[x]>); -float ynf(int <[n]>, float <[x]>); - -TRAD_SYNOPSIS -#include <math.h> - -double j0(<[x]>) -double <[x]>; -float j0f(<[x]>) -float <[x]>; -double j1(<[x]>) -double <[x]>; -float j1f(<[x]>) -float <[x]>; -double jn(<[n]>, <[x]>) -int <[n]>; -double <[x]>; -float jnf(<[n]>, <[x]>) -int <[n]>; -float <[x]>; - -double y0(<[x]>) -double <[x]>; -float y0f(<[x]>) -float <[x]>; -double y1(<[x]>) -double <[x]>; -float y1f(<[x]>) -float <[x]>; -double yn(<[n]>, <[x]>) -int <[n]>; -double <[x]>; -float ynf(<[n]>, <[x]>) -int <[n]>; -float <[x]>; - -DESCRIPTION -The Bessel functions are a family of functions that solve the -differential equation -@ifinfo -. 2 2 2 -. x y'' + xy' + (x - p )y = 0 -@end ifinfo -@tex -$$x^2{d^2y\over dx^2} + x{dy\over dx} + (x^2-p^2)y = 0$$ -@end tex -These functions have many applications in engineering and physics. - -<<jn>> calculates the Bessel function of the first kind of order -<[n]>. <<j0>> and <<j1>> are special cases for order 0 and order -1 respectively. - -Similarly, <<yn>> calculates the Bessel function of the second kind of -order <[n]>, and <<y0>> and <<y1>> are special cases for order 0 and -1. - -<<jnf>>, <<j0f>>, <<j1f>>, <<ynf>>, <<y0f>>, and <<y1f>> perform the -same calculations, but on <<float>> rather than <<double>> values. - -RETURNS -The value of each Bessel function at <[x]> is returned. - -PORTABILITY -None of the Bessel functions are in ANSI C. -*/ - -/* - * wrapper j0(double x), y0(double x) - */ - -#include "fdlibm.h" -#include <errno.h> - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double j0(double x) /* wrapper j0 */ -#else - double j0(x) /* wrapper j0 */ - double x; -#endif -{ -#ifdef _IEEE_LIBM - return __ieee754_j0(x); -#else - struct exception exc; - double z = __ieee754_j0(x); - if(_LIB_VERSION == _IEEE_ || isnan(x)) return z; - if(fabs(x)>X_TLOSS) { - /* j0(|x|>X_TLOSS) */ - exc.type = TLOSS; - exc.name = "j0"; - exc.err = 0; - exc.arg1 = exc.arg2 = x; - exc.retval = 0.0; - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - errno = ERANGE; - } - if (exc.err != 0) - errno = exc.err; - return exc.retval; - } else - return z; -#endif -} - -#ifdef __STDC__ - double y0(double x) /* wrapper y0 */ -#else - double y0(x) /* wrapper y0 */ - double x; -#endif -{ -#ifdef _IEEE_LIBM - return __ieee754_y0(x); -#else - double z; - struct exception exc; - z = __ieee754_y0(x); - if(_LIB_VERSION == _IEEE_ || isnan(x) ) return z; - if(x <= 0.0){ -#ifndef HUGE_VAL -#define HUGE_VAL inf - double inf = 0.0; - - SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ -#endif - /* y0(0) = -inf or y0(x<0) = NaN */ - exc.type = DOMAIN; /* should be SING for IEEE y0(0) */ - exc.name = "y0"; - exc.err = 0; - exc.arg1 = exc.arg2 = x; - if (_LIB_VERSION == _SVID_) - exc.retval = -HUGE; - else - exc.retval = -HUGE_VAL; - if (_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - errno = EDOM; - } - if (exc.err != 0) - errno = exc.err; - return exc.retval; - } - if(x>X_TLOSS) { - /* y0(x>X_TLOSS) */ - exc.type = TLOSS; - exc.name = "y0"; - exc.err = 0; - exc.arg1 = exc.arg2 = x; - exc.retval = 0.0; - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - errno = ERANGE; - } - if (exc.err != 0) - errno = exc.err; - return exc.retval; - } else - return z; -#endif -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ - - - - - - - diff --git a/newlib/libm/math/w_j1.c b/newlib/libm/math/w_j1.c deleted file mode 100644 index ba7df15..0000000 --- a/newlib/libm/math/w_j1.c +++ /dev/null @@ -1,121 +0,0 @@ - -/* @(#)w_j1.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* - * wrapper of j1,y1 - */ - -#include "fdlibm.h" -#include <errno.h> - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double j1(double x) /* wrapper j1 */ -#else - double j1(x) /* wrapper j1 */ - double x; -#endif -{ -#ifdef _IEEE_LIBM - return __ieee754_j1(x); -#else - double z; - struct exception exc; - z = __ieee754_j1(x); - if(_LIB_VERSION == _IEEE_ || isnan(x) ) return z; - if(fabs(x)>X_TLOSS) { - /* j1(|x|>X_TLOSS) */ - exc.type = TLOSS; - exc.name = "j1"; - exc.err = 0; - exc.arg1 = exc.arg2 = x; - exc.retval = 0.0; - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - errno = ERANGE; - } - if (exc.err != 0) - errno = exc.err; - return exc.retval; - } else - return z; -#endif -} - -#ifdef __STDC__ - double y1(double x) /* wrapper y1 */ -#else - double y1(x) /* wrapper y1 */ - double x; -#endif -{ -#ifdef _IEEE_LIBM - return __ieee754_y1(x); -#else - double z; - struct exception exc; - z = __ieee754_y1(x); - if(_LIB_VERSION == _IEEE_ || isnan(x) ) return z; - if(x <= 0.0){ -#ifndef HUGE_VAL -#define HUGE_VAL inf - double inf = 0.0; - - SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ -#endif - /* y1(0) = -inf or y1(x<0) = NaN */ - exc.type = DOMAIN; /* should be SING for IEEE */ - exc.name = "y1"; - exc.err = 0; - exc.arg1 = exc.arg2 = x; - if (_LIB_VERSION == _SVID_) - exc.retval = -HUGE; - else - exc.retval = -HUGE_VAL; - if (_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - errno = EDOM; - } - if (exc.err != 0) - errno = exc.err; - return exc.retval; - } - if(x>X_TLOSS) { - /* y1(x>X_TLOSS) */ - exc.type = TLOSS; - exc.name = "y1"; - exc.err = 0; - exc.arg1 = exc.arg2 = x; - exc.retval = 0.0; - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - errno = ERANGE; - } - if (exc.err != 0) - errno = exc.err; - return exc.retval; - } else - return z; -#endif -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ - - - - - diff --git a/newlib/libm/math/w_jn.c b/newlib/libm/math/w_jn.c deleted file mode 100644 index 6cadc9a..0000000 --- a/newlib/libm/math/w_jn.c +++ /dev/null @@ -1,141 +0,0 @@ - -/* @(#)w_jn.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* - * wrapper jn(int n, double x), yn(int n, double x) - * floating point Bessel's function of the 1st and 2nd kind - * of order n - * - * Special cases: - * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal; - * y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal. - * Note 2. About jn(n,x), yn(n,x) - * For n=0, j0(x) is called, - * for n=1, j1(x) is called, - * for n<x, forward recursion us used starting - * from values of j0(x) and j1(x). - * for n>x, a continued fraction approximation to - * j(n,x)/j(n-1,x) is evaluated and then backward - * recursion is used starting from a supposed value - * for j(n,x). The resulting value of j(0,x) is - * compared with the actual value to correct the - * supposed value of j(n,x). - * - * yn(n,x) is similar in all respects, except - * that forward recursion is used for all - * values of n>1. - * - */ - -#include "fdlibm.h" -#include <errno.h> - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double jn(int n, double x) /* wrapper jn */ -#else - double jn(n,x) /* wrapper jn */ - double x; int n; -#endif -{ -#ifdef _IEEE_LIBM - return __ieee754_jn(n,x); -#else - double z; - struct exception exc; - z = __ieee754_jn(n,x); - if(_LIB_VERSION == _IEEE_ || isnan(x) ) return z; - if(fabs(x)>X_TLOSS) { - /* jn(|x|>X_TLOSS) */ - exc.type = TLOSS; - exc.name = "jn"; - exc.err = 0; - exc.arg1 = n; - exc.arg2 = x; - exc.retval = 0.0; - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - errno = ERANGE; - } - if (exc.err != 0) - errno = exc.err; - return exc.retval; - } else - return z; -#endif -} - -#ifdef __STDC__ - double yn(int n, double x) /* wrapper yn */ -#else - double yn(n,x) /* wrapper yn */ - double x; int n; -#endif -{ -#ifdef _IEEE_LIBM - return __ieee754_yn(n,x); -#else - double z; - struct exception exc; - z = __ieee754_yn(n,x); - if(_LIB_VERSION == _IEEE_ || isnan(x) ) return z; - if(x <= 0.0){ - /* yn(n,0) = -inf or yn(x<0) = NaN */ -#ifndef HUGE_VAL -#define HUGE_VAL inf - double inf = 0.0; - - SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ -#endif - exc.type = DOMAIN; /* should be SING for IEEE */ - exc.name = "yn"; - exc.err = 0; - exc.arg1 = n; - exc.arg2 = x; - if (_LIB_VERSION == _SVID_) - exc.retval = -HUGE; - else - exc.retval = -HUGE_VAL; - if (_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - errno = EDOM; - } - if (exc.err != 0) - errno = exc.err; - return exc.retval; - } - if(x>X_TLOSS) { - /* yn(x>X_TLOSS) */ - exc.type = TLOSS; - exc.name = "yn"; - exc.err = 0; - exc.arg1 = n; - exc.arg2 = x; - exc.retval = 0.0; - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - errno = ERANGE; - } - if (exc.err != 0) - errno = exc.err; - return exc.retval; - } else - return z; -#endif -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/w_lgamma.c b/newlib/libm/math/w_lgamma.c deleted file mode 100644 index 1dc6399..0000000 --- a/newlib/libm/math/w_lgamma.c +++ /dev/null @@ -1,89 +0,0 @@ - -/* @(#)w_lgamma.