// RUN: mlir-opt -transform-interpreter -cse -split-input-file %s | FileCheck %s func.func @gemm_fill_fusion(%arg0 : tensor, %arg1 : tensor) -> tensor { %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index %cst = arith.constant 0.0 : f32 %d0 = tensor.dim %arg0, %c0 : tensor %d1 = tensor.dim %arg1, %c1 : tensor %init = tensor.empty(%d0, %d1) : tensor %fill = linalg.fill ins(%cst : f32) outs(%init : tensor) -> tensor %gemm = linalg.matmul ins(%arg0, %arg1 : tensor, tensor) outs(%fill : tensor) -> tensor return %gemm : tensor } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) { %matmul = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op %a, %b, %c = transform.structured.fuse %matmul tile_sizes [10, 20] : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op) transform.yield } } // CHECK: func.func @gemm_fill_fusion( // CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]: tensor // CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]: tensor) // CHECK: %[[INIT:.+]] = tensor.empty // CHECK: scf.for %[[IV0:[a-zA-Z0-9]+]] = // CHECK-SAME: iter_args(%[[ITERARG0:.+]] = %[[INIT]]) // CHECK: scf.for %[[IV1:[a-zA-Z0-9]+]] = // CHECK-SAME: iter_args(%[[ITERARG1:.+]] = %[[ITERARG0]]) // CHECK-DAG: %[[LHS_TILE:.+]] = tensor.extract_slice %[[ARG0]][%[[IV0]], 0] // CHECK-DAG: %[[RHS_TILE:.+]] = tensor.extract_slice %[[ARG1]][0, %[[IV1]]] // CHECK-DAG: %[[INIT_TILE:.+]] = tensor.extract_slice %[[ITERARG1]][%[[IV0]], %[[IV1]]] // CHECK: %[[FILL_TILE:.+]] = linalg.fill // CHECK-SAME: outs(%[[INIT_TILE]] : // CHECK: %[[GEMM_TILE:.+]] = linalg.matmul // CHECK-SAME: ins(%[[LHS_TILE]], %[[RHS_TILE]] : // CHECK-SAME: outs(%[[FILL_TILE]] : // CHECK: %[[INSERT:.+]] = tensor.insert_slice %[[GEMM_TILE]] into %[[ITERARG1]][%[[IV0]], %[[IV1]]] // CHECK: scf.yield %[[INSERT]] // ----- func.func @gemm_generic_fusion(%arg0 : tensor, %arg1 : tensor, %arg2 : tensor) -> tensor { %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index %cst = arith.constant 0.0 : f32 %d0 = tensor.dim %arg0, %c0 : tensor %d1 = tensor.dim %arg1, %c1 : tensor %init = tensor.empty(%d0, %d1) : tensor %fill = linalg.fill ins(%cst : f32) outs(%init : tensor) -> tensor %gemm = linalg.matmul ins(%arg0, %arg1 : tensor, tensor) outs(%fill : tensor) -> tensor %generic = linalg.generic { indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d1)>, affine_map<(d0, d1) -> (d0, d1)>], iterator_types = ["parallel", "parallel"]} ins(%gemm, %arg2 : tensor, tensor) outs(%init : tensor) { ^bb0(%b0 : f32, %b1 : f32, %b2 : f32): %add = arith.addf %b0, %b1 : f32 linalg.yield %add : f32 } -> tensor return %generic : tensor } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) { %generic = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op %a, %b, %c = transform.structured.fuse %generic tile_sizes [10, 20] : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op) transform.yield } } // CHECK: func.func @gemm_generic_fusion( // CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]: tensor // CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]: tensor, // CHECK-SAME: %[[ARG2:[a-zA-Z0-9]+]]: tensor) // CHECK: %[[INIT:.+]] = tensor.empty // CHECK: scf.for %[[IV0:[a-zA-Z0-9]+]] = // CHECK-SAME: iter_args(%[[ITERARG0:.+]] = %[[INIT]]) // CHECK: scf.for %[[IV1:[a-zA-Z0-9]+]] = // CHECK-SAME: iter_args(%[[ITERARG1:.+]] = %[[ITERARG0]]) // CHECK-DAG: %[[LHS_TILE:.+]] = tensor.extract_slice %[[ARG0]][%[[IV0]], 0] // CHECK-DAG: %[[RHS_TILE:.+]] = tensor.extract_slice %[[ARG1]][0, %[[IV1]]] // CHECK-DAG: %[[INIT_TILE:.+]] = tensor.extract_slice %[[INIT]][%[[IV0]], %[[IV1]]] // CHECK: %[[FILL_TILE:.+]] = linalg.fill // CHECK-SAME: outs(%[[INIT_TILE]] : // CHECK: %[[GEMM_TILE:.