//===---------------- DecoderEmitter.cpp - Decoder Generator --------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // It contains the tablegen backend that emits the decoder functions for // targets with fixed/variable length instruction set. // //===----------------------------------------------------------------------===// #include "Common/CodeGenHwModes.h" #include "Common/CodeGenInstruction.h" #include "Common/CodeGenTarget.h" #include "Common/InfoByHwMode.h" #include "Common/InstructionEncoding.h" #include "Common/SubtargetFeatureInfo.h" #include "Common/VarLenCodeEmitterGen.h" #include "TableGenBackends.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/CachedHashString.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallBitVector.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringRef.h" #include "llvm/MC/MCDecoderOps.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/Format.h" #include "llvm/Support/FormatVariadic.h" #include "llvm/Support/FormattedStream.h" #include "llvm/Support/KnownBits.h" #include "llvm/Support/LEB128.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/TableGen/Error.h" #include "llvm/TableGen/Record.h" #include #include #include #include #include #include #include #include #include #include using namespace llvm; using namespace llvm::MCD; #define DEBUG_TYPE "decoder-emitter" extern cl::OptionCategory DisassemblerEmitterCat; enum SuppressLevel { SUPPRESSION_DISABLE, SUPPRESSION_LEVEL1, SUPPRESSION_LEVEL2 }; static cl::opt DecoderEmitterSuppressDuplicates( "suppress-per-hwmode-duplicates", cl::desc("Suppress duplication of instrs into per-HwMode decoder tables"), cl::values( clEnumValN( SUPPRESSION_DISABLE, "O0", "Do not prevent DecoderTable duplications caused by HwModes"), clEnumValN( SUPPRESSION_LEVEL1, "O1", "Remove duplicate DecoderTable entries generated due to HwModes"), clEnumValN( SUPPRESSION_LEVEL2, "O2", "Extract HwModes-specific instructions into new DecoderTables, " "significantly reducing Table Duplications")), cl::init(SUPPRESSION_DISABLE), cl::cat(DisassemblerEmitterCat)); static cl::opt LargeTable( "large-decoder-table", cl::desc("Use large decoder table format. This uses 24 bits for offset\n" "in the table instead of the default 16 bits."), cl::init(false), cl::cat(DisassemblerEmitterCat)); static cl::opt UseFnTableInDecodeToMCInst( "use-fn-table-in-decode-to-mcinst", cl::desc( "Use a table of function pointers instead of a switch case in the\n" "generated `decodeToMCInst` function. Helps improve compile time\n" "of the generated code."), cl::init(false), cl::cat(DisassemblerEmitterCat)); // Enabling this option requires use of different `InsnType` for different // bitwidths and defining `InsnBitWidth` template specialization for the // `InsnType` types used. Some common specializations are already defined in // MCDecoder.h. static cl::opt SpecializeDecodersPerBitwidth( "specialize-decoders-per-bitwidth", cl::desc("Specialize the generated `decodeToMCInst` function per bitwidth. " "Helps reduce the code size."), cl::init(false), cl::cat(DisassemblerEmitterCat)); static cl::opt IgnoreNonDecodableOperands( "ignore-non-decodable-operands", cl::desc( "Do not issue an error if an operand cannot be decoded automatically."), cl::init(false), cl::cat(DisassemblerEmitterCat)); static cl::opt IgnoreFullyDefinedOperands( "ignore-fully-defined-operands", cl::desc( "Do not automatically decode operands with no '?' in their encoding."), cl::init(false), cl::cat(DisassemblerEmitterCat)); STATISTIC(NumEncodings, "Number of encodings considered"); STATISTIC(NumEncodingsLackingDisasm, "Number of encodings without disassembler info"); STATISTIC(NumInstructions, "Number of instructions considered"); STATISTIC(NumEncodingsSupported, "Number of encodings supported"); STATISTIC(NumEncodingsOmitted, "Number of encodings omitted"); static unsigned getNumToSkipInBytes() { return LargeTable ? 3 : 2; } /// Similar to KnownBits::print(), but allows you to specify a character to use /// to print unknown bits. static void printKnownBits(raw_ostream &OS, const KnownBits &Bits, char Unknown) { for (unsigned I = Bits.getBitWidth(); I--;) { if (Bits.Zero[I] && Bits.One[I]) OS << '!'; else if (Bits.Zero[I]) OS << '0'; else if (Bits.One[I]) OS << '1'; else OS << Unknown; } } namespace { /// Sorting predicate to sort encoding IDs by encoding width. class LessEncodingIDByWidth { ArrayRef Encodings; public: explicit LessEncodingIDByWidth(ArrayRef Encodings) : Encodings(Encodings) {} bool operator()(unsigned ID1, unsigned ID2) const { return Encodings[ID1].getBitWidth() < Encodings[ID2].getBitWidth(); } }; typedef SmallSetVector PredicateSet; typedef SmallSetVector DecoderSet; class DecoderTable { public: DecoderTable() { Data.reserve(16384); } void clear() { Data.clear(); } size_t size() const { return Data.size(); } const uint8_t *data() const { return Data.data(); } using const_iterator = std::vector::const_iterator; const_iterator begin() const { return Data.begin(); } const_iterator end() const { return Data.end(); } /// Inserts a state machine opcode into the table. void insertOpcode(DecoderOps Opcode) { Data.push_back(Opcode); } /// Inserts a uint8 encoded value into the table. void insertUInt8(unsigned Value) { assert(isUInt<8>(Value)); Data.push_back(Value); } /// Inserts a ULEB128 encoded value into the table. void insertULEB128(uint64_t Value) { // Encode and emit the value to filter against. uint8_t Buffer[16]; unsigned Len = encodeULEB128(Value, Buffer); Data.insert(Data.end(), Buffer, Buffer + Len); } // Insert space for `NumToSkip` and return the position // in the table for patching. size_t insertNumToSkip() { size_t Size = Data.size(); Data.insert(Data.end(), getNumToSkipInBytes(), 0); return Size; } void patchNumToSkip(size_t FixupIdx, uint32_t DestIdx) { // Calculate the distance from the byte following the fixup entry byte // to the destination. The Target is calculated from after the // `getNumToSkipInBytes()`-byte NumToSkip entry itself, so subtract // `getNumToSkipInBytes()` from the displacement here to account for that. assert(DestIdx >= FixupIdx + getNumToSkipInBytes() && "Expecting a forward jump in the decoding table"); uint32_t Delta = DestIdx - FixupIdx - getNumToSkipInBytes(); if (!isUIntN(8 * getNumToSkipInBytes(), Delta)) PrintFatalError( "disassembler decoding table too large, try --large-decoder-table"); Data[FixupIdx] = static_cast(Delta); Data[FixupIdx + 1] = static_cast(Delta >> 8); if (getNumToSkipInBytes() == 3) Data[FixupIdx + 2] = static_cast(Delta >> 16); } private: std::vector Data; }; struct DecoderTableInfo { DecoderTable Table; PredicateSet Predicates; DecoderSet Decoders; void insertPredicate(StringRef Predicate) { Predicates.insert(CachedHashString(Predicate)); } void insertDecoder(StringRef Decoder) { Decoders.insert(CachedHashString(Decoder)); } unsigned getPredicateIndex(StringRef Predicate) const { auto I = find(Predicates, Predicate); assert(I != Predicates.end()); return std::distance(Predicates.begin(), I); } unsigned getDecoderIndex(StringRef Decoder) const { auto I = find(Decoders, Decoder); assert(I != Decoders.end()); return std::distance(Decoders.begin(), I); } }; using NamespacesHwModesMap = std::map>; class DecoderEmitter { const RecordKeeper &RK; CodeGenTarget Target; const CodeGenHwModes &CGH; /// All parsed encodings. std::vector Encodings; /// Encodings IDs for each HwMode. An ID is an index into Encodings. SmallDenseMap> EncodingIDsByHwMode; public: explicit DecoderEmitter(const RecordKeeper &RK); const CodeGenTarget &getTarget() const { return Target; } // Emit the decoder state machine table. Returns a mask of MCD decoder ops // that were emitted. unsigned emitTable(formatted_raw_ostream &OS, DecoderTable &Table, StringRef Namespace, unsigned HwModeID, unsigned BitWidth, ArrayRef EncodingIDs) const; void emitInstrLenTable(formatted_raw_ostream &OS, ArrayRef InstrLen) const; void emitPredicateFunction(formatted_raw_ostream &OS, PredicateSet &Predicates) const; void emitDecoderFunction(formatted_raw_ostream &OS, const DecoderSet &Decoders, unsigned BucketBitWidth) const; // run - Output the code emitter void run(raw_ostream &o) const; private: void collectHwModesReferencedForEncodings( std::vector &HwModeIDs, NamespacesHwModesMap &NamespacesWithHwModes) const; void handleHwModesUnrelatedEncodings(unsigned EncodingID, ArrayRef HwModeIDs, NamespacesHwModesMap &NamespacesWithHwModes); void parseInstructionEncodings(); }; } // end anonymous namespace namespace { /// Filter - Filter works with FilterChooser to produce the decoding tree for /// the ISA. /// /// It is useful to think of a Filter as governing the switch stmts of the /// decoding tree in a certain level. Each case stmt delegates to an inferior /// FilterChooser to decide what further decoding logic to employ, or in another /// words, what other remaining bits to look at. The FilterChooser eventually /// chooses a best Filter to do its job. /// /// This recursive scheme ends when the number of Opcodes assigned to the /// FilterChooser becomes 1 or if there is a conflict. A conflict happens when /// the Filter/FilterChooser combo does not know how to distinguish among the /// Opcodes assigned. /// /// An example of a conflict is /// /// Decoding Conflict: /// ................................ /// 1111............................ /// 1111010......................... /// 1111010...00.................... /// 1111010...00........0001........ /// 111101000.00........0001........ /// 111101000.00........00010000.... /// 111101000_00________00010000____ VST4q8a /// 111101000_00________00010000____ VST4q8b /// /// The Debug output shows the path that the decoding tree follows to reach the /// the conclusion that there is a conflict. VST4q8a is a vst4 to double-spaced /// even registers, while VST4q8b is a vst4 to double-spaced odd registers. /// /// The encoding info in the .td files does not specify this meta information, /// which could have been used by the decoder to resolve the conflict. The /// decoder could try to decode the even/odd register numbering and assign to /// VST4q8a or VST4q8b, but for the time being, the decoder chooses the "a" /// version and return the Opcode since the two have the same Asm format string. struct Filter { unsigned StartBit; // the starting bit position unsigned NumBits; // number of bits to filter // Map of well-known segment value to the set of uid's with that value. std::map> FilteredIDs; // Set of uid's with non-constant segment values. std::vector VariableIDs; Filter(ArrayRef Encodings, ArrayRef EncodingIDs, unsigned StartBit, unsigned NumBits); // Returns the number of fanout produced by the filter. More fanout implies // the filter distinguishes more categories of instructions. unsigned usefulness() const; }; // end class Filter // These are states of our finite state machines used in FilterChooser's // filterProcessor() which produces the filter candidates to use. enum bitAttr_t { ATTR_NONE, ATTR_FILTERED, ATTR_ALL_SET, ATTR_ALL_UNSET, ATTR_MIXED }; /// FilterChooser - FilterChooser chooses the best filter among a set of Filters /// in order to perform the decoding of instructions at the current level. /// /// Decoding proceeds from the top down. Based on the well-known encoding bits /// of instructions available, FilterChooser builds up the possible Filters that /// can further the task of decoding by distinguishing among the remaining /// candidate instructions. /// /// Once a filter has been chosen, it is called upon to divide the decoding task /// into sub-tasks and delegates them to its inferior FilterChoosers for further /// processings. /// /// It is useful to think of a Filter as governing the switch stmts of the /// decoding tree. And each case is delegated to an inferior FilterChooser to /// decide what further remaining bits to look at. class FilterChooser { // TODO: Unfriend by providing the necessary accessors. friend class DecoderTableBuilder; // Vector of encodings to choose our filter. ArrayRef Encodings; /// Encoding IDs for this filter chooser to work on. /// Sorted by non-decreasing encoding width. SmallVector EncodingIDs; // Array of bit values passed down from our parent. // Set to all unknown for Parent == nullptr. KnownBits FilterBits; // Links to the FilterChooser above us in the decoding tree. const FilterChooser *Parent; /// If the selected filter matches multiple encodings, then this is the /// starting position and the width of the filtered range. unsigned StartBit; unsigned NumBits; /// If the selected filter matches multiple encodings, and there is /// *exactly one* encoding in which all bits are known in the filtered range, /// then this is the ID of that encoding. /// Also used when there is only one encoding. std::optional SingletonEncodingID; /// If the selected filter matches multiple encodings, and there is /// *at least one* encoding in which all bits are known in the filtered range, /// then this is the FilterChooser created for the subset of encodings that /// contain some unknown bits in the filtered range. std::unique_ptr VariableFC; /// If the selected filter matches multiple encodings, and there is /// *more than one* encoding in which all bits are known in the filtered /// range, then this is a map of field values to FilterChoosers created for /// the subset of encodings sharing that field value. /// The "field value" here refers to the encoding bits in the filtered range. std::map> FilterChooserMap; /// Set to true if decoding conflict was encountered. bool HasConflict = false; struct Island { unsigned StartBit; unsigned NumBits; uint64_t FieldVal; }; public: /// Constructs a top-level filter chooser. FilterChooser(ArrayRef Encodings, ArrayRef EncodingIDs) : Encodings(Encodings), EncodingIDs(EncodingIDs), Parent(nullptr) { // Sort encoding IDs once. stable_sort(this->EncodingIDs, LessEncodingIDByWidth(Encodings)); // Filter width is the width of the smallest encoding. unsigned FilterWidth = Encodings[this->EncodingIDs.front()].getBitWidth(); FilterBits = KnownBits(FilterWidth); doFilter(); } /// Constructs an inferior filter chooser. FilterChooser(ArrayRef Encodings, ArrayRef EncodingIDs, const KnownBits &FilterBits, const FilterChooser &Parent) : Encodings(Encodings), EncodingIDs(EncodingIDs), Parent(&Parent) { // Inferior filter choosers are created from sorted array of encoding IDs. assert(is_sorted(EncodingIDs, LessEncodingIDByWidth(Encodings))); assert(!FilterBits.hasConflict() && "Broken filter"); // Filter width is the width of the smallest encoding. unsigned FilterWidth = Encodings[EncodingIDs.front()].getBitWidth(); this->FilterBits = FilterBits.anyext(FilterWidth); doFilter(); } FilterChooser(const FilterChooser &) = delete; void operator=(const FilterChooser &) = delete; /// Returns the width of the largest encoding. unsigned getMaxEncodingWidth() const { // The last encoding ID is the ID of an encoding with the largest width. return Encodings[EncodingIDs.back()].getBitWidth(); } /// Returns true if any decoding conflicts were encountered. bool hasConflict() const { return HasConflict; } private: /// Applies the given filter to the set of encodings this FilterChooser /// works with, creating inferior FilterChoosers as necessary. void applyFilter(const Filter &F); /// dumpStack - dumpStack traverses the filter chooser chain and calls /// dumpFilterArray on each filter chooser up to the top level one. void dumpStack(raw_ostream &OS, indent Indent, unsigned PadToWidth) const; bool isPositionFiltered(unsigned Idx) const { return FilterBits.Zero[Idx] || FilterBits.One[Idx]; } // Calculates the island(s) needed to decode the instruction. // This returns a list of undecoded bits of an instructions, for example, // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be // decoded bits in order to verify that the instruction matches the Opcode. std::vector getIslands(const KnownBits &EncodingBits) const; /// Scans the well-known encoding bits of the encodings and, builds up a list /// of candidate filters, and then returns the best one, if any. std::unique_ptr findBestFilter(ArrayRef BitAttrs, bool AllowMixed, bool Greedy = true) const; std::unique_ptr findBestFilter() const; // Decides on the best