//===- InstrInfoEmitter.cpp - Generate a Instruction Set Desc. --*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This tablegen backend is responsible for emitting a description of the target // instruction set for the code generator. // //===----------------------------------------------------------------------===// #include "Basic/SequenceToOffsetTable.h" #include "Common/CodeGenDAGPatterns.h" #include "Common/CodeGenInstruction.h" #include "Common/CodeGenRegisters.h" #include "Common/CodeGenSchedule.h" #include "Common/CodeGenTarget.h" #include "Common/PredicateExpander.h" #include "Common/SubtargetFeatureInfo.h" #include "Common/Types.h" #include "TableGenBackends.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Format.h" #include "llvm/Support/SourceMgr.h" #include "llvm/Support/raw_ostream.h" #include "llvm/TableGen/Error.h" #include "llvm/TableGen/Record.h" #include "llvm/TableGen/TGTimer.h" #include "llvm/TableGen/TableGenBackend.h" #include #include #include #include #include #include #include using namespace llvm; static cl::OptionCategory InstrInfoEmitterCat("Options for -gen-instr-info"); static cl::opt ExpandMIOperandInfo( "instr-info-expand-mi-operand-info", cl::desc("Expand operand's MIOperandInfo DAG into suboperands"), cl::cat(InstrInfoEmitterCat), cl::init(true)); namespace { class InstrInfoEmitter { const RecordKeeper &Records; const CodeGenDAGPatterns CDP; const CodeGenSchedModels &SchedModels; public: InstrInfoEmitter(const RecordKeeper &R) : Records(R), CDP(R), SchedModels(CDP.getTargetInfo().getSchedModels()) {} // run - Output the instruction set description. void run(raw_ostream &OS); private: void emitEnums(raw_ostream &OS, ArrayRef NumberedInstructions); typedef std::vector OperandInfoTy; typedef std::vector OperandInfoListTy; typedef std::map OperandInfoMapTy; /// Generate member functions in the target-specific GenInstrInfo class. /// /// This method is used to custom expand TIIPredicate definitions. /// See file llvm/Target/TargetInstPredicates.td for a description of what is /// a TIIPredicate and how to use it. void emitTIIHelperMethods(raw_ostream &OS, StringRef TargetName, bool ExpandDefinition = true); /// Expand TIIPredicate definitions to functions that accept a const MCInst /// reference. void emitMCIIHelperMethods(raw_ostream &OS, StringRef TargetName); /// Write verifyInstructionPredicates methods. void emitFeatureVerifier(raw_ostream &OS, const CodeGenTarget &Target); void emitRecord(const CodeGenInstruction &Inst, unsigned Num, const Record *InstrInfo, std::map, unsigned> &EL, const OperandInfoMapTy &OperandInfo, raw_ostream &OS); void emitOperandTypeMappings( raw_ostream &OS, const CodeGenTarget &Target, ArrayRef NumberedInstructions); void emitOperandNameMappings( raw_ostream &OS, const CodeGenTarget &Target, ArrayRef TargetInstructions); void emitLogicalOperandSizeMappings( raw_ostream &OS, StringRef Namespace, ArrayRef TargetInstructions); // Operand information. unsigned CollectOperandInfo(OperandInfoListTy &OperandInfoList, OperandInfoMapTy &OperandInfoMap); void EmitOperandInfo(raw_ostream &OS, OperandInfoListTy &OperandInfoList); OperandInfoTy GetOperandInfo(const CodeGenInstruction &Inst); }; } // end anonymous namespace //===----------------------------------------------------------------------===// // Operand Info Emission. //===----------------------------------------------------------------------===// InstrInfoEmitter::OperandInfoTy InstrInfoEmitter::GetOperandInfo(const CodeGenInstruction &Inst) { OperandInfoTy Result; StringRef Namespace = CDP.getTargetInfo().getInstNamespace(); for (auto &Op : Inst.Operands) { // Handle aggregate operands and normal operands the same way by expanding // either case into a list of operands for this op. std::vector OperandList; // This might be a multiple operand thing. Targets like X86 have registers // in their multi-operand operands. It may also be an anonymous operand, // which has a single operand, but no declared class for the operand. const DagInit *MIOI = Op.MIOperandInfo; if (!MIOI || MIOI->getNumArgs() == 0) { // Single, anonymous, operand. OperandList.push_back(Op); } else { for (unsigned j = 0, e = Op.MINumOperands; j != e; ++j) { OperandList.push_back(Op); auto *OpR = cast(MIOI->getArg(j))->getDef(); OperandList.back().Rec = OpR; } } for (const auto &[OpInfo, Constraint] : zip_equal(OperandList, Op.Constraints)) { const Record *OpR = OpInfo.Rec; std::string Res; if (OpR->isSubClassOf("RegisterOperand")) OpR = OpR->getValueAsDef("RegClass"); if (OpR->isSubClassOf("RegClassByHwMode")) { Res += Namespace; Res += "::"; Res += OpR->getName(); Res += ", "; } else if (OpR->isSubClassOf("RegisterClass")) Res += getQualifiedName(OpR) + "RegClassID, "; else if (OpR->isSubClassOf("PointerLikeRegClass")) Res += utostr(OpR->getValueAsInt("RegClassKind")) + ", "; else // -1 means the operand does not have a fixed register class. Res += "-1, "; // Fill in applicable flags. Res += "0"; if (OpR->isSubClassOf("RegClassByHwMode")) { Res += "|(1<isSubClassOf("PointerLikeRegClass")) { // Ptr value whose register class is resolved via callback. Res += "|(1<isSubClassOf("PredicateOp")) Res += "|(1<isSubClassOf("OptionalDefOperand")) Res += "|(1<isSubClassOf("BranchTargetOperand")) Res += "|(1<, unsigned> &OperandMap, ArrayRef InstructionIndex) { StringRef Type = OperandMap.size() <= UINT8_MAX + 1 ? "uint8_t" : "uint16_t"; OS << "LLVM_READONLY static " << Type << " getInstructionIndexForOpLookup(uint16_t Opcode) {\n" " static constexpr " << Type << " InstructionIndex[] = {"; for (auto [TableIndex, Entry] : enumerate(InstructionIndex)) OS << (TableIndex % 16 == 0 ? "\n " : " ") << Entry << ','; OS << "\n };\n" " return InstructionIndex[Opcode];\n" "}\n"; } static void emitGetNamedOperandIdx(raw_ostream &OS, const MapVector, unsigned> &OperandMap, unsigned MaxOperandNo, unsigned NumOperandNames) { OS << "LLVM_READONLY int16_t getNamedOperandIdx(uint16_t Opcode, OpName " "Name) {\n"; OS << " assert(Name != OpName::NUM_OPERAND_NAMES);\n"; if (!NumOperandNames) { // There are no operands, so no need to emit anything OS << " return -1;\n}\n"; return; } assert(MaxOperandNo <= INT16_MAX && "Too many operands for the operand name -> index table"); StringRef Type = MaxOperandNo <= INT8_MAX ? "int8_t" : "int16_t"; OS << " static constexpr " << Type << " OperandMap[][" << NumOperandNames << "] = {\n"; for (const auto &[OpList, _] : OperandMap) { // Emit a row of the OperandMap table. OS << " {"; for (unsigned ID = 0; ID < NumOperandNames; ++ID) OS << (ID < OpList.size() ? OpList[ID] : -1) << ", "; OS << "},\n"; } OS << " };\n"; OS << " unsigned InstrIdx = getInstructionIndexForOpLookup(Opcode);\n" " return OperandMap[InstrIdx][(unsigned)Name];\n" "}\n"; } static void emitGetOperandIdxName(raw_ostream &OS, MapVector OperandNameToID, const MapVector, unsigned> &OperandMap, unsigned MaxNumOperands, unsigned NumOperandNames) { OS << "LLVM_READONLY OpName getOperandIdxName(uint16_t Opcode, int16_t Idx) " "{\n"; OS << " assert(Idx >= 0 && Idx < " << MaxNumOperands << ");\n"; if (!MaxNumOperands) { // There are no operands, so no need to emit anything OS << " return -1;\n}\n"; return; } OS << " static constexpr OpName OperandMap[][" << MaxNumOperands << "] = {\n"; for (const auto &[OpList, _] : OperandMap) { SmallVector IDs(MaxNumOperands, NumOperandNames); for (const auto &[ID, Idx] : enumerate(OpList)) { if (Idx >= 0) IDs[Idx] = ID; } // Emit a row of the OperandMap table. Map operand indices to enum values. OS << " {"; for (unsigned ID : IDs) { if (ID == NumOperandNames) OS << "OpName::NUM_OPERAND_NAMES, "; else OS << "OpName::" << OperandNameToID.getArrayRef()[ID].first << ", "; } OS << "},\n"; } OS << " };\n"; OS << " unsigned InstrIdx = getInstructionIndexForOpLookup(Opcode);\n" " return OperandMap[InstrIdx][(unsigned)Idx];\n" "}\n"; } /// Generate a table and function for looking up the indices of operands by /// name. /// /// This code generates: /// - An enum in the llvm::TargetNamespace::OpName namespace, with one entry /// for each operand name. /// - A 2-dimensional table for mapping OpName enum values to operand indices. /// - A function called getNamedOperandIdx(uint16_t Opcode, OpName Name) /// for looking up the operand index for an instruction, given a value from /// OpName enum /// - A 2-dimensional table for mapping operand indices to OpName enum values. /// - A function called getOperandIdxName(uint16_t Opcode, int16_t Idx) /// for looking up the OpName enum for an instruction, given the operand /// index. This is the inverse of getNamedOperandIdx(). /// /// Fixed/Predefined instructions do not have UseNamedOperandTable enabled, so /// we can just skip them. Hence accept just the TargetInstructions. void InstrInfoEmitter::emitOperandNameMappings( raw_ostream &OS, const CodeGenTarget &Target, ArrayRef TargetInstructions) { StringRef Namespace = Target.getInstNamespace(); // Map of operand names to their ID. MapVector OperandNameToID; /// A key in this map is a vector mapping OpName ID values to instruction /// operand indices or -1 (but without any trailing -1 values which will be /// added later). The corresponding value in this map is the index of that row /// in the emitted OperandMap table. This map helps to unique entries among /// instructions that have identical OpName -> Operand index mapping. MapVector, unsigned> OperandMap; // Max operand index seen. unsigned MaxOperandNo = 0; // Fixed/Predefined instructions do not have UseNamedOperandTable enabled, so // add a dummy map entry for them. OperandMap.try_emplace({}, 0); unsigned FirstTargetVal = TargetInstructions.front()->EnumVal; SmallVector InstructionIndex(FirstTargetVal, 0); for (const CodeGenInstruction *Inst : TargetInstructions) { if (!Inst->TheDef->getValueAsBit("UseNamedOperandTable")) { InstructionIndex.push_back(0); continue; } SmallVector OpList; for (const auto &Info : Inst->Operands) { unsigned ID = OperandNameToID.try_emplace(Info.Name, OperandNameToID.size()) .first->second; OpList.resize(std::max((unsigned)OpList.size(), ID + 1), -1); OpList[ID] = Info.MIOperandNo; MaxOperandNo = std::max(MaxOperandNo, Info.MIOperandNo); } auto [It, Inserted] = OperandMap.try_emplace(std::move(OpList), OperandMap.size()); InstructionIndex.push_back(It->second); } const size_t