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - * - */ - -/* double lgamma(double x) - * Return the logarithm of the Gamma function of x. - * - * Method: call __ieee754_lgamma_r - */ - -#include "fdlibm.h" -#include <reent.h> -#include <errno.h> - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double lgamma(double x) -#else - double lgamma(x) - double x; -#endif -{ -#ifdef _IEEE_LIBM - return __ieee754_lgamma_r(x,&(_REENT->_new._reent._gamma_signgam)); -#else - double y; - struct exception exc; - y = __ieee754_lgamma_r(x,&(_REENT->_new._reent._gamma_signgam)); - if(_LIB_VERSION == _IEEE_) return y; - if(!finite(y)&&finite(x)) { -#ifndef HUGE_VAL -#define HUGE_VAL inf - double inf = 0.0; - - SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ -#endif - exc.name = "lgamma"; - exc.err = 0; - exc.arg1 = x; - exc.arg2 = x; - if (_LIB_VERSION == _SVID_) - exc.retval = HUGE; - else - exc.retval = HUGE_VAL; - if(floor(x)==x&&x<=0.0) { - /* lgamma(-integer) */ - exc.type = SING; - if (_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - errno = EDOM; - } - - } else { - /* lgamma(finite) overflow */ - exc.type = OVERFLOW; - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - errno = ERANGE; - } - } - if (exc.err != 0) - errno = exc.err; - return exc.retval; - } else - return y; -#endif -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ - - - - - - - diff --git a/newlib/libm/math/w_log.c b/newlib/libm/math/w_log.c deleted file mode 100644 index dcc8b97..0000000 --- a/newlib/libm/math/w_log.c +++ /dev/null @@ -1,115 +0,0 @@ - -/* @(#)w_log.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* -FUNCTION - <<log>>, <<logf>>---natural logarithms - -INDEX - log -INDEX - logf - -ANSI_SYNOPSIS - #include <math.h> - double log(double <[x]>); - float logf(float <[x]>); - -TRAD_SYNOPSIS - #include <math.h> - double log(<[x]>); - double <[x]>; - - float logf(<[x]>); - float <[x]>; - -DESCRIPTION -Return the natural logarithm of <[x]>, that is, its logarithm base e -(where e is the base of the natural system of logarithms, 2.71828@dots{}). -<<log>> and <<logf>> are identical save for the return and argument types. - -You can use the (non-ANSI) function <<matherr>> to specify error -handling for these functions. - -RETURNS -Normally, returns the calculated value. When <[x]> is zero, the -returned value is <<-HUGE_VAL>> and <<errno>> is set to <<ERANGE>>. -When <[x]> is negative, the returned value is <<-HUGE_VAL>> and -<<errno>> is set to <<EDOM>>. You can control the error behavior via -<<matherr>>. - -PORTABILITY -<<log>> is ANSI, <<logf>> is an extension. -*/ - -/* - * wrapper log(x) - */ - -#include "fdlibm.h" -#include <errno.h> - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double log(double x) /* wrapper log */ -#else - double log(x) /* wrapper log */ - double x; -#endif -{ -#ifdef _IEEE_LIBM - return __ieee754_log(x); -#else - double z; - struct exception exc; - z = __ieee754_log(x); - if(_LIB_VERSION == _IEEE_ || isnan(x) || x > 0.0) return z; -#ifndef HUGE_VAL -#define HUGE_VAL inf - double inf = 0.0; - - SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ -#endif - exc.name = "log"; - exc.err = 0; - exc.arg1 = x; - exc.arg2 = x; - if (_LIB_VERSION == _SVID_) - exc.retval = -HUGE; - else - exc.retval = -HUGE_VAL; - if(x==0.0) { - /* log(0) */ - exc.type = SING; - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - errno = EDOM; - } - } else { - /* log(x<0) */ - exc.type = DOMAIN; - if (_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - errno = EDOM; - } - } - if (exc.err != 0) - errno = exc.err; - return exc.retval; -#endif -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/w_log10.c b/newlib/libm/math/w_log10.c deleted file mode 100644 index f427b86..0000000 --- a/newlib/libm/math/w_log10.c +++ /dev/null @@ -1,115 +0,0 @@ - -/* @(#)w_log10.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* -FUNCTION - <<log10>>, <<log10f>>---base 10 logarithms - -INDEX -log10 -INDEX -log10f - -ANSI_SYNOPSIS - #include <math.h> - double log10(double <[x]>); - float log10f(float <[x]>); - -TRAD_SYNOPSIS - #include <math.h> - double log10(<[x]>) - double <[x]>; - - float log10f(<[x]>) - float <[x]>; - -DESCRIPTION -<<log10>> returns the base 10 logarithm of <[x]>. -It is implemented as <<log(<[x]>) / log(10)>>. - -<<log10f>> is identical, save that it takes and returns <<float>> values. - -RETURNS -<<log10>> and <<log10f>> return the calculated value. - -See the description of <<log>> for information on errors. - -PORTABILITY -<<log10>> is ANSI C. <<log10f>> is an extension. - - */ - -/* - * wrapper log10(X) - */ - -#include "fdlibm.h" -#include <errno.h> - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double log10(double x) /* wrapper log10 */ -#else - double log10(x) /* wrapper log10 */ - double x; -#endif -{ -#ifdef _IEEE_LIBM - return __ieee754_log10(x); -#else - double z; - struct exception exc; - z = __ieee754_log10(x); - if(_LIB_VERSION == _IEEE_ || isnan(x)) return z; - if(x<=0.0) { -#ifndef HUGE_VAL -#define HUGE_VAL inf - double inf = 0.0; - - SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ -#endif - exc.name = "log10"; - exc.err = 0; - exc.arg1 = x; - exc.arg2 = x; - if (_LIB_VERSION == _SVID_) - exc.retval = -HUGE; - else - exc.retval = -HUGE_VAL; - if(x==0.0) { - /* log10(0) */ - exc.type = SING; - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - errno = EDOM; - } - } else { - /* log10(x<0) */ - exc.type = DOMAIN; - if (_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - errno = EDOM; - } - } - if (exc.err != 0) - errno = exc.err; - return exc.retval; - } else - return z; -#endif -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/w_pow.c b/newlib/libm/math/w_pow.c deleted file mode 100644 index 3df099a..0000000 --- a/newlib/libm/math/w_pow.c +++ /dev/null @@ -1,231 +0,0 @@ - - -/* @(#)w_pow.c 5.2 93/10/01 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* -FUNCTION - <<pow>>, <<powf>>---x to the power y -INDEX - pow -INDEX - powf - - -ANSI_SYNOPSIS - #include <math.h> - double pow(double <[x]>, double <[y]>); - float pow(float <[x]>, float <[y]>); - -TRAD_SYNOPSIS - #include <math.h> - double pow(<[x]>, <[y]>); - double <[x]>, <[y]>; - - float pow(<[x]>, <[y]>); - float <[x]>, <[y]>; - -DESCRIPTION - <<pow>> and <<powf>> calculate <[x]> raised to the exp1.0nt <[y]>. - @tex - (That is, $x^y$.) - @end tex - -RETURNS - On success, <<pow>> and <<powf>> return the value calculated. - - When the argument values would produce overflow, <<pow>> - returns <<HUGE_VAL>> and set <<errno>> to <<ERANGE>>. If the - argument <[x]> passed to <<pow>> or <<powf>> is a negative - noninteger, and <[y]> is also not an integer, then <<errno>> - is set to <<EDOM>>. If <[x]> and <[y]> are both 0, then - <<pow>> and <<powf>> return <<1>>. - - You can modify error handling for these functions using <<matherr>>. - -PORTABILITY - <<pow>> is ANSI C. <<powf>> is an extension. */ - -/* - * wrapper pow(x,y) return x**y - */ - -#include "fdlibm.h" -#include <errno.h> - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double pow(double x, double y) /* wrapper pow */ -#else - double pow(x,y) /* wrapper pow */ - double x,y; -#endif -{ -#ifdef _IEEE_LIBM - return __ieee754_pow(x,y); -#else - double z; -#ifndef HUGE_VAL -#define HUGE_VAL inf - double inf = 0.0; - - SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ -#endif - struct exception exc; - z=__ieee754_pow(x,y); - if(_LIB_VERSION == _IEEE_|| isnan(y)) return z; - if(isnan(x)) { - if(y==0.0) { - /* pow(NaN,0.0) */ - /* error only if _LIB_VERSION == _SVID_ & _XOPEN_ */ - exc.type = DOMAIN; - exc.name = "pow"; - exc.err = 0; - exc.arg1 = x; - exc.arg2 = y; - exc.retval = x; - if (_LIB_VERSION == _IEEE_ || - _LIB_VERSION == _POSIX_) exc.retval = 1.0; - else if (!matherr(&exc)) { - errno = EDOM; - } - if (exc.err != 0) - errno = exc.err; - return exc.retval; - } else - return z; - } - if(x==0.0){ - if(y==0.0) { - /* pow(0.0,0.0) */ - /* error only if _LIB_VERSION == _SVID_ */ - exc.type = DOMAIN; - exc.name = "pow"; - exc.err = 0; - exc.arg1 = x; - exc.arg2 = y; - exc.retval = 0.0; - if (_LIB_VERSION != _SVID_) exc.retval = 1.0; - else if (!matherr(&exc)) { - errno = EDOM; - } - if (exc.err != 0) - errno = exc.err; - return exc.retval; - } - if(finite(y)&&y<0.0) { - /* 0**neg */ - exc.type = DOMAIN; - exc.name = "pow"; - exc.err = 0; - exc.arg1 = x; - exc.arg2 = y; - if (_LIB_VERSION == _SVID_) - exc.retval = 0.0; - else - exc.retval = -HUGE_VAL; - if (_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - errno = EDOM; - } - if (exc.err != 0) - errno = exc.err; - return exc.retval; - } - return z; - } - if(!finite(z)) { - if(finite(x)&&finite(y)) { - if(isnan(z)) { - /* neg**non-integral */ - exc.type = DOMAIN; - exc.name = "pow"; - exc.err = 0; - exc.arg1 = x; - exc.arg2 = y; - if (_LIB_VERSION == _SVID_) - exc.retval = 0.0; - else - exc.retval = 0.0/0.0; /* X/Open allow NaN */ - if (_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - errno = EDOM; - } - if (exc.err != 0) - errno = exc.err; - return exc.retval; - } else { - /* pow(x,y) overflow */ - exc.type = OVERFLOW; - exc.name = "pow"; - exc.err = 0; - exc.arg1 = x; - exc.arg2 = y; - if (_LIB_VERSION == _SVID_) { - exc.retval = HUGE; - y *= 0.5; - if(x<0.0&&rint(y)!