// RUN: mlir-opt -transform-interpreter -cse -split-input-file %s | FileCheck %s func.func @gemm_gemm_fusion_yield_both(%lhs0 : tensor, %rhs0 : tensor, %rhs1 : tensor, %init0 : tensor, %init1 : tensor) -> (tensor, tensor) { %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index %cst = arith.constant 0.0 : f32 %d0 = tensor.dim %lhs0, %c0 : tensor %d1 = tensor.dim %rhs0, %c1 : tensor %fill0 = linalg.fill ins(%cst : f32) outs(%init0 : tensor) -> tensor %gemm0 = linalg.matmul ins(%lhs0, %rhs0 : tensor, tensor) outs(%fill0 : tensor) -> tensor %d2 = tensor.dim %rhs1, %c1 : tensor %fill1 = linalg.fill ins(%cst : f32) outs(%init1 : tensor) -> tensor %gemm1 = linalg.matmul ins(%gemm0, %rhs1 : tensor, tensor) outs(%fill1 : tensor) -> tensor return %gemm0, %gemm1 : tensor, tensor } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) { %matmuls = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op %mm1, %mm2 = transform.split_handle %matmuls : (!transform.any_op) -> (!transform.any_op, !transform.any_op) %a, %b = transform.test.fuse_and_yield %mm2 [10] : (!transform.any_op) -> (!transform.any_op, !transform.any_op) transform.yield } } // CHECK: func.func @gemm_gemm_fusion_yield_both( // CHECK-SAME: %[[LHS0:[a-zA-Z0-9]+]]: tensor // CHECK-SAME: %[[RHS0:[a-zA-Z0-9]+]]: tensor, // CHECK-SAME: %[[RHS1:[a-zA-Z0-9]+]]: tensor, // CHECK-SAME: %[[INIT0:[a-zA-Z0-9]+]]: tensor, // CHECK-SAME: %[[INIT1:[a-zA-Z0-9]+]]: tensor) // CHECK-DAG: %[[C0:.+]] = arith.constant 0 : index // CHECK-DAG: %[[C1:.+]] = arith.constant 1 : index // CHECK: %[[RESULT:.+]]:2 = scf.for %[[IV:[a-zA-Z0-9]+]] = // CHECK-SAME: iter_args(%[[ITERARG0:[a-zA-Z0-9]+]] = %[[INIT1]], %[[ITERARG1:[a-zA-Z0-9]+]] = %[[INIT0]]) // CHECK-DAG: %[[LHS0_TILE:.+]] = tensor.extract_slice %[[LHS0]][%[[IV]], 0] // CHECK-DAG: %[[RHS0_TILE:.+]] = tensor.extract_slice %[[RHS0]][0, 0] // CHECK-DAG: %[[INIT0_TILE:.+]] = tensor.extract_slice %[[ITERARG1]][%[[IV]], 0] // CHECK: %[[FILL0_TILE:.+]] = linalg.fill // CHECK-SAME: outs(%[[INIT0_TILE]] : // CHECK: %[[GEMM0_TILE:.+]] = linalg.matmul // CHECK-SAME: ins(%[[LHS0_TILE]], %[[RHS0_TILE]] : // CHECK-SAME: outs(%[[FILL0_TILE]] : // CHECK-DAG: %[[RHS1_TILE:.+]] = tensor.extract_slice %[[RHS1]][0, 0] // CHECK-DAG: %[[INIT1_TILE:.+]] = tensor.extract_slice %[[ITERARG0]][%[[IV]], 0] // CHECK: %[[FILL1_TILE:.+]] = linalg.fill // CHECK-SAME: outs(%[[INIT1_TILE]] : // CHECK: %[[GEMM1_TILE:.+]] = linalg.matmul // CHECK-SAME: ins(%[[GEMM0_TILE]], %[[RHS1_TILE]] : // CHECK-SAME: outs(%[[FILL1_TILE]] : // CHECK: %[[INSERT0:.+]] = tensor.insert_slice %[[GEMM1_TILE]] into %[[ITERARG0]][%[[IV]], 0] // CHECK: %[[INSERT1:.