//===- AMDGPUDialect.cpp - MLIR AMDGPU dialect implementation --------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the AMDGPU dialect and its operations. // //===----------------------------------------------------------------------===// #include "mlir/Dialect/AMDGPU/IR/AMDGPUDialect.h" #include "mlir/Dialect/Arith/IR/Arith.h" #include "mlir/Dialect/GPU/IR/GPUDialect.h" #include "mlir/Dialect/LLVMIR/ROCDLDialect.h" #include "mlir/Dialect/MemRef/Utils/MemRefUtils.h" #include "mlir/Dialect/Utils/IndexingUtils.h" #include "mlir/Dialect/Vector/IR/VectorOps.h" #include "mlir/IR/Builders.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/Diagnostics.h" #include "mlir/IR/DialectImplementation.h" #include "mlir/IR/Matchers.h" #include "mlir/IR/OpImplementation.h" #include "mlir/IR/PatternMatch.h" #include "mlir/IR/TypeUtilities.h" #include "mlir/Transforms/InliningUtils.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/TypeSwitch.h" #include #include #include #include using namespace mlir; using namespace mlir::amdgpu; #include "mlir/Dialect/AMDGPU/IR/AMDGPUDialect.cpp.inc" namespace { struct AMDGPUInlinerInterface final : DialectInlinerInterface { using DialectInlinerInterface::DialectInlinerInterface; bool isLegalToInline(Operation *, Region *, bool, IRMapping &) const final { return true; } }; } // namespace void AMDGPUDialect::initialize() { addOperations< #define GET_OP_LIST #include "mlir/Dialect/AMDGPU/IR/AMDGPU.cpp.inc" >(); addAttributes< #define GET_ATTRDEF_LIST #include "mlir/Dialect/AMDGPU/IR/AMDGPUAttributes.cpp.inc" >(); addInterfaces(); } //===----------------------------------------------------------------------===// // 8-bit float ops //===----------------------------------------------------------------------===// LogicalResult PackedTrunc2xFp8Op::verify() { if (getExisting() && getExisting().getType() != getResult().getType()) return emitOpError("existing values must have same type as result"); return success(); } LogicalResult PackedStochRoundFp8Op::verify() { if (getExisting() && getExisting().getType() != getResult().getType()) return emitOpError("existing values must have same type as result"); return success(); } //===----------------------------------------------------------------------===// // mxfp float ops //===----------------------------------------------------------------------===// LogicalResult PackedScaledTruncOp::verify() { if (getExisting() && getExisting().getType() != getResult().getType()) return emitOpError("existing values must have same type as result"); return success(); } //===----------------------------------------------------------------------===// // FatRawBufferCastOp //===----------------------------------------------------------------------===// /// Convert the type `source` to one with the same sizes and strides - and /// offset, unless `stripOffset` is true, in which case the offset is reset to /// 0, if the offset should be reset but the layout of `source` isn't either the /// identity layout or a strided layout, this function fails. static FailureOr getFatRawBufferTypeLike(MemRefType source, bool resetOffset) { MLIRContext *ctx = source.getContext(); MemRefType::Builder mb(source); mb.setMemorySpace( amdgpu::AddressSpaceAttr::get(ctx, amdgpu::AddressSpace::FatRawBuffer)); MemRefLayoutAttrInterface layout = source.getLayout(); if (resetOffset && !layout.isIdentity()) { auto stridedLayout = dyn_cast(layout); if (!stridedLayout) return failure(); MemRefLayoutAttrInterface newLayout = StridedLayoutAttr::get(ctx, 0, stridedLayout.getStrides()); // Special case: if resetting the offset causes the strided layout to become // the identity layout, then reset to the identity layout. // TODO: this'll get a lot simpler when we have the contiguous layout. SmallVector stridesIfIdentity; if (source.hasStaticShape()) { stridesIfIdentity = computeSuffixProduct(source.getShape()); } else if (source.getRank() <= 1) { stridesIfIdentity = SmallVector(source.getRank(), 1); } if (stridesIfIdentity == stridedLayout.getStrides()) { newLayout = AffineMapAttr::get( AffineMap::getMultiDimIdentityMap(source.getRank(), ctx)); } mb.setLayout(newLayout); } return (MemRefType)(mb); } LogicalResult FatRawBufferCastOp::inferReturnTypes( MLIRContext *context, std::optional location, ValueRange operands, DictionaryAttr attributes, OpaqueProperties properties, RegionRange regions, SmallVectorImpl &inferredReturnTypes) { Adaptor adaptor(operands, attributes, properties, regions); auto sourceType = dyn_cast_if_present(adaptor.getSource().getType()); if (!sourceType) return failure(); FailureOr resultType = getFatRawBufferTypeLike(sourceType, adaptor.getResetOffset()); if (failed(resultType)) return failure(); inferredReturnTypes = SmallVector{*resultType}; return success(); } LogicalResult FatRawBufferCastOp::verify() { FailureOr expectedResultType = getFatRawBufferTypeLike(getSource().getType(), getResetOffset()); if (failed(expectedResultType)) return emitOpError("source type ") << getSource().getType() << " can't have its offset reset"; if (getResult().getType() != *expectedResultType) return emitOpError("expected result type to be ") << *expectedResultType << " but got " << getResult().getType(); return success(); } static bool hasGlobalMemorySpace(Attribute memorySpace) { if (!memorySpace) return true; if (auto intMemorySpace = dyn_cast(memorySpace)) return intMemorySpace.getInt() == 0 || intMemorySpace.getInt() == 1; if (auto gpuMemorySpace = dyn_cast(memorySpace)) return gpuMemorySpace.getValue() == gpu::AddressSpace::Global; return false; } static bool hasWorkgroupMemorySpace(Attribute memorySpace) { if (!memorySpace) return false; if (auto intMemorySpace = dyn_cast(memorySpace)) return intMemorySpace.getInt() == 3; if (auto gpuMemorySpace = dyn_cast(memorySpace)) return gpuMemorySpace.getValue() == gpu::AddressSpace::Workgroup; return false; } static bool hasFatRawBufferMemorySpace(Attribute memorySpace) { if (!memorySpace) return false; if (auto intMemorySpace = dyn_cast(memorySpace)) return intMemorySpace.getInt() == 7; if (auto gpuMemorySpace = dyn_cast(memorySpace)) return gpuMemorySpace.getValue() == amdgpu::AddressSpace::FatRawBuffer; return false; } //===----------------------------------------------------------------------===// // RawBuffer*Op //===----------------------------------------------------------------------===// template static LogicalResult verifyRawBufferOp(T &op) { MemRefType bufferType = llvm::cast(op.getMemref().getType()); bool isGlobal = hasGlobalMemorySpace(bufferType.getMemorySpace()); if (!isGlobal) return op.emitOpError( "Buffer ops must operate on a memref in global memory"); if (!bufferType.hasRank()) return op.emitOpError( "Cannot meaningfully buffer_store to an unranked memref"); if (static_cast(op.getIndices().size()) != bufferType.getRank()) return op.emitOpError("Expected " + Twine(bufferType.getRank()) + " indices to memref"); return success(); } LogicalResult RawBufferLoadOp::verify() { return verifyRawBufferOp(*this); } LogicalResult RawBufferStoreOp::verify() { return verifyRawBufferOp(*this); } LogicalResult RawBufferAtomicFaddOp::verify() { return verifyRawBufferOp(*this); } LogicalResult RawBufferAtomicFmaxOp::verify() { return verifyRawBufferOp(*this); } LogicalResult RawBufferAtomicSmaxOp::verify() { return verifyRawBufferOp(*this); } LogicalResult RawBufferAtomicUminOp::verify() { return verifyRawBufferOp(*this); } LogicalResult RawBufferAtomicCmpswapOp::verify() { return verifyRawBufferOp(*this); } static std::optional getConstantUint32(Value v) { APInt cst; if (!v.getType().isInteger(32)) return std::nullopt; if (matchPattern(v, m_ConstantInt(&cst))) return cst.getZExtValue(); return std::nullopt; } template static bool staticallyOutOfBounds(OpType op) { if (!op.getBoundsCheck()) return false; MemRefType bufferType = op.getMemref().getType(); if (!bufferType.hasStaticShape()) return false; int64_t offset; SmallVector strides; if (failed(bufferType.getStridesAndOffset(strides, offset))) return false; int64_t result = offset + op.getIndexOffset().value_or(0); if (op.getSgprOffset()) { std::optional sgprOffset = getConstantUint32(op.getSgprOffset()); if (!sgprOffset) return false; result += *sgprOffset; } if (strides.size() != op.getIndices().size()) return false; int64_t indexVal = 0; for (auto pair : llvm::zip(strides, op.getIndices())) { int64_t stride = std::get<0>(pair); Value idx = std::get<1>(pair); std::optional idxVal = getConstantUint32(idx); if (!idxVal) return false; indexVal += stride * *idxVal; } result += indexVal; if (result > std::numeric_limits::max()) // Overflow means don't drop return false; return result >= bufferType.getNumElements(); } namespace { template struct RemoveStaticallyOobBufferLoads final : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(OpType op, PatternRewriter &rw) const override { if (!staticallyOutOfBounds(op)) return failure(); Type loadType = op.getResult().getType(); rw.replaceOpWithNewOp(op, loadType, rw.getZeroAttr(loadType)); return success(); } }; template struct RemoveStaticallyOobBufferWrites final : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(OpType op, PatternRewriter &rw) const override { if (!staticallyOutOfBounds(op)) return failure(); rw.eraseOp(op); return success(); } }; } // end namespace void RawBufferLoadOp::getCanonicalizationPatterns(RewritePatternSet &results, MLIRContext *context) { results.add>(context); } void RawBufferStoreOp::getCanonicalizationPatterns(RewritePatternSet &results, MLIRContext *context) { results.add>(context); } void RawBufferAtomicFaddOp::getCanonicalizationPatterns( RewritePatternSet &results, MLIRContext *context) { results.add>(context); } void RawBufferAtomicFmaxOp::getCanonicalizationPatterns( RewritePatternSet &results, MLIRContext *context) { results.add>(context); } void RawBufferAtomicSmaxOp::getCanonicalizationPatterns( RewritePatternSet &results, MLIRContext *context) { results.add>(context); } void RawBufferAtomicUminOp::getCanonicalizationPatterns( RewritePatternSet &results, MLIRContext *context) { results.add>(context); } void RawBufferAtomicCmpswapOp::getCanonicalizationPatterns( RewritePatternSet &results, MLIRContext *context) { results.add>( context); } //===----------------------------------------------------------------------===// // WMMAOp //===----------------------------------------------------------------------===// LogicalResult WMMAOp::verify() { Type sourceAType = getSourceA().getType(); Type sourceBType = getSourceB().getType(); Type destType = getDestC().getType(); VectorType sourceVectorAType = dyn_cast(sourceAType); VectorType sourceVectorBType = dyn_cast(sourceBType); VectorType destVectorType = dyn_cast(destType); Type sourceAElemType = sourceVectorAType.getElementType(); Type sourceBElemType = sourceVectorBType.getElementType(); Type destElemType = destVectorType.getElementType(); if (sourceVectorAType.getNumElements() != sourceVectorBType.getNumElements()) { return emitOpError("source vectors have different lengths: ") << sourceVectorAType << " vs. " << sourceVectorBType; } bool isDestFloat = isa(destElemType); bool isSrcFloat = isa( sourceAElemType); if (isDestFloat && !isSrcFloat) { return emitOpError("Expected float sources with float destination"); } if (!isDestFloat && isSrcFloat) { return emitOpError("Expected int sources with int destination"); } if (sourceAElemType != sourceBElemType && !(isa(sourceAElemType) && isa(sourceBElemType))) { return emitOpError( "source element types much match (except for fp8) but have ") << sourceAType << " and " << sourceBType; } return success(); } //===----------------------------------------------------------------------===// // MFMAOp //===----------------------------------------------------------------------===// LogicalResult MFMAOp::verify() { constexpr uint32_t waveSize = 64; Builder b(getContext()); Type sourceType = getSourceA().getType(); Type destType = getDestC().getType(); Type sourceElem = sourceType, destElem = destType; uint32_t sourceLen = 1, destLen = 1; if (auto sourceVector = llvm::dyn_cast(sourceType)) { sourceLen = sourceVector.getNumElements(); sourceElem = sourceVector.getElementType(); } if (auto destVector = llvm::dyn_cast(destType)) { destLen = destVector.getNumElements(); destElem = destVector.getElementType(); } Type sourceBType = getSourceB().getType(); if (sourceElem.isFloat(8) || sourceElem.isFloat(6) || sourceElem.isFloat(4)) { int64_t sourceBLen = 1; Type sourceBElem = sourceBType; if (auto sourceBVector = llvm::dyn_cast(sourceBType)) { sourceBLen = sourceBVector.getNumElements(); sourceBElem = sourceBVector.getElementType(); } if (!sourceBElem.isFloat(8) && !sourceBElem.isFloat(6) && !sourceBElem.isFloat(4)) return emitOpError("expected both source operands to have small-float " "elements if one does"); if (sourceLen != sourceBLen) return emitOpError( "expected both small-float source vectors to have the same length"); } else { if (sourceType != sourceBType) return emitOpError("expected both non-small-float source operand types " "to match exactly"); } // Normalize the wider integer types the compiler expects to i8 if (sourceElem.isInteger(32)) { sourceLen *= 4; sourceElem = b.getI8Type(); } if (sourceElem.isInteger(64)) { sourceLen *= 8; sourceElem = b.getI8Type(); } int64_t numSourceElems = (getM() * getK() * getBlocks()) / waveSize; if (sourceLen != numSourceElems) return emitOpError("expected " + Twine(numSourceElems) + " source values for this operation but got " + Twine(sourceLen)); int64_t numDestElems = (getM() * getN() * getBlocks()) / waveSize; if (destLen != numDestElems) return emitOpError("expected " + Twine(numDestElems) + " result values for this operation but got " + Twine(destLen)); if (destElem.isF64() && getBlgp() != MFMAPermB::none) return emitOpError( "double-precision ops do not support permuting lanes of B"); if (destElem.isF64() && getCbsz() != 0) return emitOpError( "double-precision ops do not support permuting lanes of A"); if (getAbid() >= (1u << getCbsz())) return emitOpError( "block ID for permuting A (abid) must be below 2 ** cbsz"); if ((getNegateA() || getNegateB() || getNegateC()) && !destElem.isF64()) return emitOpError( "negation flags only available for double-precision operations"); return success(); } //===----------------------------------------------------------------------===// // DPPOp //===----------------------------------------------------------------------===// LogicalResult DPPOp::verify() { Type srcType = getSrc().getType(); if (srcType.getIntOrFloatBitWidth() > 64) { return emitOpError("integer and floating point types larger than 64 bits " "are not supported"); } DPPPerm kind = getKind(); Attribute permArgument = getPermArgument().value_or(Attribute{}); switch (kind) { case DPPPerm::quad_perm: { auto quadPermAttr = dyn_cast_or_null(permArgument); if (!quadPermAttr || quadPermAttr.size() != 4) { return emitOpError("quad_perm attribute must have exactly 4 elements"); } for (auto elem : quadPermAttr.getAsRange()) { int32_t num = elem.getInt(); if (num < 0 || num > 3) { return emitOpError( "Each element of quad_perm must be in the range [0, 3]"); } } } break; case DPPPerm::row_shl: case DPPPerm::row_shr: case DPPPerm::row_ror: { if (!permArgument) { return emitOpError("Attribute '" + Twine(stringifyDPPPerm(kind)) + "' value not specified"); } if (auto intAttr = dyn_cast(permArgument)) { uint32_t attrValue = intAttr.getInt(); if (attrValue < 1 || attrValue > 15) { return emitOpError("Attribute value must be between 1 and 15"); } } } break; case DPPPerm::wave_shl: case DPPPerm::wave_shr: case DPPPerm::wave_rol: case DPPPerm::wave_ror: case DPPPerm::row_mirror: case DPPPerm::row_half_mirror: case DPPPerm::row_bcast_15: case DPPPerm::row_bcast_31: { if (permArgument && !isa(permArgument)) { return emitOpError("Expected unit attribute for permArgument, but found " "non-trivial argument"); } break; } } return success(); } //===----------------------------------------------------------------------===// // PermlaneSwapOp //===----------------------------------------------------------------------===// LogicalResult