NumOperandNames = OperandNameToID.size(); const unsigned MaxNumOperands = MaxOperandNo + 1; OS << "#ifdef GET_INSTRINFO_OPERAND_ENUM\n"; OS << "#undef GET_INSTRINFO_OPERAND_ENUM\n"; OS << "namespace llvm::" << Namespace << " {\n"; assert(NumOperandNames <= UINT16_MAX && "Too many operands for the operand index -> name table"); StringRef EnumType = getMinimalTypeForRange(NumOperandNames); OS << "enum class OpName : " << EnumType << " {\n"; for (const auto &[Op, I] : OperandNameToID) OS << " " << Op << " = " << I << ",\n"; OS << " NUM_OPERAND_NAMES = " << NumOperandNames << ",\n"; OS << "}; // enum class OpName\n\n"; OS << "LLVM_READONLY int16_t getNamedOperandIdx(uint16_t Opcode, OpName " "Name);\n"; OS << "LLVM_READONLY OpName getOperandIdxName(uint16_t Opcode, int16_t " "Idx);\n"; OS << "} // end namespace llvm::" << Namespace << '\n'; OS << "#endif //GET_INSTRINFO_OPERAND_ENUM\n\n"; OS << "#ifdef GET_INSTRINFO_NAMED_OPS\n"; OS << "#undef GET_INSTRINFO_NAMED_OPS\n"; OS << "namespace llvm::" << Namespace << " {\n"; emitGetInstructionIndexForOpLookup(OS, OperandMap, InstructionIndex); emitGetNamedOperandIdx(OS, OperandMap, MaxOperandNo, NumOperandNames); emitGetOperandIdxName(OS, OperandNameToID, OperandMap, MaxNumOperands, NumOperandNames); OS << "} // end namespace llvm::" << Namespace << '\n'; OS << "#endif //GET_INSTRINFO_NAMED_OPS\n\n"; } /// Generate an enum for all the operand types for this target, under the /// llvm::TargetNamespace::OpTypes namespace. /// Operand types are all definitions derived of the Operand Target.td class. /// void InstrInfoEmitter::emitOperandTypeMappings( raw_ostream &OS, const CodeGenTarget &Target, ArrayRef NumberedInstructions) { StringRef Namespace = Target.getInstNamespace(); // These generated functions are used only by the X86 target // (in bolt/lib/Target/X86/X86MCPlusBuilder.cpp). So emit them only // for X86. if (Namespace != "X86") return; ArrayRef Operands = Records.getAllDerivedDefinitions("Operand"); ArrayRef RegisterOperands = Records.getAllDerivedDefinitions("RegisterOperand"); ArrayRef RegisterClasses = Records.getAllDerivedDefinitions("RegisterClass"); OS << "#ifdef GET_INSTRINFO_OPERAND_TYPES_ENUM\n"; OS << "#undef GET_INSTRINFO_OPERAND_TYPES_ENUM\n"; OS << "namespace llvm::" << Namespace << "::OpTypes {\n"; OS << "enum OperandType {\n"; unsigned EnumVal = 0; for (ArrayRef RecordsToAdd : {Operands, RegisterOperands, RegisterClasses}) { for (const Record *Op : RecordsToAdd) { if (!Op->isAnonymous()) OS << " " << Op->getName() << " = " << EnumVal << ",\n"; ++EnumVal; } } OS << " OPERAND_TYPE_LIST_END" << "\n};\n"; OS << "} // end namespace llvm::" << Namespace << "::OpTypes\n"; OS << "#endif // GET_INSTRINFO_OPERAND_TYPES_ENUM\n\n"; OS << "#ifdef GET_INSTRINFO_OPERAND_TYPE\n"; OS << "#undef GET_INSTRINFO_OPERAND_TYPE\n"; OS << "namespace llvm::" << Namespace << " {\n"; OS << "LLVM_READONLY\n"; OS << "static int getOperandType(uint16_t Opcode, uint16_t OpIdx) {\n"; auto getInstrName = [&](int I) -> StringRef { return NumberedInstructions[I]->getName(); }; // TODO: Factor out duplicate operand lists to compress the tables. std::vector OperandOffsets; std::vector OperandRecords; size_t CurrentOffset = 0; for (const CodeGenInstruction *Inst : NumberedInstructions) { OperandOffsets.push_back(CurrentOffset); for (const auto &Op : Inst->Operands) { const DagInit *MIOI = Op.MIOperandInfo; if (!ExpandMIOperandInfo || !MIOI || MIOI->getNumArgs() == 0) { // Single, anonymous, operand. OperandRecords.push_back(Op.Rec); ++CurrentOffset; } else { for (const Init *Arg : MIOI->getArgs()) { OperandRecords.push_back(cast(Arg)->getDef()); ++CurrentOffset; } } } } // Emit the table of offsets (indexes) into the operand type table. // Size the unsigned integer offset to save space. assert(OperandRecords.size() <= UINT32_MAX && "Too many operands for offset table"); OS << " static constexpr " << getMinimalTypeForRange(OperandRecords.size()); OS << " Offsets[] = {\n"; for (const auto &[Idx, Offset] : enumerate(OperandOffsets)) OS << " " << Offset << ", // " << getInstrName(Idx) << '\n'; OS << " };\n"; // Add an entry for the end so that we don't need to special case it below. OperandOffsets.push_back(OperandRecords.size()); // Emit the actual operand types in a flat table. // Size the signed integer operand type to save space. assert(EnumVal <= INT16_MAX && "Too many operand types for operand types table"); OS << "\n using namespace OpTypes;\n"; OS << " static"; OS << (EnumVal <= INT8_MAX ? " constexpr int8_t" : " constexpr int16_t"); OS << " OpcodeOperandTypes[] = {"; size_t CurOffset = 0; for (auto [Idx, OpR] : enumerate(OperandRecords)) { // We print each Opcode's operands in its own row. if (Idx == OperandOffsets[CurOffset]) { OS << "\n /* " << getInstrName(CurOffset) << " */\n "; while (OperandOffsets[++CurOffset] == Idx) OS << "/* " << getInstrName(CurOffset) << " */\n "; } if ((OpR->isSubClassOf("Operand") || OpR->isSubClassOf("RegisterOperand") || OpR->isSubClassOf("RegisterClass")) && !OpR->isAnonymous()) OS << OpR->getName(); else OS << -1; OS << ", "; } OS << "\n };\n"; OS << " return OpcodeOperandTypes[Offsets[Opcode] + OpIdx];\n"; OS << "}\n"; OS << "} // end namespace llvm::" << Namespace << '\n'; OS << "#endif // GET_INSTRINFO_OPERAND_TYPE\n\n"; OS << "#ifdef GET_INSTRINFO_MEM_OPERAND_SIZE\n"; OS << "#undef GET_INSTRINFO_MEM_OPERAND_SIZE\n"; OS << "namespace llvm::" << Namespace << " {\n"; OS << "LLVM_READONLY\n"; OS << "static int getMemOperandSize(int OpType) {\n"; OS << " switch (OpType) {\n"; std::map> SizeToOperandName; for (const Record *Op : Operands) { if (!Op->isSubClassOf("X86MemOperand")) continue; if (int Size = Op->getValueAsInt("Size")) SizeToOperandName[Size].push_back(Op->getName()); } OS << " default: return 0;\n"; for (const auto &[Size, OperandNames] : SizeToOperandName) { for (const StringRef &OperandName : OperandNames) OS << " case OpTypes::" << OperandName << ":\n"; OS << " return " << Size << ";\n\n"; } OS << " }\n}\n"; OS << "} // end namespace llvm::" << Namespace << '\n'; OS << "#endif // GET_INSTRINFO_MEM_OPERAND_SIZE\n\n"; } // Fixed/Predefined instructions do not have UseLogicalOperandMappings // enabled, so we can just skip them. Hence accept TargetInstructions. void InstrInfoEmitter::emitLogicalOperandSizeMappings( raw_ostream &OS, StringRef Namespace, ArrayRef TargetInstructions) { std::map, unsigned> LogicalOpSizeMap; std::map> InstMap; size_t LogicalOpListSize = 0U; std::vector LogicalOpList; for (const auto *Inst : TargetInstructions) { if (!Inst->TheDef->getValueAsBit("UseLogicalOperandMappings")) continue; LogicalOpList.clear(); llvm::transform(Inst->Operands, std::back_inserter(LogicalOpList), [](const CGIOperandList::OperandInfo &Op) -> unsigned { auto *MIOI = Op.MIOperandInfo; if (!MIOI || MIOI->getNumArgs() == 0) return 1; return MIOI->getNumArgs(); }); LogicalOpListSize = std::max(LogicalOpList.size(), LogicalOpListSize); auto I = LogicalOpSizeMap.try_emplace(LogicalOpList, LogicalOpSizeMap.size()) .first; InstMap[I->second].push_back((Namespace + "::" + Inst->getName()).str()); } OS << "#ifdef GET_INSTRINFO_LOGICAL_OPERAND_SIZE_MAP\n"; OS << "#undef GET_INSTRINFO_LOGICAL_OPERAND_SIZE_MAP\n"; OS << "namespace llvm::" << Namespace << " {\n"; OS << "LLVM_READONLY static unsigned\n"; OS << "getLogicalOperandSize(uint16_t Opcode, uint16_t LogicalOpIdx) {\n"; if (!InstMap.empty()) { std::vector *> LogicalOpSizeList( LogicalOpSizeMap.size()); for (auto &P : LogicalOpSizeMap) { LogicalOpSizeList[P.second] = &P.first; } OS << " static const unsigned SizeMap[][" << LogicalOpListSize << "] = {\n"; for (auto &R : LogicalOpSizeList) { const auto &Row = *R; OS << " {"; int i; for (i = 0; i < static_cast(Row.size()); ++i) { OS << Row[i] << ", "; } for (; i < static_cast(LogicalOpListSize); ++i) { OS << "0, "; } OS << "}, \n"; } OS << " };\n"; OS << " switch (Opcode) {\n"; OS << " default: return LogicalOpIdx;\n"; for (auto &P : InstMap) { auto OpMapIdx = P.first; const auto &Insts = P.second; for (const auto &Inst : Insts) { OS << " case " << Inst << ":\n"; } OS << " return SizeMap[" << OpMapIdx << "][LogicalOpIdx];\n"; } OS << " }\n"; } else { OS << " return LogicalOpIdx;\n"; } OS << "}\n"; OS << "LLVM_READONLY static inline unsigned\n"; OS << "getLogicalOperandIdx(uint16_t Opcode, uint16_t LogicalOpIdx) {\n"; OS << " auto S = 0U;\n"; OS << " for (auto i = 0U; i < LogicalOpIdx; ++i)\n"; OS << " S += getLogicalOperandSize(Opcode, i);\n"; OS << " return S;\n"; OS << "}\n"; OS << "} // end namespace llvm::" << Namespace << '\n'; OS << "#endif // GET_INSTRINFO_LOGICAL_OPERAND_SIZE_MAP\n\n"; } void InstrInfoEmitter::emitMCIIHelperMethods(raw_ostream &OS, StringRef TargetName) { ArrayRef TIIPredicates = Records.getAllDerivedDefinitions("TIIPredicate"); OS << "#ifdef GET_INSTRINFO_MC_HELPER_DECLS\n"; OS << "#undef GET_INSTRINFO_MC_HELPER_DECLS\n\n"; OS << "namespace llvm {\n"; OS << "class MCInst;\n"; OS << "class FeatureBitset;\n\n"; OS << "namespace " << TargetName << "_MC {\n\n"; for (const Record *Rec : TIIPredicates) { OS << "bool " << Rec->getValueAsString("FunctionName") << "(const MCInst &MI);\n"; } OS << "void verifyInstructionPredicates(unsigned Opcode, const FeatureBitset " "&Features);\n"; OS << "\n} // end namespace " << TargetName << "_MC\n"; OS << "} // end namespace llvm\n\n"; OS << "#endif // GET_INSTRINFO_MC_HELPER_DECLS\n\n"; OS << "#ifdef GET_INSTRINFO_MC_HELPERS\n"; OS << "#undef GET_INSTRINFO_MC_HELPERS\n\n"; OS << "namespace llvm::" << TargetName << "_MC {\n"; PredicateExpander PE(TargetName); PE.setExpandForMC(true); for (const Record *Rec : TIIPredicates) { OS << "bool " << Rec->getValueAsString("FunctionName"); OS << "(const MCInst &MI) {\n"; OS << PE.getIndent(); PE.expandStatement(OS, Rec->getValueAsDef("Body")); OS << "\n}\n\n"; } OS << "} // end namespace llvm::" << TargetName << "_MC\n"; OS << "#endif // GET_GENISTRINFO_MC_HELPERS\n\n"; } static std::string getNameForFeatureBitset(ArrayRef FeatureBitset) { std::string Name = "CEFBS"; for (const Record *Feature : FeatureBitset) Name += ("_" + Feature->getName()).str(); return Name; } void InstrInfoEmitter::emitFeatureVerifier(raw_ostream &OS, const CodeGenTarget &Target) { const auto &All = SubtargetFeatureInfo::getAll(Records); SubtargetFeatureInfoMap