1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
|
//===- HashRecognize.cpp ----------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// The HashRecognize analysis recognizes unoptimized polynomial hash functions
// with operations over a Galois field of characteristic 2, also called binary
// fields, or GF(2^n). 2^n is termed the order of the Galois field. This class
// of hash functions can be optimized using a lookup-table-driven
// implementation, or with target-specific instructions.
//
// Examples:
//
// 1. Cyclic redundancy check (CRC), which is a polynomial division in GF(2).
// 2. Rabin fingerprint, a component of the Rabin-Karp algorithm, which is a
// rolling hash polynomial division in GF(2).
// 3. Rijndael MixColumns, a step in AES computation, which is a polynomial
// multiplication in GF(2^3).
// 4. GHASH, the authentication mechanism in AES Galois/Counter Mode (GCM),
// which is a polynomial evaluation in GF(2^128).
//
// All of them use an irreducible generating polynomial of degree m,
//
// c_m * x^m + c_(m-1) * x^(m-1) + ... + c_0 * x^0
//
// where each coefficient c is can take values 0 or 1. The polynomial is simply
// represented by m+1 bits, corresponding to the coefficients. The different
// variants of CRC are named by degree of generating polynomial used: so CRC-32
// would use a polynomial of degree 32.
//
// The reason algorithms on GF(2^n) can be optimized with a lookup-table is the
// following: in such fields, polynomial addition and subtraction are identical
// and equivalent to XOR, polynomial multiplication is an AND, and polynomial
// division is identity: the XOR and AND operations in unoptimized
// implementations are performed bit-wise, and can be optimized to be performed
// chunk-wise, by interleaving copies of the generating polynomial, and storing
// the pre-computed values in a table.
//
// A generating polynomial of m bits always has the MSB set, so we usually
// omit it. An example of a 16-bit polynomial is the CRC-16-CCITT polynomial:
//
// (x^16) + x^12 + x^5 + 1 = (1) 0001 0000 0010 0001 = 0x1021
//
// Transmissions are either in big-endian or little-endian form, and hash
// algorithms are written according to this. For example, IEEE 802 and RS-232
// specify little-endian transmission.
//
//===----------------------------------------------------------------------===//
//
// At the moment, we only recognize the CRC algorithm.
// Documentation on CRC32 from the kernel:
// https://www.kernel.org/doc/Documentation/crc32.txt
//
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/HashRecognize.h"
#include "llvm/ADT/APInt.h"
#include "llvm/Analysis/LoopAnalysisManager.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionPatternMatch.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Support/KnownBits.h"
using namespace llvm;
using namespace PatternMatch;
using namespace SCEVPatternMatch;
#define DEBUG_TYPE "hash-recognize"
/// Checks if there's a stray instruction in the loop \p L outside of the
/// use-def chains from \p Roots, or if we escape the loop during the use-def
/// walk.
static bool containsUnreachable(const Loop &L,
ArrayRef<const Instruction *> Roots) {
SmallPtrSet<const Instruction *, 16> Visited;
BasicBlock *Latch = L.getLoopLatch();
SmallVector<const Instruction *, 16> Worklist(Roots);
while (!Worklist.empty()) {
const Instruction *I = Worklist.pop_back_val();
Visited.insert(I);
if (isa<PHINode>(I))
continue;
for (const Use &U : I->operands()) {
if (auto *UI = dyn_cast<Instruction>(U)) {
if (!L.contains(UI))
return true;
Worklist.push_back(UI);
}
}
}
return std::distance(Latch->begin(), Latch->end()) != Visited.size();
}
/// A structure that can hold either a Simple Recurrence or a Conditional
/// Recurrence. Note that in the case of a Simple Recurrence, Step is an operand
/// of the BO, while in a Conditional Recurrence, it is a SelectInst.