=y) exc.retval = -HUGE; - } else { - exc.retval = HUGE_VAL; - y *= 0.5; - if(x<0.0&&rint(y)!=y) exc.retval = -HUGE_VAL; - } - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - errno = ERANGE; - } - if (exc.err != 0) - errno = exc.err; - return exc.retval; - } - } - } - if(z==0.0&&finite(x)&&finite(y)) { - /* pow(x,y) underflow */ - exc.type = UNDERFLOW; - exc.name = "pow"; - exc.err = 0; - exc.arg1 = x; - exc.arg2 = y; - exc.retval = 0.0; - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - errno = ERANGE; - } - if (exc.err != 0) - errno = exc.err; - return exc.retval; - } - return z; -#endif -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ - - - - - - - - - - - - - - diff --git a/newlib/libm/math/w_remainder.c b/newlib/libm/math/w_remainder.c deleted file mode 100644 index e4c1967..0000000 --- a/newlib/libm/math/w_remainder.c +++ /dev/null @@ -1,108 +0,0 @@ - -/* @(#)w_remainder.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* -FUNCTION -<<remainder>>, <<remainderf>>---round and remainder -INDEX - remainder -INDEX - remainderf - -ANSI_SYNOPSIS - #include <math.h> - double remainder(double <[x]>, double <[y]>); - float remainderf(float <[x]>, float <[y]>); - -TRAD_SYNOPSIS - #include <math.h> - double remainder(<[x]>,<[y]>) - double <[x]>, <[y]>; - float remainderf(<[x]>,<[y]>) - float <[x]>, <[y]>; - -DESCRIPTION -<<remainder>> and <<remainderf>> find the remainder of -<[x]>/<[y]>; this value is in the range -<[y]>/2 .. +<[y]>/2. - -RETURNS -<<remainder>> returns the integer result as a double. - -PORTABILITY -<<remainder>> is a System V release 4. -<<remainderf>> is an extension. - -*/ - -/* - * wrapper remainder(x,p) - */ - -#include "fdlibm.h" -#include <errno.h> - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double remainder(double x, double y) /* wrapper remainder */ -#else - double remainder(x,y) /* wrapper remainder */ - double x,y; -#endif -{ -#ifdef _IEEE_LIBM - return __ieee754_remainder(x,y); -#else - double z; - struct exception exc; - z = __ieee754_remainder(x,y); - if(_LIB_VERSION == _IEEE_ || isnan(y)) return z; - if(y==0.0) { - /* remainder(x,0) */ - exc.type = DOMAIN; - exc.name = "remainder"; - exc.err = 0; - exc.arg1 = x; - exc.arg2 = y; - exc.retval = 0.0/0.0; - if (_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - errno = EDOM; - } - if (exc.err != 0) - errno = exc.err; - return exc.retval; - } else - return z; -#endif -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ - - - - - - - - - - - - - - - - - diff --git a/newlib/libm/math/w_scalb.c b/newlib/libm/math/w_scalb.c deleted file mode 100644 index c324968..0000000 --- a/newlib/libm/math/w_scalb.c +++ /dev/null @@ -1,94 +0,0 @@ - -/* @(#)w_scalb.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* - * wrapper scalb(double x, double fn) is provide for - * passing various standard test suite. One - * should use scalbn() instead. - */ - -#include "fdlibm.h" -#include <errno.h> - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ -#ifdef _SCALB_INT - double scalb(double x, int fn) /* wrapper scalb */ -#else - double scalb(double x, double fn) /* wrapper scalb */ -#endif -#else - double scalb(x,fn) /* wrapper scalb */ -#ifdef _SCALB_INT - double x; int fn; -#else - double x,fn; -#endif -#endif -{ -#ifdef _IEEE_LIBM - return __ieee754_scalb(x,fn); -#else - double z; -#ifndef HUGE_VAL -#define HUGE_VAL inf - double inf = 0.0; - - SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ -#endif - struct exception exc; - z = __ieee754_scalb(x,fn); - if(_LIB_VERSION == _IEEE_) return z; - if(!(finite(z)||isnan(z))&&finite(x)) { - /* scalb overflow; SVID also returns +-HUGE_VAL */ - exc.type = OVERFLOW; - exc.name = "scalb"; - exc.err = 0; - exc.arg1 = x; - exc.arg2 = fn; - exc.retval = x > 0.0 ? HUGE_VAL : -HUGE_VAL; - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - errno = ERANGE; - } - if (exc.err != 0) - errno = exc.err; - return exc.retval; - } - if(z==0.0&&z!=x) { - /* scalb underflow */ - exc.type = UNDERFLOW; - exc.name = "scalb"; - exc.err = 0; - exc.arg1 = x; - exc.arg2 = fn; - exc.retval = copysign(0.0,x); - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - errno = ERANGE; - } - if (exc.err != 0) - errno = exc.err; - return exc.retval; - } -#ifndef _SCALB_INT - if(!finite(fn)) errno = ERANGE; -#endif - return z; -#endif -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/w_sinh.c b/newlib/libm/math/w_sinh.c deleted file mode 100644 index 02a3888..0000000 --- a/newlib/libm/math/w_sinh.c +++ /dev/null @@ -1,120 +0,0 @@ - -/* @(#)w_sinh.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - - -/* -FUNCTION - <<sinh>>, <<sinhf>>---hyperbolic sine - -INDEX - sinh -INDEX - sinhf - -ANSI_SYNOPSIS - #include <math.h> - double sinh(double <[x]>); - float sinhf(float <[x]>); - -TRAD_SYNOPSIS - #include <math.h> - double sinh(<[x]>) - double <[x]>; - - float sinhf(<[x]>) - float <[x]>; - -DESCRIPTION - <<sinh>> computes the hyperbolic sine of the argument <[x]>. - Angles are specified in radians. <<sinh>>(<[x]>) is defined as - @ifinfo - . (exp(<[x]>) - exp(-<[x]>))/2 - @end ifinfo - @tex - $${e^x - e^{-x}}\over 2$$ - @end tex - - <<sinhf>> is identical, save that it takes and returns <<float>> values. - -RETURNS - The hyperbolic sine of <[x]> is returned. - - When the correct result is too large to be representable (an - overflow), <<sinh>> returns <<HUGE_VAL>> with the - appropriate sign, and sets the global value <<errno>> to - <<ERANGE>>. - - You can modify error handling for these functions with <<matherr>>. - -PORTABILITY - <<sinh>> is ANSI C. - <<sinhf>> is an extension. - -QUICKREF - sinh ansi pure - sinhf - pure -*/ - -/* - * wrapper sinh(x) - */ - -#include "fdlibm.h" -#include <errno.h> - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double sinh(double x) /* wrapper sinh */ -#else - double sinh(x) /* wrapper sinh */ - double x; -#endif -{ -#ifdef _IEEE_LIBM - return __ieee754_sinh(x); -#else - double z; - struct exception exc; - z = __ieee754_sinh(x); - if(_LIB_VERSION == _IEEE_) return z; - if(!finite(z)&&finite(x)) { - /* sinh(finite) overflow */ -#ifndef HUGE_VAL -#define HUGE_VAL inf - double inf = 0.0; - - SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ -#endif - exc.type = OVERFLOW; - exc.name = "sinh"; - exc.err = 0; - exc.arg1 = exc.arg2 = x; - if (_LIB_VERSION == _SVID_) - exc.retval = ( (x>0.0) ? HUGE : -HUGE); - else - exc.retval = ( (x>0.0) ? HUGE_VAL : -HUGE_VAL); - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - errno = ERANGE; - } - if (exc.err != 0) - errno = exc.err; - return exc.retval; - } else - return z; -#endif -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/w_sqrt.c b/newlib/libm/math/w_sqrt.c deleted file mode 100644 index 23a793c..0000000 --- a/newlib/libm/math/w_sqrt.c +++ /dev/null @@ -1,93 +0,0 @@ - -/* @(#)w_sqrt.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* -FUNCTION - <<sqrt>>, <<sqrtf>>---positive square root - -INDEX - sqrt -INDEX - sqrtf - -ANSI_SYNOPSIS - #include <math.h> - double sqrt(double <[x]>); - float sqrtf(float <[x]>); - -TRAD_SYNOPSIS - #include <math.h> - double sqrt(<[x]>); - float sqrtf(<[x]>); - -DESCRIPTION - <<sqrt>> computes the positive square root of the argument. - You can modify error handling for this function with - <<matherr>>. - -RETURNS - On success, the square root is returned. If <[x]> is real and - positive, then the result is positive. If <[x]> is real and - negative, the global value <<errno>> is set to <<EDOM>> (domain error). - - -PORTABILITY - <<sqrt>> is ANSI C. <<sqrtf>> is an extension. -*/ - -/* - * wrapper sqrt(x) - */ - -#include "fdlibm.h" -#include <errno.h> - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double sqrt(double x) /* wrapper sqrt */ -#else - double sqrt(x) /* wrapper sqrt */ - double x; -#endif -{ -#ifdef _IEEE_LIBM - return __ieee754_sqrt(x); -#else - struct exception exc; - double z; - z = __ieee754_sqrt(x); - if(_LIB_VERSION == _IEEE_ || isnan(x)) return z; - if(x<0.0) { - exc.type = DOMAIN; - exc.name = "sqrt"; - exc.err = 0; - exc.arg1 = exc.arg2 = x; - if (_LIB_VERSION == _SVID_) - exc.retval = 0.0; - else - exc.retval = 0.0/0.0; - if (_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - errno = EDOM; - } - if (exc.err != 0) - errno = exc.err; - return exc.retval; - } else - return z; -#endif -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/wf_acos.c b/newlib/libm/math/wf_acos.c deleted file mode 100644 index 8a10374..0000000 --- a/newlib/libm/math/wf_acos.c +++ /dev/null @@ -1,69 +0,0 @@ -/* wf_acos.c -- float version of w_acos.