SubtargetFeatures; SubtargetFeatures.insert(All.begin(), All.end()); OS << "#if (defined(ENABLE_INSTR_PREDICATE_VERIFIER) && !defined(NDEBUG)) " << "||\\\n" << " defined(GET_AVAILABLE_OPCODE_CHECKER)\n" << "#define GET_COMPUTE_FEATURES\n" << "#endif\n"; OS << "#ifdef GET_COMPUTE_FEATURES\n" << "#undef GET_COMPUTE_FEATURES\n" << "namespace llvm::" << Target.getName() << "_MC {\n"; // Emit the subtarget feature enumeration. SubtargetFeatureInfo::emitSubtargetFeatureBitEnumeration(SubtargetFeatures, OS); // Emit the available features compute function. OS << "inline "; SubtargetFeatureInfo::emitComputeAssemblerAvailableFeatures( Target.getName(), "", "computeAvailableFeatures", SubtargetFeatures, OS); std::vector> FeatureBitsets; for (const CodeGenInstruction *Inst : Target.getInstructions()) { FeatureBitsets.emplace_back(); for (const Record *Predicate : Inst->TheDef->getValueAsListOfDefs("Predicates")) { const auto &I = SubtargetFeatures.find(Predicate); if (I != SubtargetFeatures.end()) FeatureBitsets.back().push_back(I->second.TheDef); } } llvm::sort(FeatureBitsets, [&](ArrayRef A, ArrayRef B) { if (A.size() < B.size()) return true; if (A.size() > B.size()) return false; for (auto Pair : zip(A, B)) { if (std::get<0>(Pair)->getName() < std::get<1>(Pair)->getName()) return true; if (std::get<0>(Pair)->getName() > std::get<1>(Pair)->getName()) return false; } return false; }); FeatureBitsets.erase(llvm::unique(FeatureBitsets), FeatureBitsets.end()); OS << "inline FeatureBitset computeRequiredFeatures(unsigned Opcode) {\n" << " enum : " << getMinimalTypeForRange(FeatureBitsets.size()) << " {\n" << " CEFBS_None,\n"; for (const auto &FeatureBitset : FeatureBitsets) { if (FeatureBitset.empty()) continue; OS << " " << getNameForFeatureBitset(FeatureBitset) << ",\n"; } OS << " };\n\n" << " static constexpr FeatureBitset FeatureBitsets[] = {\n" << " {}, // CEFBS_None\n"; for (const auto &FeatureBitset : FeatureBitsets) { if (FeatureBitset.empty()) continue; OS << " {"; for (const auto &Feature : FeatureBitset) { const auto &I = SubtargetFeatures.find(Feature); assert(I != SubtargetFeatures.end() && "Didn't import predicate?"); OS << I->second.getEnumBitName() << ", "; } OS << "},\n"; } OS << " };\n" << " static constexpr " << getMinimalTypeForRange(FeatureBitsets.size()) << " RequiredFeaturesRefs[] = {\n"; ArrayRef NumberedInstructions = Target.getInstructions(); for (const CodeGenInstruction *Inst : NumberedInstructions) { OS << " CEFBS"; unsigned NumPredicates = 0; for (const Record *Predicate : Inst->TheDef->getValueAsListOfDefs("Predicates")) { const auto &I = SubtargetFeatures.find(Predicate); if (I != SubtargetFeatures.end()) { OS << '_' << I->second.TheDef->getName(); NumPredicates++; } } if (!NumPredicates) OS << "_None"; OS << ", // " << Inst->getName() << '\n'; } OS << " };\n\n" << " assert(Opcode < " << NumberedInstructions.size() << ");\n" << " return FeatureBitsets[RequiredFeaturesRefs[Opcode]];\n" << "}\n\n"; OS << "} // end namespace llvm::" << Target.getName() << "_MC\n" << "#endif // GET_COMPUTE_FEATURES\n\n"; OS << "#ifdef GET_AVAILABLE_OPCODE_CHECKER\n" << "#undef GET_AVAILABLE_OPCODE_CHECKER\n" << "namespace llvm::" << Target.getName() << "_MC {\n"; OS << "bool isOpcodeAvailable(" << "unsigned Opcode, const FeatureBitset &Features) {\n" << " FeatureBitset AvailableFeatures = " << "computeAvailableFeatures(Features);\n" << " FeatureBitset RequiredFeatures = " << "computeRequiredFeatures(Opcode);\n" << " FeatureBitset MissingFeatures =\n" << " (AvailableFeatures & RequiredFeatures) ^\n" << " RequiredFeatures;\n" << " return !MissingFeatures.any();\n" << "}\n"; OS << "} // end namespace llvm::" << Target.getName() << "_MC\n" << "#endif // GET_AVAILABLE_OPCODE_CHECKER\n\n"; OS << "#ifdef ENABLE_INSTR_PREDICATE_VERIFIER\n" << "#undef ENABLE_INSTR_PREDICATE_VERIFIER\n" << "#include \n\n"; OS << "namespace llvm::" << Target.getName() << "_MC {\n"; // Emit the name table for error messages. OS << "#ifndef NDEBUG\n"; SubtargetFeatureInfo::emitNameTable(SubtargetFeatures, OS); OS << "#endif // NDEBUG\n\n"; // Emit the predicate verifier. OS << "void verifyInstructionPredicates(\n" << " unsigned Opcode, const FeatureBitset &Features) {\n" << "#ifndef NDEBUG\n"; OS << " FeatureBitset AvailableFeatures = " "computeAvailableFeatures(Features);\n"; OS << " FeatureBitset RequiredFeatures = " << "computeRequiredFeatures(Opcode);\n"; OS << " FeatureBitset MissingFeatures =\n" << " (AvailableFeatures & RequiredFeatures) ^\n" << " RequiredFeatures;\n" << " if (MissingFeatures.any()) {\n" << " std::ostringstream Msg;\n" << " Msg << \"Attempting to emit \" << &" << Target.getName() << "InstrNameData[" << Target.getName() << "InstrNameIndices[Opcode]]\n" << " << \" instruction but the \";\n" << " for (unsigned i = 0, e = MissingFeatures.size(); i != e; ++i)\n" << " if (MissingFeatures.test(i))\n" << " Msg << SubtargetFeatureNames[i] << \" \";\n" << " Msg << \"predicate(s) are not met\";\n" << " report_fatal_error(Msg.str().c_str());\n" << " }\n" << "#endif // NDEBUG\n"; OS << "}\n"; OS << "} // end namespace llvm::" << Target.getName() << "_MC\n"; OS << "#endif // ENABLE_INSTR_PREDICATE_VERIFIER\n\n"; } void