1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
|
//===- IR2VecTest.cpp - Unit tests for IR2Vec -----------------------------==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/IR2Vec.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/JSON.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include <map>
#include <vector>
using namespace llvm;
using namespace ir2vec;
using namespace ::testing;
namespace {
class TestableEmbedder : public Embedder {
public:
TestableEmbedder(const Function &F, const Vocab &V) : Embedder(F, V) {}
void computeEmbeddings() const override {}
void computeEmbeddings(const BasicBlock &BB) const override {}
using Embedder::lookupVocab;
};
TEST(EmbeddingTest, ConstructorsAndAccessors) {
// Default constructor
{
Embedding E;
EXPECT_TRUE(E.empty());
EXPECT_EQ(E.size(), 0u);
}
// Constructor with const std::vector<double>&
{
std::vector<double> Data = {1.0, 2.0, 3.0};
Embedding E(Data);
EXPECT_FALSE(E.empty());
ASSERT_THAT(E, SizeIs(3u));
EXPECT_THAT(E.getData(), ElementsAre(1.0, 2.0, 3.0));
EXPECT_EQ(E[0], 1.0);
EXPECT_EQ(E[1], 2.0);
EXPECT_EQ(E[2], 3.0);
}
// Constructor with std::vector<double>&&
{
Embedding E(std::vector<double>({4.0, 5.0}));
ASSERT_THAT(E, SizeIs(2u));
EXPECT_THAT(E.getData(), ElementsAre(4.0, 5.0));
}
// Constructor with std::initializer_list<double>
{
Embedding E({6.0, 7.0, 8.0, 9.0});
ASSERT_THAT(E, SizeIs(4u));
EXPECT_THAT(E.getData(), ElementsAre(6.0, 7.0, 8.0, 9.0));
EXPECT_EQ(E[0], 6.0);
E[0] = 6.5;
EXPECT_EQ(E[0], 6.5);
}
// Constructor with size_t
{
Embedding E(5);
ASSERT_THAT(E, SizeIs(5u));
EXPECT_THAT(E.getData(), ElementsAre(0.0, 0.0, 0.0, 0.0, 0.0));
}
// Constructor with size_t and double
{
Embedding E(5, 1.5);
ASSERT_THAT(E, SizeIs(5u));
EXPECT_THAT(E.getData(), ElementsAre(1.5, 1.5, 1.5, 1.5, 1.5));
}
// Test iterators
{
Embedding E({6.5, 7.0, 8.0, 9.0});
std::vector<double> VecE;
for (double Val : E) {
VecE.push_back(Val);
}
EXPECT_THAT(VecE, ElementsAre(6.5, 7.0, 8.0, 9.0));
const Embedding CE = E;
std::vector<double> VecCE;
for (const double &Val : CE) {
VecCE.push_back(Val);
}
EXPECT_THAT(VecCE, ElementsAre(6.5, 7.0, 8.0, 9.0));
EXPECT_EQ(*E.begin(), 6.5);
EXPECT_EQ(*(E.end() - 1), 9.0);
EXPECT_EQ(*CE.cbegin(), 6.5);
EXPECT_EQ(*(CE.cend() - 1), 9.0);
}
}
TEST(EmbeddingTest, AddVectorsOutOfPlace) {
Embedding E1 = {1.0, 2.0, 3.0};
Embedding E2 = {0.5, 1.5, -1.0};
Embedding E3 = E1 + E2;
EXPECT_THAT(E3, ElementsAre(1.5, 3.5, 2.0));
// Check that E1 and E2 are unchanged
EXPECT_THAT(E1, ElementsAre(1.0, 2.0, 3.0));
EXPECT_THAT(E2, ElementsAre(0.5, 1.5, -1.0));
}
TEST(EmbeddingTest, AddVectors) {
Embedding E1 = {1.0, 2.0, 3.0};
Embedding E2 = {0.5, 1.5, -1.0};
E1 += E2;
