//===- OffloadWrapper.cpp ---------------------------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/Frontend/Offloading/OffloadWrapper.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Twine.h" #include "llvm/BinaryFormat/Magic.h" #include "llvm/Frontend/Offloading/Utility.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/IR/Type.h" #include "llvm/Object/OffloadBinary.h" #include "llvm/Support/Error.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/LineIterator.h" #include "llvm/Support/MemoryBufferRef.h" #include "llvm/TargetParser/Triple.h" #include "llvm/Transforms/Utils/ModuleUtils.h" #include #include using namespace llvm; using namespace llvm::object; using namespace llvm::offloading; namespace { /// Magic number that begins the section containing the CUDA fatbinary. constexpr unsigned CudaFatMagic = 0x466243b1; constexpr unsigned HIPFatMagic = 0x48495046; IntegerType *getSizeTTy(Module &M) { return M.getDataLayout().getIntPtrType(M.getContext()); } // struct __tgt_device_image { // void *ImageStart; // void *ImageEnd; // __tgt_offload_entry *EntriesBegin; // __tgt_offload_entry *EntriesEnd; // }; StructType *getDeviceImageTy(Module &M) { LLVMContext &C = M.getContext(); StructType *ImageTy = StructType::getTypeByName(C, "__tgt_device_image"); if (!ImageTy) ImageTy = StructType::create("__tgt_device_image", PointerType::getUnqual(C), PointerType::getUnqual(C), PointerType::getUnqual(C), PointerType::getUnqual(C)); return ImageTy; } PointerType *getDeviceImagePtrTy(Module &M) { return PointerType::getUnqual(M.getContext()); } // struct __tgt_bin_desc { // int32_t NumDeviceImages; // __tgt_device_image *DeviceImages; // __tgt_offload_entry *HostEntriesBegin; // __tgt_offload_entry *HostEntriesEnd; // }; StructType *getBinDescTy(Module &M) { LLVMContext &C = M.getContext(); StructType *DescTy = StructType::getTypeByName(C, "__tgt_bin_desc"); if (!DescTy) DescTy = StructType::create( "__tgt_bin_desc", Type::getInt32Ty(C), getDeviceImagePtrTy(M), PointerType::getUnqual(C), PointerType::getUnqual(C)); return DescTy; } PointerType *getBinDescPtrTy(Module &M) { return PointerType::getUnqual(M.getContext()); } /// Creates binary descriptor for the given device images. Binary descriptor /// is an object that is passed to the offloading runtime at program startup /// and it describes all device images available in the executable or shared /// library. It is defined as follows /// /// __attribute__((visibility("hidden"))) /// extern __tgt_offload_entry *__start_omp_offloading_entries; /// __attribute__((visibility("hidden"))) /// extern __tgt_offload_entry *__stop_omp_offloading_entries; /// /// static const char Image0[] = { }; /// ... /// static const char ImageN[] = { }; /// /// static const __tgt_device_image Images[] = { /// { /// Image0, /*ImageStart*/ /// Image0 + sizeof(Image0), /*ImageEnd*/ /// __start_omp_offloading_entries, /*EntriesBegin*/ /// __stop_omp_offloading_entries /*EntriesEnd*/ /// }, /// ... /// { /// ImageN, /*ImageStart*/ /// ImageN + sizeof(ImageN), /*ImageEnd*/ /// __start_omp_offloading_entries, /*EntriesBegin*/ /// __stop_omp_offloading_entries /*EntriesEnd*/ /// } /// }; /// /// static const __tgt_bin_desc BinDesc = { /// sizeof(Images) / sizeof(Images[0]), /*NumDeviceImages*/ /// Images, /*DeviceImages*/ /// __start_omp_offloading_entries, /*HostEntriesBegin*/ /// __stop_omp_offloading_entries /*HostEntriesEnd*/ /// }; /// /// Global variable that represents BinDesc is returned. GlobalVariable *createBinDesc(Module &M, ArrayRef> Bufs, EntryArrayTy EntryArray, StringRef Suffix, bool Relocatable) { LLVMContext &C = M.getContext(); auto [EntriesB, EntriesE] = EntryArray; auto *Zero = ConstantInt::get(getSizeTTy(M), 0u); Constant *ZeroZero[] = {Zero, Zero}; // Create initializer for the images array. SmallVector ImagesInits; ImagesInits.reserve(Bufs.size()); for (ArrayRef Buf : Bufs) { // We embed the full offloading entry so the binary utilities can parse it. auto *Data = ConstantDataArray::get(C, Buf); auto *Image = new