struct RecurrenceInfo {
const Loop &L;
const PHINode *Phi = nullptr;
BinaryOperator *BO = nullptr;
Value *Start = nullptr;
Value *Step = nullptr;
std::optional<APInt> ExtraConst;
RecurrenceInfo(const Loop &L) : L(L) {}
operator bool() const { return BO; }
void print(raw_ostream &OS, unsigned Indent = 0) const {
OS.indent(Indent) << "Phi: ";
Phi->print(OS);
OS << "\n";
OS.indent(Indent) << "BinaryOperator: ";
BO->print(OS);
OS << "\n";
OS.indent(Indent) << "Start: ";
Start->print(OS);
OS << "\n";
OS.indent(Indent) << "Step: ";
Step->print(OS);
OS << "\n";
if (ExtraConst) {
OS.indent(Indent) << "ExtraConst: ";
ExtraConst->print(OS, false);
OS << "\n";
}
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void dump() const { print(dbgs()); }
#endif
bool matchSimpleRecurrence(const PHINode *P);
bool matchConditionalRecurrence(
const PHINode *P,
Instruction::BinaryOps BOWithConstOpToMatch = Instruction::BinaryOpsEnd);
private:
BinaryOperator *digRecurrence(
Instruction *V,
Instruction::BinaryOps BOWithConstOpToMatch = Instruction::BinaryOpsEnd);
};
/// Check the well-formedness of the (most|least) significant bit check given \p
/// ConditionalRecurrence, \p SimpleRecurrence, depending on \p
/// ByteOrderSwapped. We check that ConditionalRecurrence.Step is a
/// Select(Cmp()) where the compare is `>= 0` in the big-endian case, and `== 0`
/// in the little-endian case (or the inverse, in which case the branches of the
/// compare are swapped). We check that the LHS is (ConditionalRecurrence.Phi
/// [xor SimpleRecurrence.Phi]) in the big-endian case, and additionally check
/// for an AND with one in the little-endian case. We then check AllowedByR
/// against CheckAllowedByR, which is [0, smin) in the big-endian case, and is
/// [0, 1) in the little-endian case. CheckAllowedByR checks for
/// significant-bit-clear, and we match the corresponding arms of the select
/// against bit-shift and bit-shift-and-xor-gen-poly.
static bool
isSignificantBitCheckWellFormed(const RecurrenceInfo &ConditionalRecurrence,
const RecurrenceInfo &SimpleRecurrence,
bool ByteOrderSwapped) {
auto *SI = cast<SelectInst>(ConditionalRecurrence.Step);
CmpPredicate Pred;
const Value *L;
const APInt *R;
Instruction *TV, *FV;
if (!match(SI, m_Select(m_ICmp(Pred, m_Value(L), m_APInt(R)),
m_Instruction(TV), m_Instruction(FV))))
return false;
// Match predicate with or without a SimpleRecurrence (the corresponding data
// is LHSAux).
auto MatchPred = m_CombineOr(
m_Specific(ConditionalRecurrence.Phi),
m_c_Xor(m_ZExtOrTruncOrSelf(m_Specific(ConditionalRecurrence.Phi)),
m_ZExtOrTruncOrSelf(m_Specific(SimpleRecurrence.Phi))));
bool LWellFormed = ByteOrderSwapped ? match(L, MatchPred)
: match(L, m_c_And(MatchPred, m_One()));
if (!LWellFormed)
return false;
KnownBits KnownR = KnownBits::makeConstant(*R);
unsigned BW = KnownR.getBitWidth();
auto RCR = ConstantRange::fromKnownBits(KnownR, false);
auto AllowedByR = ConstantRange::makeAllowedICmpRegion(Pred, RCR);
ConstantRange CheckAllowedByR(APInt::getZero(BW),
ByteOrderSwapped ? APInt::getSignedMinValue(BW)
: APInt(BW, 1));
BinaryOperator *BitShift = ConditionalRecurrence.BO;
if (AllowedByR == CheckAllowedByR)
return TV == BitShift &&
match(FV, m_c_Xor(m_Specific(BitShift),
m_SpecificInt(*ConditionalRecurrence.ExtraConst)));
if (AllowedByR.inverse() == CheckAllowedByR)
return FV == BitShift &&
match(TV, m_c_Xor(m_Specific(BitShift),
m_SpecificInt(*ConditionalRecurrence.ExtraConst)));
return false;
}
/// Wraps llvm::matchSimpleRecurrence. Match a simple first order recurrence
/// cycle of the form:
///
/// loop:
/// %rec = phi [%start, %entry], [%BO, %loop]
/// ...