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* - * wrap_acosf(x) - */ - -#include "fdlibm.h" -#include <errno.h> - -#ifdef _HAVE_STDC - float acosf(float x) /* wrapper acosf */ -#else - float acosf(x) /* wrapper acosf */ - float x; -#endif -{ -#ifdef _IEEE_LIBM - return __ieee754_acosf(x); -#else - float z; - struct exception exc; - z = __ieee754_acosf(x); - if(_LIB_VERSION == _IEEE_ || isnanf(x)) return z; - if(fabsf(x)>(float)1.0) { - /* acosf(|x|>1) */ - exc.type = DOMAIN; - exc.name = "acosf"; - exc.err = 0; - exc.arg1 = exc.arg2 = (double)x; - exc.retval = 0.0; - if (_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - errno = EDOM; - } - if (exc.err != 0) - errno = exc.err; - return (float)exc.retval; - } else - return z; -#endif -} - -#ifdef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double acos(double x) -#else - double acos(x) - double x; -#endif -{ - return (double) acosf((float) x); -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/wf_acosh.c b/newlib/libm/math/wf_acosh.c deleted file mode 100644 index 19c2450..0000000 --- a/newlib/libm/math/wf_acosh.c +++ /dev/null @@ -1,70 +0,0 @@ -/* wf_acosh.c -- float version of w_acosh.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - * - */ - -/* - * wrapper acoshf(x) - */ - -#include "fdlibm.h" -#include <errno.h> - -#ifdef __STDC__ - float acoshf(float x) /* wrapper acoshf */ -#else - float acoshf(x) /* wrapper acoshf */ - float x; -#endif -{ -#ifdef _IEEE_LIBM - return __ieee754_acoshf(x); -#else - float z; - struct exception exc; - z = __ieee754_acoshf(x); - if(_LIB_VERSION == _IEEE_ || isnanf(x)) return z; - if(x<(float)1.0) { - /* acoshf(x<1) */ - exc.type = DOMAIN; - exc.name = "acoshf"; - exc.err = 0; - exc.arg1 = exc.arg2 = (double)x; - exc.retval = 0.0/0.0; - if (_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - errno = EDOM; - } - if (exc.err != 0) - errno = exc.err; - return (float)exc.retval; - } else - return z; -#endif -} - -#ifdef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double acosh(double x) -#else - double acosh(x) - double x; -#endif -{ - return (double) acoshf((float) x); -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/wf_asin.c b/newlib/libm/math/wf_asin.c deleted file mode 100644 index a5225f2..0000000 --- a/newlib/libm/math/wf_asin.c +++ /dev/null @@ -1,71 +0,0 @@ -/* wf_asin.c -- float version of w_asin.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - * - */ - -/* - * wrapper asinf(x) - */ - - -#include "fdlibm.h" -#include <errno.h> - -#ifdef __STDC__ - float asinf(float x) /* wrapper asinf */ -#else - float asinf(x) /* wrapper asinf */ - float x; -#endif -{ -#ifdef _IEEE_LIBM - return __ieee754_asinf(x); -#else - float z; - struct exception exc; - z = __ieee754_asinf(x); - if(_LIB_VERSION == _IEEE_ || isnanf(x)) return z; - if(fabsf(x)>(float)1.0) { - /* asinf(|x|>1) */ - exc.type = DOMAIN; - exc.name = "asinf"; - exc.err = 0; - exc.arg1 = exc.arg2 = (double)x; - exc.retval = 0.0; - if(_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - errno = EDOM; - } - if (exc.err != 0) - errno = exc.err; - return (float)exc.retval; - } else - return z; -#endif -} - -#ifdef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double asin(double x) -#else - double asin(x) - double x; -#endif -{ - return (double) asinf((float) x); -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/wf_atan2.c b/newlib/libm/math/wf_atan2.c deleted file mode 100644 index 069a7ca..0000000 --- a/newlib/libm/math/wf_atan2.c +++ /dev/null @@ -1,71 +0,0 @@ -/* wf_atan2.c -- float version of w_atan2.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - * - */ - -/* - * wrapper atan2f(y,x) - */ - -#include "fdlibm.h" -#include <errno.h> - -#ifdef __STDC__ - float atan2f(float y, float x) /* wrapper atan2f */ -#else - float atan2f(y,x) /* wrapper atan2 */ - float y,x; -#endif -{ -#ifdef _IEEE_LIBM - return __ieee754_atan2f(y,x); -#else - float z; - struct exception exc; - z = __ieee754_atan2f(y,x); - if(_LIB_VERSION == _IEEE_||isnanf(x)||isnanf(y)) return z; - if(x==(float)0.0&&y==(float)0.0) { - /* atan2f(+-0,+-0) */ - exc.arg1 = y; - exc.arg2 = x; - exc.err = 0; - exc.type = DOMAIN; - exc.name = "atan2f"; - exc.retval = 0.0; - if(_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - errno = EDOM; - } - if (exc.err != 0) - errno = exc.err; - return (float)exc.retval; - } else - return z; -#endif -} - -#ifdef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double atan2(double y, double x) -#else - double atan2(y,x) - double y,x; -#endif -{ - return (double) atan2f((float) y, (float) x); -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/wf_atanh.c b/newlib/libm/math/wf_atanh.c deleted file mode 100644 index 457cdc6e..0000000 --- a/newlib/libm/math/wf_atanh.c +++ /dev/null @@ -1,83 +0,0 @@ -/* wf_atanh.c -- float version of w_atanh.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ -/* - * wrapper atanhf(x) - */ - -#include "fdlibm.h" -#include <errno.h> - -#ifdef __STDC__ - float atanhf(float x) /* wrapper atanhf */ -#else - float atanhf(x) /* wrapper atanhf */ - float x; -#endif -{ -#ifdef _IEEE_LIBM - return __ieee754_atanhf(x); -#else - float z,y; - struct exception exc; - z = __ieee754_atanhf(x); - if(_LIB_VERSION == _IEEE_ || isnanf(x)) return z; - y = fabsf(x); - if(y>=(float)1.0) { - if(y>(float)1.0) { - /* atanhf(|x|>1) */ - exc.type = DOMAIN; - exc.name = "atanhf"; - exc.err = 0; - exc.arg1 = exc.arg2 = (double)x; - exc.retval = 0.0/0.0; - if (_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - errno = EDOM; - } - } else { - /* atanhf(|x|=1) */ - exc.type = SING; - exc.name = "atanhf"; - exc.err = 0; - exc.arg1 = exc.arg2 = (double)x; - exc.retval = x/0.0; /* sign(x)*inf */ - if (_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - errno = EDOM; - } - } - if (exc.err != 0) - errno = exc.err; - return (float)exc.retval; - } else - return z; -#endif -} - -#ifdef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double atanh(double x) -#else - double atanh(x) - double x; -#endif -{ - return (double) atanhf((float) x); -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/wf_cabs.c b/newlib/libm/math/wf_cabs.c deleted file mode 100644 index c3ed0ca..0000000 --- a/newlib/libm/math/wf_cabs.c +++ /dev/null @@ -1,20 +0,0 @@ -/* - * cabsf() wrapper for hypotf(). - * - * Written by J.T. Conklin, <jtc@wimsey.com> - * Placed into the Public Domain, 1994. - */ - -#include "fdlibm.h" - -struct complex { - float x; - float y; -}; - -float -cabsf(z) - struct complex z; -{ - return hypotf(z.x, z.y); -} diff --git a/newlib/libm/math/wf_cosh.c b/newlib/libm/math/wf_cosh.c deleted file mode 100644 index 82b76f3..0000000 --- a/newlib/libm/math/wf_cosh.c +++ /dev/null @@ -1,78 +0,0 @@ -/* wf_cosh.c -- float version of w_cosh.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* - * wrapper coshf(x) - */ - -#include "fdlibm.h" -#include <errno.h> - -#ifdef __STDC__ - float coshf(float x) /* wrapper coshf */ -#else - float coshf(x) /* wrapper coshf */ - float x; -#endif -{ -#ifdef _IEEE_LIBM - return __ieee754_coshf(x); -#else - float z; - struct exception exc; - z = __ieee754_coshf(x); - if(_LIB_VERSION == _IEEE_ || isnanf(x)) return z; - if(fabsf(x)>(float)8.9415985107e+01) { - /* coshf(finite) overflow */ -#ifndef HUGE_VAL -#define HUGE_VAL inf - double inf = 0.0; - - SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ -#endif - exc.type = OVERFLOW; - exc.name = "coshf"; - exc.err = 0; - exc.arg1 = exc.arg2 = (double)x; - if (_LIB_VERSION == _SVID_) - exc.retval = HUGE; - else - exc.retval = HUGE_VAL; - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - errno = ERANGE; - } - if (exc.err != 0) - errno = exc.err; - return (float)exc.retval; - } else - return z; -#endif -} - -#ifdef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double cosh(double x) -#else - double cosh(x) - double x; -#endif -{ - return (double) coshf((float) x); -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/wf_drem.c b/newlib/libm/math/wf_drem.c deleted file mode 100644 index 7c3f7c5..0000000 --- a/newlib/libm/math/wf_drem.c +++ /dev/null @@ -1,19 +0,0 @@ -/* - * dremf() wrapper for remainderf(). - * - * Written by J.T. Conklin, <jtc@wimsey.com> - * Placed into the Public Domain, 1994. - */ - -#include "fdlibm.h" - -float -#ifdef __STDC__ -dremf(float x, float y) -#else -dremf(x, y) - float x, y; -#endif -{ - return remainderf(x, y); -} diff --git a/newlib/libm/math/wf_exp.c b/newlib/libm/math/wf_exp.c deleted file mode 100644 index 70f4459..0000000 --- a/newlib/libm/math/wf_exp.c +++ /dev/null @@ -1,103 +0,0 @@ -/* wf_exp.c -- float version of w_exp.