//=- AMDGPUCombine.td - Define AMDGPU Combine Rules ----------*- tablegen -*-=// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// include "llvm/Target/GlobalISel/Combine.td" // TODO: This really belongs after legalization after scalarization. def fmin_fmax_legacy_matchdata : GIDefMatchData<"FMinFMaxLegacyInfo">; let Predicates = [HasFminFmaxLegacy] in def fcmp_select_to_fmin_fmax_legacy : GICombineRule< (defs root:$select, fmin_fmax_legacy_matchdata:$matchinfo), (match (G_FCMP $cond, $pred, $lhs, $rhs):$fcmp, (G_SELECT f32:$dst, $cond, $true, $false):$select, [{ return matchFMinFMaxLegacy(*${select}, *${fcmp}, ${matchinfo}); }]), (apply [{ applySelectFCmpToFMinFMaxLegacy(*${select}, ${matchinfo}); }])>; def uchar_to_float : GICombineRule< (defs root:$itofp), (match (wip_match_opcode G_UITOFP, G_SITOFP):$itofp, [{ return matchUCharToFloat(*${itofp}); }]), (apply [{ applyUCharToFloat(*${itofp}); }])>; def rcp_sqrt_to_rsq : GICombineRule< (defs root:$rcp, build_fn_matchinfo:$matchinfo), (match (wip_match_opcode G_INTRINSIC, G_FSQRT):$rcp, [{ return matchRcpSqrtToRsq(*${rcp}, ${matchinfo}); }]), (apply [{ Helper.applyBuildFn(*${rcp}, ${matchinfo}); }])>; def fdiv_by_sqrt_to_rsq_f16 : GICombineRule< (defs root:$root), (match (G_FSQRT f16:$sqrt, $x, (MIFlags FmContract)), (G_FDIV f16:$dst, $y, $sqrt, (MIFlags FmContract)):$root, [{ return matchFDivSqrtToRsqF16(*${root}); }]), (apply [{ applyFDivSqrtToRsqF16(*${root}, ${x}.getReg()); }])>; def cvt_f32_ubyteN_matchdata : GIDefMatchData<"CvtF32UByteMatchInfo">; def cvt_f32_ubyteN : GICombineRule< (defs root:$cvt_f32_ubyteN, cvt_f32_ubyteN_matchdata:$matchinfo), (match (wip_match_opcode G_AMDGPU_CVT_F32_UBYTE0, G_AMDGPU_CVT_F32_UBYTE1, G_AMDGPU_CVT_F32_UBYTE2, G_AMDGPU_CVT_F32_UBYTE3):$cvt_f32_ubyteN, [{ return matchCvtF32UByteN(*${cvt_f32_ubyteN}, ${matchinfo}); }]), (apply [{ applyCvtF32UByteN(*${cvt_f32_ubyteN}, ${matchinfo}); }])>; def clamp_i64_to_i16_matchdata : GIDefMatchData<"ClampI64ToI16MatchInfo">; def clamp_i64_to_i16 : GICombineRule< (defs root:$clamp_i64_to_i16, clamp_i64_to_i16_matchdata:$matchinfo), (match (wip_match_opcode G_TRUNC):$clamp_i64_to_i16, [{ return matchClampI64ToI16(*${clamp_i64_to_i16}, MRI, MF, ${matchinfo}); }]), (apply [{ applyClampI64ToI16(*${clamp_i64_to_i16}, ${matchinfo}); }])>; def med3_matchdata : GIDefMatchData<"Med3MatchInfo">; def int_minmax_to_med3 : GICombineRule< (defs root:$min_or_max, med3_matchdata:$matchinfo), (match (wip_match_opcode G_SMAX, G_SMIN, G_UMAX, G_UMIN):$min_or_max, [{ return matchIntMinMaxToMed3(*${min_or_max}, ${matchinfo}); }]), (apply [{ applyMed3(*${min_or_max}, ${matchinfo}); }])>; let Predicates = [Predicate<"Subtarget->d16PreservesUnusedBits()">] in def d16_load : GICombineRule< (defs root:$bitcast), (combine (G_BITCAST $dst, $src):$bitcast, [{ return combineD16Load(*${bitcast} ); }])>; def fp_minmax_to_med3 : GICombineRule< (defs root:$min_or_max, med3_matchdata:$matchinfo), (match (wip_match_opcode G_FMAXNUM, G_FMINNUM, G_FMAXNUM_IEEE, G_FMINNUM_IEEE):$min_or_max, [{ return