/// %BO = binop %rec, %step
///
/// or
///
/// loop:
/// %rec = phi [%start, %entry], [%BO, %loop]
/// ...
/// %BO = binop %step, %rec
///
bool RecurrenceInfo::matchSimpleRecurrence(const PHINode *P) {
if (llvm::matchSimpleRecurrence(P, BO, Start, Step)) {
Phi = P;
return true;
}
return false;
}
/// Digs for a recurrence starting with \p V hitting the PHI node in a use-def
/// chain. Used by matchConditionalRecurrence.
BinaryOperator *
RecurrenceInfo::digRecurrence(Instruction *V,
Instruction::BinaryOps BOWithConstOpToMatch) {
SmallVector<Instruction *> Worklist;
Worklist.push_back(V);
while (!Worklist.empty()) {
Instruction *I = Worklist.pop_back_val();
// Don't add a PHI's operands to the Worklist.
if (isa<PHINode>(I))
continue;
// Find a recurrence over a BinOp, by matching either of its operands
// with with the PHINode.
if (match(I, m_c_BinOp(m_Value(), m_Specific(Phi))))
return cast<BinaryOperator>(I);
// Bind to ExtraConst, if we match exactly one.
if (I->getOpcode() == BOWithConstOpToMatch) {
if (ExtraConst)
return nullptr;
const APInt *C = nullptr;
if (match(I, m_c_BinOp(m_APInt(C), m_Value())))
ExtraConst = *C;
}
// Continue along the use-def chain.
for (Use &U : I->operands())
if (auto *UI = dyn_cast<Instruction>(U))
if (L.contains(UI))
Worklist.push_back(UI);
}
return nullptr;
}
/// A Conditional Recurrence is a recurrence of the form:
///
/// loop:
/// %rec = phi [%start, %entry], [%step, %loop]
/// ...
/// %step = select _, %tv, %fv
///
/// where %tv and %fv ultimately end up using %rec via the same %BO instruction,
/// after digging through the use-def chain.
///
/// ExtraConst is relevant if \p BOWithConstOpToMatch is supplied: when digging
/// the use-def chain, a BinOp with opcode \p BOWithConstOpToMatch is matched,
/// and ExtraConst is a constant operand of that BinOp. This peculiarity exists,
/// because in a CRC algorithm, the \p BOWithConstOpToMatch is an XOR, and the
/// ExtraConst ends up being the generating polynomial.
bool RecurrenceInfo::matchConditionalRecurrence(
const PHINode *P, Instruction::BinaryOps BOWithConstOpToMatch) {
Phi = P;
if (Phi->getNumIncomingValues() != 2)
return false;
for (unsigned Idx = 0; Idx != 2; ++Idx) {
Value *FoundStep = Phi->getIncomingValue(Idx);
Value *FoundStart = Phi->getIncomingValue(!Idx);
Instruction *TV, *FV;
if (!match(FoundStep,
m_Select(m_Cmp(), m_Instruction(TV), m_Instruction(FV))))
continue;
// For a conditional recurrence, both the true and false values of the
// select must ultimately end up in the same recurrent BinOp.
