// (C) Copyright John Maddock 2006. // (C) Copyright Matt Borland 2024. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_MATH_EXPM1_INCLUDED #define BOOST_MATH_EXPM1_INCLUDED #ifdef _MSC_VER #pragma once #endif #include #ifndef BOOST_MATH_HAS_NVRTC #if defined __has_include # if ((__cplusplus > 202002L) || (defined(_MSVC_LANG) && (_MSVC_LANG > 202002L))) # if __has_include () # include # endif # endif #endif #include #include #include #include #include #include #include #include #include #include #include #if defined(__GNUC__) && defined(BOOST_MATH_USE_FLOAT128) // // This is the only way we can avoid // warning: non-standard suffix on floating constant [-Wpedantic] // when building with -Wall -pedantic. Neither __extension__ // nor #pragma diagnostic ignored work :( // #pragma GCC system_header #endif namespace boost { namespace math { namespace detail { // Functor expm1_series returns the next term in the Taylor series // x^k / k! // each time that operator() is invoked. // // LCOV_EXCL_START multiprecision case only, excluded from coverage analysis template struct expm1_series { typedef T result_type; BOOST_MATH_GPU_ENABLED expm1_series(T x) : k(0), m_x(x), m_term(1) { } BOOST_MATH_GPU_ENABLED T operator()() { ++k; m_term *= m_x; m_term /= k; return m_term; } BOOST_MATH_GPU_ENABLED int count()const { return k; } private: int k; const T m_x; T m_term; expm1_series(const expm1_series&) = delete; expm1_series& operator=(const expm1_series&) = delete; }; // // Algorithm expm1 is part of C99, but is not yet provided by many compilers. // // This version uses a Taylor series expansion for 0.5 > |x| > epsilon. // template T expm1_imp(T x, const boost::math::integral_constant&, const Policy& pol) { BOOST_MATH_STD_USING T a = fabs(x); if ((boost::math::isnan)(a)) { return policies::raise_domain_error("boost::math::expm1<%1%>(%1%)", "expm1 requires a finite argument, but got %1%", a, pol); } if (a > T(0.5f)) { if (a >= tools::log_max_value()) { if (x > 0) return policies::raise_overflow_error("boost::math::expm1<%1%>(%1%)", nullptr, pol); return -1; } return exp(x) - T(1); } if (a < tools::epsilon()) return x; detail::expm1_series s(x); boost::math::uintmax_t max_iter = policies::get_max_series_iterations(); T result = tools::sum_series(s, policies::get_epsilon(), max_iter); policies::check_series_iterations("boost::math::expm1<%1%>(%1%)", max_iter, pol); return result; } // LCOV_EXCL_STOP template BOOST_MATH_GPU_ENABLED T expm1_imp(T x, const boost::math::integral_constant&, const P& pol) { BOOST_MATH_STD_USING T a = fabs(x); if ((boost::math::isnan)(a)) { return policies::raise_domain_error("boost::math::expm1<%1%>(%1%)", "expm1 requires a finite argument, but got %1%", a, pol); } if (a > T(0.5L)) { if (a >= tools::log_max_value()) { if (x > 0) return policies::raise_overflow_error("boost::math::expm1<%1%>(%1%)", nullptr, pol); return -1; } return exp(x) - T(1); } if (a < tools::epsilon()) return x; BOOST_MATH_STATIC const float Y = 0.10281276702880859e1f; BOOST_MATH_STATIC const T n[] = { static_cast(-0.28127670288085937e-1), static_cast(0.51278186299064534e0), static_cast(-0.6310029069350198e-1), static_cast(0.11638457975729296e-1), static_cast(-0.52143390687521003e-3), static_cast(0.21491399776965688e-4) }; BOOST_MATH_STATIC const T d[] = { 1, static_cast(-0.45442309511354755e0), static_cast(0.90850389570911714e-1), static_cast(-0.10088963629815502e-1), static_cast(0.63003407478692265e-3), static_cast(-0.17976570003654402e-4) }; T result = x * Y + x * tools::evaluate_polynomial(n, x) / tools::evaluate_polynomial(d, x); return result; } template BOOST_MATH_GPU_ENABLED T expm1_imp(T x, const boost::math::integral_constant&, const P& pol) { BOOST_MATH_STD_USING T a = fabs(x); if ((boost::math::isnan)(a)) { return policies::raise_domain_error("boost::math::expm1<%1%>(%1%)", "expm1 requires a finite argument, but got %1%", a, pol); } if (a > T(0.5L)) { if (a >= tools::log_max_value()) { if (x > 0) return policies::raise_overflow_error("boost::math::expm1<%1%>(%1%)", nullptr, pol); return -1; } return exp(x) - T(1); } if (a < tools::epsilon()) return x; // LCOV_EXCL_START BOOST_MATH_STATIC const float Y = 0.10281276702880859375e1f; BOOST_MATH_STATIC const T n[] = { BOOST_MATH_BIG_CONSTANT(T, 64, -0.281276702880859375e-1), BOOST_MATH_BIG_CONSTANT(T, 64, 0.512980290285154286358e0), BOOST_MATH_BIG_CONSTANT(T, 64, -0.667758794592881019644e-1), BOOST_MATH_BIG_CONSTANT(T, 64, 0.131432469658444745835e-1), BOOST_MATH_BIG_CONSTANT(T, 64, -0.72303795326880286965e-3), BOOST_MATH_BIG_CONSTANT(T, 64, 0.447441185192951335042e-4), BOOST_MATH_BIG_CONSTANT(T, 64, -0.714539134024984593011e-6) }; BOOST_MATH_STATIC const T d[] = { BOOST_MATH_BIG_CONSTANT(T, 64, 1.0), BOOST_MATH_BIG_CONSTANT(T, 64, -0.461477618025562520389e0), BOOST_MATH_BIG_CONSTANT(T, 64, 0.961237488025708540713e-1), BOOST_MATH_BIG_CONSTANT(T, 64, -0.116483957658204450739e-1), BOOST_MATH_BIG_CONSTANT(T, 64, 0.873308008461557544458e-3), BOOST_MATH_BIG_CONSTANT(T, 64, -0.387922804997682392562e-4), BOOST_MATH_BIG_CONSTANT(T, 64, 0.807473180049193557294e-6) }; // LCOV_EXCL_STOP T result = x * Y + x * tools::evaluate_polynomial(n, x) / tools::evaluate_polynomial(d, x); return result; } template BOOST_MATH_GPU_ENABLED T expm1_imp(T x, const boost::math::integral_constant&, const P& pol) { BOOST_MATH_STD_USING T a = fabs(x); if ((boost::math::isnan)(a)) { return policies::raise_domain_error("boost::math::expm1<%1%>(%1%)", "expm1 requires a finite argument, but got %1%", a, pol); } if (a > T(0.5L)) { if (a >= tools::log_max_value()) { if (x > 0) return policies::raise_overflow_error("boost::math::expm1<%1%>(%1%)", nullptr, pol); return -1; } return exp(x) - T(1); } if (a < tools::epsilon()) return x; // LCOV_EXCL_START static const float Y = 0.10281276702880859375e1f; static const T n[] = { BOOST_MATH_BIG_CONSTANT(T, 113, -0.28127670288085937499999999999999999854e-1), BOOST_MATH_BIG_CONSTANT(T, 113, 0.51278156911210477556524452177540792214e0), BOOST_MATH_BIG_CONSTANT(T, 113, -0.63263178520747096729500254678819588223e-1), BOOST_MATH_BIG_CONSTANT(T, 113, 0.14703285606874250425508446801230572252e-1), BOOST_MATH_BIG_CONSTANT(T, 113, -0.8675686051689527802425310407898459386e-3), BOOST_MATH_BIG_CONSTANT(T, 113, 0.88126359618291165384647080266133492399e-4), BOOST_MATH_BIG_CONSTANT(T, 113, -0.25963087867706310844432390015463138953e-5), BOOST_MATH_BIG_CONSTANT(T, 113, 0.14226691087800461778631773363204081194e-6), BOOST_MATH_BIG_CONSTANT(T, 113, -0.15995603306536496772374181066765665596e-8), BOOST_MATH_BIG_CONSTANT(T, 113, 0.45261820069007790520447958280473183582e-10) }; static const T d[] = { BOOST_MATH_BIG_CONSTANT(T, 113, 1.0), BOOST_MATH_BIG_CONSTANT(T, 113, -0.45441264709074310514348137469214538853e0), BOOST_MATH_BIG_CONSTANT(T, 113, 0.96827131936192217313133611655555298106e-1), BOOST_MATH_BIG_CONSTANT(T, 113, -0.12745248725908178612540554584374876219e-1), BOOST_MATH_BIG_CONSTANT(T, 113, 0.11473613871583259821612766907781095472e-2), BOOST_MATH_BIG_CONSTANT(T, 113, -0.73704168477258911962046591907690764416e-4), BOOST_MATH_BIG_CONSTANT(T, 113, 0.34087499397791555759285503797256103259e-5), BOOST_MATH_BIG_CONSTANT(T, 113, -0.11114024704296196166272091230695179724e-6), BOOST_MATH_BIG_CONSTANT(T, 113, 0.23987051614110848595909588343223896577e-8), BOOST_MATH_BIG_CONSTANT(T, 113, -0.29477341859111589208776402638429026517e-10), BOOST_MATH_BIG_CONSTANT(T, 113, 0.13222065991022301420255904060628100924e-12) }; // LCOV_EXCL_STOP T result = x * Y + x * tools::evaluate_polynomial(n, x) / tools::evaluate_polynomial(d, x); return result; } } // namespace detail template BOOST_MATH_GPU_ENABLED inline typename tools::promote_args::type expm1(T x, const Policy& /* pol */) { typedef typename tools::promote_args::type result_type; typedef typename policies::evaluation::type value_type; typedef typename policies::precision::type precision_type; typedef typename policies::normalise< Policy, policies::promote_float, policies::promote_double, policies::discrete_quantile<>, policies::assert_undefined<> >::type