InstrInfoEmitter::emitTIIHelperMethods(raw_ostream &OS, StringRef TargetName, bool ExpandDefinition) { ArrayRef TIIPredicates = Records.getAllDerivedDefinitions("TIIPredicate"); if (TIIPredicates.empty()) return; PredicateExpander PE(TargetName); PE.setExpandForMC(false); for (const Record *Rec : TIIPredicates) { OS << (ExpandDefinition ? "" : "static ") << "bool "; if (ExpandDefinition) OS << TargetName << "InstrInfo::"; OS << Rec->getValueAsString("FunctionName"); OS << "(const MachineInstr &MI)"; if (!ExpandDefinition) { OS << ";\n"; continue; } OS << " {\n"; OS << PE.getIndent(); PE.expandStatement(OS, Rec->getValueAsDef("Body")); OS << "\n}\n\n"; } } //===----------------------------------------------------------------------===// // Main Output. //===----------------------------------------------------------------------===// // run - Emit the main instruction description records for the target... void InstrInfoEmitter::run(raw_ostream &OS) { TGTimer &Timer = Records.getTimer(); Timer.startTimer("Analyze DAG patterns"); emitSourceFileHeader("Target Instruction Enum Values and Descriptors", OS); const CodeGenTarget &Target = CDP.getTargetInfo(); ArrayRef NumberedInstructions = Target.getInstructions(); emitEnums(OS, NumberedInstructions); StringRef TargetName = Target.getName(); const Record *InstrInfo = Target.getInstructionSet(); // Collect all of the operand info records. Timer.startTimer("Collect operand info"); OperandInfoListTy OperandInfoList; OperandInfoMapTy OperandInfoMap; unsigned OperandInfoSize = CollectOperandInfo(OperandInfoList, OperandInfoMap); // Collect all of the instruction's implicit uses and defs. // Also collect which features are enabled by instructions to control // emission of various mappings. bool HasUseLogicalOperandMappings = false; bool HasUseNamedOperandTable = false; Timer.startTimer("Collect uses/defs"); std::map, unsigned> EmittedLists; std::vector> ImplicitLists; unsigned ImplicitListSize = 0; for (const CodeGenInstruction *Inst : NumberedInstructions) { HasUseLogicalOperandMappings |= Inst->TheDef->getValueAsBit("UseLogicalOperandMappings"); HasUseNamedOperandTable |= Inst->TheDef->getValueAsBit("UseNamedOperandTable"); std::vector ImplicitOps = Inst->ImplicitUses; llvm::append_range(ImplicitOps, Inst->ImplicitDefs); if (EmittedLists.try_emplace(ImplicitOps, ImplicitListSize).second) { ImplicitLists.push_back(ImplicitOps); ImplicitListSize += ImplicitOps.size(); } } OS << "#if defined(GET_INSTRINFO_MC_DESC) || " "defined(GET_INSTRINFO_CTOR_DTOR)\n"; OS << "namespace llvm {\n\n"; OS << "struct " << TargetName << "InstrTable {\n"; OS << " MCInstrDesc Insts[" << NumberedInstructions.size() << "];\n"; OS << " static_assert(alignof(MCInstrDesc) >= alignof(MCOperandInfo), " "\"Unwanted padding between Insts and OperandInfo\");\n"; OS << " MCOperandInfo OperandInfo[" << OperandInfoSize << "];\n"; OS << " static_assert(alignof(MCOperandInfo) >= alignof(MCPhysReg), " "\"Unwanted padding between OperandInfo and ImplicitOps\");\n"; OS << " MCPhysReg ImplicitOps[" << std::max(ImplicitListSize, 1U) << "];\n"; OS << "};\n\n"; OS << "} // end namespace llvm\n"; OS << "#endif // defined(GET_INSTRINFO_MC_DESC) || " "defined(GET_INSTRINFO_CTOR_DTOR)\n\n"; OS << "#ifdef GET_INSTRINFO_MC_DESC\n"; OS << "#undef GET_INSTRINFO_MC_DESC\n"; OS << "namespace llvm {\n\n"; // Emit all of the MCInstrDesc records in reverse ENUM ordering. Timer.startTimer("Emit InstrDesc records"); OS << "static_assert(sizeof(MCOperandInfo) % sizeof(MCPhysReg) == 0);\n"; OS << "static constexpr unsigned " << TargetName << "ImpOpBase = sizeof " << TargetName << "InstrTable::OperandInfo / (sizeof(MCPhysReg));\n\n"; OS << "extern const " << TargetName << "InstrTable " << TargetName << "Descs = {\n {\n"; SequenceToOffsetTable InstrNames; unsigned Num = NumberedInstructions.size(); for (const CodeGenInstruction *Inst : reverse(NumberedInstructions)) { // Keep a list of the instruction names. InstrNames.add(Inst->getName()); // Emit the record into the table. emitRecord(*Inst, --Num, InstrInfo, EmittedLists, OperandInfoMap, OS); } OS << " }, {\n"; // Emit all of the operand info records. Timer.startTimer("Emit operand info"); EmitOperandInfo(OS, OperandInfoList); OS << " }, {\n"; // Emit all of the instruction's implicit uses and defs. Timer.startTimer("Emit uses/defs"); for (auto &List : ImplicitLists) { OS << " /* " << EmittedLists[List] << " */"; for (auto &Reg : List) OS << ' ' << getQualifiedName(Reg) << ','; OS << '\n'; } OS << " }\n};\n\n"; // Emit the array of instruction names. Timer.startTimer("Emit instruction names"); InstrNames.layout(); InstrNames.emitStringLiteralDef(OS, Twine("extern const char ") + TargetName + "InstrNameData[]"); const CodeGenRegBank &RegBank = Target.getRegBank(); const CodeGenHwModes &CGH = Target.getHwModes(); unsigned NumModes = CGH.getNumModeIds(); ArrayRef RegClassByHwMode = Target.getAllRegClassByHwMode(); unsigned NumClassesByHwMode = RegClassByHwMode.size(); OS << "extern const unsigned " << TargetName << "InstrNameIndices[] = {"; Num = 0; for (const CodeGenInstruction *Inst : NumberedInstructions) { // Newline every