+]] = linalg.matmul // CHECK-SAME: ins(%[[LHS_TILE]], %[[RHS_TILE]] : // CHECK-SAME: outs(%[[FILL_TILE]] : // CHECK-DAG: %[[BIAS_TILE:.+]] = tensor.extract_slice %[[ARG2]][%[[IV1]]] // CHECK-DAG: %[[OUTS_TILE:.+]] = tensor.extract_slice %[[ITERARG1]][%[[IV0]], %[[IV1]]] // CHECK: %[[GENERIC_TILE:.+]] = linalg.generic // CHECK-SAME: ins(%[[GEMM_TILE]], %[[BIAS_TILE]] : // CHECK-SAME: outs(%[[OUTS_TILE]] : // CHECK: %[[INSERT:.+]] = tensor.insert_slice %[[GENERIC_TILE]] into %[[ITERARG1]][%[[IV0]], %[[IV1]]] // CHECK: scf.yield %[[INSERT]] // ----- func.func @gemm_gemm_fusion(%lhs0 : tensor, %rhs0 : tensor, %rhs1 : tensor) -> tensor { %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index %cst = arith.constant 0.0 : f32 %d0 = tensor.dim %lhs0, %c0 : tensor %d1 = tensor.dim %rhs0, %c1 : tensor %init0 = tensor.empty(%d0, %d1) : tensor %fill0 = linalg.fill ins(%cst : f32) outs(%init0 : tensor) -> tensor %gemm0 = linalg.matmul ins(%lhs0, %rhs0 : tensor, tensor) outs(%fill0 : tensor) -> tensor %d2 = tensor.dim %rhs1, %c1 : tensor %init1 = tensor.empty(%d0, %d2) : tensor %fill1 = linalg.fill ins(%cst : f32) outs(%init1 : tensor) -> tensor %gemm1 = linalg.matmul ins(%gemm0, %rhs1 : tensor, tensor) outs(%fill1 : tensor) -> tensor return %gemm1 : tensor } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) { %matmuls = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op %mm1, %mm2 = transform.split_handle %matmuls : (!transform.any_op) -> (!transform.any_op, !transform.any_op) %a, %b = transform.structured.fuse %mm2 tile_sizes [10] : (!transform.any_op) -> (!transform.any_op, !transform.any_op) transform.yield } } // CHECK: func.func @gemm_gemm_fusion( // CHECK-SAME: %[[LHS0:[a-zA-Z0-9]+]]: tensor // CHECK-SAME: %[[RHS0:[a-zA-Z0-9]+]]: tensor, // CHECK-SAME: %[[RHS1:[a-zA-Z0-9]+]]: tensor) // CHECK-DAG: %[[C0:.+]] = arith.constant 0 : index // CHECK-DAG: %[[C1:.+]] = arith.constant 1 : index // CHECK-DAG: %[[D0:.+]] = tensor.dim %[[LHS0]], %[[C0]] // CHECK-DAG: %[[D1:.+]] = tensor.dim %[[RHS0]], %[[C1]] // CHECK-DAG: %[[INIT0:.+]] = tensor.empty(%[[D0]], %[[D1]]) // CHECK-DAG: %[[D2:.+]] = tensor.dim %[[RHS1]], %[[C1]] // CHECK: %[[INIT1:.+]] = tensor.empty(%[[D0]], %[[D2]]) // CHECK: scf.for %[[IV:[a-zA-Z0-9]+]] = // CHECK-SAME: iter_args(%[[ITERARG:.+]] = %[[INIT1]]) // CHECK-DAG: %[[LHS0_TILE:.+]] = tensor.extract_slice %[[LHS0]][%[[IV]], 0] // CHECK-DAG: %[[RHS0_TILE:.+]] = tensor.extract_slice %[[RHS0]][0, 0] // CHECK-DAG: %[[INIT0_TILE:.+]] = tensor.extract_slice %[[INIT0]][%[[IV]], 0] // CHECK: %[[FILL0_TILE:.+]] = linalg.fill // CHECK-SAME: outs(%[[INIT0_TILE]] : // CHECK: %[[GEMM0_TILE:.+]] = linalg.matmul // CHECK-SAME: ins(%[[LHS0_TILE]], %[[RHS0_TILE]] : // CHECK-SAME: outs(%[[FILL0_TILE]] : // CHECK-DAG: %[[RHS1_TILE:.+]] = tensor.extract_slice %[[RHS1]][0, 0] // CHECK-DAG: %[[INIT1_TILE:.+]] = tensor.extract_slice %[[ITERARG]][%[[IV]], 0] // CHECK: %[[FILL1_TILE:.+]] = linalg.fill // CHECK-SAME: outs(%[[INIT1_TILE]] : // CHECK: %[[GEMM1_TILE:.+]] = linalg.matmul // CHECK-SAME: ins(%[[GEMM0_TILE]], %[[RHS1_TILE]] : // CHECK-SAME: outs(%[[FILL1_TILE]] : // CHECK: %[[INSERT:.+]] = tensor.insert_slice %[[GEMM1_TILE]] into %[[ITERARG]][%[[IV]], 0] // CHECK: scf.yield %[[INSERT]] // ----- func.func @gemm_transpose_fusion(%arg0 : tensor, %arg1 : tensor) -> tensor { %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index %cst = arith.constant 0.0 : f32 %d0 = tensor.dim %arg0, %c0 : tensor %d1 = tensor.dim %arg1, %c1 : tensor %init0 = tensor.empty(%d0, %d1) : tensor %fill = linalg.fill ins(%cst : f32) outs(%init0 : tensor) -> tensor %gemm = linalg.matmul ins(%arg0, %arg1 : tensor, tensor) outs(%fill : tensor) -> tensor %init1 = tensor.empty(%d1, %d0) : tensor %transpose = linalg.generic { indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d1, d0)>], iterator_types = ["parallel", "parallel"]} ins(%gemm : tensor) outs(%init1 : tensor) { ^bb0(%b0 : f32, %b1 : f32): linalg.yield %b0 : f32 } -> tensor return %transpose : tensor } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) { %generic = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op %a, %b, %c = transform.structured.fuse %generic tile_sizes [10, 20] : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op) transform.yield } } // CHECK: func.func @gemm_transpose_fusion( // CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]: tensor // CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]: tensor) // CHECK-DAG: %[[C0:.+]] = arith.constant 0 : index // CHECK-DAG: %[[C1:.+]] = arith.constant 1 : index // CHECK-DAG: %[[D0:.+]] = tensor.dim %[[ARG0]], %[[C0]] // CHECK-DAG: %[[D1:.+]] = tensor.dim %[[ARG1]], %[[C1]] // CHECK-DAG: %[[INIT0:.+]] = tensor.empty(%[[D0]], %[[D1]]) // CHECK-DAG: %[[INIT1:.+]] = tensor.empty(%[[D1]], %[[D0]]) // CHECK: scf.for %[[IV0:[a-zA-Z0-9]+]] = // CHECK-SAME: iter_args(%[[ITERARG0:.+]] = %[[INIT1]]) // CHECK: scf.for %[[IV1:[a-zA-Z0-9]+]] = // CHECK-SAME: iter_args(%[[ITERARG1:.+]] = %[[ITERARG0]]) // CHECK-DAG: %[[LHS_TILE:.+]] = tensor.extract_slice %[[ARG0]][%[[IV0]], 0] // CHECK-DAG: %[[RHS_TILE:.+]] = tensor.extract_slice %[[ARG1]][0, %[[IV1]]] // CHECK-DAG: %[[INIT0_TILE:.+]] = tensor.extract_slice %[[INIT0]][%[[IV0]], %[[IV1]]] // CHECK: %[[FILL_TILE:.+]] = linalg.fill // CHECK-SAME: outs(%[[INIT0_TILE]] : // CHECK: %[[GEMM_TILE:.+]] = linalg.matmul // CHECK-SAME: ins(%[[LHS_TILE]], %[[RHS_TILE]] : // CHECK-SAME: outs(%[[FILL_TILE]] : // CHECK-DAG: %[[OUTS_TILE:.+]] = tensor.extract_slice %[[ITERARG1]][%[[IV1]], %[[IV0]]] // CHECK: %[[GENERIC_TILE:.+]] = linalg.generic // CHECK-SAME: ins(%[[GEMM_TILE]] : // CHECK-SAME: outs(%[[OUTS_TILE]] : // CHECK: %[[INSERT:.+]] = tensor.insert_slice %[[GENERIC_TILE]] into %[[ITERARG1]][%[[IV1]], %[[IV0]]] // CHECK: scf.yield %[[INSERT]] // ----- func.func @interchange_matmul_fusion(%arg0 : tensor, %arg1 : tensor) -> tensor { %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index %d0 = tensor.dim %arg0, %c0 : tensor %d1 = tensor.dim %arg1, %c1 : tensor %cst = arith.constant 0.0 : f32 %0 = tensor.empty(%d0, %d1) : tensor %1 = linalg.fill ins(%cst : f32) outs(%0 : tensor) -> tensor %2 = linalg.matmul ins(%arg0, %arg1 : tensor, tensor) outs(%1 : tensor) -> tensor %3 = linalg.generic { indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d0, d1)>], iterator_types = ["parallel", "parallel"]} ins(%2 : tensor) outs(%0 : tensor) { ^bb0(%b0 : f32, %b1 : f32): %4 = arith.addf %b0, %b0 : f32 linalg.yield %4 : f32 } -> tensor return %3 : tensor } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) { %generic = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op %a, %b, %c = transform.structured.fuse %generic tile_sizes [10, 20] interchange[1, 0] : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op) transform.yield } } // CHECK: func.func @interchange_matmul_fusion( // CHECK-SAME: %[[ARG0:[a-zA-Z0-9]+]]: tensor // CHECK-SAME: %[[ARG1:[a-zA-Z0-9]+]]: tensor) // CHECK: %[[INIT:.+]] = tensor.empty // CHECK: scf.for %[[IV0:[a-zA-Z0-9]+]] = // CHECK-SAME: iter_args(%[[ITERARG0:.+]] = %[[INIT]]) // CHECK: scf.for %[[IV1:[a-zA-Z0-9]+]] = // CHECK-SAME: iter_args(%[[ITERARG1:.+]] = %[[ITERARG0]]) // CHECK-DAG: %[[LHS_TILE:.+]] = tensor.extract_slice %[[ARG0]][%[[IV1]], 0] // CHECK-DAG: %[[RHS_TILE:.+]] = tensor.extract_slice %[[ARG1]][0, %[[IV0]]] // CHECK-DAG: %[[INIT_TILE:.+]] = tensor.extract_slice %[[INIT]][%[[IV1]], %[[IV0]]] // CHECK: %[[FILL_TILE:.+]] = linalg.fill // CHECK-SAME: outs(%[[INIT_TILE]] : // CHECK: %[[GEMM_TILE:.