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* - * wrapper expf(x) - */ - -#include "fdlibm.h" -#include <errno.h> - -#ifdef __STDC__ -static const float -#else -static float -#endif -o_threshold= 8.8721679688e+01, /* 0x42b17180 */ -u_threshold= -1.0397208405e+02; /* 0xc2cff1b5 */ - -#ifdef __STDC__ - float expf(float x) /* wrapper expf */ -#else - float expf(x) /* wrapper expf */ - float x; -#endif -{ -#ifdef _IEEE_LIBM - return __ieee754_expf(x); -#else - float z; - struct exception exc; - z = __ieee754_expf(x); - if(_LIB_VERSION == _IEEE_) return z; - if(finitef(x)) { - if(x>o_threshold) { - /* expf(finite) overflow */ -#ifndef HUGE_VAL -#define HUGE_VAL inf - double inf = 0.0; - - SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ -#endif - exc.type = OVERFLOW; - exc.name = "expf"; - exc.err = 0; - exc.arg1 = exc.arg2 = (double)x; - if (_LIB_VERSION == _SVID_) - exc.retval = HUGE; - else - exc.retval = HUGE_VAL; - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - errno = ERANGE; - } - if (exc.err != 0) - errno = exc.err; - return exc.retval; - } else if(x<u_threshold) { - /* expf(finite) underflow */ - exc.type = UNDERFLOW; - exc.name = "expf"; - exc.err = 0; - exc.arg1 = exc.arg2 = (double)x; - exc.retval = 0.0; - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - errno = ERANGE; - } - if (exc.err != 0) - errno = exc.err; - return exc.retval; - } - } - return z; -#endif -} - -#ifdef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double exp(double x) -#else - double exp(x) - double x; -#endif -{ - return (double) expf((float) x); -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/wf_fmod.c b/newlib/libm/math/wf_fmod.c deleted file mode 100644 index 320daab..0000000 --- a/newlib/libm/math/wf_fmod.c +++ /dev/null @@ -1,73 +0,0 @@ -/* wf_fmod.c -- float version of w_fmod.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* - * wrapper fmodf(x,y) - */ - -#include "fdlibm.h" -#include <errno.h> - -#ifdef __STDC__ - float fmodf(float x, float y) /* wrapper fmodf */ -#else - float fmodf(x,y) /* wrapper fmodf */ - float x,y; -#endif -{ -#ifdef _IEEE_LIBM - return __ieee754_fmodf(x,y); -#else - float z; - struct exception exc; - z = __ieee754_fmodf(x,y); - if(_LIB_VERSION == _IEEE_ ||isnanf(y)||isnanf(x)) return z; - if(y==(float)0.0) { - /* fmodf(x,0) */ - exc.type = DOMAIN; - exc.name = "fmodf"; - exc.err = 0; - exc.arg1 = (double)x; - exc.arg2 = (double)y; - if (_LIB_VERSION == _SVID_) - exc.retval = x; - else - exc.retval = 0.0/0.0; - if (_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - errno = EDOM; - } - if (exc.err != 0) - errno = exc.err; - return (float)exc.retval; - } else - return z; -#endif -} - -#ifdef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double fmod(double x, double y) -#else - double fmod(x,y) - double x,y; -#endif -{ - return (double) fmodf((float) x, (float) y); -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/wf_gamma.c b/newlib/libm/math/wf_gamma.c deleted file mode 100644 index fbeb38a..0000000 --- a/newlib/libm/math/wf_gamma.c +++ /dev/null @@ -1,93 +0,0 @@ -/* wf_gamma.c -- float version of w_gamma.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - * - */ - -#include "fdlibm.h" -#include <reent.h> -#include <errno.h> - -#ifdef __STDC__ - float gammaf(float x) -#else - float gammaf(x) - float x; -#endif -{ -#ifdef _IEEE_LIBM - return __ieee754_gammaf_r(x,&(_REENT->_new._reent._gamma_signgam)); -#else - float y; - struct exception exc; - y = __ieee754_gammaf_r(x,&(_REENT->_new._reent._gamma_signgam)); - if(_LIB_VERSION == _IEEE_) return y; - if(!finitef(y)&&finitef(x)) { -#ifndef HUGE_VAL -#define HUGE_VAL inf - double inf = 0.0; - - SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ -#endif - if(floorf(x)==x&&x<=(float)0.0) { - /* gammaf(-integer) or gammaf(0) */ - exc.type = SING; - exc.name = "gammaf"; - exc.err = 0; - exc.arg1 = exc.arg2 = (double)x; - if (_LIB_VERSION == _SVID_) - exc.retval = HUGE; - else - exc.retval = HUGE_VAL; - if (_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - errno = EDOM; - } - } else { - /* gammaf(finite) overflow */ - exc.type = OVERFLOW; - exc.name = "gammaf"; - exc.err = 0; - exc.arg1 = exc.arg2 = (double)x; - if (_LIB_VERSION == _SVID_) - exc.retval = HUGE; - else - exc.retval = HUGE_VAL; - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - errno = ERANGE; - } - } - if (exc.err != 0) - errno = exc.err; - return (float)exc.retval; - } else - return y; -#endif -} - -#ifdef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double gamma(double x) -#else - double gamma(x) - double x; -#endif -{ - return (double) gammaf((float) x); -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/wf_hypot.c b/newlib/libm/math/wf_hypot.c deleted file mode 100644 index c04ace1..0000000 --- a/newlib/libm/math/wf_hypot.c +++ /dev/null @@ -1,79 +0,0 @@ -/* wf_hypot.c -- float version of w_hypot.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* - * wrapper hypotf(x,y) - */ - -#include "fdlibm.h" -#include <errno.h> - -#ifdef __STDC__ - float hypotf(float x, float y) /* wrapper hypotf */ -#else - float hypotf(x,y) /* wrapper hypotf */ - float x,y; -#endif -{ -#ifdef _IEEE_LIBM - return __ieee754_hypotf(x,y); -#else - float z; - struct exception exc; - z = __ieee754_hypotf(x,y); - if(_LIB_VERSION == _IEEE_) return z; - if((!finitef(z))&&finitef(x)&&finitef(y)) { - /* hypotf(finite,finite) overflow */ -#ifndef HUGE_VAL -#define HUGE_VAL inf - double inf = 0.0; - - SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ -#endif - exc.type = OVERFLOW; - exc.name = "hypotf"; - exc.err = 0; - exc.arg1 = (double)x; - exc.arg2 = (double)y; - if (_LIB_VERSION == _SVID_) - exc.retval = HUGE; - else - exc.retval = HUGE_VAL; - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - errno = ERANGE; - } - if (exc.err != 0) - errno = exc.err; - return (float)exc.retval; - } else - return z; -#endif -} - -#ifdef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double hypot(double x, double y) -#else - double hypot(x,y) - double x,y; -#endif -{ - return (double) hypotf((float) x, (float) y); -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/wf_j0.c b/newlib/libm/math/wf_j0.c deleted file mode 100644 index 0f3a7c1..0000000 --- a/newlib/libm/math/wf_j0.c +++ /dev/null @@ -1,137 +0,0 @@ -/* wf_j0.c -- float version of w_j0.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* - * wrapper j0f(float x), y0f(float x) - */ - -#include "fdlibm.h" -#include <errno.h> - -#ifdef __STDC__ - float j0f(float x) /* wrapper j0f */ -#else - float j0f(x) /* wrapper j0f */ - float x; -#endif -{ -#ifdef _IEEE_LIBM - return __ieee754_j0f(x); -#else - struct exception exc; - float z = __ieee754_j0f(x); - if(_LIB_VERSION == _IEEE_ || isnanf(x)) return z; - if(fabsf(x)>(float)X_TLOSS) { - /* j0f(|x|>X_TLOSS) */ - exc.type = TLOSS; - exc.name = "j0f"; - exc.err = 0; - exc.arg1 = exc.arg2 = (double)x; - exc.retval = 0.0; - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - errno = ERANGE; - } - if (exc.err != 0) - errno = exc.err; - return (float)exc.retval; - } else - return z; -#endif -} - -#ifdef __STDC__ - float y0f(float x) /* wrapper y0f */ -#else - float y0f(x) /* wrapper y0f */ - float x; -#endif -{ -#ifdef _IEEE_LIBM - return __ieee754_y0f(x); -#else - float z; - struct exception exc; - z = __ieee754_y0f(x); - if(_LIB_VERSION == _IEEE_ || isnanf(x) ) return z; - if(x <= (float)0.0){ -#ifndef HUGE_VAL -#define HUGE_VAL inf - double inf = 0.0; - - SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ -#endif - /* y0f(0) = -inf or y0f(x<0) = NaN */ - exc.type = DOMAIN; /* should be SING for IEEE y0f(0) */ - exc.name = "y0f"; - exc.err = 0; - exc.arg1 = exc.arg2 = (double)x; - if (_LIB_VERSION == _SVID_) - exc.retval = -HUGE; - else - exc.retval = -HUGE_VAL; - if (_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - errno = EDOM; - } - if (exc.err != 0) - errno = exc.err; - return (float)exc.retval; - } - if(x>(float)X_TLOSS) { - /* y0f(x>X_TLOSS) */ - exc.type = TLOSS; - exc.name = "y0f"; - exc.err = 0; - exc.arg1 = exc.arg2 = (double)x; - exc.retval = 0.0; - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - errno = ERANGE; - } - if (exc.err != 0) - errno = exc.err; - return (float)exc.retval; - } else - return z; -#endif -} - -#ifdef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double j0(double x) -#else - double j0(x) - double x; -#endif -{ - return (double) j0f((float) x); -} - -#ifdef __STDC__ - double y0(double x) -#else - double y0(x) - double x; -#endif -{ - return (double) y0f((float) x); -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/wf_j1.c b/newlib/libm/math/wf_j1.c deleted file mode 100644 index f9d3e0e..0000000 --- a/newlib/libm/math/wf_j1.c +++ /dev/null @@ -1,139 +0,0 @@ -/* wf_j1.c -- float version of w_j1.