configuration of filter(s) to use in order to decode // the instructions. A conflict of instructions may occur, in which case we // dump the conflict set to the standard error. void doFilter(); public: void dump() const; }; class DecoderTableBuilder { const CodeGenTarget &Target; ArrayRef Encodings; DecoderTableInfo &TableInfo; public: DecoderTableBuilder(const CodeGenTarget &Target, ArrayRef Encodings, DecoderTableInfo &TableInfo) : Target(Target), Encodings(Encodings), TableInfo(TableInfo) {} void buildTable(const FilterChooser &FC, unsigned BitWidth) const { // When specializing decoders per bit width, each decoder table will begin // with the bitwidth for that table. if (SpecializeDecodersPerBitwidth) TableInfo.Table.insertULEB128(BitWidth); emitTableEntries(FC); } private: void emitBinaryParser(raw_ostream &OS, indent Indent, const InstructionEncoding &Encoding, const OperandInfo &OpInfo) const; void emitDecoder(raw_ostream &OS, indent Indent, unsigned EncodingID) const; unsigned getDecoderIndex(unsigned EncodingID) const; unsigned getPredicateIndex(StringRef P) const; bool emitPredicateMatch(raw_ostream &OS, unsigned EncodingID) const; void emitPredicateTableEntry(unsigned EncodingID) const; void emitSoftFailTableEntry(unsigned EncodingID) const; void emitSingletonTableEntry(const FilterChooser &FC) const; void emitTableEntries(const FilterChooser &FC) const; }; } // end anonymous namespace /////////////////////////// // // // Filter Implementation // // // /////////////////////////// Filter::Filter(ArrayRef Encodings, ArrayRef EncodingIDs, unsigned StartBit, unsigned NumBits) : StartBit(StartBit), NumBits(NumBits) { for (unsigned EncodingID : EncodingIDs) { const InstructionEncoding &Encoding = Encodings[EncodingID]; KnownBits EncodingBits = Encoding.getMandatoryBits(); // Scans the segment for possibly well-specified encoding bits. KnownBits FieldBits = EncodingBits.extractBits(NumBits, StartBit); if (FieldBits.isConstant()) { // The encoding bits are well-known. Lets add the uid of the // instruction into the bucket keyed off the constant field value. FilteredIDs[FieldBits.getConstant().getZExtValue()].push_back(EncodingID); } else { // Some of the encoding bit(s) are unspecified. This contributes to // one additional member of "Variable" instructions. VariableIDs.push_back(EncodingID); } } assert((FilteredIDs.size() + VariableIDs.size() > 0) && "Filter returns no instruction categories"); } void FilterChooser::applyFilter(const Filter &F) { StartBit = F.StartBit; NumBits = F.NumBits; assert(FilterBits.extractBits(NumBits, StartBit).isUnknown()); if (!F.VariableIDs.empty()) { // Delegates to an inferior filter chooser for further processing on this // group of instructions whose segment values are variable. VariableFC = std::make_unique(Encodings, F.VariableIDs, FilterBits, *this); HasConflict |= VariableFC->HasConflict; } // Otherwise, create sub choosers. for (const auto &[FilterVal, InferiorEncodingIDs] : F.FilteredIDs) { // Create a new filter by inserting the field bits into the parent filter. APInt FieldBits(NumBits, FilterVal); KnownBits InferiorFilterBits = FilterBits; InferiorFilterBits.insertBits(KnownBits::makeConstant(FieldBits), StartBit); // Delegates to an inferior filter chooser for further processing on this // category of instructions. auto [It, _] = FilterChooserMap.try_emplace( FilterVal, std::make_unique(Encodings, InferiorEncodingIDs, InferiorFilterBits, *this)); HasConflict |= It->second->HasConflict; } } // Returns the number of fanout produced by the filter. More fanout implies // the filter distinguishes more categories of instructions. unsigned Filter::usefulness() const { return FilteredIDs.size() + VariableIDs.empty(); } ////////////////////////////////// // // // Filterchooser Implementation // // // ////////////////////////////////// static StringRef getDecoderOpName(DecoderOps Op) { #define CASE(OP) \ case OP: \ return #OP switch (Op) { CASE(OPC_Scope); CASE(OPC_ExtractField); CASE(OPC_FilterValueOrSkip); CASE(OPC_FilterValue); CASE(OPC_CheckField); CASE(OPC_CheckPredicate); CASE(OPC_Decode); CASE(OPC_TryDecode); CASE(OPC_SoftFail); } #undef CASE llvm_unreachable("Unknown decoder op"); } // Emit the decoder state machine table. Returns a mask of MCD decoder ops // that were emitted. unsigned DecoderEmitter::emitTable(formatted_raw_ostream &OS, DecoderTable &Table, StringRef Namespace, unsigned HwModeID, unsigned BitWidth, ArrayRef EncodingIDs) const { // We'll need to be able to map from a decoded opcode into the corresponding // EncodingID for this specific combination of BitWidth and Namespace. This // is used below to index into Encodings. DenseMap OpcodeToEncodingID; OpcodeToEncodingID.reserve(EncodingIDs.size()); for (unsigned EncodingID : EncodingIDs) { const Record *InstDef = Encodings[EncodingID].getInstruction()->TheDef; OpcodeToEncodingID[Target.getInstrIntValue(InstDef)] = EncodingID; } OS << "static const uint8_t DecoderTable" << Namespace; if (HwModeID != DefaultMode) OS << '_' << Target.getHwModes().getModeName(HwModeID); OS << BitWidth << "[" << Table.size() << "] = {\n"; // Emit ULEB128 encoded value to OS, returning the number of bytes emitted. auto EmitULEB128 = [](DecoderTable::const_iterator &I, formatted_raw_ostream &OS) { while (*I >= 128) OS << (unsigned)*I++ << ", "; OS << (unsigned)*I++ << ", "; }; // Emit `getNumToSkipInBytes()`-byte numtoskip value to OS, returning the // NumToSkip value. auto EmitNumToSkip = [](DecoderTable::const_iterator &I, formatted_raw_ostream &OS) { uint8_t Byte = *I++; uint32_t NumToSkip = Byte; OS << (unsigned)Byte << ", "; Byte = *I++; OS << (unsigned)Byte << ", "; NumToSkip |= Byte << 8; if (getNumToSkipInBytes() == 3) { Byte = *I++; OS << (unsigned)(Byte) << ", "; NumToSkip |= Byte << 16; } return NumToSkip; }; // FIXME: We may be able to use the NumToSkip values to recover // appropriate indentation levels. DecoderTable::const_iterator I = Table.begin(); DecoderTable::const_iterator E = Table.end(); const uint8_t *const EndPtr = Table.data() + Table.size(); auto EmitPos = [&OS](uint32_t Pos) { constexpr uint32_t StartColumn = 12; OS << "/* " << Pos << " */"; OS.PadToColumn(StartColumn); }; auto StartComment = [&OS]() { constexpr uint32_t CommentColumn = 52; OS.PadToColumn(CommentColumn); OS << "// "; }; auto EmitNumToSkipComment = [&](uint32_t NumToSkip) { uint32_t Index = (I - Table.begin()) + NumToSkip; OS << "skip to " << Index; }; // The first entry when specializing decoders per bitwidth is the bitwidth. // This will be used for additional checks in `decodeInstruction`. if (SpecializeDecodersPerBitwidth) { EmitPos(0); EmitULEB128(I, OS); StartComment(); OS << "Bitwidth " << BitWidth << '\n'; } auto DecodeAndEmitULEB128 = [EndPtr, &EmitULEB128](DecoderTable::const_iterator &I, formatted_raw_ostream &OS) { const char *ErrMsg = nullptr; uint64_t Value = decodeULEB128(&*I, nullptr, EndPtr, &ErrMsg); assert(ErrMsg == nullptr && "ULEB128 value too large!"); EmitULEB128(I, OS); return Value; }; unsigned OpcodeMask = 0; while (I != E) { assert(I < E && "incomplete decode table entry!"); uint32_t Pos = I - Table.begin(); EmitPos(Pos); const uint8_t DecoderOp = *I++; OpcodeMask |= (1 << DecoderOp); OS << getDecoderOpName(static_cast(DecoderOp)) << ", "; switch (DecoderOp) { default: PrintFatalError("Invalid decode table opcode: " + Twine((int)DecoderOp) + " at index " + Twine(Pos)); case OPC_Scope: { uint32_t NumToSkip = EmitNumToSkip(I, OS); StartComment(); uint32_t Index = (I - Table.begin()) + NumToSkip; OS << "end scope at " << Index; break; } case OPC_ExtractField: { // ULEB128 encoded start value. unsigned Start = DecodeAndEmitULEB128(I, OS); unsigned Len = *I++; OS << Len << ','; StartComment(); OS << "Field = Inst{"; if (Len > 1) OS << (Start + Len - 1) << '-'; OS << Start << '}'; break; } case OPC_FilterValueOrSkip: { // The filter value is ULEB128 encoded. uint64_t FilterVal = DecodeAndEmitULEB128(I, OS); uint32_t NumToSkip = EmitNumToSkip(I, OS); StartComment(); OS << "if Field != " << format_hex(FilterVal, 0) << ' '; EmitNumToSkipComment(NumToSkip); break; } case OPC_FilterValue: { // The filter value is ULEB128 encoded. uint64_t FilterVal = DecodeAndEmitULEB128(I, OS); StartComment(); OS << "if Field != " << format_hex(FilterVal, 0) << " pop scope"; break; } case OPC_CheckField: { // ULEB128 encoded start value. unsigned Start = DecodeAndEmitULEB128(I, OS); // 8-bit length. unsigned Len = *I++; OS << Len << ", "; // ULEB128 encoded field value. uint64_t FieldVal = DecodeAndEmitULEB128(I, OS); StartComment(); OS << "if Inst{"; if (Len > 1) OS << (Start + Len - 1) << '-'; OS << Start << "} != " << format_hex(FieldVal, 0) << " pop scope"; break; } case OPC_CheckPredicate: { unsigned PIdx = DecodeAndEmitULEB128(I, OS); StartComment(); OS << "if !checkPredicate(" << PIdx << ") pop scope"; break; } case OPC_Decode: case OPC_TryDecode: { // Decode the Opcode value. unsigned Opc = DecodeAndEmitULEB128(I, OS); // Decoder index. unsigned DecodeIdx = DecodeAndEmitULEB128(I, OS); auto EncI = OpcodeToEncodingID.find(Opc); assert(EncI != OpcodeToEncodingID.end() && "no encoding entry"); auto EncodingID = EncI->second; StartComment(); OS << "Opcode: " << Encodings[EncodingID].getName() << ", DecodeIdx: " << DecodeIdx; break; } case OPC_SoftFail: { // Decode the positive mask. uint64_t PositiveMask = DecodeAndEmitULEB128(I, OS); // Decode the negative mask. uint64_t NegativeMask = DecodeAndEmitULEB128(I, OS); StartComment(); OS << "positive mask: " << format_hex(PositiveMask, 0) << "negative mask: " << format_hex(NegativeMask, 0); break; } } OS << '\n'; } OS << "};\n\n"; return OpcodeMask; } void DecoderEmitter::emitInstrLenTable(formatted_raw_ostream &OS, ArrayRef InstrLen) const { OS << "static const uint8_t InstrLenTable[] = {\n"; for (unsigned Len : InstrLen) OS << Len << ",\n"; OS << "};\n\n"; } void DecoderEmitter::emitPredicateFunction(formatted_raw_ostream &OS, PredicateSet &Predicates) const { // The predicate function is just a big switch statement based on the // input predicate index. OS << "static bool checkDecoderPredicate(unsigned Idx, const FeatureBitset " "&FB) {\n"; OS << " switch (Idx) {\n"; OS << " default: llvm_unreachable(\"Invalid index!\");\n"; for (const auto &[Index, Predicate] : enumerate(Predicates)) { OS << " case " << Index << ":\n"; OS << " return " << Predicate << ";\n"; } OS << " }\n"; OS << "}\n\n"; } void DecoderEmitter::emitDecoderFunction(formatted_raw_ostream &OS, const DecoderSet &Decoders, unsigned BucketBitWidth) const { // The decoder function is just a big switch statement or a table of function // pointers based on the input decoder index. // TODO: When InsnType is large, using uint64_t limits all fields to 64 bits // It would be better for emitBinaryParser to use a 64-bit tmp whenever // possible but fall back to an InsnType-sized tmp for truly large fields. StringRef TmpTypeDecl = "using TmpType = std::conditional_t::value, " "InsnType, uint64_t>;\n"; StringRef DecodeParams = "DecodeStatus S, InsnType insn, MCInst &MI, uint64_t Address, const " "MCDisassembler *Decoder, bool &DecodeComplete"; // Print the name of the decode function to OS. auto PrintDecodeFnName = [&OS, BucketBitWidth](unsigned DecodeIdx) { OS << "decodeFn"; if (BucketBitWidth != 0) { OS << '_' << BucketBitWidth << "bit"; } OS << '_' << DecodeIdx; }; // Print the template statement. auto PrintTemplate = [&OS, BucketBitWidth]() { OS << "template \n"; OS << "static "; if (BucketBitWidth != 0) OS << "std::enable_if_t == " << BucketBitWidth << ", DecodeStatus>\n"; else OS << "DecodeStatus "; }; if (UseFnTableInDecodeToMCInst) { // Emit a function for each case first. for (const auto &[Index, Decoder] : enumerate(Decoders)) { PrintTemplate(); PrintDecodeFnName(Index); OS << "(" << DecodeParams << ") {\n"; OS << " " << TmpTypeDecl; OS << " [[maybe_unused]] TmpType tmp;\n"; OS << Decoder; OS << " return S;\n"; OS << "}\n\n"; } } OS << "// Handling " << Decoders.size() << " cases.\n"; PrintTemplate(); OS << "decodeToMCInst(unsigned Idx, " << DecodeParams << ") {\n"; OS << " DecodeComplete = true;\n"; if (UseFnTableInDecodeToMCInst) { // Build a table of function pointers OS << " using DecodeFnTy = DecodeStatus (*)(" << DecodeParams << ");\n"; OS << " static constexpr DecodeFnTy decodeFnTable[] = {\n"; for (size_t Index : llvm::seq(Decoders.size())) { OS << " "; PrintDecodeFnName(Index); OS << ",\n"; } OS << " };\n"; OS << " if (Idx >= " << Decoders.size() << ")\n"; OS << " llvm_unreachable(\"Invalid decoder index!\");\n"; OS << " return decodeFnTable[Idx](S, insn, MI, Address, Decoder, " "DecodeComplete);\n"; } else { OS << " " << TmpTypeDecl; OS << " TmpType tmp;\n"; OS << " switch (Idx) {\n"; OS << " default: llvm_unreachable(\"Invalid decoder index!\");\n"; for (const auto &[Index, Decoder] : enumerate(Decoders)) { OS << " case " << Index << ":\n"; OS << Decoder; OS << " return S;\n"; } OS << " }\n"; } OS << "}\n"; } /// dumpStack - dumpStack traverses the filter chooser chain and calls /// dumpFilterArray on each filter chooser up to the top level one. void FilterChooser::dumpStack(raw_ostream &OS, indent Indent, unsigned PadToWidth) const { if (Parent) Parent->dumpStack(OS, Indent, PadToWidth); assert(PadToWidth >= FilterBits.getBitWidth()); OS << Indent << indent(PadToWidth - FilterBits.getBitWidth()); printKnownBits(OS, FilterBits, '.'); OS << '\n'; } // Calculates the island(s) needed to decode the instruction. // This returns a list of undecoded bits of an instructions, for example, // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be // decoded bits in order to verify that the instruction matches the Opcode. std::vector FilterChooser::getIslands(const KnownBits &EncodingBits) const { std::vector Islands; uint64_t FieldVal; unsigned StartBit; // 0: Init // 1: Water (the bit value does not affect decoding) // 2: Island (well-known bit value needed for decoding) unsigned State = 0; unsigned FilterWidth = FilterBits.getBitWidth(); for (unsigned i = 0; i != FilterWidth; ++i) { bool IsKnown = EncodingBits.Zero[i] || EncodingBits.One[i]; bool Filtered = isPositionFiltered(i); switch (State) { default: llvm_unreachable("Unreachable code!"); case 0: case 1: if (Filtered || !IsKnown) { State = 1; // Still in Water } else { State = 2; // Into the Island StartBit = i; FieldVal = static_cast(EncodingBits.One[i]); } break; case 2: if (Filtered || !IsKnown) { State = 1; // Into the Water Islands.push_back({StartBit, i - StartBit, FieldVal}); } else { State = 2; // Still in Island FieldVal |= static_cast(EncodingBits.One[i]) << (i - StartBit); } break; } } // If we are still in Island after the loop, do some housekeeping. if (State == 2) Islands.push_back({StartBit, FilterWidth - StartBit, FieldVal}); return Islands; } void DecoderTableBuilder::emitBinaryParser(raw_ostream &OS, indent Indent, const InstructionEncoding &Encoding, const OperandInfo &OpInfo) const { if (OpInfo.HasNoEncoding) { // If an operand has no encoding, the old behavior is to not decode it // automatically and let the target do it. This is error-prone, so the // new behavior is to report an error. if (!IgnoreNonDecodableOperands) PrintError(Encoding.getRecord()->getLoc(), "could not find field for operand '" + OpInfo.Name + "'"); return; } // Special case for 'bits<0>'. if (OpInfo.Fields.empty() && !OpInfo.InitValue) { if (IgnoreNonDecodableOperands) return; assert(!OpInfo.Decoder.empty()); // The operand has no encoding, so the corresponding argument is omitted. // This avoids confusion and allows the function to be overloaded if the // operand does have an encoding in other instructions. OS << Indent << "if (!Check(S, " << OpInfo.Decoder << "(MI, Decoder)))\n" << Indent << " return MCDisassembler::Fail;\n"; return; } if (OpInfo.fields().empty()) { // Only a constant part. The old behavior is to not decode this operand. if (IgnoreFullyDefinedOperands) return; // Initialize `tmp` with the constant part. OS << Indent << "tmp = " << format_hex(*OpInfo.InitValue, 0) << ";\n"; } else if (OpInfo.fields().size() == 1 && !OpInfo.InitValue.value_or(0)) { // One variable part and no/zero constant part. Initialize `tmp` with the // variable part. auto [Base, Width, Offset] = OpInfo.fields().front(); OS << Indent << "tmp = fieldFromInstruction(insn, " << Base << ", " << Width << ')'; if (Offset) OS << " << " << Offset; OS << ";\n"; } else { // General case. Initialize `tmp` with the constant part, if any, and // insert the variable parts into it. OS << Indent << "tmp = " << format_hex(OpInfo.InitValue.value_or(0), 0) << ";\n"; for (auto [Base, Width, Offset] : OpInfo.fields()) OS << Indent << "insertBits(tmp, fieldFromInstruction(insn, " << Base << ", " << Width << "), " << Offset << ", " << Width << ");\n"; } StringRef Decoder = OpInfo.Decoder; if (!Decoder.empty()) { OS << Indent << "if (!Check(S, " << Decoder << "(MI, tmp, Address, Decoder))) { " << (OpInfo.HasCompleteDecoder ? "" : "DecodeComplete = false; ") << "return MCDisassembler::Fail; }\n"; } else { OS << Indent << "MI.addOperand(MCOperand::createImm(tmp));\n"; } } void DecoderTableBuilder::emitDecoder(raw_ostream &OS, indent Indent, unsigned EncodingID) const { const InstructionEncoding &Encoding = Encodings[EncodingID]; // If a custom instruction decoder was specified, use that. StringRef DecoderMethod = Encoding.getDecoderMethod(); if (!DecoderMethod.empty()) { OS << Indent << "if (!Check(S, " << DecoderMethod << "(MI, insn, Address, Decoder))) { " << (Encoding.hasCompleteDecoder() ? "" : "DecodeComplete = false; ") << "return MCDisassembler::Fail; }\n"; return; } for (const OperandInfo &Op : Encoding.getOperands()) emitBinaryParser(OS, Indent, Encoding, Op); } unsigned DecoderTableBuilder::getDecoderIndex(unsigned EncodingID) const { // Build up the predicate string. SmallString<256> Decoder; // FIXME: emitDecoder() function can take a buffer directly rather than // a stream. raw_svector_ostream S(Decoder); indent Indent(UseFnTableInDecodeToMCInst ? 2 : 4); emitDecoder(S, Indent, EncodingID); // Using the full decoder string as the key value here is a bit // heavyweight, but is effective. If the string comparisons become a // performance concern, we can implement a mangling of the predicate // data easily enough with a map back to the actual string. That's // overkill for now, though. TableInfo.insertDecoder(Decoder); return TableInfo.getDecoderIndex(Decoder); } // Returns true if there was any predicate emitted. bool DecoderTableBuilder::emitPredicateMatch(raw_ostream &OS, unsigned EncodingID) const { std::vector Predicates = Encodings[EncodingID].getRecord()->getValueAsListOfDefs("Predicates"); auto It = llvm::find_if(Predicates, [](const Record *R) { return R->getValueAsBit("AssemblerMatcherPredicate"); }); bool AnyAsmPredicate = It != Predicates.end(); if (!AnyAsmPredicate) return false; SubtargetFeatureInfo::emitMCPredicateCheck(OS, Target.getName(), Predicates); return true; } unsigned DecoderTableBuilder::getPredicateIndex(StringRef Predicate) const { // Using the full predicate string as the key value here is a bit // heavyweight, but is effective. If the string comparisons become a // performance concern, we can implement a mangling of the predicate // data easily enough with a map back to the actual string. That's // overkill for now, though. TableInfo.insertPredicate(Predicate); return TableInfo.getPredicateIndex(Predicate); } void DecoderTableBuilder::emitPredicateTableEntry(unsigned EncodingID) const { // Build up the predicate string. SmallString<256> Predicate; raw_svector_ostream PS(Predicate); if (!emitPredicateMatch(PS, EncodingID)) return; // Figure out the index into the predicate table for the predicate just // computed. unsigned PIdx = getPredicateIndex(PS.str()); TableInfo.Table.insertOpcode(OPC_CheckPredicate); TableInfo.Table.insertULEB128(PIdx); } void DecoderTableBuilder::emitSoftFailTableEntry(unsigned EncodingID) const { const InstructionEncoding &Encoding = Encodings[EncodingID]; const KnownBits &InstBits = Encoding.getInstBits(); const APInt &SoftFailMask = Encoding.getSoftFailMask(); if (SoftFailMask.isZero()) return; APInt PositiveMask = InstBits.Zero & SoftFailMask; APInt NegativeMask = InstBits.One & SoftFailMask; TableInfo.Table.insertOpcode(OPC_SoftFail); TableInfo.Table.insertULEB128(PositiveMask.getZExtValue()); TableInfo.Table.insertULEB128(NegativeMask.getZExtValue()); } // Emits table entries to decode the singleton. void DecoderTableBuilder::emitSingletonTableEntry( const FilterChooser &FC) const { unsigned EncodingID = *FC.SingletonEncodingID; const InstructionEncoding &Encoding = Encodings[EncodingID]; KnownBits EncodingBits = Encoding.getMandatoryBits(); // Look for islands of undecoded bits of the singleton. std::vector Islands = FC.getIslands(EncodingBits); // Emit the predicate table entry if one is needed. emitPredicateTableEntry(EncodingID); // Check any additional encoding fields needed. for (const FilterChooser::Island &Ilnd : reverse(Islands)) { TableInfo.Table.insertOpcode(OPC_CheckField); TableInfo.Table.insertULEB128(Ilnd.StartBit); TableInfo.Table.insertUInt8(Ilnd.NumBits); TableInfo.Table.insertULEB128(Ilnd.FieldVal); } // Check for soft failure of the match. emitSoftFailTableEntry(EncodingID); unsigned DIdx = getDecoderIndex(EncodingID); // Produce OPC_Decode or OPC_TryDecode opcode based on the information // whether the instruction decoder is complete or not. If it is complete // then it handles all possible values of remaining variable/unfiltered bits // and for any value can determine if the bitpattern is a valid instruction // or not. This means OPC_Decode will be the final step in the decoding // process. If it is not complete, then the Fail return code from the // decoder method indicates that additional processing should be done to see // if there is any other instruction that also matches the bitpattern and // can decode it. const DecoderOps DecoderOp = Encoding.hasCompleteDecoder() ? OPC_Decode : OPC_TryDecode; TableInfo.Table.insertOpcode(DecoderOp); const Record *InstDef = Encodings[EncodingID].getInstruction()->TheDef; TableInfo.Table.insertULEB128(Target.getInstrIntValue(InstDef)); TableInfo.Table.insertULEB128(DIdx); } std::unique_ptr FilterChooser::findBestFilter(ArrayRef BitAttrs, bool AllowMixed, bool Greedy) const { assert(EncodingIDs.size() >= 2 && "Nothing to filter"); // Heuristics. See also doFilter()'s "Heuristics" comment when num of // instructions is 3. if (AllowMixed && !Greedy) { assert(EncodingIDs.size() == 3); for (unsigned EncodingID : EncodingIDs) { const InstructionEncoding &Encoding = Encodings[EncodingID]; KnownBits EncodingBits = Encoding.getMandatoryBits(); // Look for islands of undecoded bits of any instruction. std::vector Islands = getIslands(EncodingBits); if (!Islands.empty()) { // Found an instruction with island(s). Now just assign a filter. return std::make_unique( Encodings, EncodingIDs, Islands[0].StartBit, Islands[0].NumBits); } } } // The regionAttr automaton consumes the bitAttrs automatons' state, // lowest-to-highest. // // Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed) // States: NONE, ALL_SET, MIXED // Initial state: NONE // // (NONE) ----- F --> (NONE) // (NONE) ----- S --> (ALL_SET) ; and set region start // (NONE) ----- U --> (NONE) // (NONE) ----- M --> (MIXED) ; and set region start // (ALL_SET) -- F --> (NONE) ; and report an ALL_SET region // (ALL_SET) -- S --> (ALL_SET) // (ALL_SET) -- U --> (NONE) ; and report an ALL_SET region // (ALL_SET) -- M --> (MIXED) ; and report an ALL_SET region // (MIXED) ---- F --> (NONE) ; and report a MIXED region // (MIXED) ---- S --> (ALL_SET) ; and report a MIXED region // (MIXED) ---- U --> (NONE) ; and report a MIXED region // (MIXED) ---- M --> (MIXED) bitAttr_t RA = ATTR_NONE; unsigned StartBit = 0; std::vector> Filters; auto addCandidateFilter = [&](unsigned StartBit, unsigned EndBit) { Filters.push_back(std::make_unique(Encodings, EncodingIDs, StartBit, EndBit - StartBit)); }; unsigned FilterWidth = FilterBits.getBitWidth(); for (unsigned BitIndex = 0; BitIndex != FilterWidth; ++BitIndex) { bitAttr_t bitAttr = BitAttrs[BitIndex]; assert(bitAttr != ATTR_NONE && "Bit without attributes"); switch (RA) { case ATTR_NONE: switch (bitAttr) { case ATTR_FILTERED: break; case ATTR_ALL_SET: StartBit = BitIndex; RA = ATTR_ALL_SET; break; case