+]] = linalg.matmul // CHECK-SAME: ins(%[[LHS_TILE]], %[[RHS_TILE]] : // CHECK-SAME: outs(%[[FILL_TILE]] : // CHECK: %[[INIT_TILE_2:.+]] = tensor.extract_slice %[[ITERARG1]][%[[IV1]], %[[IV0]]] // CHECK: %[[GENERIC_TILE:.+]] = linalg.generic // CHECK-SAME: ins(%[[GEMM_TILE]] : // CHECK-SAME: outs(%[[INIT_TILE_2]] : // CHECK: %[[INSERT:.+]] = tensor.insert_slice %[[GENERIC_TILE]] into %[[ITERARG1]][%[[IV1]], %[[IV0]]] // CHECK: scf.yield %[[INSERT]] // ----- func.func @matmul_plus_matmul(%arg0: tensor, %arg1: tensor, %arg2: tensor) -> tensor{ %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index %0 = tensor.dim %arg2, %c0 : tensor %1 = tensor.dim %arg2, %c1 : tensor %2 = linalg.matmul ins(%arg0, %arg1 : tensor, tensor) outs(%arg2 : tensor) -> tensor %3 = tensor.dim %2, %c0 : tensor %4 = tensor.dim %2, %c1 : tensor %5 = tensor.empty(%3, %4) : tensor %6 = linalg.generic {indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d0, d1)>], iterator_types = ["parallel", "parallel"]} ins(%2, %2 : tensor, tensor) outs(%5 : tensor) { ^bb0(%arg3 : f32, %arg4 : f32, %arg5 : f32) : %7 = arith.addf %arg3, %arg4 : f32 linalg.yield %7 : f32 } -> tensor return %6 : tensor } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) { %generic = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op %a, %b, %c = transform.structured.fuse %generic tile_sizes [10, 20] : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op) transform.yield } } // CHECK: func @matmul_plus_matmul // CHECK-SAME: %[[ARG0:[a-zA-Z0-9_]+]]: tensor // CHECK-SAME: %[[ARG1:[a-zA-Z0-9_]+]]: tensor // CHECK-SAME: %[[ARG2:[a-zA-Z0-9_]+]]: tensor // CHECK: %[[RESULT:.+]] = scf.for %[[IV0:[a-zA-Z0-9_]+]] // CHECK-SAME: iter_args(%[[ARG4:.+]] = %{{[a-zA-Z0-9_]+}}) // CHECK: %[[YIELD:.+]] = scf.for %[[IV1:[a-zA-Z0-9_]+]] // CHECK-SAME: iter_args(%[[ARG6:.+]] = %[[ARG4]]) // CHECK-DAG: %[[ST_ARG0:.+]] = tensor.extract_slice %[[ARG0]][%[[IV0]], 0] // CHECK-DAG: %[[ST_ARG1:.+]] = tensor.extract_slice %[[ARG1]][0, %[[IV1]]] // CHECK-DAG: %[[ST_ARG2:.+]] = tensor.extract_slice %[[ARG2]][%[[IV0]], %[[IV1]]] // CHECK: %[[MATMUL:.+]] = linalg.matmul // CHECK-SAME: ins(%[[ST_ARG0]], %[[ST_ARG1]] : // CHECK-SAME: outs(%[[ST_ARG2]] : // CHECK: %[[ST_ARG6:.+]] = tensor.extract_slice %[[ARG6]][%[[IV0]], %[[IV1]]] // CHECK: %[[ST_RESULT:.+]] = linalg.generic // CHECK-SAME: ins(%[[MATMUL]], %[[MATMUL]] : // CHECK-SAME: outs(%[[ST_ARG6]] : // CHECK: %[[UPDATE:.+]] = tensor.insert_slice %[[ST_RESULT]] // CHECK-SAME: into %[[ARG6]][%[[IV0]], %[[IV1]]] // CHECK: scf.yield %[[UPDATE]] // CHECK: scf.yield %[[YIELD]] // CHECK: return %[[RESULT]] // ----- func.func @matmul_plus_transpose_matmul(%arg0: tensor, %arg1: tensor, %arg2: tensor) -> tensor{ %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index %0 = tensor.dim %arg2, %c0 : tensor %1 = tensor.dim %arg2, %c1 : tensor %2 = linalg.matmul ins(%arg0, %arg1 : tensor, tensor) outs(%arg2 : tensor) -> tensor %3 = tensor.dim %2, %c0 : tensor %4 = tensor.dim %2, %c1 : tensor %5 = tensor.empty(%3, %4) : tensor %6 = linalg.generic {indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d1, d0)>, affine_map<(d0, d1) -> (d0, d1)>], iterator_types = ["parallel", "parallel"]} ins(%2, %2 : tensor, tensor) outs(%5 : tensor) { ^bb0(%arg3 : f32, %arg4 : f32, %arg5 : f32) : %7 = arith.addf %arg3, %arg4 : f32 linalg.yield %7 : f32 } -> tensor return %6 : tensor } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) { %generic = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op %a, %b, %c = transform.structured.fuse %generic tile_sizes [10, 20] : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op) transform.yield } } // CHECK: func @matmul_plus_transpose_matmul // CHECK-SAME: %[[ARG0:[a-zA-Z0-9_]+]]: tensor // CHECK-SAME: %[[ARG1:[a-zA-Z0-9_]+]]: tensor // CHECK-SAME: %[[ARG2:[a-zA-Z0-9_]+]]: tensor // CHECK: %[[RESULT:.