; REQUIRES: asserts ; RUN: opt -passes=loop-vectorize -force-vector-width=4 -force-vector-interleave=1 -debug-only=loop-vectorize -disable-output -S %s 2>&1 | FileCheck %s define void @test_chained_first_order_recurrences_1(ptr %ptr) { ; CHECK-LABEL: 'test_chained_first_order_recurrences_1' ; CHECK: VPlan 'Initial VPlan for VF={4},UF>=1' { ; CHECK-NEXT: Live-in vp<[[VF:%.+]]> = VF ; CHECK-NEXT: Live-in vp<[[VFxUF:%.+]]> = VF * UF ; CHECK-NEXT: Live-in vp<[[VTC:%.+]]> = vector-trip-count ; CHECK-NEXT: Live-in ir<1000> = original trip-count ; CHECK-EMPTY: ; CHECK-NEXT: ir-bb: ; CHECK-NEXT: Successor(s): scalar.ph, vector.ph ; CHECK-EMPTY: ; CHECK-NEXT: vector.ph: ; CHECK-NEXT: Successor(s): vector loop ; CHECK-EMPTY: ; CHECK-NEXT: vector loop: { ; CHECK-NEXT: vector.body: ; CHECK-NEXT: EMIT vp<[[CAN_IV:%.+]]> = CANONICAL-INDUCTION ; CHECK-NEXT: FIRST-ORDER-RECURRENCE-PHI ir<%for.1> = phi ir<22>, ir<%for.1.next> ; CHECK-NEXT: FIRST-ORDER-RECURRENCE-PHI ir<%for.2> = phi ir<33>, vp<[[FOR1_SPLICE:%.+]]> ; CHECK-NEXT: vp<[[STEPS:%.+]]> = SCALAR-STEPS vp<[[CAN_IV]]>, ir<1>, vp<[[VF]]> ; CHECK-NEXT: CLONE ir<%gep.ptr> = getelementptr inbounds ir<%ptr>, vp<[[STEPS]]> ; CHECK-NEXT: vp<[[VEC_PTR:%.+]]> = vector-pointer ir<%gep.ptr> ; CHECK-NEXT: WIDEN ir<%for.1.next> = load vp<[[VEC_PTR]]> ; CHECK-NEXT: EMIT vp<[[FOR1_SPLICE]]> = first-order splice ir<%for.1>, ir<%for.1.next> ; CHECK-NEXT: EMIT vp<[[FOR2_SPLICE:%.+]]> = first-order splice ir<%for.2>, vp<[[FOR1_SPLICE]]> ; CHECK-NEXT: WIDEN ir<%add> = add vp<[[FOR1_SPLICE]]>, vp<[[FOR2_SPLICE]]> ; CHECK-NEXT: vp<[[VEC_PTR2:%.+]]> = vector-pointer ir<%gep.ptr> ; CHECK-NEXT: WIDEN store vp<[[VEC_PTR2]]>, ir<%add> ; CHECK-NEXT: EMIT vp<[[CAN_IV_NEXT:%.+]]> = add nuw vp<[[CAN_IV]]>, vp<[[VFxUF]]> ; CHECK-NEXT: EMIT branch-on-count vp<[[CAN_IV_NEXT]]>, vp<[[VTC]]> ; CHECK-NEXT: No successors ; CHECK-NEXT: } ; CHECK-NEXT: Successor(s): middle.block ; CHECK-EMPTY: ; CHECK-NEXT: middle.block: ; CHECK-NEXT: EMIT vp<[[RESUME_1:%.+]]> = extract-last-element ir<%for.1.next> ; CHECK-NEXT: EMIT vp<[[RESUME_2:%.+]]>.1 = extract-last-element vp<[[FOR1_SPLICE]]> ; CHECK-NEXT: EMIT vp<[[CMP:%.+]]> = icmp eq ir<1000>, vp<[[VTC]]> ; CHECK-NEXT: EMIT branch-on-cond vp<[[CMP]]> ; CHECK-NEXT: Successor(s): ir-bb, scalar.ph ; CHECK-EMPTY: ; CHECK-NEXT: ir-bb ; CHECK-NEXT: No successors ; CHECK-EMPTY: ; CHECK-NEXT: scalar.ph ; CHECK-NEXT: EMIT-SCALAR vp<[[RESUME_1_P:%.*]]> = phi [ vp<[[RESUME_1]]>, middle.block ], [ ir<22>, ir-bb ] ; CHECK-NEXT: EMIT-SCALAR vp<[[RESUME_2_P:%.