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* - * wrapper of j1f,y1f - */ - -#include "fdlibm.h" -#include <errno.h> - - -#ifdef __STDC__ - float j1f(float x) /* wrapper j1f */ -#else - float j1f(x) /* wrapper j1f */ - float x; -#endif -{ -#ifdef _IEEE_LIBM - return __ieee754_j1f(x); -#else - float z; - struct exception exc; - z = __ieee754_j1f(x); - if(_LIB_VERSION == _IEEE_ || isnanf(x) ) return z; - if(fabsf(x)>(float)X_TLOSS) { - /* j1f(|x|>X_TLOSS) */ - exc.type = TLOSS; - exc.name = "j1f"; - exc.err = 0; - exc.arg1 = exc.arg2 = (double)x; - exc.retval = 0.0; - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - errno = ERANGE; - } - if (exc.err != 0) - errno = exc.err; - return exc.retval; - } else - return z; -#endif -} - -#ifdef __STDC__ - float y1f(float x) /* wrapper y1f */ -#else - float y1f(x) /* wrapper y1f */ - float x; -#endif -{ -#ifdef _IEEE_LIBM - return __ieee754_y1f(x); -#else - float z; - struct exception exc; - z = __ieee754_y1f(x); - if(_LIB_VERSION == _IEEE_ || isnanf(x) ) return z; - if(x <= (float)0.0){ - /* y1f(0) = -inf or y1f(x<0) = NaN */ -#ifndef HUGE_VAL -#define HUGE_VAL inf - double inf = 0.0; - - SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ -#endif - exc.type = DOMAIN; /* should be SING for IEEE */ - exc.name = "y1f"; - exc.err = 0; - exc.arg1 = exc.arg2 = (double)x; - if (_LIB_VERSION == _SVID_) - exc.retval = -HUGE; - else - exc.retval = -HUGE_VAL; - if (_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - errno = EDOM; - } - if (exc.err != 0) - errno = exc.err; - return (float)exc.retval; - } - if(x>(float)X_TLOSS) { - /* y1f(x>X_TLOSS) */ - exc.type = TLOSS; - exc.name = "y1f"; - exc.err = 0; - exc.arg1 = exc.arg2 = (double)x; - exc.retval = 0.0; - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - errno = ERANGE; - } - if (exc.err != 0) - errno = exc.err; - return (float)exc.retval; - } else - return z; -#endif -} - -#ifdef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double j1(double x) -#else - double j1(x) - double x; -#endif -{ - return (double) j1f((float) x); -} - -#ifdef __STDC__ - double y1(double x) -#else - double y1(x) - double x; -#endif -{ - return (double) y1f((float) x); -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/wf_jn.c b/newlib/libm/math/wf_jn.c deleted file mode 100644 index c3a5263..0000000 --- a/newlib/libm/math/wf_jn.c +++ /dev/null @@ -1,138 +0,0 @@ -/* wf_jn.c -- float version of w_jn.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -#include "fdlibm.h" -#include <errno.h> - - -#ifdef __STDC__ - float jnf(int n, float x) /* wrapper jnf */ -#else - float jnf(n,x) /* wrapper jnf */ - float x; int n; -#endif -{ -#ifdef _IEEE_LIBM - return __ieee754_jnf(n,x); -#else - float z; - struct exception exc; - z = __ieee754_jnf(n,x); - if(_LIB_VERSION == _IEEE_ || isnanf(x) ) return z; - if(fabsf(x)>(float)X_TLOSS) { - /* jnf(|x|>X_TLOSS) */ - exc.type = TLOSS; - exc.name = "jnf"; - exc.err = 0; - exc.arg1 = (double)n; - exc.arg2 = (double)x; - exc.retval = 0.0; - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - errno = ERANGE; - } - if (exc.err != 0) - errno = exc.err; - return exc.retval; - } else - return z; -#endif -} - -#ifdef __STDC__ - float ynf(int n, float x) /* wrapper ynf */ -#else - float ynf(n,x) /* wrapper ynf */ - float x; int n; -#endif -{ -#ifdef _IEEE_LIBM - return __ieee754_ynf(n,x); -#else - float z; - struct exception exc; - z = __ieee754_ynf(n,x); - if(_LIB_VERSION == _IEEE_ || isnanf(x) ) return z; - if(x <= (float)0.0){ - /* ynf(n,0) = -inf or ynf(x<0) = NaN */ -#ifndef HUGE_VAL -#define HUGE_VAL inf - double inf = 0.0; - - SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ -#endif - exc.type = DOMAIN; /* should be SING for IEEE */ - exc.name = "ynf"; - exc.err = 0; - exc.arg1 = (double)n; - exc.arg2 = (double)x; - if (_LIB_VERSION == _SVID_) - exc.retval = -HUGE; - else - exc.retval = -HUGE_VAL; - if (_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - errno = EDOM; - } - if (exc.err != 0) - errno = exc.err; - return (float)exc.retval; - } - if(x>(float)X_TLOSS) { - /* ynf(x>X_TLOSS) */ - exc.type = TLOSS; - exc.name = "ynf"; - exc.err = 0; - exc.arg1 = (double)n; - exc.arg2 = (double)x; - exc.retval = 0.0; - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - errno = ERANGE; - } - if (exc.err != 0) - errno = exc.err; - return (float)exc.retval; - } else - return z; -#endif -} - -#ifdef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double jn(int n, double x) -#else - double jn(n,x) - double x; int n; -#endif -{ - return (double) jnf(n, (float) x); -} - -#ifdef __STDC__ - double yn(int n, double x) -#else - double yn(n,x) - double x; int n; -#endif -{ - return (double) ynf(n, (float) x); -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/wf_lgamma.c b/newlib/libm/math/wf_lgamma.c deleted file mode 100644 index e1765c4..0000000 --- a/newlib/libm/math/wf_lgamma.c +++ /dev/null @@ -1,87 +0,0 @@ -/* wf_lgamma.c -- float version of w_lgamma.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - * - */ - -#include "fdlibm.h" -#include <reent.h> -#include <errno.h> - -#ifdef __STDC__ - float lgammaf(float x) -#else - float lgammaf(x) - float x; -#endif -{ -#ifdef _IEEE_LIBM - return __ieee754_lgammaf_r(x,&(_REENT->_new._reent._gamma_signgam)); -#else - float y; - struct exception exc; - y = __ieee754_lgammaf_r(x,&(_REENT->_new._reent._gamma_signgam)); - if(_LIB_VERSION == _IEEE_) return y; - if(!finitef(y)&&finitef(x)) { -#ifndef HUGE_VAL -#define HUGE_VAL inf - double inf = 0.0; - - SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ -#endif - exc.name = "lgammaf"; - exc.err = 0; - exc.arg1 = exc.arg2 = (double)x; - if (_LIB_VERSION == _SVID_) - exc.retval = HUGE; - else - exc.retval = HUGE_VAL; - if(floorf(x)==x&&x<=(float)0.0) { - /* lgammaf(-integer) */ - exc.type = SING; - if (_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - errno = EDOM; - } - - } else { - /* lgammaf(finite) overflow */ - exc.type = OVERFLOW; - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - errno = ERANGE; - } - } - if (exc.err != 0) - errno = exc.err; - return (float)exc.retval; - } else - return y; -#endif -} - -#ifdef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double lgamma(double x) -#else - double lgamma(x) - double x; -#endif -{ - return (double) lgammaf((float) x); -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/wf_log.c b/newlib/libm/math/wf_log.c deleted file mode 100644 index cd373b4..0000000 --- a/newlib/libm/math/wf_log.c +++ /dev/null @@ -1,85 +0,0 @@ -/* wf_log.c -- float version of w_log.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* - * wrapper logf(x) - */ - -#include "fdlibm.h" -#include <errno.h> - -#ifdef __STDC__ - float logf(float x) /* wrapper logf */ -#else - float logf(x) /* wrapper logf */ - float x; -#endif -{ -#ifdef _IEEE_LIBM - return __ieee754_logf(x); -#else - float z; - struct exception exc; - z = __ieee754_logf(x); - if(_LIB_VERSION == _IEEE_ || isnanf(x) || x > (float)0.0) return z; -#ifndef HUGE_VAL -#define HUGE_VAL inf - double inf = 0.0; - - SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ -#endif - exc.name = "logf"; - exc.err = 0; - exc.arg1 = exc.arg2 = (double)x; - if (_LIB_VERSION == _SVID_) - exc.retval = -HUGE; - else - exc.retval = -HUGE_VAL; - if(x==(float)0.0) { - /* logf(0) */ - exc.type = SING; - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - errno = EDOM; - } - } else { - /* logf(x<0) */ - exc.type = DOMAIN; - if (_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - errno = EDOM; - } - } - if (exc.err != 0) - errno = exc.err; - return (float)exc.retval; -#endif -} - -#ifdef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double log(double x) -#else - double log(x) - double x; -#endif -{ - return (double) logf((float) x); -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/wf_log10.c b/newlib/libm/math/wf_log10.c deleted file mode 100644 index 15fa5d9..0000000 --- a/newlib/libm/math/wf_log10.c +++ /dev/null @@ -1,88 +0,0 @@ -/* wf_log10.c -- float version of w_log10.