//===- RuntimeLibcalls.cpp - Interface for runtime libcalls -----*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/IR/RuntimeLibcalls.h" #include "llvm/Support/CommandLine.h" using namespace llvm; using namespace RTLIB; #define GET_INIT_RUNTIME_LIBCALL_UTILS #define GET_INIT_RUNTIME_LIBCALL_NAMES #include "llvm/IR/RuntimeLibcalls.inc" #undef GET_INIT_RUNTIME_LIBCALL_UTILS #undef GET_INIT_RUNTIME_LIBCALL_NAMES static cl::opt HexagonEnableFastMathRuntimeCalls("hexagon-fast-math", cl::Hidden, cl::desc("Enable Fast Math processing")); static void setAArch64LibcallNames(RuntimeLibcallsInfo &Info, const Triple &TT) { #define LCALLNAMES(A, B, N) \ Info.setLibcallImpl(A##N##_RELAX, B##N##_relax); \ Info.setLibcallImpl(A##N##_ACQ, B##N##_acq); \ Info.setLibcallImpl(A##N##_REL, B##N##_rel); \ Info.setLibcallImpl(A##N##_ACQ_REL, B##N##_acq_rel); #define LCALLNAME4(A, B) \ LCALLNAMES(A, B, 1) \ LCALLNAMES(A, B, 2) LCALLNAMES(A, B, 4) LCALLNAMES(A, B, 8) #define LCALLNAME5(A, B) \ LCALLNAMES(A, B, 1) \ LCALLNAMES(A, B, 2) \ LCALLNAMES(A, B, 4) LCALLNAMES(A, B, 8) LCALLNAMES(A, B, 16) if (TT.isWindowsArm64EC()) { LCALLNAME5(RTLIB::OUTLINE_ATOMIC_CAS, RTLIB::arm64ec___aarch64_cas) LCALLNAME4(RTLIB::OUTLINE_ATOMIC_SWP, RTLIB::arm64ec___aarch64_swp) LCALLNAME4(RTLIB::OUTLINE_ATOMIC_LDADD, RTLIB::arm64ec___aarch64_ldadd) LCALLNAME4(RTLIB::OUTLINE_ATOMIC_LDSET, RTLIB::arm64ec___aarch64_ldset) LCALLNAME4(RTLIB::OUTLINE_ATOMIC_LDCLR, RTLIB::arm64ec___aarch64_ldclr) LCALLNAME4(RTLIB::OUTLINE_ATOMIC_LDEOR, RTLIB::arm64ec___aarch64_ldeor) } else { LCALLNAME5(RTLIB::OUTLINE_ATOMIC_CAS, RTLIB::__aarch64_cas) LCALLNAME4(RTLIB::OUTLINE_ATOMIC_SWP, RTLIB::__aarch64_swp) LCALLNAME4(RTLIB::OUTLINE_ATOMIC_LDADD, RTLIB::__aarch64_ldadd) LCALLNAME4(RTLIB::OUTLINE_ATOMIC_LDSET, RTLIB::__aarch64_ldset) LCALLNAME4(RTLIB::OUTLINE_ATOMIC_LDCLR, RTLIB::__aarch64_ldclr) LCALLNAME4(RTLIB::OUTLINE_ATOMIC_LDEOR, RTLIB::__aarch64_ldeor) } #undef LCALLNAMES #undef LCALLNAME4 #undef LCALLNAME5 } static void setARMLibcallNames(RuntimeLibcallsInfo &Info, const Triple &TT, FloatABI::ABIType FloatABIType, EABI EABIVersion) { if (!TT.isOSDarwin() && !TT.isiOS() && !TT.isWatchOS() && !TT.isDriverKit()) { CallingConv::ID DefaultCC = FloatABIType == FloatABI::Hard ? CallingConv::ARM_AAPCS_VFP : CallingConv::ARM_AAPCS; for (RTLIB::Libcall LC : RTLIB::libcalls()) Info.setLibcallCallingConv(LC, DefaultCC); } // Register based DivRem for AEABI (RTABI 4.2) if (TT.isTargetAEABI() || TT.isAndroid() || TT.isTargetGNUAEABI() || TT.isTargetMuslAEABI() || TT.isOSWindows()) { if (TT.isOSWindows()) { const struct { const RTLIB::Libcall Op; const RTLIB::LibcallImpl Impl; const CallingConv::ID CC; } LibraryCalls[] = { {RTLIB::SDIVREM_I32, RTLIB::__rt_sdiv, CallingConv::ARM_AAPCS}, {RTLIB::SDIVREM_I64, RTLIB::__rt_sdiv64, CallingConv::ARM_AAPCS}, {RTLIB::UDIVREM_I32, RTLIB::__rt_udiv, CallingConv::ARM_AAPCS}, {RTLIB::UDIVREM_I64, RTLIB::__rt_udiv64, CallingConv::ARM_AAPCS}, }; for (const auto &LC : LibraryCalls) { Info.setLibcallImpl(LC.Op, LC.Impl); Info.setLibcallCallingConv(LC.Op, LC.CC); } } else { const struct { const RTLIB::Libcall Op; const RTLIB::LibcallImpl Impl; const CallingConv::ID