*]]>.1 = phi [ vp<[[RESUME_2]]>.1, middle.block ], [ ir<33>, ir-bb ] ; CHECK-NEXT: EMIT-SCALAR vp<[[RESUME_IV:%.*]]> = phi [ vp<[[VTC]]>, middle.block ], [ ir<0>, ir-bb ] ; CHECK-NEXT: Successor(s): ir-bb ; CHECK-EMPTY: ; CHECK-NEXT: ir-bb: ; CHECK-NEXT: IR %for.1 = phi i16 [ 22, %entry ], [ %for.1.next, %loop ] (extra operand: vp<[[RESUME_1_P]]> from scalar.ph) ; CHECK-NEXT: IR %for.2 = phi i16 [ 33, %entry ], [ %for.1, %loop ] (extra operand: vp<[[RESUME_2_P]]>.1 from scalar.ph) ; CHECK-NEXT: IR %iv = phi i64 [ 0, %entry ], [ %iv.next, %loop ] (extra operand: vp<[[RESUME_IV]]> from scalar.ph) ; CHECK: IR %exitcond.not = icmp eq i64 %iv.next, 1000 ; CHECK-NEXT: No successors ; CHECK-NEXT: } ; entry: br label %loop loop: %for.1 = phi i16 [ 22, %entry ], [ %for.1.next, %loop ] %for.2 = phi i16 [ 33, %entry ], [ %for.1, %loop ] %iv = phi i64 [ 0, %entry ], [ %iv.next, %loop ] %iv.next = add nuw nsw i64 %iv, 1 %gep.ptr = getelementptr inbounds i16, ptr %ptr, i64 %iv %for.1.next = load i16, ptr %gep.ptr, align 2 %add = add i16 %for.1, %for.2 store i16 %add, ptr %gep.ptr %exitcond.not = icmp eq i64 %iv.next, 1000 br i1 %exitcond.not, label %exit, label %loop exit: ret void } define void @test_chained_first_order_recurrences_3(ptr %ptr) { ; CHECK-LABEL: 'test_chained_first_order_recurrences_3' ; CHECK: VPlan 'Initial VPlan for VF={4},UF>=1' { ; CHECK-NEXT: Live-in vp<[[VF:%.+]]> = VF ; CHECK-NEXT: Live-in vp<[[VFxUF:%.+]]> = VF * UF ; CHECK-NEXT: Live-in vp<[[VTC:%.+]]> = vector-trip-count ; CHECK-NEXT: Live-in ir<1000> = original trip-count ; CHECK-EMPTY: ; CHECK-NEXT: ir-bb: ; CHECK-NEXT: Successor(s): scalar.ph, vector.ph ; CHECK-EMPTY: ; CHECK-NEXT: vector.ph: ; CHECK-NEXT: Successor(s): vector loop ; CHECK-EMPTY: ; CHECK-NEXT: vector loop: { ; CHECK-NEXT: vector.body: ; CHECK-NEXT: EMIT vp<[[CAN_IV:%.+]]> = CANONICAL-INDUCTION ; CHECK-NEXT: FIRST-ORDER-RECURRENCE-PHI ir<%for.1> = phi ir<22>, ir<%for.1.next> ; CHECK-NEXT: FIRST-ORDER-RECURRENCE-PHI ir<%for.2> = phi ir<33>, vp<[[FOR1_SPLICE:%.+]]> ; CHECK-NEXT: FIRST-ORDER-RECURRENCE-PHI ir<%for.3> = phi ir<33>, vp<[[FOR2_SPLICE:%.+]]> ; CHECK-NEXT: vp<[[STEPS:%.+]]> = SCALAR-STEPS vp<[[CAN_IV]]>, ir<1>, vp<[[VF]]> ; CHECK-NEXT: CLONE ir<%gep.ptr> = getelementptr inbounds ir<%ptr>, vp<[[STEPS]]> ; CHECK-NEXT: vp<[[VEC_PTR:%.+]]> = vector-pointer ir<%gep.ptr> ; CHECK-NEXT: WIDEN ir<%for.1.next> = load vp<[[VEC_PTR]]> ; CHECK-NEXT: EMIT vp<[[FOR1_SPLICE]]> = first-order splice ir<%for.1>, ir<%for.1.next> ; CHECK-NEXT: EMIT vp<[[FOR2_SPLICE]]> = first-order splice ir<%for.2>, vp<[[FOR1_SPLICE]]> ; CHECK-NEXT: EMIT vp<[[FOR3_SPLICE:%.