+]] = scf.for %[[IV0:[a-zA-Z0-9_]+]] // CHECK-SAME: iter_args(%[[ARG4:.+]] = %{{[a-zA-Z0-9_]+}}) // CHECK: %[[YIELD:.+]] = scf.for %[[IV1:[a-zA-Z0-9_]+]] // CHECK-SAME: iter_args(%[[ARG6:.+]] = %[[ARG4]]) // CHECK-DAG: %[[ST_ARG0:.+]] = tensor.extract_slice %[[ARG0]][%[[IV0]], 0] // CHECK-DAG: %[[ST_ARG1:.+]] = tensor.extract_slice %[[ARG1]][0, %[[IV1]]] // CHECK-DAG: %[[ST_ARG2:.+]] = tensor.extract_slice %[[ARG2]][%[[IV0]], %[[IV1]]] // CHECK: %[[LHS:.+]] = linalg.matmul // CHECK-SAME: ins(%[[ST_ARG0]], %[[ST_ARG1]] // CHECK-SAME: : tensor, tensor) // CHECK-SAME: outs(%[[ST_ARG2]] : tensor) // CHECK-DAG: %[[STR_ARG0:.+]] = tensor.extract_slice %[[ARG0]][%[[IV1]], 0] // CHECK-DAG: %[[STR_ARG1:.+]] = tensor.extract_slice %[[ARG1]][0, %[[IV0]]] // CHECK-DAG: %[[STR_ARG2:.+]] = tensor.extract_slice %[[ARG2]][%[[IV1]], %[[IV0]]] // CHECK: %[[RHS:.+]] = linalg.matmul // CHECK-SAME: ins(%[[STR_ARG0]], %[[STR_ARG1]] : // CHECK-SAME: outs(%[[STR_ARG2]] : // CHECK: %[[ST_ARG6:.+]] = tensor.extract_slice %[[ARG6]][%[[IV0]], %[[IV1]]] // CHECK: %[[ST_RESULT:.+]] = linalg.generic // CHECK-SAME: ins(%[[LHS]], %[[RHS]] : // CHECK-SAME: outs(%[[ST_ARG6]] : // CHECK: %[[UPDATE:.+]] = tensor.insert_slice %[[ST_RESULT]] // CHECK-SAME: into %[[ARG6]][%[[IV0]], %[[IV1]]] // CHECK: scf.yield %[[UPDATE]] // CHECK: scf.yield %[[YIELD]] // CHECK: return %[[RESULT]] // ----- func.func @matmul_sequence_fusion(%arg0: tensor, %arg1: tensor, %arg2: tensor, %arg3: tensor, %arg4: tensor, %arg5: tensor, %arg6: tensor) -> tensor { %0 = linalg.matmul ins(%arg0, %arg1 : tensor, tensor) outs(%arg2 : tensor) -> tensor // [M, N0] * [N0, N1] %1 = linalg.matmul ins(%0, %arg3 : tensor, tensor) outs(%arg4 : tensor) -> tensor // [M, N1] * [N1, N2] %2 = linalg.matmul ins(%1, %arg5 : tensor, tensor) outs(%arg6 : tensor) -> tensor // [M, N2] * [N2, N3] return %2 : tensor } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) { %matmuls = transform.structured.match ops{["linalg.matmul"]} in %arg1 : (!transform.any_op) -> !transform.any_op %mm1, %mm2, %mm3 = transform.split_handle %matmuls : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op) %a, %b = transform.structured.fuse %mm3 tile_sizes [10] : (!transform.any_op) -> (!transform.any_op, !transform.any_op) transform.yield } } // CHECK: #[[MAP:.+]] = affine_map<(d0)[s0] -> (-d0 + s0, 10)> // CHECK: func @matmul_sequence_fusion( // CHECK-SAME: %[[ARG0:[a-zA-Z0-9_]+]]: tensor // CHECK-SAME: %[[ARG1:[a-zA-Z0-9_]+]]: tensor // CHECK-SAME: %[[ARG2:[a-zA-Z0-9_]+]]: tensor // CHECK-SAME: %[[ARG3:[a-zA-Z0-9_]+]]: tensor // CHECK-SAME: %[[ARG4:[a-zA-Z0-9_]+]]: tensor // CHECK-SAME: %[[ARG5:[a-zA-Z0-9_]+]]: tensor // CHECK-SAME: %[[ARG6:[a-zA-Z0-9_]+]]: tensor) -> tensor { // CHECK-DAG: %[[C0:.+]] = arith.constant 0 : index // CHECK-DAG: %[[C1:.+]] = arith.constant 1 : index // CHECK-DAG: %[[ORIG_GEMM1:.+]] = linalg.matmul ins(%[[ARG0]], %[[ARG1]] : // CHECK-DAG: %[[ORIG_GEMM2:.+]] = linalg.matmul ins(%[[ORIG_GEMM1]], %[[ARG3]] : // CHECK-DAG: %[[M:.+]] = tensor.dim %[[ORIG_GEMM2]], %[[C0]] // CHECK-DAG: %[[N2:.+]] = tensor.dim %[[ORIG_GEMM2]], %[[C1]] // CHECK-DAG: %[[N3:.+]] = tensor.dim %[[ARG5]], %[[C1]] // CHECK: %[[R0:.+]] = scf.for %[[IV:[a-zA-Z0-9_]+]] = // CHECK-SAME: iter_args(%[[ARG8:.+]] = %[[ARG6]]) -> (tensor) { // CHECK-DAG: %[[N1:.+]] = tensor.dim %[[ORIG_GEMM1]], %[[C1]] // CHECK-DAG: %[[N0:.+]] = tensor.dim %[[ARG0]], %[[C1]] // CHECK-DAG: %[[TILE_M:.+]] = affine.min #[[MAP]](%[[IV]])[%[[M]]] // CHECK-DAG: %[[SLICE_ARG0:.+]] = tensor.extract_slice %[[ARG0]][%[[IV]], 0] [%[[TILE_M]], %[[N0]]] // CHECK-DAG: %[[SLICE_ARG1:.