CC; } LibraryCalls[] = { {RTLIB::SDIVREM_I32, RTLIB::__aeabi_idivmod, CallingConv::ARM_AAPCS}, {RTLIB::SDIVREM_I64, RTLIB::__aeabi_ldivmod, CallingConv::ARM_AAPCS}, {RTLIB::UDIVREM_I32, RTLIB::__aeabi_uidivmod, CallingConv::ARM_AAPCS}, {RTLIB::UDIVREM_I64, RTLIB::__aeabi_uldivmod, CallingConv::ARM_AAPCS}, }; for (const auto &LC : LibraryCalls) { Info.setLibcallImpl(LC.Op, LC.Impl); Info.setLibcallCallingConv(LC.Op, LC.CC); } } } if (TT.isOSWindows()) { static const struct { const RTLIB::Libcall Op; const RTLIB::LibcallImpl Impl; const CallingConv::ID CC; } LibraryCalls[] = { {RTLIB::FPTOSINT_F32_I64, RTLIB::__stoi64, CallingConv::ARM_AAPCS_VFP}, {RTLIB::FPTOSINT_F64_I64, RTLIB::__dtoi64, CallingConv::ARM_AAPCS_VFP}, {RTLIB::FPTOUINT_F32_I64, RTLIB::__stou64, CallingConv::ARM_AAPCS_VFP}, {RTLIB::FPTOUINT_F64_I64, RTLIB::__dtou64, CallingConv::ARM_AAPCS_VFP}, {RTLIB::SINTTOFP_I64_F32, RTLIB::__i64tos, CallingConv::ARM_AAPCS_VFP}, {RTLIB::SINTTOFP_I64_F64, RTLIB::__i64tod, CallingConv::ARM_AAPCS_VFP}, {RTLIB::UINTTOFP_I64_F32, RTLIB::__u64tos, CallingConv::ARM_AAPCS_VFP}, {RTLIB::UINTTOFP_I64_F64, RTLIB::__u64tod, CallingConv::ARM_AAPCS_VFP}, }; for (const auto &LC : LibraryCalls) { Info.setLibcallImpl(LC.Op, LC.Impl); Info.setLibcallCallingConv(LC.Op, LC.CC); } } // Use divmod compiler-rt calls for iOS 5.0 and later. if (TT.isOSBinFormatMachO() && (!TT.isiOS() || !TT.isOSVersionLT(5, 0))) { Info.setLibcallImpl(RTLIB::SDIVREM_I32, RTLIB::__divmodsi4); Info.setLibcallImpl(RTLIB::UDIVREM_I32, RTLIB::__udivmodsi4); } } static void setMSP430Libcalls(RuntimeLibcallsInfo &Info, const Triple &TT) { // EABI Libcalls - EABI Section 6.2 const struct { const RTLIB::Libcall Op; const RTLIB::LibcallImpl Impl; } LibraryCalls[] = { // Floating point conversions - EABI Table 6 {RTLIB::FPROUND_F64_F32, RTLIB::__mspabi_cvtdf}, {RTLIB::FPEXT_F32_F64, RTLIB::__mspabi_cvtfd}, // The following is NOT implemented in libgcc //{ RTLIB::FPTOSINT_F64_I16, RTLIB::__mspabi_fixdi }, {RTLIB::FPTOSINT_F64_I32, RTLIB::__mspabi_fixdli}, {RTLIB::FPTOSINT_F64_I64, RTLIB::__mspabi_fixdlli}, // The following is NOT implemented in libgcc //{ RTLIB::FPTOUINT_F64_I16, RTLIB::__mspabi_fixdu }, {RTLIB::FPTOUINT_F64_I32, RTLIB::__mspabi_fixdul}, {RTLIB::FPTOUINT_F64_I64, RTLIB::__mspabi_fixdull}, // The following is NOT implemented in libgcc //{ RTLIB::FPTOSINT_F32_I16, RTLIB::__mspabi_fixfi }, {RTLIB::FPTOSINT_F32_I32, RTLIB::__mspabi_fixfli}, {RTLIB::FPTOSINT_F32_I64, RTLIB::__mspabi_fixflli}, // The following is NOT implemented in libgcc //{ RTLIB::FPTOUINT_F32_I16, RTLIB::__mspabi_fixfu }, {RTLIB::FPTOUINT_F32_I32, RTLIB::__mspabi_fixful}, {RTLIB::FPTOUINT_F32_I64, RTLIB::__mspabi_fixfull}, // TODO The following IS implemented in libgcc //{ RTLIB::SINTTOFP_I16_F64, RTLIB::__mspabi_fltid }, {RTLIB::SINTTOFP_I32_F64, RTLIB::__mspabi_fltlid}, // TODO The following IS implemented in libgcc but is not in the EABI {RTLIB::SINTTOFP_I64_F64, RTLIB::__mspabi_fltllid}, // TODO The following IS implemented in libgcc //{ RTLIB::UINTTOFP_I16_F64, RTLIB::__mspabi_fltud }, {RTLIB::UINTTOFP_I32_F64, RTLIB::__mspabi_fltuld}, // The following IS implemented in libgcc but is not in the EABI {RTLIB::UINTTOFP_I64_F64, RTLIB::__mspabi_fltulld}, // TODO The following