+]] = tensor.insert_slice %[[GEMM0_TILE]] into %[[ITERARG1]][%[[IV]], 0] // CHECK: scf.yield %[[INSERT0]], %[[INSERT1]] // CHECK: return %[[RESULT]]#1, %[[RESULT]]#0 // ----- func.func @multiple_outputs_fusion_yield_all(%lhs0: tensor<32x32xf32>, %rhs0: tensor<32x32xf32>, %init0: tensor<32x32xf32>, %init1: tensor<32x32xf32>, %rhs1: tensor<32x32xf32>, %init2: tensor<32x32xf32>) -> (tensor<32x32xf32>, tensor<32x32xf32>, tensor<32x32xf32>) { %out0, %out1 = linalg.generic { indexing_maps = [affine_map<(i, j) -> (i, j)>, affine_map<(i, j) -> (i, j)>, affine_map<(i, j) -> (i, j)>, affine_map<(i, j) -> (j, i)>], iterator_types = ["parallel", "parallel"] } ins(%lhs0, %rhs0: tensor<32x32xf32>, tensor<32x32xf32>) outs(%init0, %init1: tensor<32x32xf32>, tensor<32x32xf32>) { ^bb0(%0: f32, %1: f32, %2: f32, %3: f32): %4 = arith.mulf %0, %1 : f32 %5 = arith.addf %0, %1 : f32 linalg.yield %4, %5: f32, f32 } -> (tensor<32x32xf32>, tensor<32x32xf32>) %out3 = linalg.add ins(%out0, %rhs1: tensor<32x32xf32>, tensor<32x32xf32>) outs(%init2: tensor<32x32xf32>) -> tensor<32x32xf32> return %out0, %out1, %out3 : tensor<32x32xf32>, tensor<32x32xf32>, tensor<32x32xf32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg0 : !transform.any_op {transform.readonly}) { %add = transform.structured.match ops{["linalg.add"]} in %arg0 : (!transform.any_op) -> !transform.any_op %a, %b = transform.test.fuse_and_yield %add [16] : (!transform.any_op) -> (!transform.any_op, !transform.any_op) transform.yield } } // CHECK: func.func @multiple_outputs_fusion_yield_all( // CHECK-SAME: %[[LHS0:[a-zA-Z0-9]+]]: tensor<32x32xf32> // CHECK-SAME: %[[RHS0:[a-zA-Z0-9]+]]: tensor<32x32xf32>, // CHECK-SAME: %[[INIT0:[a-zA-Z0-9]+]]: tensor<32x32xf32>, // CHECK-SAME: %[[INIT1:[a-zA-Z0-9]+]]: tensor<32x32xf32>, // CHECK-SAME: %[[RHS1:[a-zA-Z0-9]+]]: tensor<32x32xf32>, // CHECK-SAME: %[[INIT2:[a-zA-Z0-9]+]]: tensor<32x32xf32>) // CHECK: %[[RESULT:.+]]:3 = scf.for %[[IV:[a-zA-Z0-9]+]] = // CHECK-SAME: iter_args(%[[ITERARG0:[a-zA-Z0-9]+]] = %[[INIT2]], %[[ITERARG1:[a-zA-Z0-9]+]] = %[[INIT0]], %[[ITERARG2:[a-zA-Z0-9]+]] = %[[INIT1]]) // CHECK-DAG: %[[LHS0_TILE:.+]] = tensor.extract_slice %[[LHS0]][%[[IV]], 0] // CHECK-DAG: %[[RHS0_TILE:.+]] = tensor.extract_slice %[[RHS0]][%[[IV]], 0] // CHECK-DAG: %[[INIT0_TILE:.+]] = tensor.extract_slice %[[ITERARG1]][%[[IV]], 0] // CHECK-DAG: %[[INIT1_TILE:.+]] = tensor.extract_slice %[[ITERARG2]][0, %[[IV]]] // CHECK: %[[GENERIC_TILE:.+]]:2 = linalg.generic // CHECK-SAME: ins(%[[LHS0_TILE]], %[[RHS0_TILE]] : // CHECK-SAME: outs(%[[INIT0_TILE]], %[[INIT1_TILE]] : // CHECK-DAG: %[[RHS1_TILE:.+]] = tensor.extract_slice %[[RHS1]][%[[IV]], 0] // CHECK-DAG: %[[INIT2_TILE:.+]] = tensor.extract_slice %[[ITERARG0]][%[[IV]], 0] // CHECK: %[[ADD_TILE:.+]] = linalg.add // CHECK-SAME: ins(%[[GENERIC_TILE]]#0, %[[RHS1_TILE]] : // CHECK-SAME: outs(%[[INIT2_TILE]] : // CHECK: %[[INSERT0:.+]] = tensor.insert_slice %[[ADD_TILE]] into %[[ITERARG0]][%[[IV]], 0] // CHECK: %[[INSERT1:.+]] = tensor.insert_slice %[[GENERIC_TILE]]#0 into %[[ITERARG1]][%[[IV]], 0] // CHECK: %[[INSERT2:.+]] = tensor.insert_slice %[[GENERIC_TILE]]#1 into %[[ITERARG2]][0, %[[IV]]] // CHECK: scf.yield %[[INSERT0]], %[[INSERT1]], %[[INSERT2]] // CHECK: return %[[RESULT]]#1, %[[RESULT]]#2, %[[RESULT]]#0