+]] = tensor.extract_slice %[[ARG1]][0, 0] [%[[N0]], %[[N1]]] // CHECK-DAG: %[[SLICE_ARG2:.+]] = tensor.extract_slice %[[ARG2]][%[[IV]], 0] [%[[TILE_M]], %[[N1]]] // CHECK-DAG: %[[TILE_GEMM1:.+]] = linalg.matmul ins(%[[SLICE_ARG0]], %[[SLICE_ARG1]] : // CHECK-SAME: outs(%[[SLICE_ARG2]] : // CHECK-DAG: %[[SLICE_ARG3:.+]] = tensor.extract_slice %[[ARG3]][0, 0] [%[[N1]], %[[N2]]] // CHECK-DAG: %[[SLICE_ARG4:.+]] = tensor.extract_slice %[[ARG4]][%[[IV]], 0] [%[[TILE_M]], %[[N2]]] // CHECK-DAG: %[[TILE_GEMM2:.+]] = linalg.matmul ins(%[[TILE_GEMM1]], %[[SLICE_ARG3]] : // CHECK-SAME: outs(%[[SLICE_ARG4]] : // CHECK-DAG: %[[SLICE_ARG5:.+]] = tensor.extract_slice %[[ARG5]][0, 0] [%[[N2]], %[[N3]]] // CHECK-DAG: %[[SLICE_ARG6:.+]] = tensor.extract_slice %[[ARG8]][%[[IV]], 0] [%[[TILE_M]], %[[N3]]] // CHECK-DAG: %[[TILE_GEMM3:.+]] = linalg.matmul // CHECK-SAME: ins(%[[TILE_GEMM2]], %[[SLICE_ARG5]] : // CHECK-SAME: outs(%[[SLICE_ARG6]] : // CHECK: %[[UPDATE:.+]] = tensor.insert_slice %[[TILE_GEMM3]] into %[[ARG8]][%[[IV]], 0] [%[[TILE_M]], %[[N3]]] // CHECK: scf.yield %[[UPDATE]] // ----- func.func @reduction_sequence(%arg0: tensor<30x3xf32>) -> tensor<30x3xf32> { %cst = arith.constant 0.000000e+00 : f32 %cst_0 = arith.constant 0xFF800000 : f32 %0 = tensor.empty() : tensor<30xf32> %1 = linalg.fill ins(%cst_0 : f32) outs(%0 : tensor<30xf32>) -> tensor<30xf32> %2 = linalg.generic { indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d0)>], iterator_types = ["parallel", "reduction"]} ins(%arg0 : tensor<30x3xf32>) outs(%1 : tensor<30xf32>) { ^bb0(%arg1: f32, %arg2: f32): %8 = arith.maximumf %arg2, %arg1 : f32 linalg.yield %8 : f32 } -> tensor<30xf32> %3 = tensor.empty() : tensor<30x3xf32> %4 = linalg.fill ins(%cst : f32) outs(%0 : tensor<30xf32>) -> tensor<30xf32> %5:2 = linalg.generic { indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d0)>, affine_map<(d0, d1) -> (d0)>, affine_map<(d0, d1) -> (d0, d1)>], iterator_types = ["parallel", "reduction"]} ins(%arg0, %2 : tensor<30x3xf32>, tensor<30xf32>) outs(%4, %3 : tensor<30xf32>, tensor<30x3xf32>) { ^bb0(%arg1: f32, %arg2: f32, %arg3: f32, %arg4: f32): %8 = arith.subf %arg1, %arg2 : f32 %9 = math.exp %8 : f32 %10 = arith.addf %arg3, %9 : f32 linalg.yield %10, %9 : f32, f32 } -> (tensor<30xf32>, tensor<30x3xf32>) %6 = linalg.generic { indexing_maps = [affine_map<(d0, d1) -> (d0, d1)>, affine_map<(d0, d1) -> (d0)>, affine_map<(d0, d1) -> (d0, d1)>], iterator_types = ["parallel", "parallel"]} ins(%5#1, %5#0 : tensor<30x3xf32>, tensor<30xf32>) outs(%3 : tensor<30x3xf32>) { ^bb0(%arg1: f32, %arg2: f32, %arg3: f32): %8 = arith.divf %arg1, %arg2 : f32 linalg.yield %8 : f32 } -> tensor<30x3xf32> return %6 : tensor<30x3xf32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) { %generics = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op %generic1, %generic2, %generic3 = transform.split_handle %generics : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op) %a, %b = transform.structured.fuse %generic3 tile_sizes [10] : (!transform.any_op) -> (!transform.any_op, !transform.any_op) transform.yield } } // CHECK: func @reduction_sequence(%[[ARG0:.+]]: tensor<30x3xf32>) // CHECK-DAG: %[[INIT0:.+]] = tensor.empty() : tensor<30xf32> // CHECK-DAG: %[[INIT1:.+]] = tensor.empty() : tensor<30x3xf32> // CHECK: %[[RESULT:[a-zA-Z0-9]+]] = scf.for %[[IV:[a-zA-Z0-9]+]] // CHECK-SAME: iter_args(%[[ITERARG0:[a-zA-Z0-9]+]] = %[[INIT1]]) // CHECK-DAG: %[[ARG0_SLICE:.+]] = tensor.extract_slice %[[ARG0]][%[[IV]], 0] // CHECK-DAG: %[[INIT0_SLICE:.+]] = tensor.extract_slice %[[INIT0]][%[[IV]]] // CHECK: %[[FILL0:.+]] = linalg.fill // CHECK-SAME: outs(%[[INIT0_SLICE]] : // CHECK: %[[GENERIC0:.+]] = linalg.generic // CHECK-SAME: ins(%[[ARG0_SLICE]] : // CHECK-SAME: outs(%[[FILL0]] : // CHECK: %[[FILL1:.