//===-------------- lib/Support/BranchProbability.cpp -----------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements Branch Probability class. // //===----------------------------------------------------------------------===// #include "llvm/Support/BranchProbability.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Format.h" #include "llvm/Support/raw_ostream.h" #include using namespace llvm; raw_ostream &BranchProbability::print(raw_ostream &OS) const { auto GetHexDigit = [](int Val) -> char { assert(Val < 16); if (Val < 10) return '0' + Val; return 'a' + Val - 10; }; OS << "0x"; for (int Digits = 0; Digits < 8; ++Digits) OS << GetHexDigit(N >> (28 - Digits * 4) & 0xf); OS << " / 0x"; for (int Digits = 0; Digits < 8; ++Digits) OS << GetHexDigit(D >> (28 - Digits * 4) & 0xf); OS << " = " << format("%.2f%%", ((double)N / D) * 100.0); return OS; } void BranchProbability::dump() const { print(dbgs()) << '\n'; } BranchProbability::BranchProbability(uint32_t Numerator, uint32_t Denominator) { assert(Denominator > 0 && "Denominator cannot be 0!"); assert(Numerator <= Denominator && "Probability cannot be bigger than 1!"); if (Denominator == D) N = Numerator; else { uint64_t Prob64 = (Numerator * static_cast(D) + Denominator / 2) / Denominator; N = static_cast(Prob64); } } BranchProbability &BranchProbability::operator+=(BranchProbability RHS) { assert(N <= D - RHS.N && "The sum of branch probabilities should not exceed one!"); N += RHS.N; return *this; } BranchProbability &BranchProbability::operator-=(BranchProbability RHS) { assert(N >= RHS.N && "Can only subtract a smaller probability from a larger one!"); N -= RHS.N; return *this; } // If ConstD is not zero, then replace D by ConstD so that division and modulo // operations by D can be optimized, in case this function is not inlined by the // compiler. template inline uint64_t scale(uint64_t Num, uint32_t N, uint32_t D) { if (ConstD > 0) D = ConstD; assert(D && "divide by 0"); // Fast path for multiplying by 1.0. if (!Num || D == N) return Num; // Split Num into upper and lower parts to multiply, then recombine. uint64_t ProductHigh = (Num >> 32) * N; uint64_t ProductLow = (Num & UINT32_MAX) * N; // Split into 32-bit digits. uint32_t Upper32 = ProductHigh >> 32; uint32_t Lower32 = ProductLow & UINT32_MAX; uint32_t Mid32Partial = ProductHigh & UINT32_MAX; uint32_t Mid32 = Mid32Partial + (ProductLow >> 32); // Carry. Upper32 += Mid32 < Mid32Partial; // Check for overflow. if (Upper32 >= D) return UINT64_MAX; uint64_t Rem = (uint64_t(Upper32) << 32) | Mid32; uint64_t UpperQ = Rem / D; // Check for overflow. if (UpperQ > UINT32_MAX) return UINT64_MAX; Rem = ((Rem % D) << 32) | Lower32; uint64_t LowerQ = Rem / D; uint64_t Q = (UpperQ << 32) + LowerQ; // Check for overflow. return Q < LowerQ ? UINT64_MAX : Q; } uint64_t BranchProbability::scale(uint64_t Num) const { return ::scale(Num, N, D); } uint64_t BranchProbability::scaleByInverse(uint64_t Num) const { return ::scale<0>(Num, D, N); }