IS implemented in libgcc //{ RTLIB::SINTTOFP_I16_F32, RTLIB::__mspabi_fltif }, {RTLIB::SINTTOFP_I32_F32, RTLIB::__mspabi_fltlif}, // TODO The following IS implemented in libgcc but is not in the EABI {RTLIB::SINTTOFP_I64_F32, RTLIB::__mspabi_fltllif}, // TODO The following IS implemented in libgcc //{ RTLIB::UINTTOFP_I16_F32, RTLIB::__mspabi_fltuf }, {RTLIB::UINTTOFP_I32_F32, RTLIB::__mspabi_fltulf}, // The following IS implemented in libgcc but is not in the EABI {RTLIB::UINTTOFP_I64_F32, RTLIB::__mspabi_fltullf}, // Floating point comparisons - EABI Table 7 {RTLIB::OEQ_F64, RTLIB::__mspabi_cmpd__oeq}, {RTLIB::UNE_F64, RTLIB::__mspabi_cmpd__une}, {RTLIB::OGE_F64, RTLIB::__mspabi_cmpd__oge}, {RTLIB::OLT_F64, RTLIB::__mspabi_cmpd__olt}, {RTLIB::OLE_F64, RTLIB::__mspabi_cmpd__ole}, {RTLIB::OGT_F64, RTLIB::__mspabi_cmpd__ogt}, {RTLIB::OEQ_F32, RTLIB::__mspabi_cmpf__oeq}, {RTLIB::UNE_F32, RTLIB::__mspabi_cmpf__une}, {RTLIB::OGE_F32, RTLIB::__mspabi_cmpf__oge}, {RTLIB::OLT_F32, RTLIB::__mspabi_cmpf__olt}, {RTLIB::OLE_F32, RTLIB::__mspabi_cmpf__ole}, {RTLIB::OGT_F32, RTLIB::__mspabi_cmpf__ogt}, // Floating point arithmetic - EABI Table 8 {RTLIB::ADD_F64, RTLIB::__mspabi_addd}, {RTLIB::ADD_F32, RTLIB::__mspabi_addf}, {RTLIB::DIV_F64, RTLIB::__mspabi_divd}, {RTLIB::DIV_F32, RTLIB::__mspabi_divf}, {RTLIB::MUL_F64, RTLIB::__mspabi_mpyd}, {RTLIB::MUL_F32, RTLIB::__mspabi_mpyf}, {RTLIB::SUB_F64, RTLIB::__mspabi_subd}, {RTLIB::SUB_F32, RTLIB::__mspabi_subf}, // The following are NOT implemented in libgcc // { RTLIB::NEG_F64, RTLIB::__mspabi_negd }, // { RTLIB::NEG_F32, RTLIB::__mspabi_negf }, // Universal Integer Operations - EABI Table 9 {RTLIB::SDIV_I16, RTLIB::__mspabi_divi}, {RTLIB::SDIV_I32, RTLIB::__mspabi_divli}, {RTLIB::SDIV_I64, RTLIB::__mspabi_divlli}, {RTLIB::UDIV_I16, RTLIB::__mspabi_divu}, {RTLIB::UDIV_I32, RTLIB::__mspabi_divul}, {RTLIB::UDIV_I64, RTLIB::__mspabi_divull}, {RTLIB::SREM_I16, RTLIB::__mspabi_remi}, {RTLIB::SREM_I32, RTLIB::__mspabi_remli}, {RTLIB::SREM_I64, RTLIB::__mspabi_remlli}, {RTLIB::UREM_I16, RTLIB::__mspabi_remu}, {RTLIB::UREM_I32, RTLIB::__mspabi_remul}, {RTLIB::UREM_I64, RTLIB::__mspabi_remull}, // Bitwise Operations - EABI Table 10 // TODO: __mspabi_[srli/srai/slli] ARE implemented in libgcc {RTLIB::SRL_I32, RTLIB::__mspabi_srll}, {RTLIB::SRA_I32, RTLIB::__mspabi_sral}, {RTLIB::SHL_I32, RTLIB::__mspabi_slll}, // __mspabi_[srlll/srall/sllll/rlli/rlll] are NOT implemented in libgcc }; for (const auto &LC : LibraryCalls) Info.setLibcallImpl(LC.Op, LC.Impl); // Several of the runtime library functions use a special calling conv Info.setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::MSP430_BUILTIN); Info.setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::MSP430_BUILTIN); Info.setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::MSP430_BUILTIN); Info.setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::MSP430_BUILTIN); Info.setLibcallCallingConv(RTLIB::ADD_F64, CallingConv::MSP430_BUILTIN); Info.setLibcallCallingConv(RTLIB::SUB_F64, CallingConv::MSP430_BUILTIN); Info.setLibcallCallingConv(RTLIB::MUL_F64, CallingConv::MSP430_BUILTIN); Info.setLibcallCallingConv(RTLIB::DIV_F64, CallingConv::MSP430_BUILTIN); Info.setLibcallCallingConv(RTLIB::OEQ_F64, CallingConv::MSP430_BUILTIN); Info.setLibcallCallingConv(RTLIB::UNE_F64, CallingConv::MSP430_BUILTIN); Info.setLibcallCallingConv(RTLIB::OGE_F64, CallingConv::MSP430_BUILTIN); Info.setLibcallCallingConv(RTLIB::OLT_F64, CallingConv::MSP430_BUILTIN); Info.setLibcallCallingConv(RTLIB::OLE_F64, CallingConv::MSP430_BUILTIN); Info.setLibcallCallingConv(RTLIB::OGT_F64, CallingConv::MSP430_BUILTIN); // TODO: __mspabi_srall, __mspabi_srlll, __mspabi_sllll } void RuntimeLibcallsInfo::initSoftFloatCmpLibcallPredicates() { SoftFloatCompareLibcallPredicates[RTLIB::OEQ_F32] = CmpInst::ICMP_EQ; SoftFloatCompareLibcallPredicates[RTLIB::OEQ_F64] = CmpInst::ICMP_EQ; SoftFloatCompareLibcallPredicates[RTLIB::OEQ_F128] = CmpInst::ICMP_EQ; SoftFloatCompareLibcallPredicates[RTLIB::OEQ_PPCF128] = CmpInst::ICMP_EQ; SoftFloatCompareLibcallPredicates[RTLIB::UNE_F32] = CmpInst::ICMP_NE; SoftFloatCompareLibcallPredicates[RTLIB::UNE_F64] = CmpInst::ICMP_NE; SoftFloatCompareLibcallPredicates[RTLIB::UNE_F128] = CmpInst::ICMP_NE; SoftFloatCompareLibcallPredicates[RTLIB::UNE_PPCF128] = CmpInst::ICMP_NE; SoftFloatCompareLibcallPredicates[RTLIB::OGE_F32] = CmpInst::ICMP_SGE; SoftFloatCompareLibcallPredicates[RTLIB::OGE_F64] = CmpInst::ICMP_SGE; SoftFloatCompareLibcallPredicates[RTLIB::OGE_F128] = CmpInst::ICMP_SGE; SoftFloatCompareLibcallPredicates[RTLIB::OGE_PPCF128] = CmpInst::ICMP_SGE; SoftFloatCompareLibcallPredicates[RTLIB::OLT_F32] = CmpInst::ICMP_SLT; SoftFloatCompareLibcallPredicates[RTLIB::OLT_F64] = CmpInst::ICMP_SLT; SoftFloatCompareLibcallPredicates[RTLIB::OLT_F128] = CmpInst::ICMP_SLT; SoftFloatCompareLibcallPredicates[RTLIB::OLT_PPCF128] = CmpInst::ICMP_SLT; SoftFloatCompareLibcallPredicates[RTLIB::OLE_F32] = CmpInst::ICMP_SLE; SoftFloatCompareLibcallPredicates[RTLIB::OLE_F64] = CmpInst::ICMP_SLE; SoftFloatCompareLibcallPredicates[RTLIB::OLE_F128] = CmpInst::ICMP_SLE; SoftFloatCompareLibcallPredicates[RTLIB::OLE_PPCF128] = CmpInst::ICMP_SLE; SoftFloatCompareLibcallPredicates[RTLIB::OGT_F32] = CmpInst::ICMP_SGT; SoftFloatCompareLibcallPredicates[RTLIB::OGT_F64] = CmpInst::ICMP_SGT; SoftFloatCompareLibcallPredicates[RTLIB::OGT_F128] = CmpInst::ICMP_SGT; SoftFloatCompareLibcallPredicates[RTLIB::OGT_PPCF128] = CmpInst::ICMP_SGT; SoftFloatCompareLibcallPredicates[RTLIB::UO_F32] = CmpInst::ICMP_NE; SoftFloatCompareLibcallPredicates[RTLIB::UO_F64] = CmpInst::ICMP_NE; SoftFloatCompareLibcallPredicates[RTLIB::UO_F128] = CmpInst::ICMP_NE; SoftFloatCompareLibcallPredicates[RTLIB::UO_PPCF128] = CmpInst::ICMP_NE; } static void setLongDoubleIsF128Libm(RuntimeLibcallsInfo &Info, bool FiniteOnlyFuncs = false) { Info.setLibcallImpl(RTLIB::REM_F128, RTLIB::fmodf128); Info.setLibcallImpl(RTLIB::FMA_F128, RTLIB::fmaf128); Info.setLibcallImpl(RTLIB::SQRT_F128, RTLIB::sqrtf128); Info.setLibcallImpl(RTLIB::CBRT_F128, RTLIB::cbrtf128); Info.setLibcallImpl(RTLIB::LOG_F128, RTLIB::logf128); Info.setLibcallImpl(RTLIB::LOG2_F128, RTLIB::log2f128); Info.setLibcallImpl(RTLIB::LOG10_F128, RTLIB::log10f128); Info.setLibcallImpl(RTLIB::EXP_F128, RTLIB::expf128); Info.setLibcallImpl(RTLIB::EXP2_F128, RTLIB::exp2f128); Info.setLibcallImpl(RTLIB::EXP10_F128, RTLIB::exp10f128); Info.setLibcallImpl