EXPECT_THAT(E1, ElementsAre(1.5, 3.5, 2.0));
// Check that E2 is unchanged
EXPECT_THAT(E2, ElementsAre(0.5, 1.5, -1.0));
}
TEST(EmbeddingTest, SubtractVectorsOutOfPlace) {
Embedding E1 = {1.0, 2.0, 3.0};
Embedding E2 = {0.5, 1.5, -1.0};
Embedding E3 = E1 - E2;
EXPECT_THAT(E3, ElementsAre(0.5, 0.5, 4.0));
// Check that E1 and E2 are unchanged
EXPECT_THAT(E1, ElementsAre(1.0, 2.0, 3.0));
EXPECT_THAT(E2, ElementsAre(0.5, 1.5, -1.0));
}
TEST(EmbeddingTest, SubtractVectors) {
Embedding E1 = {1.0, 2.0, 3.0};
Embedding E2 = {0.5, 1.5, -1.0};
E1 -= E2;
EXPECT_THAT(E1, ElementsAre(0.5, 0.5, 4.0));
// Check that E2 is unchanged
EXPECT_THAT(E2, ElementsAre(0.5, 1.5, -1.0));
}
TEST(EmbeddingTest, ScaleVector) {
Embedding E1 = {1.0, 2.0, 3.0};
E1 *= 0.5f;
EXPECT_THAT(E1, ElementsAre(0.5, 1.0, 1.5));
}
TEST(EmbeddingTest, ScaleVectorOutOfPlace) {
Embedding E1 = {1.0, 2.0, 3.0};
Embedding E2 = E1 * 0.5f;
EXPECT_THAT(E2, ElementsAre(0.5, 1.0, 1.5));
// Check that E1 is unchanged
EXPECT_THAT(E1, ElementsAre(1.0, 2.0, 3.0));
}
TEST(EmbeddingTest, AddScaledVector) {
Embedding E1 = {1.0, 2.0, 3.0};
Embedding E2 = {2.0, 0.5, -1.0};
E1.scaleAndAdd(E2, 0.5f);
EXPECT_THAT(E1, ElementsAre(2.0, 2.25, 2.5));
// Check that E2 is unchanged
EXPECT_THAT(E2, ElementsAre(2.0, 0.5, -1.0));
}
TEST(EmbeddingTest, ApproximatelyEqual) {
Embedding E1 = {1.0, 2.0, 3.0};
Embedding E2 = {1.0000001, 2.0000001, 3.0000001};
EXPECT_TRUE(E1.approximatelyEquals(E2)); // Diff = 1e-7
Embedding E3 = {1.00002, 2.00002, 3.00002}; // Diff = 2e-5
EXPECT_FALSE(E1.approximatelyEquals(E3, 1e-6));
EXPECT_TRUE(E1.approximatelyEquals(E3, 3e-5));
Embedding E_clearly_within = {1.0000005, 2.0000005, 3.0000005}; // Diff = 5e-7
EXPECT_TRUE(E1.approximatelyEquals(E_clearly_within));
Embedding E_clearly_outside = {1.00001, 2.00001, 3.00001}; // Diff = 1e-5
EXPECT_FALSE(E1.approximatelyEquals(E_clearly_outside, 1e-6));
Embedding E4 = {1.0, 2.0, 3.5}; // Large diff
EXPECT_FALSE(E1.approximatelyEquals(E4, 0.01));
Embedding E5 = {1.0, 2.0, 3.0};
EXPECT_TRUE(E1.approximatelyEquals(E5, 0.0));
EXPECT_TRUE(E1.approximatelyEquals(E5));
}
#if GTEST_HAS_DEATH_TEST
#ifndef NDEBUG
TEST(EmbeddingTest, AccessOutOfBounds) {
Embedding E = {1.0, 2.0, 3.0};
EXPECT_DEATH(E[3], "Index out of bounds");
EXPECT_DEATH(E[-1], "Index out of bounds");
EXPECT_DEATH(E[4] = 4.0, "Index out of bounds");
}
TEST(EmbeddingTest, MismatchedDimensionsAddVectorsOutOfPlace) {
Embedding E1 = {1.0, 2.0};
Embedding E2 = {1.0};
EXPECT_DEATH(E1 + E2, "Vectors must have the same dimension");
}
TEST(EmbeddingTest, MismatchedDimensionsAddVectors) {
Embedding E1 = {1.0, 2.0};
Embedding E2 = {1.0};
EXPECT_DEATH(E1 += E2, "Vectors must have the same dimension");