+]] = linalg.fill // CHECK-SAME: outs(%[[INIT0_SLICE]] : // CHECK: %[[INIT1_SLICE:.+]] = tensor.extract_slice %[[INIT1]][%[[IV]], 0] // CHECK: %[[GENERIC1:.+]]:2 = linalg.generic // CHECK-SAME: ins(%[[ARG0_SLICE]], %[[GENERIC0]] : // CHECK-SAME: outs(%[[FILL1]], %[[INIT1_SLICE]] : // CHECK: %[[ITERARG0_SLICE:.+]] = tensor.extract_slice %[[ITERARG0]][%[[IV]], 0] // CHECK: %[[GENERIC2:.+]] = linalg.generic // CHECK-SAME: ins(%[[GENERIC1]]#1, %[[GENERIC1]]#0 : // CHECK-SAME: outs(%[[ITERARG0_SLICE]] : // CHECK-DAG: %[[INSERTSLICE:.+]] = tensor.insert_slice %[[GENERIC2]] into %[[ITERARG0]][%[[IV]], 0] // CHECK: scf.yield %[[INSERTSLICE]] // CHECK: return %[[RESULT]] // ----- func.func @pad_producer_fusion(%arg0 : tensor<10xf32>) -> tensor<16xf32> { %0 = tensor.empty() : tensor<10xf32> %1 = linalg.generic { indexing_maps = [affine_map<(d0) -> (d0)>, affine_map<(d0) -> (d0)>], iterator_types = ["parallel"]} ins(%arg0 : tensor<10xf32>) outs(%0 : tensor<10xf32>) { ^bb0(%b0 : f32, %b1 : f32): %2 = arith.addf %b0, %b0: f32 linalg.yield %2 : f32 } -> tensor<10xf32> %cst = arith.constant 0.0 : f32 %2 = tensor.pad %1 low[4] high[2] { ^bb0(%arg1 : index): tensor.yield %cst : f32 } : tensor<10xf32> to tensor<16xf32> return %2 : tensor<16xf32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) { %generic = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op %pad = transform.structured.match ops{["tensor.pad"]} in %arg1 : (!transform.any_op) -> !transform.any_op %a, %b = transform.structured.fuse %pad tile_sizes [8] : (!transform.any_op) -> (!transform.any_op, !transform.any_op) transform.yield } } // CHECK-LABEL: func @pad_producer_fusion // CHECK-SAME: %[[ARG0:.+]]: tensor<10xf32> // CHECK: %[[FOR_RESULT:.+]] = scf.for // CHECK: %[[IF_RESULT:.+]] = scf.if // CHECK: else // CHECK: %[[SLICE:.+]] = tensor.extract_slice %[[ARG0]] // CHECK: %[[GENERIC:.+]] = linalg.generic // CHECK-SAME: ins(%[[SLICE]] : // CHECK: %[[PAD:.+]] = tensor.pad %[[GENERIC]] // CHECK: %[[CAST:.+]] = tensor.cast %[[PAD]] // CHECK: scf.yield %[[CAST]] // CHECK: %[[INSERT_SLICE:.+]] = tensor.insert_slice %[[IF_RESULT]] // CHECK: scf.yield %[[INSERT_SLICE]] // CHECK: return %[[FOR_RESULT]] // ----- func.func @imperfect_unpack_producer_fusion(%source: tensor<1x1x288x8x4xf32>, %dest: tensor<1x2x1152xf32>) -> tensor<1x2x1152xf32> { %0 = linalg.unpack %source outer_dims_perm = [0, 1, 2] inner_dims_pos = [1, 2] inner_tiles = [8, 4] into %dest : tensor<1x1x288x8x4xf32> -> tensor<1x2x1152xf32> %1 = tensor.empty() : tensor<1x2x1152xf32> %cst = arith.constant 1.0 : f32 %2 = linalg.generic {indexing_maps = [affine_map<(d0, d1, d2) -> (d0, d1, d2)>, affine_map<(d0, d1, d2) -> (d0, d1, d2)>], iterator_types = ["parallel", "parallel", "parallel"]} ins(%0 : tensor<1x2x1152xf32>) outs(%1 : tensor<1x2x1152xf32>) { ^bb0(%in: f32, %out: f32): %7 = arith.addf %in, %cst : f32 linalg.yield %7 : f32 } -> tensor<1x2x1152xf32> return %2 : tensor<1x2x1152xf32> } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) { %matmul = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op %a, %b = transform.structured.fuse %matmul tile_sizes [0, 1, 0] : (!transform.any_op) -> (!transform.any_op, !transform.any_op) transform.yield } } // CHECK-LABEL: func @imperfect_unpack_producer_fusion // CHECK-SAME: %[[ARG0:.+]]: tensor<1x1x288x8x4xf32> // CHECK-SAME: %[[ARG1:.+]]: tensor<1x2x1152xf32> // CHECK: %[[FOR_RESULT:.+]] = scf.for{{.*}}iter_args(%[[ITER_ARG:.+]] = {{.*}}) // CHECK: %[[SLICE:.+]] = tensor.extract_slice %[[ARG0]] // CHECK: %[[UNPACK:.+]] = linalg.unpack %[[SLICE]] // CHECK-DAG: %[[UNPACK_SLICE:.+]] = tensor.extract_slice %[[UNPACK]] // CHECK-DAG: %[[INIT_SLICE:.+]] = tensor.extract_slice %[[ITER_ARG]] // CHECK: %[[GENERIC:.