matchFPMinMaxToMed3(*${min_or_max}, ${matchinfo}); }]), (apply [{ applyMed3(*${min_or_max}, ${matchinfo}); }])>; def fp_minmax_to_clamp : GICombineRule< (defs root:$min_or_max, register_matchinfo:$matchinfo), (match (wip_match_opcode G_FMAXNUM, G_FMINNUM, G_FMAXNUM_IEEE, G_FMINNUM_IEEE):$min_or_max, [{ return matchFPMinMaxToClamp(*${min_or_max}, ${matchinfo}); }]), (apply [{ applyClamp(*${min_or_max}, ${matchinfo}); }])>; def fmed3_intrinsic_to_clamp : GICombineRule< (defs root:$fmed3, register_matchinfo:$matchinfo), (match (wip_match_opcode G_AMDGPU_FMED3):$fmed3, [{ return matchFPMed3ToClamp(*${fmed3}, ${matchinfo}); }]), (apply [{ applyClamp(*${fmed3}, ${matchinfo}); }])>; def remove_fcanonicalize : GICombineRule< (defs root:$fcanonicalize, register_matchinfo:$matchinfo), (match (wip_match_opcode G_FCANONICALIZE):$fcanonicalize, [{ return matchRemoveFcanonicalize(*${fcanonicalize}, ${matchinfo}); }]), (apply [{ Helper.replaceSingleDefInstWithReg(*${fcanonicalize}, ${matchinfo}); }])>; def foldable_fneg_matchdata : GIDefMatchData<"MachineInstr *">; def foldable_fneg : GICombineRule< (defs root:$ffn, foldable_fneg_matchdata:$matchinfo), (match (wip_match_opcode G_FNEG):$ffn, [{ return Helper.matchFoldableFneg(*${ffn}, ${matchinfo}); }]), (apply [{ Helper.applyFoldableFneg(*${ffn}, ${matchinfo}); }])>; // Detects s_mul_u64 instructions whose higher bits are zero/sign extended. def smulu64 : GICombineRule< (defs root:$smul, unsigned_matchinfo:$matchinfo), (match (wip_match_opcode G_MUL):$smul, [{ return matchCombine_s_mul_u64(*${smul}, ${matchinfo}); }]), (apply [{ Helper.replaceOpcodeWith(*${smul}, ${matchinfo}); }])>; def sign_exension_in_reg_matchdata : GIDefMatchData<"std::pair">; def sign_extension_in_reg : GICombineRule< (defs root:$sign_inreg, sign_exension_in_reg_matchdata:$matchinfo), (match (wip_match_opcode G_SEXT_INREG):$sign_inreg, [{ return matchCombineSignExtendInReg(*${sign_inreg}, ${matchinfo}); }]), (apply [{ applyCombineSignExtendInReg(*${sign_inreg}, ${matchinfo}); }])>; // Do the following combines : // fmul x, select(y, A, B) -> fldexp (x, select i32 (y, a, b)) // fmul x, select(y, -A, -B) -> fldexp ((fneg x), select i32 (y, a, b)) def combine_fmul_with_select_to_fldexp : GICombineRule< (defs root:$root, build_fn_matchinfo:$matchinfo), (match (G_FMUL $dst, $x, $select):$root, (G_SELECT $select, $y, $A, $B):$sel, [{ return Helper.matchCombineFmulWithSelectToFldexp(*${root}, *${sel}, ${matchinfo}); }]), (apply [{ Helper.applyBuildFn(*${root}, ${matchinfo}); }])>; // (shift x, (zext amt)) -> (shift x, (and (anyext amt), mask) // // The pattern is longer, but is better for matching during ISel. class canonicalize_zext_shift_amt : GICombineRule< (defs root:$dst), (match (G_ZEXT $amt, $amtsrc):$zext, (opc $dst, $src, $amt):$shift), (apply [{ applyCanonicalizeZextShiftAmt(*${shift}, *${zext}); }])>; def canonicalize_zext_lshr : canonicalize_zext_shift_amt; def canonicalize_zext_ashr : canonicalize_zext_shift_amt; def canonicalize_zext_shl : canonicalize_zext_shift_amt; def zext_of_shift_amount_combines : GICombineGroup<[ canonicalize_zext_lshr, canonicalize_zext_ashr, canonicalize_zext_shl ]>; // (and/or i64:x, i64:y) -> i64:(merge (and/or lo_32(x), lo_32(y)), (and/or hi_32(x), hi_32(y))) // when either x or y is all ones in low or high parts class combine_binop_s64_with_s32_mask : GICombineRule< (defs root:$dst), (match (opcode $dst, i64:$x, i64:$y):$dst, [{ return Helper.matchConstantIs32BitMask(${x}.getReg()) || Helper.matchConstantIs32BitMask(${y}.getReg()); }]), (apply (G_UNMERGE_VALUES i32:$x_lo, i32:$x_hi, $x), (G_UNMERGE_VALUES i32:$y_lo, i32:$y_hi, $y), (opcode i32:$lo, $x_lo, $y_lo), (opcode i32:$hi, $x_hi, $y_hi), (G_MERGE_VALUES $dst, $lo, $hi))>; def combine_or_s64_with_s32_mask : combine_binop_s64_with_s32_mask; def combine_and_s64_with_s32_mask : combine_binop_s64_with_s32_mask; def binop_s64_with_s32_mask_combines : GICombineGroup<[ combine_or_s64_with_s32_mask, combine_and_s64_with_s32_mask ]>; let Predicates = [Has16BitInsts, NotHasMed3_16] in { // For gfx8, expand f16-fmed3-as-f32 into a min/max f16 sequence. This // saves one instruction compared to the promotion. // // FIXME: Should have ComplexPattern like in/out matchers // // FIXME: We should be able to match either G_AMDGPU_FMED3 or // G_INTRINSIC @llvm.amdgcn.fmed3. Currently the legalizer will // replace the intrinsic with G_AMDGPU_FMED3 since we can't write a // pattern to match it. def expand_promoted_fmed3 : GICombineRule< (defs root:$fptrunc_dst), (match (G_FPTRUNC $fptrunc_dst, $fmed3_dst):$fptrunc, (G_AMDGPU_FMED3 $fmed3_dst, $src0, $src1, $src2), [{ return Helper.matchExpandPromotedF16FMed3(*${fptrunc}, ${src0}.getReg(), ${src1}.getReg(), ${src2}.getReg()); }]), (apply [{ Helper.applyExpandPromotedF16FMed3(*${fptrunc}, ${src0}.getReg(), ${src1}.getReg(), ${src2}.getReg()); }]) >; } // End Predicates = [NotHasMed3_16] // Combines which should only apply on SI/CI def gfx6gfx7_combines : GICombineGroup<[fcmp_select_to_fmin_fmax_legacy]>; // Combines which should only apply on VI def gfx8_combines : GICombineGroup<[expand_promoted_fmed3]>; def AMDGPUPreLegalizerCombiner: GICombiner< "AMDGPUPreLegalizerCombinerImpl", [all_combines, combine_fmul_with_select_to_fldexp, clamp_i64_to_i16, foldable_fneg, combine_shuffle_vector_to_build_vector, binop_s64_with_s32_mask_combines]> { let CombineAllMethodName = "tryCombineAllImpl"; } def AMDGPUPostLegalizerCombiner: GICombiner< "AMDGPUPostLegalizerCombinerImpl", [all_combines, gfx6gfx7_combines, gfx8_combines, combine_fmul_with_select_to_fldexp, uchar_to_float, cvt_f32_ubyteN, remove_fcanonicalize, foldable_fneg, rcp_sqrt_to_rsq, fdiv_by_sqrt_to_rsq_f16, sign_extension_in_reg, smulu64, binop_s64_with_s32_mask_combines]> { let CombineAllMethodName = "tryCombineAllImpl"; } def AMDGPURegBankCombiner : GICombiner< "AMDGPURegBankCombinerImpl", [unmerge_merge, unmerge_cst, unmerge_undef, zext_trunc_fold, int_minmax_to_med3, ptr_add_immed_chain, fp_minmax_to_clamp, fp_minmax_to_med3, fmed3_intrinsic_to_clamp, identity_combines, redundant_and, constant_fold_cast_op, cast_of_cast_combines, sext_trunc, zext_of_shift_amount_combines, d16_load]> { }