(RTLIB::SIN_F128, RTLIB::sinf128); Info.setLibcallImpl(RTLIB::COS_F128, RTLIB::cosf128); Info.setLibcallImpl(RTLIB::TAN_F128, RTLIB::tanf128); Info.setLibcallImpl(RTLIB::SINCOS_F128, RTLIB::sincosf128); Info.setLibcallImpl(RTLIB::ASIN_F128, RTLIB::asinf128); Info.setLibcallImpl(RTLIB::ACOS_F128, RTLIB::acosf128); Info.setLibcallImpl(RTLIB::ATAN_F128, RTLIB::atanf128); Info.setLibcallImpl(RTLIB::ATAN2_F128, RTLIB::atan2f128); Info.setLibcallImpl(RTLIB::SINH_F128, RTLIB::sinhf128); Info.setLibcallImpl(RTLIB::COSH_F128, RTLIB::coshf128); Info.setLibcallImpl(RTLIB::TANH_F128, RTLIB::tanhf128); Info.setLibcallImpl(RTLIB::POW_F128, RTLIB::powf128); Info.setLibcallImpl(RTLIB::CEIL_F128, RTLIB::ceilf128); Info.setLibcallImpl(RTLIB::TRUNC_F128, RTLIB::truncf128); Info.setLibcallImpl(RTLIB::RINT_F128, RTLIB::rintf128); Info.setLibcallImpl(RTLIB::NEARBYINT_F128, RTLIB::nearbyintf128); Info.setLibcallImpl(RTLIB::ROUND_F128, RTLIB::roundf128); Info.setLibcallImpl(RTLIB::ROUNDEVEN_F128, RTLIB::roundevenf128); Info.setLibcallImpl(RTLIB::FLOOR_F128, RTLIB::floorf128); Info.setLibcallImpl(RTLIB::COPYSIGN_F128, RTLIB::copysignf128); Info.setLibcallImpl(RTLIB::FMIN_F128, RTLIB::fminf128); Info.setLibcallImpl(RTLIB::FMAX_F128, RTLIB::fmaxf128); Info.setLibcallImpl(RTLIB::FMINIMUM_F128, RTLIB::fminimumf128); Info.setLibcallImpl(RTLIB::FMAXIMUM_F128, RTLIB::fmaximumf128); Info.setLibcallImpl(RTLIB::FMINIMUM_NUM_F128, RTLIB::fminimum_numf128); Info.setLibcallImpl(RTLIB::FMAXIMUM_NUM_F128, RTLIB::fmaximum_numf128); Info.setLibcallImpl(RTLIB::LROUND_F128, RTLIB::lroundf128); Info.setLibcallImpl(RTLIB::LLROUND_F128, RTLIB::llroundf128); Info.setLibcallImpl(RTLIB::LRINT_F128, RTLIB::lrintf128); Info.setLibcallImpl(RTLIB::LLRINT_F128, RTLIB::llrintf128); Info.setLibcallImpl(RTLIB::LDEXP_F128, RTLIB::ldexpf128); Info.setLibcallImpl(RTLIB::FREXP_F128, RTLIB::frexpf128); Info.setLibcallImpl(RTLIB::MODF_F128, RTLIB::modff128); if (FiniteOnlyFuncs) { Info.setLibcallImpl(RTLIB::LOG_FINITE_F128, RTLIB::__logf128_finite); Info.setLibcallImpl(RTLIB::LOG2_FINITE_F128, RTLIB::__log2f128_finite); Info.setLibcallImpl(RTLIB::LOG10_FINITE_F128, RTLIB::__log10f128_finite); Info.setLibcallImpl(RTLIB::EXP_FINITE_F128, RTLIB::__expf128_finite); Info.setLibcallImpl(RTLIB::EXP2_FINITE_F128, RTLIB::__exp2f128_finite); Info.setLibcallImpl(RTLIB::POW_FINITE_F128, RTLIB::__powf128_finite); } else { Info.setLibcallImpl(RTLIB::LOG_FINITE_F128, RTLIB::Unsupported); Info.setLibcallImpl(RTLIB::LOG2_FINITE_F128, RTLIB::Unsupported); Info.setLibcallImpl(RTLIB::LOG10_FINITE_F128, RTLIB::Unsupported); Info.setLibcallImpl(RTLIB::EXP_FINITE_F128, RTLIB::Unsupported); Info.setLibcallImpl(RTLIB::EXP2_FINITE_F128, RTLIB::Unsupported); Info.setLibcallImpl(RTLIB::POW_FINITE_F128, RTLIB::Unsupported); } } void RTLIB::RuntimeLibcallsInfo::initDefaultLibCallImpls() { std::memcpy(LibcallImpls, DefaultLibcallImpls, sizeof(LibcallImpls)); static_assert(sizeof(LibcallImpls) == sizeof(DefaultLibcallImpls), "libcall array size should match"); } /// Set default libcall names. If a target wants to opt-out of a libcall it /// should be placed here. void RuntimeLibcallsInfo::initLibcalls(const Triple &TT, ExceptionHandling ExceptionModel, FloatABI::ABIType