+]]> = first-order splice ir<%for.3>, vp<[[FOR2_SPLICE]]> ; CHECK-NEXT: WIDEN ir<%add.1> = add vp<[[FOR1_SPLICE]]>, vp<[[FOR2_SPLICE]]> ; CHECK-NEXT: WIDEN ir<%add.2> = add ir<%add.1>, vp<[[FOR3_SPLICE]]> ; CHECK-NEXT: vp<[[VEC_PTR2:%.+]]> = vector-pointer ir<%gep.ptr> ; CHECK-NEXT: WIDEN store vp<[[VEC_PTR2]]>, ir<%add.2> ; CHECK-NEXT: EMIT vp<[[CAN_IV_NEXT:%.+]]> = add nuw vp<[[CAN_IV]]>, vp<[[VFxUF]]> ; CHECK-NEXT: EMIT branch-on-count vp<[[CAN_IV_NEXT]]>, vp<[[VTC]]> ; CHECK-NEXT: No successors ; CHECK-NEXT: } ; CHECK-NEXT: Successor(s): middle.block ; CHECK-EMPTY: ; CHECK-NEXT: middle.block: ; CHECK-NEXT: EMIT vp<[[RESUME_1:%.+]]> = extract-last-element ir<%for.1.next> ; CHECK-NEXT: EMIT vp<[[RESUME_2:%.+]]>.1 = extract-last-element vp<[[FOR1_SPLICE]]> ; CHECK-NEXT: EMIT vp<[[RESUME_3:%.+]]>.2 = extract-last-element vp<[[FOR2_SPLICE]]> ; CHECK-NEXT: EMIT vp<[[CMP:%.+]]> = icmp eq ir<1000>, vp<[[VTC]]> ; CHECK-NEXT: EMIT branch-on-cond vp<[[CMP]]> ; CHECK-NEXT: Successor(s): ir-bb, scalar.ph ; CHECK-EMPTY: ; CHECK-NEXT: ir-bb ; CHECK-NEXT: No successors ; CHECK-EMPTY: ; CHECK-NEXT: scalar.ph ; CHECK-NEXT: EMIT-SCALAR vp<[[RESUME_1_P:%.*]]> = phi [ vp<[[RESUME_1]]>, middle.block ], [ ir<22>, ir-bb ] ; CHECK-NEXT: EMIT-SCALAR vp<[[RESUME_2_P:%.*]]>.1 = phi [ vp<[[RESUME_2]]>.1, middle.block ], [ ir<33>, ir-bb ] ; CHECK-NEXT: EMIT-SCALAR vp<[[RESUME_3_P:%.*]]>.2 = phi [ vp<[[RESUME_3]]>.2, middle.block ], [ ir<33>, ir-bb ] ; CHECK-NEXT: EMIT-SCALAR vp<[[RESUME_IV:%.*]]> = phi [ vp<[[VTC]]>, middle.block ], [ ir<0>, ir-bb ] ; CHECK-NEXT: Successor(s): ir-bb ; CHECK-EMPTY: ; CHECK-NEXT: ir-bb: ; CHECK-NEXT: IR %for.1 = phi i16 [ 22, %entry ], [ %for.1.next, %loop ] (extra operand: vp<[[RESUME_1_P]]> from scalar.ph) ; CHECK-NEXT: IR %for.2 = phi i16 [ 33, %entry ], [ %for.1, %loop ] (extra operand: vp<[[RESUME_2_P]]>.1 from scalar.ph) ; CHECK-NEXT: IR %for.3 = phi i16 [ 33, %entry ], [ %for.2, %loop ] (extra operand: vp<[[RESUME_3_P]]>.2 from scalar.ph) ; CHECK-NEXT: IR %iv = phi i64 [ 0, %entry ], [ %iv.next, %loop ] (extra operand: vp<[[RESUME_IV]]> from scalar.ph) ; CHECK: IR %exitcond.not = icmp eq i64 %iv.next, 1000 ; CHECK-NEXT: No successors ; CHECK-NEXT: } ; entry: br label %loop loop: %for.1 = phi i16 [ 22, %entry ], [ %for.1.next, %loop ] %for.2 = phi i16 [ 33, %entry ], [ %for.1, %loop ] %for.3 = phi i16 [ 33, %entry ], [ %for.2, %loop ] %iv = phi i64 [ 0, %entry ], [ %iv.next, %loop ] %iv.next = add nuw nsw i64 %iv, 1 %gep.ptr = getelementptr inbounds