PermlaneSwapOp::verify() { unsigned rowLength = getRowLength(); if (rowLength != 16 && rowLength != 32) return emitOpError("row_length attribute must either be 16 or 32."); return success(); } //===----------------------------------------------------------------------===// // GatherToLDSOp //===----------------------------------------------------------------------===// LogicalResult GatherToLDSOp::verify() { MemRefType srcType = cast(getSrc().getType()); MemRefType dstType = cast(getDst().getType()); if (!dstType.areTrailingDimsContiguous(1)) return emitOpError("destination type inner most dim must be contiguous"); auto elemType = srcType.getElementType(); // Check $src and $dst element types are the same. if (elemType != dstType.getElementType()) return emitOpError("source and destination element types must match"); // copy type sizes should be 1, 2, 4, 12 or 16 bytes. auto transferType = getTransferType(); int transferSize; if (auto vectorTransfer = dyn_cast(transferType)) { transferSize = vectorTransfer.getNumElements() * vectorTransfer.getElementTypeBitWidth(); } else { transferSize = transferType.getIntOrFloatBitWidth(); } if (!llvm::is_contained({8, 16, 32, 96, 128}, transferSize)) return emitOpError( "Transfering type size must be 8, 16, 32, 96 or 128 bits"); if (!hasGlobalMemorySpace(srcType.getMemorySpace()) && !hasFatRawBufferMemorySpace(srcType.getMemorySpace())) return emitOpError( "source memory address space must be global or fat raw buffer"); if (!hasWorkgroupMemorySpace(dstType.getMemorySpace())) return emitOpError("destination memory address space must be Workgroup"); return success(); } namespace { /// If the source/target of a GatherToLDSOp is a CastOp that only removes static /// information or changes layout, the cast can be skipped. struct FoldGatherToLDSOfCast final : OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(GatherToLDSOp gatherOp, PatternRewriter &rewriter) const override { bool modified = false; auto foldCast = [&](OpOperand &operand) { if (auto castOp = operand.get().getDefiningOp()) { if (memref::CastOp::canFoldIntoConsumerOp(castOp)) { rewriter.modifyOpInPlace(gatherOp, [&] { operand.assign(castOp.getSource()); }); modified = true; } } }; foldCast(gatherOp.getSrcMutable()); foldCast(gatherOp.getDstMutable()); return success(modified); } }; } // namespace void GatherToLDSOp::getCanonicalizationPatterns(RewritePatternSet &results, MLIRContext *context) { results.add(context); } //===----------------------------------------------------------------------===// // TransposeLoadOp //===----------------------------------------------------------------------===// LogicalResult TransposeLoadOp::verify() { MemRefType srcType = cast(getSrc().getType()); if (!hasWorkgroupMemorySpace(srcType.getMemorySpace())) return emitOpError("source memory address space must be Workgroup"); auto transferType = cast(getType()); size_t numElements = transferType.getNumElements(); size_t elementTypeSize = transferType.getElementType().getIntOrFloatBitWidth(); // ElementSize -> NumElements const llvm::SmallDenseMap kValidLoadSizeMap = { {4, 16}, {6, 16}, {8, 8}, {16, 4}, }; auto validNumElems = kValidLoadSizeMap.find(elementTypeSize); if (validNumElems == kValidLoadSizeMap.end()) { return emitOpError("Unsupported element type size for transpose load: ") << elementTypeSize << " bits"; } if (numElements != validNumElems->second) { return emitOpError( "Transferring type size mismatch: expected num of elements: ") << validNumElems->second; } return success(); } //===----------------------------------------------------------------------===// // ScaledMFMAOp //===----------------------------------------------------------------------===// namespace { /// Check if the scales input is used in other scaled mfma's while they exist. /// If theyre unused then pack the scales. struct PackScales final : OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(ScaledMFMAOp op, PatternRewriter &rewriter) const override { Location loc = op.getLoc(); auto setOpsel = [&op](unsigned idx, int64_t val) { switch (idx) { case 3: op.setScalesIdxA(val); break; case 4: op.setScalesIdxB(val); break; default: break; } }; // For every scale operand of this ScaledMFMAOp, if the scale is produced by // the extraction of a single scale from some vector, then attempt to // extract 4 values from that vector instead. // // Example: (f8 here means f8E8M0FNU) // %unit = vector.extract %ScaleSrc[offsets] : f8 from vector<...