FloatABI, EABI EABIVersion, StringRef ABIName) { // Use the f128 variants of math functions on x86 if (TT.isX86() && TT.isGNUEnvironment()) setLongDoubleIsF128Libm(*this, /*FiniteOnlyFuncs=*/true); if (TT.isX86() || TT.isVE()) { if (ExceptionModel == ExceptionHandling::SjLj) setLibcallImpl(RTLIB::UNWIND_RESUME, RTLIB::_Unwind_SjLj_Resume); } if (TT.isPPC()) { setPPCLibCallNameOverrides(); // TODO: Do the finite only functions exist? setLongDoubleIsF128Libm(*this, /*FiniteOnlyFuncs=*/false); // TODO: Tablegen predicate support if (TT.isOSAIX()) { if (TT.isPPC64()) { setLibcallImpl(RTLIB::MEMCPY, RTLIB::Unsupported); setLibcallImpl(RTLIB::MEMMOVE, RTLIB::___memmove64); setLibcallImpl(RTLIB::MEMSET, RTLIB::___memset64); setLibcallImpl(RTLIB::BZERO, RTLIB::___bzero64); } else { setLibcallImpl(RTLIB::MEMCPY, RTLIB::Unsupported); setLibcallImpl(RTLIB::MEMMOVE, RTLIB::___memmove); setLibcallImpl(RTLIB::MEMSET, RTLIB::___memset); setLibcallImpl(RTLIB::BZERO, RTLIB::___bzero); } } } // A few names are different on particular architectures or environments. if (TT.isOSDarwin()) { // For f16/f32 conversions, Darwin uses the standard naming scheme, // instead of the gnueabi-style __gnu_*_ieee. // FIXME: What about other targets? setLibcallImpl(RTLIB::FPEXT_F16_F32, RTLIB::__extendhfsf2); setLibcallImpl(RTLIB::FPROUND_F32_F16, RTLIB::__truncsfhf2); // Some darwins have an optimized __bzero/bzero function. if (TT.isX86()) { if (TT.isMacOSX() && !TT.isMacOSXVersionLT(10, 6)) setLibcallImpl(RTLIB::BZERO, RTLIB::__bzero); } else if (TT.isAArch64()) setLibcallImpl(RTLIB::BZERO, RTLIB::bzero); if (darwinHasSinCosStret(TT)) { setLibcallImpl(RTLIB::SINCOS_STRET_F32, RTLIB::__sincosf_stret); setLibcallImpl(RTLIB::SINCOS_STRET_F64, RTLIB::__sincos_stret); if (TT.isWatchABI()) { setLibcallCallingConv(RTLIB::SINCOS_STRET_F32, CallingConv::ARM_AAPCS_VFP); setLibcallCallingConv(RTLIB::SINCOS_STRET_F64, CallingConv::ARM_AAPCS_VFP); } } if (darwinHasExp10(TT)) { setLibcallImpl(RTLIB::EXP10_F32, RTLIB::__exp10f); setLibcallImpl(RTLIB::EXP10_F64, RTLIB::__exp10); } else { setLibcallImpl(RTLIB::EXP10_F32, RTLIB::Unsupported); setLibcallImpl(RTLIB::EXP10_F64, RTLIB::Unsupported); } } if (hasSinCos(TT)) { setLibcallImpl(RTLIB::SINCOS_F32, RTLIB::sincosf); setLibcallImpl(RTLIB::SINCOS_F64, RTLIB::sincos); setLibcallImpl(RTLIB::SINCOS_F80, RTLIB::sincos_f80); setLibcallImpl(RTLIB::SINCOS_F128, RTLIB::sincos_f128); setLibcallImpl(RTLIB::SINCOS_PPCF128, RTLIB::sincos_ppcf128); } if (TT.isPS()) { setLibcallImpl(RTLIB::SINCOS_F32, RTLIB::sincosf); setLibcallImpl(RTLIB::SINCOS_F64, RTLIB::sincos); } if (TT.isOSOpenBSD()) { setLibcallImpl(RTLIB::STACKPROTECTOR_CHECK_FAIL, RTLIB::Unsupported); } if (TT.isOSWindows() && !TT.isOSCygMing()) { setLibcallImpl(RTLIB::LDEXP_F32, RTLIB::Unsupported); setLibcallImpl(RTLIB::LDEXP_F80, RTLIB::Unsupported); setLibcallImpl(RTLIB::LDEXP_F128, RTLIB::Unsupported); setLibcallImpl(RTLIB::LDEXP_PPCF128, RTLIB::Unsupported); setLibcallImpl(RTLIB::FREXP_F32, RTLIB::Unsupported); setLibcallImpl(RTLIB::FREXP_F80, RTLIB::Unsupported); setLibcallImpl(RTLIB::FREXP_F128, RTLIB::Unsupported); setLibcallImpl(RTLIB::FREXP_PPCF128, RTLIB::Unsupported); } // Disable most libcalls