i16, ptr %ptr, i64 %iv %for.1.next = load i16, ptr %gep.ptr, align 2 %add.1 = add i16 %for.1, %for.2 %add.2 = add i16 %add.1, %for.3 store i16 %add.2, ptr %gep.ptr %exitcond.not = icmp eq i64 %iv.next, 1000 br i1 %exitcond.not, label %exit, label %loop exit: ret void } ; This test has two FORs (for.x and for.y) where incoming value from the previous ; iteration (for.x.prev) of one FOR (for.y) depends on another FOR (for.x). ; Sinking would require moving a recipe with side effects (store). Instead, ; for.x.next can be hoisted. define i32 @test_chained_first_order_recurrences_4(ptr %base, i64 %x) { ; CHECK-LABEL: 'test_chained_first_order_recurrences_4' ; CHECK: VPlan 'Initial VPlan for VF={4},UF>=1' { ; CHECK-NEXT: Live-in vp<[[VF:%.+]]> = VF ; CHECK-NEXT: Live-in vp<[[VFxUF:%.+]]> = VF * UF ; CHECK-NEXT: Live-in vp<[[VTC:%.+]]> = vector-trip-count ; CHECK-NEXT: Live-in ir<4098> = original trip-count ; CHECK-EMPTY: ; CHECK-NEXT: ir-bb: ; CHECK-NEXT: Successor(s): scalar.ph, vector.ph ; CHECK-EMPTY: ; CHECK-NEXT: vector.ph: ; CHECK-NEXT: WIDEN ir<%for.x.next> = mul ir<%x>, ir<2> ; CHECK-NEXT: Successor(s): vector loop ; CHECK-EMPTY: ; CHECK-NEXT: vector loop: { ; CHECK-NEXT: vector.body: ; CHECK-NEXT: EMIT vp<[[CAN_IV:%.+]]> = CANONICAL-INDUCTION ir<0>, vp<[[CAN_IV_NEXT:%.+]]> ; CHECK-NEXT: FIRST-ORDER-RECURRENCE-PHI ir<%for.x> = phi ir<0>, ir<%for.x.next> ; CHECK-NEXT: FIRST-ORDER-RECURRENCE-PHI ir<%for.y> = phi ir<0>, ir<%for.x.prev> ; CHECK-NEXT: vp<[[SCALAR_STEPS:%.+]]> = SCALAR-STEPS vp<[[CAN_IV]]>, ir<1>, vp<[[VF]]> ; CHECK-NEXT: CLONE ir<%gep> = getelementptr ir<%base>, vp<[[SCALAR_STEPS]]> ; CHECK-NEXT: EMIT vp<[[SPLICE_X:%.]]> = first-order splice ir<%for.x>, ir<%for.x.next> ; CHECK-NEXT: WIDEN-CAST ir<%for.x.prev> = trunc vp<[[SPLICE_X]]> to i32 ; CHECK-NEXT: EMIT vp<[[SPLICE_Y:%.+]]> = first-order splice ir<%for.y>, ir<%for.x.prev> ; CHECK-NEXT: WIDEN-CAST ir<%for.y.i64> = sext vp<[[SPLICE_Y]]> to i64 ; CHECK-NEXT: vp<[[VEC_PTR:%.+]]> = vector-pointer ir<%gep> ; CHECK-NEXT: WIDEN store vp<[[VEC_PTR]]>, ir<%for.y.i64> ; CHECK-NEXT: EMIT vp<[[CAN_IV_NEXT]]> = add nuw vp<[[CAN_IV]]>, vp<[[VFxUF]]> ; CHECK-NEXT: EMIT branch-on-count vp<[[CAN_IV_NEXT]]>, vp<[[VTC]]> ; CHECK-NEXT: No successors ; CHECK-NEXT: } ; CHECK-NEXT: Successor(s): middle.block ; CHECK-EMPTY: ; CHECK-NEXT: middle.block: ; CHECK-NEXT: EMIT vp<[[EXT_X:%.+]]> = extract-last-element ir<%for.x.next> ; CHECK-NEXT: EMIT vp<[[EXT_Y:%.+]]>.1 = extract-last-element ir<%for.x.prev> ; CHECK-NEXT: EMIT vp<[[MIDDLE_C:%.