BinaryOperator *FoundBO = digRecurrence(TV, BOWithConstOpToMatch);
BinaryOperator *AltBO = digRecurrence(FV, BOWithConstOpToMatch);
if (!FoundBO || FoundBO != AltBO)
return false;
if (BOWithConstOpToMatch != Instruction::BinaryOpsEnd && !ExtraConst) {
LLVM_DEBUG(dbgs() << "HashRecognize: Unable to match single BinaryOp "
"with constant in conditional recurrence\n");
return false;
}
BO = FoundBO;
Start = FoundStart;
Step = FoundStep;
return true;
}
return false;
}
/// Iterates over all the phis in \p LoopLatch, and attempts to extract a
/// Conditional Recurrence and an optional Simple Recurrence.
static std::optional<std::pair<RecurrenceInfo, RecurrenceInfo>>
getRecurrences(BasicBlock *LoopLatch, const PHINode *IndVar, const Loop &L) {
auto Phis = LoopLatch->phis();
unsigned NumPhis = std::distance(Phis.begin(), Phis.end());
if (NumPhis != 2 && NumPhis != 3)
return {};
RecurrenceInfo SimpleRecurrence(L);
RecurrenceInfo ConditionalRecurrence(L);
for (PHINode &P : Phis) {
if (&P == IndVar)
continue;
if (!SimpleRecurrence)
SimpleRecurrence.matchSimpleRecurrence(&P);
if (!ConditionalRecurrence)
ConditionalRecurrence.matchConditionalRecurrence(
&P, Instruction::BinaryOps::Xor);
}
if (NumPhis == 3 && (!SimpleRecurrence || !ConditionalRecurrence))
return {};
return std::make_pair(SimpleRecurrence, ConditionalRecurrence);
}
PolynomialInfo::PolynomialInfo(unsigned TripCount, Value *LHS, const APInt &RHS,
Value *ComputedValue, bool ByteOrderSwapped,
Value *LHSAux)
: TripCount(TripCount), LHS(LHS), RHS(RHS), ComputedValue(ComputedValue),
ByteOrderSwapped(ByteOrderSwapped), LHSAux(LHSAux) {}
/// Generate a lookup table of 256 entries by interleaving the generating
/// polynomial. The optimization technique of table-lookup for CRC is also
/// called the Sarwate algorithm.
CRCTable HashRecognize::genSarwateTable(const APInt &GenPoly,
bool ByteOrderSwapped) {
unsigned BW = GenPoly.getBitWidth();
CRCTable Table;
Table[0] = APInt::getZero(BW);
if (ByteOrderSwapped) {
APInt CRCInit = APInt::getSignedMinValue(BW);
for (unsigned I = 1; I < 256; I <<= 1) {
CRCInit = CRCInit.shl(1) ^
(CRCInit.isSignBitSet() ? GenPoly : APInt::getZero(BW));
for (unsigned J = 0; J < I; ++J)
Table[I + J] = CRCInit ^ Table[J];
}
return Table;
}
APInt CRCInit(BW, 1);
for (unsigned I = 128; I; I >>= 1) {
CRCInit = CRCInit.lshr(1) ^ (CRCInit[0] ? GenPoly : APInt::getZero(BW));
for (unsigned J = 0; J < 256; J += (I << 1))
Table[I + J] = CRCInit ^ Table[J];
}
return Table;
}
/// Checks that \p P1 and \p P2 are used together in an XOR in the use-def chain
/// of \p SI's condition, ignoring any casts. The purpose of this function is to
/// ensure that LHSAux from the SimpleRecurrence is used correctly in the CRC
/// computation.
///
/// In other words, it checks for the following pattern:
///
/// loop:
/// %P1 = phi [_, %entry], [%P1.next, %loop]
/// %P2 = phi [_, %entry], [%P2.next, %loop]
/// ...
/// %xor = xor (CastOrSelf %P1), (CastOrSelf %P2)
///
/// where %xor is in the use-def chain of \p SI's condition.
static bool isConditionalOnXorOfPHIs(const SelectInst *SI, const PHINode *P1,
const PHINode *P2, const Loop &L) {
SmallVector<const Instruction *> Worklist;
// matchConditionalRecurrence has already ensured that the SelectInst's
// condition is an Instruction.