on AMDGPU and NVPTX. if (TT.isAMDGPU() || TT.isNVPTX()) { for (RTLIB::Libcall LC : RTLIB::libcalls()) { if (!isAtomicLibCall(LC)) setLibcallImpl(LC, RTLIB::Unsupported); } } if (TT.isOSMSVCRT()) { // MSVCRT doesn't have powi; fall back to pow setLibcallImpl(RTLIB::POWI_F32, RTLIB::Unsupported); setLibcallImpl(RTLIB::POWI_F64, RTLIB::Unsupported); } // Setup Windows compiler runtime calls. if (TT.getArch() == Triple::x86 && (TT.isWindowsMSVCEnvironment() || TT.isWindowsItaniumEnvironment())) { static const struct { const RTLIB::Libcall Op; const RTLIB::LibcallImpl Impl; const CallingConv::ID CC; } LibraryCalls[] = { {RTLIB::SDIV_I64, RTLIB::_alldiv, CallingConv::X86_StdCall}, {RTLIB::UDIV_I64, RTLIB::_aulldiv, CallingConv::X86_StdCall}, {RTLIB::SREM_I64, RTLIB::_allrem, CallingConv::X86_StdCall}, {RTLIB::UREM_I64, RTLIB::_aullrem, CallingConv::X86_StdCall}, {RTLIB::MUL_I64, RTLIB::_allmul, CallingConv::X86_StdCall}, }; for (const auto &LC : LibraryCalls) { setLibcallImpl(LC.Op, LC.Impl); setLibcallCallingConv(LC.Op, LC.CC); } } if (TT.isAArch64()) { if (TT.isWindowsArm64EC()) { setWindowsArm64LibCallNameOverrides(); setLibcallImpl(RTLIB::SC_MEMCPY, RTLIB::arm64ec___arm_sc_memcpy); setLibcallImpl(RTLIB::SC_MEMMOVE, RTLIB::arm64ec___arm_sc_memmove); setLibcallImpl(RTLIB::SC_MEMSET, RTLIB::arm64ec___arm_sc_memset); } else { setLibcallImpl(RTLIB::SC_MEMCPY, RTLIB::__arm_sc_memcpy); setLibcallImpl(RTLIB::SC_MEMMOVE, RTLIB::__arm_sc_memmove); setLibcallImpl(RTLIB::SC_MEMSET, RTLIB::__arm_sc_memset); } setAArch64LibcallNames(*this, TT); } else if (TT.isARM() || TT.isThumb()) { setARMLibcallNames(*this, TT, FloatABI, EABIVersion); } else if (TT.getArch() == Triple::ArchType::avr) { // Division rtlib functions (not supported), use divmod functions instead setLibcallImpl(RTLIB::SDIV_I8, RTLIB::Unsupported); setLibcallImpl(RTLIB::SDIV_I16, RTLIB::Unsupported); setLibcallImpl(RTLIB::SDIV_I32, RTLIB::Unsupported); setLibcallImpl(RTLIB::UDIV_I8, RTLIB::Unsupported); setLibcallImpl(RTLIB::UDIV_I16, RTLIB::Unsupported); setLibcallImpl(RTLIB::UDIV_I32, RTLIB::Unsupported); // Modulus rtlib functions (not supported), use divmod functions instead setLibcallImpl(RTLIB::SREM_I8, RTLIB::Unsupported); setLibcallImpl(RTLIB::SREM_I16, RTLIB::Unsupported); setLibcallImpl(RTLIB::SREM_I32, RTLIB::Unsupported); setLibcallImpl(RTLIB::UREM_I8, RTLIB::Unsupported); setLibcallImpl(RTLIB::UREM_I16, RTLIB::Unsupported); setLibcallImpl(RTLIB::UREM_I32, RTLIB::Unsupported); // Division and modulus rtlib functions setLibcallImpl(RTLIB::SDIVREM_I8, RTLIB::__divmodqi4); setLibcallImpl(RTLIB::SDIVREM_I16, RTLIB::__divmodhi4); setLibcallImpl(RTLIB::SDIVREM_I32, RTLIB::__divmodsi4); setLibcallImpl(RTLIB::UDIVREM_I8, RTLIB::__udivmodqi4); setLibcallImpl(RTLIB::UDIVREM_I16, RTLIB::__udivmodhi4); setLibcallImpl(RTLIB::UDIVREM_I32, RTLIB::__udivmodsi4); // Several of the runtime library functions use a special calling conv setLibcallCallingConv(RTLIB::SDIVREM_I8, CallingConv::AVR_BUILTIN); setLibcallCallingConv(RTLIB::SDIVREM_I16, CallingConv::AVR_BUILTIN); setLibcallCallingConv(RTLIB::UDIVREM_I8, CallingConv::AVR_BUILTIN); setLibcallCallingConv(RTLIB::UDIVREM_I16, CallingConv::AVR_BUILTIN); // Trigonometric