+]]> = icmp eq ir<4098>, vp<[[VTC]]> ; CHECK-NEXT: EMIT branch-on-cond vp<[[MIDDLE_C]]> ; CHECK-NEXT: Successor(s): ir-bb, scalar.ph ; CHECK-EMPTY: ; CHECK-NEXT: ir-bb: ; CHECK-NEXT: No successors ; CHECK-EMPTY: ; CHECK-NEXT: scalar.ph: ; CHECK-NEXT: EMIT-SCALAR vp<[[RESUME_IV:%.*]]> = phi [ vp<[[VTC]]>, middle.block ], [ ir<0>, ir-bb ] ; CHECK-NEXT: EMIT-SCALAR vp<[[RESUME_X:%.+]]> = phi [ vp<[[EXT_X]]>, middle.block ], [ ir<0>, ir-bb ] ; CHECK-NEXT: EMIT-SCALAR vp<[[RESUME_Y:%.+]]>.1 = phi [ vp<[[EXT_Y]]>.1, middle.block ], [ ir<0>, ir-bb ] ; CHECK-NEXT: Successor(s): ir-bb ; CHECK-EMPTY: ; CHECK-NEXT: ir-bb: ; CHECK-NEXT: IR %iv = phi i64 [ %iv.next, %loop ], [ 0, %entry ] (extra operand: vp<[[RESUME_IV]]> from scalar.ph) ; CHECK-NEXT: IR %for.x = phi i64 [ %for.x.next, %loop ], [ 0, %entry ] (extra operand: vp<[[RESUME_X]]> from scalar.ph) ; CHECK-NEXT: IR %for.y = phi i32 [ %for.x.prev, %loop ], [ 0, %entry ] (extra operand: vp<[[RESUME_Y]]>.1 from scalar.ph) ; CHECK: No successors ; CHECK-NEXT: } ; entry: br label %loop loop: %iv = phi i64 [ %iv.next, %loop ], [ 0, %entry ] %for.x = phi i64 [ %for.x.next, %loop ], [ 0, %entry ] %for.y = phi i32 [ %for.x.prev, %loop ], [ 0, %entry ] %iv.next = add i64 %iv, 1 %gep = getelementptr i64, ptr %base, i64 %iv %for.x.prev = trunc i64 %for.x to i32 %for.y.i64 = sext i32 %for.y to i64 store i64 %for.y.i64, ptr %gep %for.x.next = mul i64 %x, 2 %icmp = icmp ugt i64 %iv, 4096 br i1 %icmp, label %ret, label %loop ret: ret i32 0 } define i32 @test_chained_first_order_recurrences_5_hoist_to_load(ptr %base) { ; CHECK-LABEL: 'test_chained_first_order_recurrences_5_hoist_to_load' ; CHECK: VPlan 'Initial VPlan for VF={4},UF>=1' { ; CHECK-NEXT: Live-in vp<[[VF:%.+]]> = VF ; CHECK-NEXT: Live-in vp<[[VFxUF:%.+]]> = VF * UF ; CHECK-NEXT: Live-in vp<[[VTC:%.+]]> = vector-trip-count ; CHECK-NEXT: Live-in ir<4098> = original trip-count ; CHECK-EMPTY: ; CHECK-NEXT: ir-bb: ; CHECK-NEXT: Successor(s): scalar.ph, vector.ph ; CHECK-EMPTY: ; CHECK-NEXT: vector.ph: ; CHECK-NEXT: Successor(s): vector loop ; CHECK-EMPTY: ; CHECK-NEXT: vector loop: { ; CHECK-NEXT: vector.body: ; CHECK-NEXT: EMIT vp<[[CAN_IV:%.+]]> = CANONICAL-INDUCTION ir<0>, vp<[[CAN_IV_NEXT:%.+]]> ; CHECK-NEXT: FIRST-ORDER-RECURRENCE-PHI ir<%for.x> = phi ir<0>, ir<%for.x.next> ; CHECK-NEXT: FIRST-ORDER-RECURRENCE-PHI ir<%for.y> = phi ir<0>, ir<%for.x.prev> ; CHECK-NEXT: vp<[[SCALAR_STEPS:%.+]]> = SCALAR-STEPS vp<[[CAN_IV]]>, ir<1>, vp<[[VF]]> ; CHECK-NEXT: CLONE ir<%gep> = getelementptr ir<%base>, vp<[[SCALAR_STEPS]]> ; CHECK-NEXT: vp<[[VEC_PTR:%.