GlobalVariable(M, Data->getType(), /*isConstant=*/true, GlobalVariable::InternalLinkage, Data, ".omp_offloading.device_image" + Suffix); Image->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); Image->setSection(Relocatable ? ".llvm.offloading.relocatable" : ".llvm.offloading"); Image->setAlignment(Align(object::OffloadBinary::getAlignment())); StringRef Binary(Buf.data(), Buf.size()); uint64_t BeginOffset = 0; uint64_t EndOffset = Binary.size(); // Optionally use an offload binary for its offload dumping support. // The device image struct contains the pointer to the beginning and end of // the image stored inside of the offload binary. There should only be one // of these for each buffer so we parse it out manually. if (identify_magic(Binary) == file_magic::offload_binary) { const auto *Header = reinterpret_cast( Binary.bytes_begin()); const auto *Entry = reinterpret_cast( Binary.bytes_begin() + Header->EntryOffset); BeginOffset = Entry->ImageOffset; EndOffset = Entry->ImageOffset + Entry->ImageSize; } auto *Begin = ConstantInt::get(getSizeTTy(M), BeginOffset); auto *Size = ConstantInt::get(getSizeTTy(M), EndOffset); Constant *ZeroBegin[] = {Zero, Begin}; Constant *ZeroSize[] = {Zero, Size}; auto *ImageB = ConstantExpr::getGetElementPtr(Image->getValueType(), Image, ZeroBegin); auto *ImageE = ConstantExpr::getGetElementPtr(Image->getValueType(), Image, ZeroSize); ImagesInits.push_back(ConstantStruct::get(getDeviceImageTy(M), ImageB, ImageE, EntriesB, EntriesE)); } // Then create images array. auto *ImagesData = ConstantArray::get( ArrayType::get(getDeviceImageTy(M), ImagesInits.size()), ImagesInits); auto *Images = new GlobalVariable(M, ImagesData->getType(), /*isConstant*/ true, GlobalValue::InternalLinkage, ImagesData, ".omp_offloading.device_images" + Suffix); Images->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); auto *ImagesB = ConstantExpr::getGetElementPtr(Images->getValueType(), Images, ZeroZero); // And finally create the binary descriptor object. auto *DescInit = ConstantStruct::get( getBinDescTy(M), ConstantInt::get(Type::getInt32Ty(C), ImagesInits.size()), ImagesB, EntriesB, EntriesE); return new GlobalVariable(M, DescInit->getType(), /*isConstant=*/true, GlobalValue::InternalLinkage, DescInit, ".omp_offloading.descriptor" + Suffix); } Function *createUnregisterFunction(Module &M, GlobalVariable *BinDesc, StringRef Suffix) { LLVMContext &C = M.getContext(); auto *FuncTy = FunctionType::get(Type::getVoidTy(C), /*isVarArg*/ false); auto *Func = Function::Create(FuncTy, GlobalValue::InternalLinkage, ".omp_offloading.descriptor_unreg" + Suffix, &M); Func->setSection(".text.startup"); // Get __tgt_unregister_lib function declaration. auto *UnRegFuncTy = FunctionType::get(Type::getVoidTy(C), getBinDescPtrTy(M), /*isVarArg*/ false); FunctionCallee UnRegFuncC = M.getOrInsertFunction("__tgt_unregister_lib", UnRegFuncTy); // Construct function body IRBuilder<> Builder(BasicBlock::Create(C, "entry", Func)); Builder.CreateCall(UnRegFuncC, BinDesc); Builder.CreateRetVoid(); return Func; } void createRegisterFunction(Module &M, GlobalVariable *BinDesc, StringRef Suffix) { LLVMContext &C = M.getContext(); auto *FuncTy = FunctionType::get(Type::getVoidTy(C), /*isVarArg*/ false); auto *Func = Function::Create(FuncTy, GlobalValue::InternalLinkage, ".omp_offloading.descriptor_reg" + Suffix, &M); Func->setSection(".text.startup"); // Get __tgt_register_lib function declaration. auto *RegFuncTy = FunctionType::get(Type::getVoidTy(C), getBinDescPtrTy(M), /*isVarArg*/ false); FunctionCallee RegFuncC = M.getOrInsertFunction("__tgt_register_lib", RegFuncTy); auto *AtExitTy = FunctionType::get( Type::getInt32Ty(C), PointerType::getUnqual(C), /*isVarArg=*/false); FunctionCallee AtExit = M.getOrInsertFunction("atexit", AtExitTy); Function *UnregFunc = createUnregisterFunction(M, BinDesc, Suffix); // Construct function body IRBuilder<> Builder(BasicBlock::Create(C, "entry", Func)); Builder.CreateCall(RegFuncC, BinDesc); // Register the destructors with 'atexit'. This is expected by the CUDA // runtime and ensures that we clean up before dynamic objects are destroyed. // This needs to be done after plugin initialization to