rtlib functions setLibcallImpl(RTLIB::SIN_F32, RTLIB::avr_sin); setLibcallImpl(RTLIB::COS_F32, RTLIB::avr_cos); } if (!TT.isWasm()) { // These libcalls are only available in compiler-rt, not libgcc. if (TT.isArch32Bit()) { setLibcallImpl(RTLIB::SHL_I128, RTLIB::Unsupported); setLibcallImpl(RTLIB::SRL_I128, RTLIB::Unsupported); setLibcallImpl(RTLIB::SRA_I128, RTLIB::Unsupported); setLibcallImpl(RTLIB::MUL_I128, RTLIB::Unsupported); setLibcallImpl(RTLIB::MULO_I64, RTLIB::Unsupported); } setLibcallImpl(RTLIB::MULO_I128, RTLIB::Unsupported); } else { // Define the emscripten name for return address helper. // TODO: when implementing other Wasm backends, make this generic or only do // this on emscripten depending on what they end up doing. setLibcallImpl(RTLIB::RETURN_ADDRESS, RTLIB::emscripten_return_address); } if (TT.getArch() == Triple::ArchType::hexagon) { setLibcallImpl(RTLIB::SDIV_I32, RTLIB::__hexagon_divsi3); setLibcallImpl(RTLIB::SDIV_I64, RTLIB::__hexagon_divdi3); setLibcallImpl(RTLIB::UDIV_I32, RTLIB::__hexagon_udivsi3); setLibcallImpl(RTLIB::UDIV_I64, RTLIB::__hexagon_udivdi3); setLibcallImpl(RTLIB::SREM_I32, RTLIB::__hexagon_modsi3); setLibcallImpl(RTLIB::SREM_I64, RTLIB::__hexagon_moddi3); setLibcallImpl(RTLIB::UREM_I32, RTLIB::__hexagon_umodsi3); setLibcallImpl(RTLIB::UREM_I64, RTLIB::__hexagon_umoddi3); const bool FastMath = HexagonEnableFastMathRuntimeCalls; // This is the only fast library function for sqrtd. if (FastMath) setLibcallImpl(RTLIB::SQRT_F64, RTLIB::__hexagon_fast2_sqrtdf2); // Prefix is: nothing for "slow-math", // "fast2_" for V5+ fast-math double-precision // (actually, keep fast-math and fast-math2 separate for now) if (FastMath) { setLibcallImpl(RTLIB::ADD_F64, RTLIB::__hexagon_fast_adddf3); setLibcallImpl(RTLIB::SUB_F64, RTLIB::__hexagon_fast_subdf3); setLibcallImpl(RTLIB::MUL_F64, RTLIB::__hexagon_fast_muldf3); setLibcallImpl(RTLIB::DIV_F64, RTLIB::__hexagon_fast_divdf3); setLibcallImpl(RTLIB::DIV_F32, RTLIB::__hexagon_fast_divsf3); } else { setLibcallImpl(RTLIB::ADD_F64, RTLIB::__hexagon_adddf3); setLibcallImpl(RTLIB::SUB_F64, RTLIB::__hexagon_subdf3); setLibcallImpl(RTLIB::MUL_F64, RTLIB::__hexagon_muldf3); setLibcallImpl(RTLIB::DIV_F64, RTLIB::__hexagon_divdf3); setLibcallImpl(RTLIB::DIV_F32, RTLIB::__hexagon_divsf3); } if (FastMath) setLibcallImpl(RTLIB::SQRT_F32, RTLIB::__hexagon_fast2_sqrtf); else setLibcallImpl(RTLIB::SQRT_F32, RTLIB::__hexagon_sqrtf); setLibcallImpl( RTLIB::HEXAGON_MEMCPY_LIKELY_ALIGNED_MIN32BYTES_MULT8BYTES, RTLIB::__hexagon_memcpy_likely_aligned_min32bytes_mult8bytes); } if (TT.getArch() == Triple::ArchType::msp430) setMSP430Libcalls(*this, TT); if (TT.isSystemZ() && TT.isOSzOS()) setZOSLibCallNameOverrides(); if (TT.getArch() == Triple::ArchType::xcore) setLibcallImpl(RTLIB::MEMCPY_ALIGN_4, RTLIB::__memcpy_4); } bool RuntimeLibcallsInfo::darwinHasExp10(const Triple &TT) { assert(TT.isOSDarwin() && "should be called with darwin triple"); switch (TT.getOS()) { case Triple::MacOSX: return !TT.isMacOSXVersionLT(10, 9); case Triple::IOS: return !TT.isOSVersionLT(7, 0); case Triple::DriverKit: case Triple::TvOS: case Triple::WatchOS: case Triple::XROS: case Triple::BridgeOS: return true; default: return false; } }