ATTR_ALL_UNSET: break; case ATTR_MIXED: StartBit = BitIndex; RA = ATTR_MIXED; break; default: llvm_unreachable("Unexpected bitAttr!"); } break; case ATTR_ALL_SET: if (!AllowMixed && bitAttr != ATTR_ALL_SET) addCandidateFilter(StartBit, BitIndex); switch (bitAttr) { case ATTR_FILTERED: RA = ATTR_NONE; break; case ATTR_ALL_SET: break; case ATTR_ALL_UNSET: RA = ATTR_NONE; break; case ATTR_MIXED: StartBit = BitIndex; RA = ATTR_MIXED; break; default: llvm_unreachable("Unexpected bitAttr!"); } break; case ATTR_MIXED: if (AllowMixed && bitAttr != ATTR_MIXED) addCandidateFilter(StartBit, BitIndex); switch (bitAttr) { case ATTR_FILTERED: StartBit = BitIndex; RA = ATTR_NONE; break; case ATTR_ALL_SET: StartBit = BitIndex; RA = ATTR_ALL_SET; break; case ATTR_ALL_UNSET: RA = ATTR_NONE; break; case ATTR_MIXED: break; default: llvm_unreachable("Unexpected bitAttr!"); } break; case ATTR_ALL_UNSET: llvm_unreachable("regionAttr state machine has no ATTR_UNSET state"); case ATTR_FILTERED: llvm_unreachable("regionAttr state machine has no ATTR_FILTERED state"); } } // At the end, if we're still in ALL_SET or MIXED states, report a region switch (RA) { case ATTR_NONE: break; case ATTR_FILTERED: break; case ATTR_ALL_SET: if (!AllowMixed) addCandidateFilter(StartBit, FilterWidth); break; case ATTR_ALL_UNSET: break; case ATTR_MIXED: if (AllowMixed) addCandidateFilter(StartBit, FilterWidth); break; } // We have finished with the filter processings. Now it's time to choose // the best performing filter. auto MaxIt = llvm::max_element(Filters, [](const std::unique_ptr &A, const std::unique_ptr &B) { return A->usefulness() < B->usefulness(); }); if (MaxIt == Filters.end() || (*MaxIt)->usefulness() == 0) return nullptr; return std::move(*MaxIt); } std::unique_ptr FilterChooser::findBestFilter() const { // We maintain BIT_WIDTH copies of the bitAttrs automaton. // The automaton consumes the corresponding bit from each // instruction. // // Input symbols: 0, 1, _ (unset), and . (any of the above). // States: NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED. // Initial state: NONE. // // (NONE) ------- [01] -> (ALL_SET) // (NONE) ------- _ ----> (ALL_UNSET) // (ALL_SET) ---- [01] -> (ALL_SET) // (ALL_SET) ---- _ ----> (MIXED) // (ALL_UNSET) -- [01] -> (MIXED) // (ALL_UNSET) -- _ ----> (ALL_UNSET) // (MIXED) ------ . ----> (MIXED) // (FILTERED)---- . ----> (FILTERED) unsigned FilterWidth = FilterBits.getBitWidth(); SmallVector BitAttrs(FilterWidth, ATTR_NONE); // FILTERED bit positions provide no entropy and are not worthy of pursuing. // Filter::recurse() set either 1 or 0 for each position. for (unsigned BitIndex = 0; BitIndex != FilterWidth; ++BitIndex) if (isPositionFiltered(BitIndex)) BitAttrs[BitIndex] = ATTR_FILTERED; for (unsigned EncodingID : EncodingIDs) { const InstructionEncoding &Encoding = Encodings[EncodingID]; KnownBits EncodingBits = Encoding.getMandatoryBits(); for (unsigned BitIndex = 0; BitIndex != FilterWidth; ++BitIndex) { bool IsKnown = EncodingBits.Zero[BitIndex] || EncodingBits.One[BitIndex]; switch (BitAttrs[BitIndex]) { case ATTR_NONE: if (IsKnown) BitAttrs[BitIndex] = ATTR_ALL_SET; else BitAttrs[BitIndex] = ATTR_ALL_UNSET; break; case ATTR_ALL_SET: if (!IsKnown) BitAttrs[BitIndex] = ATTR_MIXED; break; case ATTR_ALL_UNSET: if (IsKnown) BitAttrs[BitIndex] = ATTR_MIXED; break; case ATTR_MIXED: case ATTR_FILTERED: break; } } } // Try regions of consecutive known bit values first. if (std::unique_ptr F = findBestFilter(BitAttrs, /*AllowMixed=*/false)) return F; // Then regions of mixed bits (both known and unitialized bit values allowed). if (std::unique_ptr F = findBestFilter(BitAttrs, /*AllowMixed=*/true)) return F; // Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where // no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a // well-known encoding pattern. In such case, we backtrack and scan for the // the very first consecutive ATTR_ALL_SET region and assign a filter to it. if (EncodingIDs.size() == 3) { if (std::unique_ptr F = findBestFilter(BitAttrs, /*AllowMixed=*/true, /*Greedy=*/false)) return F; } // There is a conflict we could not resolve. return nullptr; } // Decides on the best configuration of filter(s) to use in order to decode // the instructions. A conflict of instructions may occur, in which case we // dump the conflict set to the standard error. void FilterChooser::doFilter() { assert(!EncodingIDs.empty() && "FilterChooser created with no instructions"); // No filter needed. if (EncodingIDs.size() == 1) { SingletonEncodingID = EncodingIDs.front(); return; } std::unique_ptr BestFilter = findBestFilter(); if (BestFilter) { applyFilter(*BestFilter); return; } // Print out useful conflict information for postmortem analysis. errs() << "Decoding Conflict:\n"; dump(); HasConflict = true; } void FilterChooser::dump() const { indent Indent(4); // Helps to keep the output right-justified. unsigned PadToWidth = getMaxEncodingWidth(); // Dump filter stack. dumpStack(errs(), Indent, PadToWidth); // Dump encodings. for (unsigned EncodingID : EncodingIDs) { const InstructionEncoding &Encoding = Encodings[EncodingID]; errs() << Indent << indent(PadToWidth - Encoding.getBitWidth()); printKnownBits(errs(), Encoding.getMandatoryBits(), '_'); errs() << " " << Encoding.getName() << '\n'; } } void DecoderTableBuilder::emitTableEntries(const FilterChooser &FC) const { DecoderTable &Table = TableInfo.Table; // If there are other encodings that could match if those with all bits // known don't, enter a scope so that they have a chance. size_t FixupLoc = 0; if (FC.VariableFC) { Table.insertOpcode(OPC_Scope); FixupLoc = Table.insertNumToSkip(); } if (FC.SingletonEncodingID) { assert(FC.FilterChooserMap.empty()); // There is only one encoding in which all bits in the filtered range are // fully defined, but we still need to check if the remaining (unfiltered) // bits are valid for this encoding. We also need to check predicates etc. emitSingletonTableEntry(FC); } else if (FC.FilterChooserMap.size() == 1) { // If there is only one possible field value, emit a combined OPC_CheckField // instead of OPC_ExtractField + OPC_FilterValue. const auto &[FilterVal, Delegate] = *FC.FilterChooserMap.begin(); Table.insertOpcode(OPC_CheckField); Table.insertULEB128(FC.StartBit); Table.insertUInt8(FC.NumBits); Table.insertULEB128(FilterVal); // Emit table entries for the only case. emitTableEntries(*Delegate); } else { // The general case: emit a switch over the field value. Table.insertOpcode(OPC_ExtractField); Table.insertULEB128(FC.StartBit); Table.insertUInt8(FC.NumBits); // Emit switch cases for all but the last element. for (const auto &[FilterVal, Delegate] : drop_end(FC.FilterChooserMap)) { Table.insertOpcode(OPC_FilterValueOrSkip); Table.insertULEB128(FilterVal); size_t FixupPos = Table.insertNumToSkip(); // Emit table entries for this case. emitTableEntries(*Delegate); // Patch the previous FilterValueOrSkip to fall through to the next case. Table.patchNumToSkip(FixupPos, Table.size()); } // Emit a switch case for the last element. It never falls through; // if it doesn't match, we leave the current scope. const auto &[FilterVal, Delegate] = *FC.FilterChooserMap.rbegin(); Table.insertOpcode(OPC_FilterValue); Table.insertULEB128(FilterVal); // Emit table entries for the last case. emitTableEntries(*Delegate); } if (FC.VariableFC) { Table.patchNumToSkip(FixupLoc, Table.size()); emitTableEntries(*FC.VariableFC); } } // emitDecodeInstruction - Emit the templated helper function // decodeInstruction(). static void emitDecodeInstruction(formatted_raw_ostream &OS, bool IsVarLenInst, unsigned OpcodeMask) { const bool HasTryDecode = OpcodeMask & (1 << OPC_TryDecode); const bool HasCheckPredicate = OpcodeMask & (1 << OPC_CheckPredicate); const bool HasSoftFail = OpcodeMask & (1 << OPC_SoftFail); OS << R"( static unsigned decodeNumToSkip(const uint8_t *&Ptr) { unsigned NumToSkip = *Ptr++; NumToSkip |= (*Ptr++) << 8; )"; if (getNumToSkipInBytes() == 3) OS << " NumToSkip |= (*Ptr++) << 16;\n"; OS << R"( return NumToSkip; } template static DecodeStatus decodeInstruction(const uint8_t