forwarding_policy; typedef boost::math::integral_constant tag_type; return policies::checked_narrowing_cast(detail::expm1_imp( static_cast(x), tag_type(), forwarding_policy()), "boost::math::expm1<%1%>(%1%)"); } // // Since we now live in a post C++11 world, we can always defer to std::expm1 when appropriate: // template BOOST_MATH_GPU_ENABLED inline float expm1(float x, const Policy&) { BOOST_MATH_IF_CONSTEXPR(Policy::domain_error_type::value != boost::math::policies::ignore_error && Policy::domain_error_type::value != boost::math::policies::errno_on_error) { if ((boost::math::isnan)(x)) return policies::raise_domain_error("boost::math::expm1<%1%>(%1%)", "expm1 requires a finite argument, but got %1%", x, Policy()); } BOOST_MATH_IF_CONSTEXPR(Policy::overflow_error_type::value != boost::math::policies::ignore_error && Policy::overflow_error_type::value != boost::math::policies::errno_on_error) { if (x >= tools::log_max_value()) return policies::raise_overflow_error("boost::math::expm1<%1%>(%1%)", nullptr, Policy()); } return std::expm1(x); } #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS template inline long double expm1(long double x, const Policy&) { BOOST_MATH_IF_CONSTEXPR(Policy::domain_error_type::value != boost::math::policies::ignore_error && Policy::domain_error_type::value != boost::math::policies::errno_on_error) { if ((boost::math::isnan)(x)) return policies::raise_domain_error("boost::math::expm1<%1%>(%1%)", "expm1 requires a finite argument, but got %1%", x, Policy()); } BOOST_MATH_IF_CONSTEXPR(Policy::overflow_error_type::value != boost::math::policies::ignore_error && Policy::overflow_error_type::value != boost::math::policies::errno_on_error) { if (x >= tools::log_max_value()) return policies::raise_overflow_error("boost::math::expm1<%1%>(%1%)", nullptr, Policy()); } return std::expm1(x); } #endif template BOOST_MATH_GPU_ENABLED inline double expm1(double x, const Policy&) { BOOST_MATH_IF_CONSTEXPR(Policy::domain_error_type::value != boost::math::policies::ignore_error && Policy::domain_error_type::value != boost::math::policies::errno_on_error) { if ((boost::math::isnan)(x)) return policies::raise_domain_error("boost::math::expm1<%1%>(%1%)", "expm1 requires a finite argument, but got %1%", x, Policy()); } BOOST_MATH_IF_CONSTEXPR(Policy::overflow_error_type::value != boost::math::policies::ignore_error && Policy::overflow_error_type::value != boost::math::policies::errno_on_error) { if (x >= tools::log_max_value()) return policies::raise_overflow_error("boost::math::expm1<%1%>(%1%)", nullptr, Policy()); } return std::expm1(x); } template BOOST_MATH_GPU_ENABLED inline typename tools::promote_args::type expm1(T x) { return expm1(x, policies::policy<>()); } // // Specific width floating point types: // #ifdef __STDCPP_FLOAT32_T__ template BOOST_MATH_GPU_ENABLED inline std::float32_t expm1(std::float32_t x, const Policy& pol) { return boost::math::expm1(static_cast(x), pol); } #endif #ifdef __STDCPP_FLOAT64_T__ template BOOST_MATH_GPU_ENABLED inline std::float64_t expm1(std::float64_t x, const Policy& pol) { return boost::math::expm1(static_cast(x), pol); } #endif #ifdef __STDCPP_FLOAT128_T__ template BOOST_MATH_GPU_ENABLED inline std::float128_t expm1(std::float128_t x, const Policy& pol) { if constexpr (std::numeric_limits::digits == std::numeric_limits::digits) { return boost::math::expm1(static_cast(x), pol); } else { return boost::math::detail::expm1_imp(x, boost::math::integral_constant(), pol); } } #endif } // namespace math } // namespace boost #else // Special handling for NVRTC namespace boost { namespace math { template BOOST_MATH_GPU_ENABLED auto expm1(T x) { return ::expm1(x); } template <> BOOST_MATH_GPU_ENABLED auto expm1(float x) { return ::expm1f(x); } template BOOST_MATH_GPU_ENABLED auto expm1(T x, const Policy&) { return ::expm1(x); } template BOOST_MATH_GPU_ENABLED auto expm1(float x, const Policy&) { return ::expm1f(x); } } // Namespace math } // Namespace boost #endif // BOOST_MATH_HAS_NVRTC #endif // BOOST_MATH_HYPOT_INCLUDED