Worklist.push_back(cast<Instruction>(SI->getCondition()));
while (!Worklist.empty()) {
const Instruction *I = Worklist.pop_back_val();
// Don't add a PHI's operands to the Worklist.
if (isa<PHINode>(I))
continue;
// If we match an XOR of the two PHIs ignoring casts, we're done.
if (match(I, m_c_Xor(m_ZExtOrTruncOrSelf(m_Specific(P1)),
m_ZExtOrTruncOrSelf(m_Specific(P2)))))
return true;
// Continue along the use-def chain.
for (const Use &U : I->operands())
if (auto *UI = dyn_cast<Instruction>(U))
if (L.contains(UI))
Worklist.push_back(UI);
}
return false;
}
// Recognizes a multiplication or division by the constant two, using SCEV. By
// doing this, we're immune to whether the IR expression is mul/udiv or
// equivalently shl/lshr. Return false when it is a UDiv, true when it is a Mul,
// and std::nullopt otherwise.
static std::optional<bool> isBigEndianBitShift(Value *V, ScalarEvolution &SE) {
if (!V->getType()->isIntegerTy())
return {};
const SCEV *E = SE.getSCEV(V);
if (match(E, m_scev_UDiv(m_SCEV(), m_scev_SpecificInt(2))))
return false;
if (match(E, m_scev_Mul(m_scev_SpecificInt(2), m_SCEV())))
return true;
return {};
}
/// The main entry point for analyzing a loop and recognizing the CRC algorithm.
/// Returns a PolynomialInfo on success, and a StringRef on failure.
std::variant<PolynomialInfo, StringRef> HashRecognize::recognizeCRC() const {
if (!L.isInnermost())
return "Loop is not innermost";
BasicBlock *Latch = L.getLoopLatch();
BasicBlock *Exit = L.getExitBlock();
const PHINode *IndVar = L.getCanonicalInductionVariable();
if (!Latch || !Exit || !IndVar || L.getNumBlocks() != 1)
return "Loop not in canonical form";
unsigned TC = SE.getSmallConstantTripCount(&L);
if (!TC || TC % 8)
return "Unable to find a small constant byte-multiple trip count";
auto R = getRecurrences(Latch, IndVar, L);
if (!R)
return "Found stray PHI";
auto [SimpleRecurrence, ConditionalRecurrence] = *R;
if (!ConditionalRecurrence)
return "Unable to find conditional recurrence";
// Make sure that all recurrences are either all SCEVMul with two or SCEVDiv
// with two, or in other words, that they're single bit-shifts.
std::optional<bool> ByteOrderSwapped =
isBigEndianBitShift(ConditionalRecurrence.BO, SE);
if (!ByteOrderSwapped)
return "Loop with non-unit bitshifts";
if (SimpleRecurrence) {
if (isBigEndianBitShift(SimpleRecurrence.BO, SE) != ByteOrderSwapped)
return "Loop with non-unit bitshifts";
// Ensure that the PHIs have exactly two uses:
// the bit-shift, and the XOR (or a cast feeding into the XOR).
if (!ConditionalRecurrence.Phi->hasNUses(2) ||
!SimpleRecurrence.Phi->hasNUses(2))
return "Recurrences have stray uses";
// Check that the SelectInst ConditionalRecurrence.Step is conditional on
// the XOR of SimpleRecurrence.Phi and ConditionalRecurrence.Phi.
if (!isConditionalOnXorOfPHIs(cast<SelectInst>(ConditionalRecurrence.Step),
SimpleRecurrence.Phi,
ConditionalRecurrence.Phi, L))
return "Recurrences not intertwined with XOR";
}
// Make sure that the TC doesn't exceed the bitwidth of LHSAux, or LHS.