}
TEST(EmbeddingTest, MismatchedDimensionsSubtractVectors) {
Embedding E1 = {1.0, 2.0};
Embedding E2 = {1.0};
EXPECT_DEATH(E1 -= E2, "Vectors must have the same dimension");
}
TEST(EmbeddingTest, MismatchedDimensionsAddScaledVector) {
Embedding E1 = {1.0, 2.0};
Embedding E2 = {1.0};
EXPECT_DEATH(E1.scaleAndAdd(E2, 1.0f),
"Vectors must have the same dimension");
}
TEST(EmbeddingTest, MismatchedDimensionsApproximatelyEqual) {
Embedding E1 = {1.0, 2.0};
Embedding E2 = {1.010};
EXPECT_DEATH(E1.approximatelyEquals(E2),
"Vectors must have the same dimension");
}
#endif // NDEBUG
#endif // GTEST_HAS_DEATH_TEST
TEST(IR2VecTest, CreateSymbolicEmbedder) {
Vocab V = {{"foo", {1.0, 2.0}}};
LLVMContext Ctx;
Module M("M", Ctx);
FunctionType *FTy = FunctionType::get(Type::getVoidTy(Ctx), false);
Function *F = Function::Create(FTy, Function::ExternalLinkage, "f", M);
auto Emb = Embedder::create(IR2VecKind::Symbolic, *F, V);
EXPECT_NE(Emb, nullptr);
}
TEST(IR2VecTest, CreateInvalidMode) {
Vocab V = {{"foo", {1.0, 2.0}}};
LLVMContext Ctx;
Module M("M", Ctx);
FunctionType *FTy = FunctionType::get(Type::getVoidTy(Ctx), false);
Function *F = Function::Create(FTy, Function::ExternalLinkage, "f", M);
// static_cast an invalid int to IR2VecKind
auto Result = Embedder::create(static_cast<IR2VecKind>(-1), *F, V);
EXPECT_FALSE(static_cast<bool>(Result));
}
TEST(IR2VecTest, LookupVocab) {
Vocab V = {{"foo", {1.0, 2.0}}, {"bar", {3.0, 4.0}}};
LLVMContext Ctx;
Module M("M", Ctx);
FunctionType *FTy = FunctionType::get(Type::getVoidTy(Ctx), false);
Function *F = Function::Create(FTy, Function::ExternalLinkage, "f", M);
TestableEmbedder E(*F, V);
auto V_foo = E.lookupVocab("foo");
EXPECT_EQ(V_foo.size(), 2u);
EXPECT_THAT(V_foo, ElementsAre(1.0, 2.0));
auto V_missing = E.lookupVocab("missing");
EXPECT_EQ(V_missing.size(), 2u);
EXPECT_THAT(V_missing, ElementsAre(0.0, 0.0));
}
TEST(IR2VecTest, ZeroDimensionEmbedding) {
Embedding E1;
Embedding E2;
// Should be no-op, but not crash
E1 += E2;
E1 -= E2;
E1.scaleAndAdd(E2, 1.0f);
EXPECT_TRUE(E1.empty());
}
TEST(IR2VecTest, IR2VecVocabResultValidity) {
// Default constructed is invalid
IR2VecVocabResult invalidResult;
EXPECT_FALSE(invalidResult.isValid());
#if GTEST_HAS_DEATH_TEST
#ifndef NDEBUG
EXPECT_DEATH(invalidResult.getVocabulary(), "IR2Vec Vocabulary is invalid");
EXPECT_DEATH(invalidResult.getDimension(), "IR2Vec Vocabulary is invalid");
#endif // NDEBUG
#endif // GTEST_HAS_DEATH_TEST
// Valid vocab
Vocab V = {{"foo", {1.0, 2.0}}, {"bar", {3.0, 4.0}}};
IR2VecVocabResult validResult(std::move(V));
EXPECT_TRUE(validResult.isValid());
EXPECT_EQ(validResult.getDimension(), 2u);
}
// Fixture for IR2Vec tests requiring IR setup.