+]] = linalg.generic // CHECK-SAME: ins(%[[UNPACK_SLICE]] // CHECK-SAME: outs(%[[INIT_SLICE]] // CHECK: %[[INSERT_SLICE:.+]] = tensor.insert_slice %[[GENERIC]] into %[[ITER_ARG]] // CHECK: scf.yield %[[INSERT_SLICE]] // CHECK: return %[[FOR_RESULT]] // ----- #map = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)> #map1 = affine_map<(d0, d1, d2, d3) -> (d0, d3, d2, d1)> module { func.func private @tile_one_consumer_using_tile_and_fuse(%arg0: tensor<16x128x48x96xf32>, %arg1: tensor<16x96x48x128xf32>) -> tensor<16x96x48x128xf32> { %0 = linalg.generic {indexing_maps = [#map, #map1], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg0 : tensor<16x128x48x96xf32>) outs(%arg1 : tensor<16x96x48x128xf32>) { ^bb0(%in: f32, %out: f32): linalg.yield %in : f32 } -> tensor<16x96x48x128xf32> return %0 : tensor<16x96x48x128xf32> } } module attributes {transform.with_named_sequence} { transform.named_sequence @__transform_main(%arg1 : !transform.any_op {transform.readonly}) { %generic = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op %a, %loops:4 = transform.structured.fuse %generic tile_sizes [1, 16, 16, 16] interchange [0, 1, 2, 3] : (!transform.any_op) -> (!transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op, !transform.any_op) transform.yield } } // CHECK: func.func private @tile_one_consumer_using_tile_and_fuse(%[[VAL_0:.*]]: tensor<16x128x48x96xf32>, %[[VAL_1:.*]]: tensor<16x96x48x128xf32>) -> tensor<16x96x48x128xf32> { // CHECK: %[[VAL_2:.*]] = arith.constant 0 : index // CHECK: %[[VAL_3:.*]] = arith.constant 16 : index // CHECK: %[[VAL_4:.*]] = arith.constant 128 : index // CHECK: %[[VAL_5:.*]] = arith.constant 48 : index // CHECK: %[[VAL_6:.*]] = arith.constant 96 : index // CHECK: %[[VAL_7:.*]] = arith.constant 1 : index // CHECK: %[[VAL_8:.*]] = scf.for %[[VAL_9:.*]] = %[[VAL_2]] to %[[VAL_3]] step %[[VAL_7]] iter_args(%[[VAL_10:.*]] = %[[VAL_1]]) -> (tensor<16x96x48x128xf32>) { // CHECK: %[[VAL_11:.*]] = scf.for %[[VAL_12:.*]] = %[[VAL_2]] to %[[VAL_4]] step %[[VAL_3]] iter_args(%[[VAL_13:.*]] = %[[VAL_10]]) -> (tensor<16x96x48x128xf32>) { // CHECK: %[[VAL_14:.*]] = scf.for %[[VAL_15:.*]] = %[[VAL_2]] to %[[VAL_5]] step %[[VAL_3]] iter_args(%[[VAL_16:.*]] = %[[VAL_13]]) -> (tensor<16x96x48x128xf32>) { // CHECK: %[[VAL_17:.*]] = scf.for %[[VAL_18:.*]] = %[[VAL_2]] to %[[VAL_6]] step %[[VAL_3]] iter_args(%[[VAL_19:.*]] = %[[VAL_16]]) -> (tensor<16x96x48x128xf32>) { // CHECK: %[[VAL_20:.*]] = tensor.extract_slice %[[VAL_0]]{{\[}}%[[VAL_9]], %[[VAL_12]], %[[VAL_15]], %[[VAL_18]]] [1, 16, 16, 16] [1, 1, 1, 1] : tensor<16x128x48x96xf32> to tensor<1x16x16x16xf32> // CHECK: %[[VAL_21:.*]] = tensor.extract_slice %[[VAL_19]]{{\[}}%[[VAL_9]], %[[VAL_18]], %[[VAL_15]], %[[VAL_12]]] [1, 16, 16, 16] [1, 1, 1, 1] : tensor<16x96x48x128xf32> to tensor<1x16x16x16xf32> // CHECK: %[[VAL_22:.*]] = linalg.generic {indexing_maps = [#map, #map1], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%[[VAL_20]] : tensor<1x16x16x16xf32>) outs(%[[VAL_21]] : tensor<1x16x16x16xf32>) { // CHECK: ^bb0(%[[VAL_23:.*]]: f32, %[[VAL_24:.*]]: f32): // CHECK: linalg.yield %[[VAL_23]] : f32 // CHECK: } -> tensor<1x16x16x16xf32> // CHECK: %[[VAL_25:.*]] = tensor.insert_slice %[[VAL_26:.*]] into %[[VAL_19]]{{\[}}%[[VAL_9]], %[[VAL_18]], %[[VAL_15]], %[[VAL_12]]] [1, 16, 16, 16] [1, 1, 1, 1] : tensor<1x16x16x16xf32> into tensor<16x96x48x128xf32> // CHECK: scf.yield %[[VAL_25]] : tensor<16x96x48x128xf32> // CHECK: } // CHECK: scf.yield %[[VAL_27:.*]] : tensor<16x96x48x128xf32> // CHECK: } // CHECK: scf.yield %[[VAL_28:.*]] : tensor<16x96x48x128xf32> // CHECK: } // CHECK: scf.yield %[[VAL_29:.*]] : tensor<16x96x48x128xf32> // CHECK: } // CHECK: return %[[VAL_30:.*]] : tensor<16x96x48x128xf32> // CHECK: } // CHECK: }