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* - * wrapper log10f(X) - */ - -#include "fdlibm.h" -#include <errno.h> - -#ifdef __STDC__ - float log10f(float x) /* wrapper log10f */ -#else - float log10f(x) /* wrapper log10f */ - float x; -#endif -{ -#ifdef _IEEE_LIBM - return __ieee754_log10f(x); -#else - float z; - struct exception exc; - z = __ieee754_log10f(x); - if(_LIB_VERSION == _IEEE_ || isnanf(x)) return z; - if(x<=(float)0.0) { -#ifndef HUGE_VAL -#define HUGE_VAL inf - double inf = 0.0; - - SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ -#endif - exc.name = "log10f"; - exc.err = 0; - exc.arg1 = exc.arg2 = (double)x; - if (_LIB_VERSION == _SVID_) - exc.retval = -HUGE; - else - exc.retval = -HUGE_VAL; - if(x==(float)0.0) { - /* log10f(0) */ - exc.type = SING; - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - errno = EDOM; - } - } else { - /* log10f(x<0) */ - exc.type = DOMAIN; - if (_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - errno = EDOM; - } - } - if (exc.err != 0) - errno = exc.err; - return (float)exc.retval; - } else - return z; -#endif -} - -#ifdef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double log10(double x) -#else - double log10(x) - double x; -#endif -{ - return (double) log10f((float) x); -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/wf_pow.c b/newlib/libm/math/wf_pow.c deleted file mode 100644 index 42655da..0000000 --- a/newlib/libm/math/wf_pow.c +++ /dev/null @@ -1,179 +0,0 @@ -/* wf_pow.c -- float version of w_pow.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* - * wrapper powf(x,y) return x**y - */ - -#include "fdlibm.h" -#include <errno.h> - -#ifdef __STDC__ - float powf(float x, float y) /* wrapper powf */ -#else - float powf(x,y) /* wrapper powf */ - float x,y; -#endif -{ -#ifdef _IEEE_LIBM - return __ieee754_powf(x,y); -#else - float z; - struct exception exc; - z=__ieee754_powf(x,y); - if(_LIB_VERSION == _IEEE_|| isnanf(y)) return z; - if(isnanf(x)) { - if(y==(float)0.0) { - /* powf(NaN,0.0) */ - /* error only if _LIB_VERSION == _SVID_ & _XOPEN_ */ - exc.type = DOMAIN; - exc.name = "powf"; - exc.err = 0; - exc.arg1 = (double)x; - exc.arg2 = (double)y; - exc.retval = x; - if (_LIB_VERSION == _IEEE_ || - _LIB_VERSION == _POSIX_) exc.retval = 1.0; - else if (!matherr(&exc)) { - errno = EDOM; - } - if (exc.err != 0) - errno = exc.err; - return (float)exc.retval; - } else - return z; - } - if(x==(float)0.0){ - if(y==(float)0.0) { - /* powf(0.0,0.0) */ - /* error only if _LIB_VERSION == _SVID_ */ - exc.type = DOMAIN; - exc.name = "powf"; - exc.err = 0; - exc.arg1 = (double)x; - exc.arg2 = (double)y; - exc.retval = 0.0; - if (_LIB_VERSION != _SVID_) exc.retval = 1.0; - else if (!matherr(&exc)) { - errno = EDOM; - } - if (exc.err != 0) - errno = exc.err; - return (float)exc.retval; - } - if(finitef(y)&&y<(float)0.0) { - /* 0**neg */ - exc.type = DOMAIN; - exc.name = "powf"; - exc.err = 0; - exc.arg1 = (double)x; - exc.arg2 = (double)y; - if (_LIB_VERSION == _SVID_) - exc.retval = 0.0; - else - exc.retval = -HUGE_VAL; - if (_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - errno = EDOM; - } - if (exc.err != 0) - errno = exc.err; - return (float)exc.retval; - } - return z; - } - if(!finitef(z)) { - if(finitef(x)&&finitef(y)) { - if(isnanf(z)) { - /* neg**non-integral */ - exc.type = DOMAIN; - exc.name = "powf"; - exc.err = 0; - exc.arg1 = (double)x; - exc.arg2 = (double)y; - if (_LIB_VERSION == _SVID_) - exc.retval = 0.0; - else - exc.retval = 0.0/0.0; /* X/Open allow NaN */ - if (_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - errno = EDOM; - } - if (exc.err != 0) - errno = exc.err; - return (float)exc.retval; - } else { - /* powf(x,y) overflow */ - exc.type = OVERFLOW; - exc.name = "powf"; - exc.err = 0; - exc.arg1 = (double)x; - exc.arg2 = (double)y; - if (_LIB_VERSION == _SVID_) { - exc.retval = HUGE; - y *= 0.5; - if(x<0.0&&rint(y)!=y) exc.retval = -HUGE; - } else { - exc.retval = HUGE_VAL; - y *= 0.5; - if(x<0.0&&rint(y)!=y) exc.retval = -HUGE_VAL; - } - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - errno = ERANGE; - } - if (exc.err != 0) - errno = exc.err; - return (float)exc.retval; - } - } - } - if(z==(float)0.0&&finitef(x)&&finitef(y)) { - /* powf(x,y) underflow */ - exc.type = UNDERFLOW; - exc.name = "powf"; - exc.err = 0; - exc.arg1 = (double)x; - exc.arg2 = (double)y; - exc.retval = 0.0; - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - errno = ERANGE; - } - if (exc.err != 0) - errno = exc.err; - return (float)exc.retval; - } - return z; -#endif -} - -#ifdef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double pow(double x, double y) -#else - double pow(x,y) - double x,y; -#endif -{ - return (double) powf((float) x, (float) y); -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/wf_remainder.c b/newlib/libm/math/wf_remainder.c deleted file mode 100644 index 0071a97..0000000 --- a/newlib/libm/math/wf_remainder.c +++ /dev/null @@ -1,74 +0,0 @@ -/* wf_remainder.c -- float version of w_remainder.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* - * wrapper remainderf(x,p) - */ - -#include "fdlibm.h" -#include <errno.h> - -#ifdef __STDC__ - float remainderf(float x, float y) /* wrapper remainder */ -#else - float remainderf(x,y) /* wrapper remainder */ - float x,y; -#endif -{ -#ifdef _IEEE_LIBM - return __ieee754_remainderf(x,y); -#else - float z; - struct exception exc; - z = __ieee754_remainderf(x,y); - if(_LIB_VERSION == _IEEE_ || isnanf(y)) return z; - if(y==(float)0.0) { - /* remainderf(x,0) */ - exc.type = DOMAIN; - exc.name = "remainderf"; - exc.err = 0; - exc.arg1 = (double)x; - exc.arg2 = (double)y; - exc.retval = 0.0/0.0; - if (_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - errno = EDOM; - } - if (exc.err != 0) - errno = exc.err; - return (float)exc.retval; - } else - return z; -#endif -} - -#ifdef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double remainder(double x, double y) -#else - double remainder(x,y) - double x,y; -#endif -{ - return (double) remainderf((float) x, (float) y); -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ - - - - diff --git a/newlib/libm/math/wf_scalb.c b/newlib/libm/math/wf_scalb.c deleted file mode 100644 index bd2d9f8..0000000 --- a/newlib/libm/math/wf_scalb.c +++ /dev/null @@ -1,118 +0,0 @@ -/* wf_scalb.c -- float version of w_scalb.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* - * wrapper scalbf(float x, float fn) is provide for - * passing various standard test suite. One - * should use scalbn() instead. - */ - -#include "fdlibm.h" -#include <errno.h> - -#ifdef __STDC__ -#ifdef _SCALB_INT - float scalbf(float x, int fn) /* wrapper scalbf */ -#else - float scalbf(float x, float fn) /* wrapper scalbf */ -#endif -#else - float scalbf(x,fn) /* wrapper scalbf */ -#ifdef _SCALB_INT - float x; int fn; -#else - float x,fn; -#endif -#endif -{ -#ifdef _IEEE_LIBM - return __ieee754_scalbf(x,fn); -#else - float z; -#ifndef HUGE_VAL -#define HUGE_VAL inf - double inf = 0.0; - - SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ -#endif - struct exception exc; - z = __ieee754_scalbf(x,fn); - if(_LIB_VERSION == _IEEE_) return z; - if(!(finitef(z)||isnanf(z))&&finitef(x)) { - /* scalbf overflow; SVID also returns +-HUGE_VAL */ - exc.type = OVERFLOW; - exc.name = "scalbf"; - exc.err = 0; - exc.arg1 = (double)x; - exc.arg2 = (double)fn; - exc.retval = x > 0.0 ? HUGE_VAL : -HUGE_VAL; - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - errno = ERANGE; - } - if (exc.err != 0) - errno = exc.err; - return exc.retval; - } - if(z==(float)0.0&&z!=x) { - /* scalbf underflow */ - exc.type = UNDERFLOW; - exc.name = "scalbf"; - exc.err = 0; - exc.arg1 = (double)x; - exc.arg2 = (double)fn; - exc.retval = copysign(0.0,x); - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - errno = ERANGE; - } - if (exc.err != 0) - errno = exc.err; - return exc.retval; - } -#ifndef _SCALB_INT - if(!finitef(fn)) errno = ERANGE; -#endif - return z; -#endif -} - -#ifdef _DOUBLE_IS_32BITS - -#ifdef __STDC__ -#ifdef _SCALB_INT - double scalb(double x, int fn) -#else - double scalb(double x, double fn) -#endif -#else - double scalb(x, fn) -#ifdef _SCALB_INT - double x; int fn; -#else - double x,fn; -#endif -#endif -{ -#ifdef _SCALB_INT - return (double) scalbf((float) x, fn); -#else - return (double) scalbf((float) x, (float) fn); -#endif -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/wf_sinh.c b/newlib/libm/math/wf_sinh.c deleted file mode 100644 index 80c7a8e..0000000 --- a/newlib/libm/math/wf_sinh.c +++ /dev/null @@ -1,78 +0,0 @@ -/* wf_sinh.c -- float version of w_sinh.