Value *LHS = ConditionalRecurrence.Start;
Value *LHSAux = SimpleRecurrence ? SimpleRecurrence.Start : nullptr;
if (TC > (LHSAux ? LHSAux->getType()->getIntegerBitWidth()
: LHS->getType()->getIntegerBitWidth()))
return "Loop iterations exceed bitwidth of data";
// Make sure that the computed value is used in the exit block: this should be
// true even if it is only really used in an outer loop's exit block, since
// the loop is in LCSSA form.
auto *ComputedValue = cast<SelectInst>(ConditionalRecurrence.Step);
if (none_of(ComputedValue->users(), [Exit](User *U) {
auto *UI = dyn_cast<Instruction>(U);
return UI && UI->getParent() == Exit;
}))
return "Unable to find use of computed value in loop exit block";
assert(ConditionalRecurrence.ExtraConst &&
"Expected ExtraConst in conditional recurrence");
const APInt &GenPoly = *ConditionalRecurrence.ExtraConst;
if (!isSignificantBitCheckWellFormed(ConditionalRecurrence, SimpleRecurrence,
*ByteOrderSwapped))
return "Malformed significant-bit check";
SmallVector<const Instruction *> Roots(
{ComputedValue,
cast<Instruction>(IndVar->getIncomingValueForBlock(Latch)),
L.getLatchCmpInst(), Latch->getTerminator()});
if (SimpleRecurrence)
Roots.push_back(SimpleRecurrence.BO);
if (containsUnreachable(L, Roots))
return "Found stray unvisited instructions";
return PolynomialInfo(TC, LHS, GenPoly, ComputedValue, *ByteOrderSwapped,
LHSAux);
}
void CRCTable::print(raw_ostream &OS) const {
for (unsigned I = 0; I < 256; I++) {
(*this)[I].print(OS, false);
OS << (I % 16 == 15 ? '\n' : ' ');
}
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void CRCTable::dump() const { print(dbgs()); }
#endif
void HashRecognize::print(raw_ostream &OS) const {
if (!L.isInnermost())
return;
OS << "HashRecognize: Checking a loop in '"
<< L.getHeader()->getParent()->getName() << "' from " << L.getLocStr()
<< "\n";
auto Ret = recognizeCRC();
if (!std::holds_alternative<PolynomialInfo>(Ret)) {
OS << "Did not find a hash algorithm\n";
if (std::holds_alternative<StringRef>(Ret))
OS << "Reason: " << std::get<StringRef>(Ret) << "\n";
return;
}
auto Info = std::get<PolynomialInfo>(Ret);
OS << "Found" << (Info.ByteOrderSwapped ? " big-endian " : " little-endian ")
<< "CRC-" << Info.RHS.getBitWidth() << " loop with trip count "
<< Info.TripCount << "\n";
OS.indent(2) << "Initial CRC: ";
Info.LHS->print(OS);
OS << "\n";
OS.indent(2) << "Generating polynomial: ";
Info.RHS.print(OS, false);
OS << "\n";
OS.indent(2) << "Computed CRC: ";
Info.ComputedValue->print(OS);
OS << "\n";
if (Info.LHSAux) {
OS.indent(2) << "Auxiliary data: ";
Info.LHSAux->print(OS);
OS << "\n";
}
OS.indent(2) << "Computed CRC lookup table:\n";
genSarwateTable(Info.RHS, Info.ByteOrderSwapped).print(OS);
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void HashRecognize::dump() const { print(dbgs()); }
#endif
std::optional<PolynomialInfo> HashRecognize::getResult() const {
auto Res = HashRecognize(L, SE).recognizeCRC();
if (std::holds_alternative<PolynomialInfo>(Res))
return std::get<PolynomialInfo>(Res);
return std::nullopt;
}
HashRecognize::HashRecognize(const Loop &L, ScalarEvolution &SE)
: L(L), SE(SE) {}
PreservedAnalyses HashRecognizePrinterPass::run(Loop &L,
LoopAnalysisManager &AM,
LoopStandardAnalysisResults &AR,
LPMUpdater &) {
HashRecognize(L, AR.SE).print(OS);
return PreservedAnalyses::all();
}
|