class IR2VecTestFixture : public ::testing::Test {
protected:
Vocab V;
LLVMContext Ctx;
std::unique_ptr<Module> M;
Function *F = nullptr;
BasicBlock *BB = nullptr;
Instruction *AddInst = nullptr;
Instruction *RetInst = nullptr;
void SetUp() override {
V = {{"add", {1.0, 2.0}},
{"integerTy", {0.25, 0.25}},
{"constant", {0.04, 0.06}},
{"variable", {0.0, 0.0}},
{"unknownTy", {0.0, 0.0}}};
// Setup IR
M = std::make_unique<Module>("TestM", Ctx);
FunctionType *FTy = FunctionType::get(
Type::getInt32Ty(Ctx), {Type::getInt32Ty(Ctx), Type::getInt32Ty(Ctx)},
false);
F = Function::Create(FTy, Function::ExternalLinkage, "f", M.get());
BB = BasicBlock::Create(Ctx, "entry", F);
Argument *Arg = F->getArg(0);
llvm::Value *Const = ConstantInt::get(Type::getInt32Ty(Ctx), 42);
AddInst = BinaryOperator::CreateAdd(Arg, Const, "add", BB);
RetInst = ReturnInst::Create(Ctx, AddInst, BB);
}
};
TEST_F(IR2VecTestFixture, GetInstVecMap) {
auto Emb = Embedder::create(IR2VecKind::Symbolic, *F, V);
ASSERT_TRUE(static_cast<bool>(Emb));
const auto &InstMap = Emb->getInstVecMap();
EXPECT_EQ(InstMap.size(), 2u);
EXPECT_TRUE(InstMap.count(AddInst));
EXPECT_TRUE(InstMap.count(RetInst));
EXPECT_EQ(InstMap.at(AddInst).size(), 2u);
EXPECT_EQ(InstMap.at(RetInst).size(), 2u);
// Check values for add: {1.29, 2.31}
EXPECT_THAT(InstMap.at(AddInst),
ElementsAre(DoubleNear(1.29, 1e-6), DoubleNear(2.31, 1e-6)));
// Check values for ret: {0.0, 0.}; Neither ret nor voidTy are present in
// vocab
EXPECT_THAT(InstMap.at(RetInst), ElementsAre(0.0, 0.0));
}
TEST_F(IR2VecTestFixture, GetBBVecMap) {
auto Emb = Embedder::create(IR2VecKind::Symbolic, *F, V);
ASSERT_TRUE(static_cast<bool>(Emb));
const auto &BBMap = Emb->getBBVecMap();
EXPECT_EQ(BBMap.size(), 1u);
EXPECT_TRUE(BBMap.count(BB));
EXPECT_EQ(BBMap.at(BB).size(), 2u);
// BB vector should be sum of add and ret: {1.29, 2.31} + {0.0, 0.0} =
// {1.29, 2.31}
EXPECT_THAT(BBMap.at(BB),
ElementsAre(DoubleNear(1.29, 1e-6), DoubleNear(2.31, 1e-6)));
}
TEST_F(IR2VecTestFixture, GetBBVector) {
auto Emb = Embedder::create(IR2VecKind::Symbolic, *F, V);
ASSERT_TRUE(static_cast<bool>(Emb));
const auto &BBVec = Emb->getBBVector(*BB);
EXPECT_EQ(BBVec.size(), 2u);
EXPECT_THAT(BBVec,
ElementsAre(DoubleNear(1.29, 1e-6), DoubleNear(2.31, 1e-6)));
}
TEST_F(IR2VecTestFixture, GetFunctionVector) {
auto Emb = Embedder::create(IR2VecKind::Symbolic, *F, V);
ASSERT_TRUE(static_cast<bool>(Emb));
const auto &FuncVec = Emb->getFunctionVector();
EXPECT_EQ(FuncVec.size(), 2u);
// Function vector should match BB vector (only one BB): {1.29, 2.31}
EXPECT_THAT(FuncVec,
ElementsAre(DoubleNear(1.29, 1e-6), DoubleNear(2.31, 1e-6)));
}
TEST(IR2VecTest, IR2VecVocabAnalysisWithPrepopulatedVocab) {
Vocab InitialVocab = {{"key1", {1.1, 2.2}}, {"key2", {3.3, 4.4}}};
Vocab ExpectedVocab = InitialVocab;
unsigned ExpectedDim = InitialVocab.begin()->second.size();
IR2VecVocabAnalysis VocabAnalysis(std::move(InitialVocab));
LLVMContext TestCtx;
Module TestMod("TestModuleForVocabAnalysis", TestCtx);
ModuleAnalysisManager MAM;
IR2VecVocabResult Result = VocabAnalysis.run(TestMod, MAM);
EXPECT_TRUE(Result.isValid());
ASSERT_FALSE(Result.getVocabulary().empty());
EXPECT_EQ(Result.getDimension(), ExpectedDim);
const auto &ResultVocab = Result.getVocabulary();
EXPECT_EQ(ResultVocab.size(), ExpectedVocab.size());
for (const auto &pair : ExpectedVocab) {
EXPECT_TRUE(ResultVocab.count(pair.first));
EXPECT_THAT(ResultVocab.at(pair.first), ElementsAreArray(pair.second));
}
}
} // end anonymous namespace
|