> // %scale = vector.insert %unit, ... : f8 into vector<4xf8> // amdgpu.scaled_mfma(%scale[0] * ... // // rewrite to: // // %reshaped = vector.shape_cast %ScaleSrc : vector<...> to vector // %scale = vector.extract %reshaped[?] : vector<4xf8> from vector // amdgpu.scaled_mfma(%scale[0-3] * ... // // This creates duplicate shape_casts for every use but these will be // removed in CSE. for (auto opIdx : std::array({3, 4})) { auto insertOp = op.getOperand(opIdx).getDefiningOp(); if (!insertOp) { return rewriter.notifyMatchFailure(op, "defining op not a vector.insert"); } // If the extracted value is not a single scalar, then it has been packed. if (isa(insertOp.getValueToStore().getType())) { return rewriter.notifyMatchFailure( op, "scaled mfma operand already packed"); } auto extractOp = insertOp.getValueToStore().getDefiningOp(); if (!extractOp) { return rewriter.notifyMatchFailure(op, "defining op not a vector.extract"); } Value scaleSrc = extractOp.getOperand(0); auto scaleSrcType = dyn_cast(scaleSrc.getType()); if (!scaleSrcType) { return rewriter.notifyMatchFailure(op, "not a vector type"); } // We do not handle dynamic dims yet, assume that the input is padded to // a static shape now. if (!scaleSrcType.hasStaticShape()) { return rewriter.notifyMatchFailure(op, "dynamic dims not yet supported"); } int64_t numElements = scaleSrcType.getNumElements(); if (numElements <= 4) { return rewriter.notifyMatchFailure( op, "no packing if # of scales less than four"); } // Find a linearized idx using the size and offsets of the extract op. auto extractedPos = llvm::to_vector_of( llvm::reverse(extractOp.getStaticPosition())); ArrayRef scaleSrcShape = scaleSrcType.getShape(); int64_t scaleSrcRank = scaleSrcType.getRank(); SmallVector extractSizes(scaleSrcRank, 1); for (int64_t i = 1; i < scaleSrcRank; ++i) { extractSizes[i] = extractSizes[i - 1] * scaleSrcShape[scaleSrcRank - i]; } int64_t idx = linearize(extractedPos, extractSizes); // All n scales (where n is the total number of scales) must now be // extracted in chunks of 4 elements. This is done by dividing the // original vector of scales into groups of 4 elements // at offsets 0, 4, ..., m (where m = n/4). All extractions of a // scale at a particular index are now replaced with an extraction // of the entire group of 4 elements to which that index belongs. // // If the number of scales happens to be indivisible by 4, extract // the remaining n - m scales in a chunk of 4 elements starting at // offset n - 4. int64_t offset = idx - (idx % 4); int64_t opsel = idx - offset; int64_t size = 4l; // Accomdate remaining elements in the case of non-4-divisible vectors. if (numElements - offset < size) { opsel = size - (numElements - idx); offset = numElements - 4l; } Type scaleSrcElemType = scaleSrcType.getElementType(); auto newSrcType = VectorType::get(SmallVector({numElements}), scaleSrcElemType); Value newScaleSrc = vector::ShapeCastOp::create(rewriter, loc, newSrcType, scaleSrc); auto extract = vector::ExtractStridedSliceOp::create( rewriter, loc, newScaleSrc, ArrayRef{offset}, ArrayRef{size}, ArrayRef{1}); rewriter.modifyOpInPlace(op, [&] { op->setOperand(opIdx, extract); setOpsel(opIdx, opsel); }); } return success(); } }; } // namespace void ScaledMFMAOp::getCanonicalizationPatterns(RewritePatternSet &results, MLIRContext *context) { results.add(context); } #include "mlir/Dialect/AMDGPU/IR/AMDGPUEnums.cpp.inc" #define GET_ATTRDEF_CLASSES #include "mlir/Dialect/AMDGPU/IR/AMDGPUAttributes.cpp.inc" #define GET_OP_CLASSES #include "mlir/Dialect/AMDGPU/IR/AMDGPU.cpp.inc"