DecodeTable[], MCInst &MI, InsnType insn, uint64_t Address, const MCDisassembler *DisAsm, const MCSubtargetInfo &STI)"; if (IsVarLenInst) { OS << ",\n " "llvm::function_ref makeUp"; } OS << ") {\n"; if (HasCheckPredicate) OS << " const FeatureBitset &Bits = STI.getFeatureBits();\n"; OS << " const uint8_t *Ptr = DecodeTable;\n"; if (SpecializeDecodersPerBitwidth) { // Fail with a fatal error if decoder table's bitwidth does not match // `InsnType` bitwidth. OS << R"( [[maybe_unused]] uint32_t BitWidth = decodeULEB128AndIncUnsafe(Ptr); assert(InsnBitWidth == BitWidth && "Table and instruction bitwidth mismatch"); )"; } OS << R"( SmallVector ScopeStack; uint64_t CurFieldValue = 0; DecodeStatus S = MCDisassembler::Success; while (true) { ptrdiff_t Loc = Ptr - DecodeTable; const uint8_t DecoderOp = *Ptr++; switch (DecoderOp) { default: errs() << Loc << ": Unexpected decode table opcode: " << (int)DecoderOp << '\n'; return MCDisassembler::Fail; case OPC_Scope: { unsigned NumToSkip = decodeNumToSkip(Ptr); const uint8_t *SkipTo = Ptr + NumToSkip; ScopeStack.push_back(SkipTo); LLVM_DEBUG(dbgs() << Loc << ": OPC_Scope(" << SkipTo - DecodeTable << ")\n"); break; } case OPC_ExtractField: { // Decode the start value. unsigned Start = decodeULEB128AndIncUnsafe(Ptr); unsigned Len = *Ptr++;)"; if (IsVarLenInst) OS << "\n makeUp(insn, Start + Len);"; OS << R"( CurFieldValue = fieldFromInstruction(insn, Start, Len); LLVM_DEBUG(dbgs() << Loc << ": OPC_ExtractField(" << Start << ", " << Len << "): " << CurFieldValue << "\n"); break; } case OPC_FilterValueOrSkip: { // Decode the field value. uint64_t Val = decodeULEB128AndIncUnsafe(Ptr); bool Failed = Val != CurFieldValue; unsigned NumToSkip = decodeNumToSkip(Ptr); const uint8_t *SkipTo = Ptr + NumToSkip; LLVM_DEBUG(dbgs() << Loc << ": OPC_FilterValueOrSkip(" << Val << ", " << SkipTo - DecodeTable << ") " << (Failed ? "FAIL, " : "PASS\n")); if (Failed) { Ptr = SkipTo; LLVM_DEBUG(dbgs() << "continuing at " << Ptr - DecodeTable << '\n'); } break; } case OPC_FilterValue: { // Decode the field value. uint64_t Val = decodeULEB128AndIncUnsafe(Ptr); bool Failed = Val != CurFieldValue; LLVM_DEBUG(dbgs() << Loc << ": OPC_FilterValue(" << Val << ") " << (Failed ? "FAIL, " : "PASS\n")); if (Failed) { if (ScopeStack.empty()) { LLVM_DEBUG(dbgs() << "returning Fail\n"); return MCDisassembler::Fail; } Ptr = ScopeStack.pop_back_val(); LLVM_DEBUG(dbgs() << "continuing at " << Ptr - DecodeTable << '\n'); } break; } case OPC_CheckField: { // Decode the start value. unsigned Start = decodeULEB128AndIncUnsafe(Ptr); unsigned Len = *Ptr;)"; if (IsVarLenInst) OS << "\n makeUp(insn, Start + Len);"; OS << R"( uint64_t FieldValue = fieldFromInstruction(insn, Start, Len); // Decode the field value. unsigned PtrLen = 0; uint64_t ExpectedValue = decodeULEB128(++Ptr, &PtrLen); Ptr += PtrLen; bool Failed = ExpectedValue != FieldValue; LLVM_DEBUG(dbgs() << Loc << ": OPC_CheckField(" << Start << ", " << Len << ", " << ExpectedValue << "): FieldValue = " << FieldValue << ", ExpectedValue = " << ExpectedValue << ": " << (Failed ? "FAIL, " : "PASS\n");); if (Failed) { if (ScopeStack.empty()) { LLVM_DEBUG(dbgs() << "returning Fail\n"); return MCDisassembler::Fail; } Ptr = ScopeStack.pop_back_val(); LLVM_DEBUG(dbgs() << "continuing at " << Ptr - DecodeTable << '\n'); } break; })"; if (HasCheckPredicate) { OS << R"( case OPC_CheckPredicate: { // Decode the Predicate Index value. unsigned PIdx = decodeULEB128AndIncUnsafe(Ptr); // Check the predicate. bool Failed = !checkDecoderPredicate(PIdx, Bits); LLVM_DEBUG(dbgs() << Loc << ": OPC_CheckPredicate(" << PIdx << "): " << (Failed ? "FAIL, " : "PASS\n");); if (Failed) { if (ScopeStack.empty()) { LLVM_DEBUG(dbgs() << "returning Fail\n"); return MCDisassembler::Fail; } Ptr = ScopeStack.pop_back_val(); LLVM_DEBUG(dbgs() << "continuing at " << Ptr - DecodeTable << '\n'); } break; })"; } OS << R"( case OPC_Decode: { // Decode the Opcode value. unsigned Opc = decodeULEB128AndIncUnsafe(Ptr); unsigned DecodeIdx = decodeULEB128AndIncUnsafe(Ptr); MI.clear(); MI.setOpcode(Opc); bool DecodeComplete;)"; if (IsVarLenInst) { OS << "\n unsigned Len = InstrLenTable[Opc];\n" << " makeUp(insn, Len);"; } OS << R"( S = decodeToMCInst(DecodeIdx, S, insn, MI, Address, DisAsm, DecodeComplete); assert(DecodeComplete); LLVM_DEBUG(dbgs() << Loc << ": OPC_Decode: opcode " << Opc << ", using decoder " << DecodeIdx << ": " << (S != MCDisassembler::Fail ? "PASS\n" : "FAIL\n")); return S; })"; if (HasTryDecode) { OS << R"( case OPC_TryDecode: { // Decode the Opcode value. unsigned Opc = decodeULEB128AndIncUnsafe(Ptr); unsigned DecodeIdx = decodeULEB128AndIncUnsafe(Ptr); // Perform the decode operation. MCInst TmpMI; TmpMI.setOpcode(Opc); bool DecodeComplete; S = decodeToMCInst(DecodeIdx, S, insn, TmpMI, Address, DisAsm, DecodeComplete); LLVM_DEBUG(dbgs() << Loc << ": OPC_TryDecode: opcode " << Opc << ", using decoder " << DecodeIdx << ": "); if (DecodeComplete) { // Decoding complete. LLVM_DEBUG(dbgs() << (S != MCDisassembler::Fail ? "PASS\n" : "FAIL\n")); MI = TmpMI; return S; } assert(S == MCDisassembler::Fail); if (ScopeStack.empty()) { LLVM_DEBUG(dbgs() << "FAIL, returning FAIL\n"); return MCDisassembler::Fail; } Ptr = ScopeStack.pop_back_val(); LLVM_DEBUG(dbgs() << "FAIL, continuing at " << Ptr - DecodeTable << '\n'); // Reset decode status. This also drops a SoftFail status that could be // set before the decode attempt. S = MCDisassembler::Success; break; })"; } if (HasSoftFail) { OS << R"( case OPC_SoftFail: { // Decode the mask values. uint64_t PositiveMask = decodeULEB128AndIncUnsafe(Ptr); uint64_t NegativeMask = decodeULEB128AndIncUnsafe(Ptr); bool Failed = (insn & PositiveMask) != 0 || (~insn & NegativeMask) != 0; if (Failed) S = MCDisassembler::SoftFail; LLVM_DEBUG(dbgs() << Loc << ": OPC_SoftFail: " << (Failed ? "FAIL\n" : "PASS\n")); break; })"; } OS << R"( } } llvm_unreachable("bogosity detected in disassembler state machine!"); } )"; } /// Collects all HwModes referenced by the target for encoding purposes. void DecoderEmitter::collectHwModesReferencedForEncodings( std::vector &HwModeIDs, NamespacesHwModesMap &NamespacesWithHwModes) const { SmallBitVector BV(CGH.getNumModeIds()); for (const auto &MS : CGH.getHwModeSelects()) { for (auto [HwModeID, EncodingDef] : MS.second.Items) { if (EncodingDef->isSubClassOf("InstructionEncoding")) { StringRef DecoderNamespace = EncodingDef->getValueAsString("DecoderNamespace"); NamespacesWithHwModes[DecoderNamespace].insert(HwModeID); BV.set(HwModeID); } } } // FIXME: Can't do `HwModeIDs.assign(BV.set_bits_begin(), BV.set_bits_end())` // because const_set_bits_iterator_impl is not copy-assignable. // This breaks some MacOS builds. llvm::copy(BV.set_bits(), std::back_inserter(HwModeIDs)); } void DecoderEmitter::handleHwModesUnrelatedEncodings( unsigned EncodingID, ArrayRef HwModeIDs, NamespacesHwModesMap &NamespacesWithHwModes) { switch (DecoderEmitterSuppressDuplicates) { case SUPPRESSION_DISABLE: { for (unsigned HwModeID : HwModeIDs) EncodingIDsByHwMode[HwModeID].push_back(EncodingID); break; } case SUPPRESSION_LEVEL1: { StringRef DecoderNamespace = Encodings[EncodingID].getDecoderNamespace(); auto It = NamespacesWithHwModes.find(DecoderNamespace); if (It != NamespacesWithHwModes.end()) { for (unsigned HwModeID : It->second) EncodingIDsByHwMode[HwModeID].push_back(EncodingID); } else { // Only emit the encoding once, as it's DecoderNamespace doesn't // contain any HwModes. EncodingIDsByHwMode[DefaultMode].push_back(EncodingID); } break; } case SUPPRESSION_LEVEL2: EncodingIDsByHwMode[DefaultMode].push_back(EncodingID); break; } } /// Checks if the given target-specific non-pseudo instruction /// is a candidate for decoding. static bool isDecodableInstruction(const Record *InstDef) { return !InstDef->getValueAsBit("isAsmParserOnly") && !InstDef->getValueAsBit("isCodeGenOnly"); } /// Checks if the given encoding is valid. static bool isValidEncoding(const Record *EncodingDef) { const RecordVal *InstField = EncodingDef->getValue("Inst"); if (!InstField) return false; if (const auto *InstInit = dyn_cast(InstField->getValue())) { // Fixed-length encoding. Size must be non-zero. if (!EncodingDef->getValueAsInt("Size")) return false; // At least one of the encoding bits must be complete (not '?'). // FIXME: This should take SoftFail field into account. return !InstInit->allInComplete(); } if (const auto *InstInit = dyn_cast(InstField->getValue())) { // Variable-length encoding. // At least one of the encoding bits must be complete (not '?'). VarLenInst VLI(InstInit, InstField); return !all_of(VLI, [](const EncodingSegment &Segment) { return isa(Segment.Value); }); } // Inst field is neither BitsInit nor DagInit. This is something unsupported. return false; } /// Parses all InstructionEncoding instances and fills internal data structures. void DecoderEmitter::parseInstructionEncodings() { // First, collect all encoding-related HwModes referenced by the target. // And establish a mapping table between DecoderNamespace and HwMode. // If HwModeNames is empty, add the default mode so we always have one HwMode. std::vector HwModeIDs; NamespacesHwModesMap NamespacesWithHwModes; collectHwModesReferencedForEncodings(HwModeIDs, NamespacesWithHwModes); if (HwModeIDs.empty()) HwModeIDs.push_back(DefaultMode); ArrayRef Instructions = Target.getTargetNonPseudoInstructions(); Encodings.reserve(Instructions.size()); for (const CodeGenInstruction *Inst : Instructions) { const Record *InstDef = Inst->TheDef; if (!isDecodableInstruction(InstDef)) { ++NumEncodingsLackingDisasm; continue; } if (const Record *RV = InstDef->getValueAsOptionalDef("EncodingInfos")) { EncodingInfoByHwMode EBM(RV, CGH); for (auto [HwModeID, EncodingDef] : EBM) { if (!isValidEncoding(EncodingDef)) { // TODO: Should probably give a warning. ++NumEncodingsOmitted; continue; } unsigned EncodingID = Encodings.size(); Encodings.emplace_back(EncodingDef, Inst); EncodingIDsByHwMode[HwModeID].push_back(EncodingID); } continue; // Ignore encoding specified by Instruction itself. } if (!isValidEncoding(InstDef)) { ++NumEncodingsOmitted; continue; } unsigned EncodingID = Encodings.size(); Encodings.emplace_back(InstDef, Inst); // This instruction is encoded the same on all HwModes. // According to user needs, add it to all, some, or only the default HwMode. handleHwModesUnrelatedEncodings(EncodingID, HwModeIDs, NamespacesWithHwModes); } for (const Record *EncodingDef : RK.getAllDerivedDefinitions("AdditionalEncoding")) { const Record *InstDef = EncodingDef->getValueAsDef("AliasOf"); // TODO: Should probably give a warning in these cases. // What's the point of specifying an additional encoding // if it is invalid or if the instruction is not decodable? if (!isDecodableInstruction(InstDef)) { ++NumEncodingsLackingDisasm; continue; } if (!isValidEncoding(EncodingDef)) { ++NumEncodingsOmitted; continue; } unsigned EncodingID = Encodings.size(); Encodings.emplace_back(EncodingDef, &Target.getInstruction(InstDef)); EncodingIDsByHwMode[DefaultMode].push_back(EncodingID); } // Do some statistics. NumInstructions = Instructions.size(); NumEncodingsSupported = Encodings.size(); NumEncodings = NumEncodingsSupported + NumEncodingsOmitted; } DecoderEmitter::DecoderEmitter(const RecordKeeper &RK) : RK(RK), Target(RK), CGH(Target.getHwModes()) { Target.reverseBitsForLittleEndianEncoding(); parseInstructionEncodings(); } // Emits disassembler code for instruction decoding. void DecoderEmitter::run(raw_ostream &o) const { formatted_raw_ostream OS(o); OS << R"( #include "llvm/MC/MCInst.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/Support/DataTypes.h" #include "llvm/Support/Debug.h" #include "llvm/Support/LEB128.h" #include "llvm/Support/raw_ostream.h" #include "llvm/TargetParser/SubtargetFeature.h" #include namespace { // InsnBitWidth is essentially a type trait used by the decoder emitter to query // the supported bitwidth for a given type. But default, the value is 0, making // it an invalid type for use as `InsnType` when instantiating the decoder. // Individual targets are expected to provide specializations for these based // on their usage. template constexpr uint32_t InsnBitWidth = 0; )"; // Do extra bookkeeping for variable-length encodings. bool IsVarLenInst = Target.hasVariableLengthEncodings(); unsigned MaxInstLen = 0; if (IsVarLenInst) { std::vector InstrLen(Target.getInstructions().size(), 0); for (const InstructionEncoding &Encoding : Encodings) { MaxInstLen = std::max(MaxInstLen, Encoding.getBitWidth()); InstrLen[Target.getInstrIntValue(Encoding.getInstruction()->TheDef)] = Encoding.getBitWidth(); } // For variable instruction, we emit an instruction length table to let the // decoder know how long the instructions are. You can see example usage in // M68k's disassembler. emitInstrLenTable(OS, InstrLen); } // Map of (bitwidth, namespace, hwmode) tuple to encoding IDs. // Its organized as a nested map, with the (namespace, hwmode) as the key for // the inner map and bitwidth as the key for the outer map. We use std::map // for deterministic iteration order so that the code emitted is also // deterministic. using InnerKeyTy = std::pair; using InnerMapTy = std::map>; std::map EncMap; for (const auto &[HwModeID, EncodingIDs] : EncodingIDsByHwMode) { for (unsigned EncodingID : EncodingIDs) { const InstructionEncoding &Encoding = Encodings[EncodingID]; const unsigned BitWidth = IsVarLenInst ? MaxInstLen : Encoding.getBitWidth(); StringRef DecoderNamespace = Encoding.getDecoderNamespace(); EncMap[BitWidth][{DecoderNamespace, HwModeID}].push_back(EncodingID); } } // Variable length instructions use the same `APInt` type for all instructions // so we cannot specialize decoders based on instruction bitwidths (which // requires using different `InstType` for differet bitwidths for the correct // template specialization to kick in). if (IsVarLenInst && SpecializeDecodersPerBitwidth) PrintFatalError( "Cannot specialize decoders for variable length instuctions"); // Entries in `EncMap` are already sorted by bitwidth. So bucketing per // bitwidth can be done on-the-fly as we iterate over the map. DecoderTableInfo TableInfo; DecoderTableBuilder TableBuilder(Target, Encodings, TableInfo); unsigned OpcodeMask = 0; bool HasConflict = false; for (const auto &[BitWidth, BWMap] : EncMap) { for (const auto &[Key, EncodingIDs] : BWMap) { auto [DecoderNamespace, HwModeID] = Key; // Emit the decoder for this (namespace, hwmode, width) combination. FilterChooser FC(Encodings, EncodingIDs); HasConflict |= FC.hasConflict(); // Skip emitting table entries if a conflict has been detected. if (HasConflict) continue; // The decode table is cleared for each top level decoder function. The // predicates and decoders themselves, however, are shared across // different decoders to give more opportunities for uniqueing. // - If `SpecializeDecodersPerBitwidth` is enabled, decoders are shared // across all decoder tables for a given bitwidth, else they are shared // across all decoder tables. // - predicates are shared across all decoder tables. TableInfo.Table.clear(); TableBuilder.buildTable(FC, BitWidth); // Print the table to the output stream. OpcodeMask |= emitTable(OS, TableInfo.Table, DecoderNamespace, HwModeID, BitWidth, EncodingIDs); } // Each BitWidth get's its own decoders and decoder function if // SpecializeDecodersPerBitwidth is enabled. if (SpecializeDecodersPerBitwidth) { emitDecoderFunction(OS, TableInfo.Decoders, BitWidth); TableInfo.Decoders.clear(); } } if (HasConflict) PrintFatalError("Decoding conflict encountered"); // Emit the decoder function for the last bucket. This will also emit the // single decoder function if SpecializeDecodersPerBitwidth = false. if (!SpecializeDecodersPerBitwidth) emitDecoderFunction(OS, TableInfo.Decoders, 0); const bool HasCheckPredicate = OpcodeMask & (1 << OPC_CheckPredicate); // Emit the predicate function. if (HasCheckPredicate) emitPredicateFunction(OS, TableInfo.Predicates); // Emit the main entry point for the decoder, decodeInstruction(). emitDecodeInstruction(OS, IsVarLenInst, OpcodeMask); OS << "\n} // namespace\n"; } void llvm::EmitDecoder(const RecordKeeper &RK, raw_ostream &OS) { DecoderEmitter(RK).run(OS); }