eight entries. if (Num % 8 == 0) OS << "\n "; OS << InstrNames.get(Inst->getName()) << "U, "; ++Num; } OS << "\n};\n\n"; bool HasDeprecationFeatures = llvm::any_of(NumberedInstructions, [](const CodeGenInstruction *Inst) { return !Inst->HasComplexDeprecationPredicate && !Inst->DeprecatedReason.empty(); }); if (HasDeprecationFeatures) { OS << "extern const uint8_t " << TargetName << "InstrDeprecationFeatures[] = {"; Num = 0; for (const CodeGenInstruction *Inst : NumberedInstructions) { if (Num % 8 == 0) OS << "\n "; if (!Inst->HasComplexDeprecationPredicate && !Inst->DeprecatedReason.empty()) OS << Target.getInstNamespace() << "::" << Inst->DeprecatedReason << ", "; else OS << "uint8_t(-1), "; ++Num; } OS << "\n};\n\n"; } bool HasComplexDeprecationInfos = llvm::any_of(NumberedInstructions, [](const CodeGenInstruction *Inst) { return Inst->HasComplexDeprecationPredicate; }); if (HasComplexDeprecationInfos) { OS << "extern const MCInstrInfo::ComplexDeprecationPredicate " << TargetName << "InstrComplexDeprecationInfos[] = {"; Num = 0; for (const CodeGenInstruction *Inst : NumberedInstructions) { if (Num % 8 == 0) OS << "\n "; if (Inst->HasComplexDeprecationPredicate) // Emit a function pointer to the complex predicate method. OS << "&get" << Inst->DeprecatedReason << "DeprecationInfo, "; else OS << "nullptr, "; ++Num; } OS << "\n};\n\n"; } // MCInstrInfo initialization routine. Timer.startTimer("Emit initialization routine"); if (NumClassesByHwMode != 0) { OS << "extern const int16_t " << TargetName << "RegClassByHwModeTables[" << NumModes << "][" << NumClassesByHwMode << "] = {\n"; for (unsigned M = 0; M < NumModes; ++M) { OS << " { // " << CGH.getModeName(M, /*IncludeDefault=*/true) << '\n'; for (unsigned I = 0; I != NumClassesByHwMode; ++I) { const Record *Class = RegClassByHwMode[I]; const HwModeSelect &ModeSelect = CGH.getHwModeSelect(Class); auto FoundMode = find_if(ModeSelect.Items, [=](const HwModeSelect::PairType P) { return P.first == M; }); if (FoundMode == ModeSelect.Items.end()) { // If a RegClassByHwMode doesn't have an entry corresponding to a // mode, pad with default register class. OS << indent(4) << "-1, // Missing mode entry\n"; } else { const CodeGenRegisterClass *RegClass = RegBank.getRegClass(FoundMode->second); OS << indent(4) << RegClass->getQualifiedIdName() << ",\n"; } } OS << " },\n"; } OS << "};\n\n"; } OS << "static inline void Init" << TargetName << "MCInstrInfo(MCInstrInfo *II) {\n"; OS << " II->InitMCInstrInfo(" << TargetName << "Descs.Insts, " << TargetName << "InstrNameIndices, " << TargetName << "InstrNameData, "; if (HasDeprecationFeatures) OS << TargetName << "InstrDeprecationFeatures, "; else OS << "nullptr, "; if (HasComplexDeprecationInfos) OS << TargetName << "InstrComplexDeprecationInfos, "; else OS << "nullptr, "; OS << NumberedInstructions.size() << ", "; if (NumClassesByHwMode != 0) { OS << '&' << TargetName << "RegClassByHwModeTables[0][0], " << NumClassesByHwMode; } else OS << "nullptr, 0"; OS << ");\n}\n\n"; OS << "} // end namespace llvm\n"; OS << "#endif // GET_INSTRINFO_MC_DESC\n\n"; // Create a TargetInstrInfo subclass to hide the MC layer initialization. OS << "#ifdef GET_INSTRINFO_HEADER\n"; OS << "#undef GET_INSTRINFO_HEADER\n"; Twine ClassName = TargetName + "GenInstrInfo"; OS << "namespace llvm {\n"; OS << "struct " << ClassName << " : public TargetInstrInfo {\n" << " explicit " << ClassName << "(const TargetSubtargetInfo &STI, unsigned CFSetupOpcode = ~0u, " "unsigned CFDestroyOpcode = ~0u, " "unsigned CatchRetOpcode = ~0u, unsigned ReturnOpcode = ~0u);\n" << " ~" << ClassName << "() override = default;\n"; OS << "\n};\n} // end namespace llvm\n"; OS << "#endif // GET_INSTRINFO_HEADER\n\n"; OS << "#ifdef GET_INSTRINFO_HELPER_DECLS\n"; OS << "#undef GET_INSTRINFO_HELPER_DECLS\n\n"; emitTIIHelperMethods(OS, TargetName, /* ExpandDefinition = */ false); OS << '\n'; OS << "#endif // GET_INSTRINFO_HELPER_DECLS\n\n"; OS << "#ifdef GET_INSTRINFO_HELPERS\n"; OS << "#undef GET_INSTRINFO_HELPERS\n\n"; emitTIIHelperMethods(OS, TargetName, /* ExpandDefinition = */ true); OS << "#endif // GET_INSTRINFO_HELPERS\n\n"; OS << "#ifdef GET_INSTRINFO_CTOR_DTOR\n"; OS << "#undef GET_INSTRINFO_CTOR_DTOR\n"; OS << "namespace llvm {\n"; OS << "extern const " << TargetName << "InstrTable " << TargetName << "Descs;\n"; OS << "extern const unsigned " << TargetName << "InstrNameIndices[];\n"; OS << "extern const char " << TargetName << "InstrNameData[];\n"; if (NumClassesByHwMode != 0) { OS << "extern const int16_t " << TargetName << "RegClassByHwModeTables[" << NumModes << "][" << NumClassesByHwMode << "];\n"; } if (HasDeprecationFeatures) OS << "extern const uint8_t " << TargetName << "InstrDeprecationFeatures[];\n"; if (HasComplexDeprecationInfos) OS << "extern const MCInstrInfo::ComplexDeprecationPredicate " << TargetName << "InstrComplexDeprecationInfos[];\n"; OS << ClassName << "::" << ClassName << "(const TargetSubtargetInfo &STI, unsigned CFSetupOpcode, unsigned " "CFDestroyOpcode, unsigned CatchRetOpcode, unsigned ReturnOpcode)\n" << " : TargetInstrInfo(CFSetupOpcode, CFDestroyOpcode, CatchRetOpcode, " "ReturnOpcode"; if (NumClassesByHwMode != 0) OS << ", " << TargetName << "RegClassByHwModeTables[STI.getHwMode(MCSubtargetInfo::HwMode_" "RegInfo)]"; OS << ") {\n" << " InitMCInstrInfo(" << TargetName << "Descs.Insts, " << TargetName << "InstrNameIndices, " << TargetName << "InstrNameData, "; if (HasDeprecationFeatures) OS << TargetName << "InstrDeprecationFeatures, "; else OS << "nullptr, "; if (HasComplexDeprecationInfos) OS << TargetName << "InstrComplexDeprecationInfos, "; else OS << "nullptr, "; OS << NumberedInstructions.size(); if (NumClassesByHwMode != 0) { OS << ", &" << TargetName << "RegClassByHwModeTables[0][0], " << NumClassesByHwMode; } OS << ");\n" "}\n" "} // end namespace llvm\n"; OS << "#endif // GET_INSTRINFO_CTOR_DTOR\n\n"; ArrayRef TargetInstructions = Target.getTargetInstructions(); if (HasUseNamedOperandTable) { Timer.startTimer("Emit operand name mappings"); emitOperandNameMappings(OS, Target, TargetInstructions); } Timer.startTimer("Emit operand type mappings"); emitOperandTypeMappings(OS, Target, NumberedInstructions); if (HasUseLogicalOperandMappings) { Timer.startTimer("Emit logical operand size mappings"); emitLogicalOperandSizeMappings(OS, TargetName, TargetInstructions); } Timer.startTimer("Emit helper methods"); emitMCIIHelperMethods(OS, TargetName); Timer.startTimer("Emit verifier methods"); emitFeatureVerifier(OS, Target); Timer.startTimer("Emit map table"); EmitMapTable(Records, OS); } void InstrInfoEmitter::emitRecord( const CodeGenInstruction &Inst, unsigned Num, const Record *InstrInfo, std::map, unsigned> &EmittedLists, const OperandInfoMapTy &OperandInfoMap, raw_ostream &OS) { int MinOperands = 0; if (!Inst.Operands.empty()) // Each logical operand can be multiple MI operands. MinOperands = Inst.Operands.back().MIOperandNo + Inst.Operands.back().MINumOperands; // Even the logical output operand may be multiple MI operands. int DefOperands = 0; if (Inst.Operands.NumDefs) { auto &Opnd = Inst.Operands[Inst.Operands.NumDefs - 1]; DefOperands = Opnd.MIOperandNo + Opnd.MINumOperands; } OS << " { "; OS << Num << ",\t" << MinOperands << ",\t" << DefOperands << ",\t" << Inst.TheDef->getValueAsInt("Size") << ",\t" << SchedModels.getSchedClassIdx(Inst) << ",\t"; const CodeGenTarget &Target = CDP.getTargetInfo(); // Emit the implicit use/def list... OS << Inst.ImplicitUses.size() << ",\t" << Inst.ImplicitDefs.size() << ",\t"; std::vector ImplicitOps = Inst.ImplicitUses; llvm::append_range(ImplicitOps, Inst.ImplicitDefs); // Emit the operand info offset. OperandInfoTy OperandInfo = GetOperandInfo(Inst); OS << OperandInfoMap.find(OperandInfo)->second << ",\t"; // Emit implicit operand base. OS << Target.getName() << "ImpOpBase + " << EmittedLists[ImplicitOps] << ",\t0"; // Emit all of the target independent flags... if (Inst.isPreISelOpcode) OS << "|(1ULL<getValueAsBitsInit("TSFlags"); if (!TSF) PrintFatalError(Inst.TheDef->getLoc(), "no TSFlags?"); std::optional Value = TSF->convertInitializerToInt(); if (!Value) PrintFatalError(Inst.TheDef, "Invalid TSFlags bit in " + Inst.getName()); OS << ", 0x"; OS.write_hex(*Value); OS << "ULL"; OS << " }, // " << Inst.getName() << '\n'; } // emitEnums - Print out enum values for all of the instructions. void InstrInfoEmitter::emitEnums( raw_ostream &OS, ArrayRef NumberedInstructions) { OS << "#ifdef GET_INSTRINFO_ENUM\n"; OS << "#undef GET_INSTRINFO_ENUM\n"; const CodeGenTarget &Target = CDP.getTargetInfo(); StringRef Namespace = Target.getInstNamespace(); if (Namespace.empty()) PrintFatalError("No instructions defined!"); OS << "namespace llvm::" << Namespace << " {\n"; auto II = llvm::max_element( NumberedInstructions, [](const CodeGenInstruction *InstA, const CodeGenInstruction *InstB) { return InstA->getName().size() < InstB->getName().size(); }); size_t MaxNameSize = (*II)->getName().size(); OS << " enum {\n"; for (const CodeGenInstruction *Inst : NumberedInstructions) { OS << " " << left_justify(Inst->getName(), MaxNameSize) << " = " << Target.getInstrIntValue(Inst->TheDef) << ", // " << SrcMgr.getFormattedLocationNoOffset(Inst->TheDef->getLoc().front()) << '\n'; } OS << " INSTRUCTION_LIST_END = " << NumberedInstructions.size() << '\n'; OS << " };\n"; ArrayRef RegClassesByHwMode = Target.getAllRegClassByHwMode(); if (!RegClassesByHwMode.empty()) { OS << " enum RegClassByHwModeUses : uint16_t {\n"; for (const Record *ClassByHwMode : RegClassesByHwMode) OS << indent(4) << ClassByHwMode->getName() << ",\n"; OS << " };\n"; } OS << "} // end namespace llvm::" << Namespace << '\n'; OS << "#endif // GET_INSTRINFO_ENUM\n\n"; OS << "#ifdef GET_INSTRINFO_SCHED_ENUM\n"; OS << "#undef GET_INSTRINFO_SCHED_ENUM\n"; OS << "namespace llvm::" << Namespace << "::Sched {\n"; OS << " enum {\n"; auto ExplictClasses = SchedModels.explicitSchedClasses(); for (const auto &[Idx, Class] : enumerate(ExplictClasses)) OS << " " << Class.Name << "\t= " << Idx << ",\n"; OS << " SCHED_LIST_END = " << ExplictClasses.size() << '\n'; OS << " };\n"; OS << "} // end namespace llvm::" << Namespace << "::Sched\n"; OS << "#endif // GET_INSTRINFO_SCHED_ENUM\n\n"; } static TableGen::Emitter::OptClass X("gen-instr-info", "Generate instruction descriptions");