+]]> = vector-pointer ir<%gep> ; CHECK-NEXT: WIDEN ir<%l> = load vp<[[VEC_PTR]]> ; CHECK-NEXT: WIDEN ir<%for.x.next> = mul ir<%l>, ir<2> ; CHECK-NEXT: EMIT vp<[[SPLICE_X:%.]]> = first-order splice ir<%for.x>, ir<%for.x.next> ; CHECK-NEXT: WIDEN-CAST ir<%for.x.prev> = trunc vp<[[SPLICE_X]]> to i32 ; CHECK-NEXT: EMIT vp<[[SPLICE_Y:%.+]]> = first-order splice ir<%for.y>, ir<%for.x.prev> ; CHECK-NEXT: WIDEN-CAST ir<%for.y.i64> = sext vp<[[SPLICE_Y]]> to i64 ; CHECK-NEXT: vp<[[VEC_PTR:%.+]]> = vector-pointer ir<%gep> ; CHECK-NEXT: WIDEN store vp<[[VEC_PTR]]>, ir<%for.y.i64> ; CHECK-NEXT: EMIT vp<[[CAN_IV_NEXT]]> = add nuw vp<[[CAN_IV]]>, vp<[[VFxUF]]> ; CHECK-NEXT: EMIT branch-on-count vp<[[CAN_IV_NEXT]]>, vp<[[VTC]]> ; CHECK-NEXT: No successors ; CHECK-NEXT: } ; CHECK-NEXT: Successor(s): middle.block ; CHECK-EMPTY: ; CHECK-NEXT: middle.block: ; CHECK-NEXT: EMIT vp<[[EXT_X:%.+]]> = extract-last-element ir<%for.x.next> ; CHECK-NEXT: EMIT vp<[[EXT_Y:%.+]]>.1 = extract-last-element ir<%for.x.prev> ; CHECK-NEXT: EMIT vp<[[MIDDLE_C:%.+]]> = icmp eq ir<4098>, vp<[[VTC]]> ; CHECK-NEXT: EMIT branch-on-cond vp<[[MIDDLE_C]]> ; CHECK-NEXT: Successor(s): ir-bb, scalar.ph ; CHECK-EMPTY: ; CHECK-NEXT: ir-bb: ; CHECK-NEXT: No successors ; CHECK-EMPTY: ; CHECK-NEXT: scalar.ph: ; CHECK-NEXT: EMIT-SCALAR vp<[[RESUME_IV:%.*]]> = phi [ vp<[[VTC]]>, middle.block ], [ ir<0>, ir-bb ] ; CHECK-NEXT: EMIT-SCALAR vp<[[RESUME_X:%.+]]> = phi [ vp<[[EXT_X]]>, middle.block ], [ ir<0>, ir-bb ] ; CHECK-NEXT: EMIT-SCALAR vp<[[RESUME_Y:%.+]]>.1 = phi [ vp<[[EXT_Y]]>.1, middle.block ], [ ir<0>, ir-bb ] ; CHECK-NEXT: Successor(s): ir-bb ; CHECK-EMPTY: ; CHECK-NEXT: ir-bb: ; CHECK-NEXT: IR %iv = phi i64 [ %iv.next, %loop ], [ 0, %entry ] (extra operand: vp<[[RESUME_IV]]> from scalar.ph) ; CHECK-NEXT: IR %for.x = phi i64 [ %for.x.next, %loop ], [ 0, %entry ] (extra operand: vp<[[RESUME_X]]> from scalar.ph) ; CHECK-NEXT: IR %for.y = phi i32 [ %for.x.prev, %loop ], [ 0, %entry ] (extra operand: vp<[[RESUME_Y]]>.1 from scalar.ph) ; CHECK: No successors ; CHECK-NEXT: } ; entry: br label %loop loop: %iv = phi i64 [ %iv.next, %loop ], [ 0, %entry ] %for.x = phi i64 [ %for.x.next, %loop ], [ 0, %entry ] %for.y = phi i32 [ %for.x.prev, %loop ], [ 0, %entry ] %iv.next = add i64 %iv, 1 %gep = getelementptr i64, ptr %base, i64 %iv %l = load i64, ptr %gep %for.x.prev = trunc i64 %for.x to i32 %for.y.i64 = sext i32 %for.y to i64 store i64 %for.y.i64, ptr %gep %for.x.next = mul i64 %l, 2 %icmp = icmp ugt i64 %iv, 4096 br i1 %icmp, label %ret, label %loop ret: ret i32 0 }