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* - * wrapper sinhf(x) - */ - -#include "fdlibm.h" -#include <errno.h> - -#ifdef __STDC__ - float sinhf(float x) /* wrapper sinhf */ -#else - float sinhf(x) /* wrapper sinhf */ - float x; -#endif -{ -#ifdef _IEEE_LIBM - return __ieee754_sinhf(x); -#else - float z; - struct exception exc; - z = __ieee754_sinhf(x); - if(_LIB_VERSION == _IEEE_) return z; - if(!finitef(z)&&finitef(x)) { - /* sinhf(finite) overflow */ -#ifndef HUGE_VAL -#define HUGE_VAL inf - double inf = 0.0; - - SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ -#endif - exc.type = OVERFLOW; - exc.name = "sinhf"; - exc.err = 0; - exc.arg1 = exc.arg2 = (double)x; - if (_LIB_VERSION == _SVID_) - exc.retval = ( (x>0.0) ? HUGE : -HUGE); - else - exc.retval = ( (x>0.0) ? HUGE_VAL : -HUGE_VAL); - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - errno = ERANGE; - } - if (exc.err != 0) - errno = exc.err; - return (float)exc.retval; - } else - return z; -#endif -} - -#ifdef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double sinh(double x) -#else - double sinh(x) - double x; -#endif -{ - return (double) sinhf((float) x); -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/wf_sqrt.c b/newlib/libm/math/wf_sqrt.c deleted file mode 100644 index 6e792c9..0000000 --- a/newlib/libm/math/wf_sqrt.c +++ /dev/null @@ -1,72 +0,0 @@ -/* wf_sqrt.c -- float version of w_sqrt.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* - * wrapper sqrtf(x) - */ - -#include "fdlibm.h" -#include <errno.h> - -#ifdef __STDC__ - float sqrtf(float x) /* wrapper sqrtf */ -#else - float sqrtf(x) /* wrapper sqrtf */ - float x; -#endif -{ -#ifdef _IEEE_LIBM - return __ieee754_sqrtf(x); -#else - float z; - struct exception exc; - z = __ieee754_sqrtf(x); - if(_LIB_VERSION == _IEEE_ || isnanf(x)) return z; - if(x<(float)0.0) { - /* sqrtf(negative) */ - exc.type = DOMAIN; - exc.name = "sqrtf"; - exc.err = 0; - exc.arg1 = exc.arg2 = (double)x; - if (_LIB_VERSION == _SVID_) - exc.retval = 0.0; - else - exc.retval = 0.0/0.0; - if (_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - errno = EDOM; - } - if (exc.err != 0) - errno = exc.err; - return (float)exc.retval; - } else - return z; -#endif -} - -#ifdef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double sqrt(double x) -#else - double sqrt(x) - double x; -#endif -{ - return (double) sqrtf((float) x); -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/wr_gamma.c b/newlib/libm/math/wr_gamma.c deleted file mode 100644 index 0092ed0..0000000 --- a/newlib/libm/math/wr_gamma.c +++ /dev/null @@ -1,76 +0,0 @@ - -/* @(#)wr_gamma.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* - * wrapper double gamma_r(double x, int *signgamp) - */ - -#include "fdlibm.h" -#include <errno.h> - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double gamma_r(double x, int *signgamp) /* wrapper lgamma_r */ -#else - double gamma_r(x,signgamp) /* wrapper lgamma_r */ - double x; int *signgamp; -#endif -{ -#ifdef _IEEE_LIBM - return __ieee754_gamma_r(x,signgamp); -#else - double y; - struct exception exc; - y = __ieee754_gamma_r(x,signgamp); - if(_LIB_VERSION == _IEEE_) return y; - if(!finite(y)&&finite(x)) { -#ifndef HUGE_VAL -#define HUGE_VAL inf - double inf = 0.0; - - SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ -#endif - exc.name = "gamma"; - exc.err = 0; - exc.arg1 = exc.arg2 = (double)x; - if (_LIB_VERSION == _SVID_) - exc.retval = HUGE; - else - exc.retval = HUGE_VAL; - if(floor(x)==x&&x<=0.0) { - /* gamma(-integer) or gamma(0) */ - exc.type = SING; - if (_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - errno = EDOM; - } - } else { - /* gamma(finite) overflow */ - exc.type = OVERFLOW; - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - errno = ERANGE; - } - } - if (exc.err != 0) - errno = exc.err; - return exc.retval; - } else - return y; -#endif -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/wr_lgamma.c b/newlib/libm/math/wr_lgamma.c deleted file mode 100644 index c59c1cc..0000000 --- a/newlib/libm/math/wr_lgamma.c +++ /dev/null @@ -1,77 +0,0 @@ - -/* @(#)wr_lgamma.c 5.1 93/09/24 */ -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* - * wrapper double lgamma_r(double x, int *signgamp) - */ - -#include "fdlibm.h" -#include <errno.h> - -#ifndef _DOUBLE_IS_32BITS - -#ifdef __STDC__ - double lgamma_r(double x, int *signgamp) /* wrapper lgamma_r */ -#else - double lgamma_r(x,signgamp) /* wrapper lgamma_r */ - double x; int *signgamp; -#endif -{ -#ifdef _IEEE_LIBM - return __ieee754_lgamma_r(x,signgamp); -#else - double y; - struct exception exc; - y = __ieee754_lgamma_r(x,signgamp); - if(_LIB_VERSION == _IEEE_) return y; - if(!finite(y)&&finite(x)) { -#ifndef HUGE_VAL -#define HUGE_VAL inf - double inf = 0.0; - - SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ -#endif - exc.name = "lgamma"; - exc.err = 0; - exc.arg1 = exc.arg2 = (double)x; - if (_LIB_VERSION == _SVID_) - exc.retval = HUGE; - else - exc.retval = HUGE_VAL; - if(floor(x)==x&&x<=0.0) { - /* lgamma(-integer) */ - exc.type = SING; - if (_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - errno = EDOM; - } - - } else { - /* lgamma(finite) overflow */ - exc.type = OVERFLOW; - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - errno = ERANGE; - } - } - if (exc.err != 0) - errno = exc.err; - return exc.retval; - } else - return y; -#endif -} - -#endif /* defined(_DOUBLE_IS_32BITS) */ diff --git a/newlib/libm/math/wrf_gamma.c b/newlib/libm/math/wrf_gamma.c deleted file mode 100644 index ae285f5..0000000 --- a/newlib/libm/math/wrf_gamma.c +++ /dev/null @@ -1,74 +0,0 @@ -/* wrf_gamma.c -- float version of wr_gamma.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* - * wrapper float gammaf_r(float x, int *signgamp) - */ - -#include "fdlibm.h" -#include <errno.h> - -#ifdef __STDC__ - float gammaf_r(float x, int *signgamp) /* wrapper lgammaf_r */ -#else - float gammaf_r(x,signgamp) /* wrapper lgammaf_r */ - float x; int *signgamp; -#endif -{ -#ifdef _IEEE_LIBM - return __ieee754_gammaf_r(x,signgamp); -#else - float y; - struct exception exc; - y = __ieee754_gammaf_r(x,signgamp); - if(_LIB_VERSION == _IEEE_) return y; - if(!finitef(y)&&finitef(x)) { -#ifndef HUGE_VAL -#define HUGE_VAL inf - double inf = 0.0; - - SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ -#endif - exc.name = "gammaf"; - exc.err = 0; - exc.arg1 = exc.arg2 = (double)x; - if (_LIB_VERSION == _SVID_) - exc.retval = HUGE; - else - exc.retval = HUGE_VAL; - if(floorf(x)==x&&x<=(float)0.0) { - /* gammaf(-integer) or gamma(0) */ - exc.type = SING; - if (_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - errno = EDOM; - } - } else { - /* gammaf(finite) overflow */ - exc.type = OVERFLOW; - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - errno = ERANGE; - } - } - if (exc.err != 0) - errno = exc.err; - return (float)exc.retval; - } else - return y; -#endif -} diff --git a/newlib/libm/math/wrf_lgamma.c b/newlib/libm/math/wrf_lgamma.c deleted file mode 100644 index 73985e2..0000000 --- a/newlib/libm/math/wrf_lgamma.c +++ /dev/null @@ -1,75 +0,0 @@ -/* wrf_lgamma.c -- float version of wr_lgamma.c. - * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. - */ - -/* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunPro, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - -/* - * wrapper float lgammaf_r(float x, int *signgamp) - */ - -#include "fdlibm.h" -#include <errno.h> - -#ifdef __STDC__ - float lgammaf_r(float x, int *signgamp) /* wrapper lgammaf_r */ -#else - float lgammaf_r(x,signgamp) /* wrapper lgammaf_r */ - float x; int *signgamp; -#endif -{ -#ifdef _IEEE_LIBM - return __ieee754_lgammaf_r(x,signgamp); -#else - float y; - struct exception exc; - y = __ieee754_lgammaf_r(x,signgamp); - if(_LIB_VERSION == _IEEE_) return y; - if(!finitef(y)&&finitef(x)) { -#ifndef HUGE_VAL -#define HUGE_VAL inf - double inf = 0.0; - - SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */ -#endif - exc.name = "lgammaf"; - exc.err = 0; - exc.arg1 = exc.arg2 = (double)x; - if (_LIB_VERSION == _SVID_) - exc.retval = HUGE; - else - exc.retval = HUGE_VAL; - if(floorf(x)==x&&x<=(float)0.0) { - /* lgammaf(-integer) or lgamma(0) */ - exc.type = SING; - if (_LIB_VERSION == _POSIX_) - errno = EDOM; - else if (!matherr(&exc)) { - errno = EDOM; - } - - } else { - /* lgammaf(finite) overflow */ - exc.type = OVERFLOW; - if (_LIB_VERSION == _POSIX_) - errno = ERANGE; - else if (!matherr(&exc)) { - errno = ERANGE; - } - } - if (exc.err != 0) - errno = exc.err; - return (float)exc.retval; - } else - return y; -#endif -} |