ensure that it is // called before the plugin runtime is destroyed. Builder.CreateCall(AtExit, UnregFunc); Builder.CreateRetVoid(); // Add this function to constructors. appendToGlobalCtors(M, Func, /*Priority=*/101); } // struct fatbin_wrapper { // int32_t magic; // int32_t version; // void *image; // void *reserved; //}; StructType *getFatbinWrapperTy(Module &M) { LLVMContext &C = M.getContext(); StructType *FatbinTy = StructType::getTypeByName(C, "fatbin_wrapper"); if (!FatbinTy) FatbinTy = StructType::create( "fatbin_wrapper", Type::getInt32Ty(C), Type::getInt32Ty(C), PointerType::getUnqual(C), PointerType::getUnqual(C)); return FatbinTy; } /// Embed the image \p Image into the module \p M so it can be found by the /// runtime. GlobalVariable *createFatbinDesc(Module &M, ArrayRef Image, bool IsHIP, StringRef Suffix) { LLVMContext &C = M.getContext(); llvm::Type *Int8PtrTy = PointerType::getUnqual(C); const llvm::Triple &Triple = M.getTargetTriple(); // Create the global string containing the fatbinary. StringRef FatbinConstantSection = IsHIP ? ".hip_fatbin" : (Triple.isMacOSX() ? "__NV_CUDA,__nv_fatbin" : ".nv_fatbin"); auto *Data = ConstantDataArray::get(C, Image); auto *Fatbin = new GlobalVariable(M, Data->getType(), /*isConstant*/ true, GlobalVariable::InternalLinkage, Data, ".fatbin_image" + Suffix); Fatbin->setSection(FatbinConstantSection); // Create the fatbinary wrapper StringRef FatbinWrapperSection = IsHIP ? ".hipFatBinSegment" : Triple.isMacOSX() ? "__NV_CUDA,__fatbin" : ".nvFatBinSegment"; Constant *FatbinWrapper[] = { ConstantInt::get(Type::getInt32Ty(C), IsHIP ? HIPFatMagic : CudaFatMagic), ConstantInt::get(Type::getInt32Ty(C), 1), ConstantExpr::getPointerBitCastOrAddrSpaceCast(Fatbin, Int8PtrTy), ConstantPointerNull::get(PointerType::getUnqual(C))}; Constant *FatbinInitializer = ConstantStruct::get(getFatbinWrapperTy(M), FatbinWrapper); auto *FatbinDesc = new GlobalVariable(M, getFatbinWrapperTy(M), /*isConstant*/ true, GlobalValue::InternalLinkage, FatbinInitializer, ".fatbin_wrapper" + Suffix); FatbinDesc->setSection(FatbinWrapperSection); FatbinDesc->setAlignment(Align(8)); return FatbinDesc; } /// Create the register globals function. We will iterate all of the offloading /// entries stored at the begin / end symbols and register them according to /// their type. This creates the following function in IR: /// /// extern struct __tgt_offload_entry __start_cuda_offloading_entries; /// extern struct __tgt_offload_entry __stop_cuda_offloading_entries; /// /// extern void __cudaRegisterFunction(void **, void *, void *, void *, int, /// void *, void *, void *, void *, int *); /// extern void __cudaRegisterVar(void **, void *, void *, void *, int32_t, /// int64_t, int32_t, int32_t); /// /// void __cudaRegisterTest(void **fatbinHandle) { /// for (struct __tgt_offload_entry *entry = &__start_cuda_offloading_entries; /// entry != &__stop_cuda_offloading_entries; ++entry) { /// if (entry->Kind != OFK_CUDA) /// continue /// /// if (!entry->Size) /// __cudaRegisterFunction(fatbinHandle, entry->addr, entry->name, /// entry->name, -1, 0, 0, 0, 0, 0); /// else /// __cudaRegisterVar(fatbinHandle, entry->addr, entry->name, entry->name, /// 0, entry->size, 0, 0); /// } /// } Function *createRegisterGlobalsFunction(Module &M, bool IsHIP, EntryArrayTy EntryArray, StringRef Suffix, bool EmitSurfacesAndTextures) { LLVMContext &C = M.getContext(); auto [EntriesB, EntriesE] = EntryArray; // Get the __cudaRegisterFunction function declaration. PointerType *Int8PtrTy = PointerType::get(C, 0); PointerType *Int8PtrPtrTy = PointerType::get(C, 0); PointerType *Int32PtrTy = PointerType::get(C, 0); auto *RegFuncTy = FunctionType::get( Type::getInt32Ty(C), {Int8PtrPtrTy, Int8PtrTy, Int8PtrTy, Int8PtrTy, Type::getInt32Ty(C), Int8PtrTy, Int8PtrTy, Int8PtrTy, Int8PtrTy, Int32PtrTy}, /*isVarArg*/ false); FunctionCallee RegFunc = M.getOrInsertFunction( IsHIP ? "__hipRegisterFunction" : "__cudaRegisterFunction", RegFuncTy); // Get the __cudaRegisterVar function declaration. auto *RegVarTy = FunctionType::get( Type::getVoidTy(C), {Int8PtrPtrTy, Int8PtrTy, Int8PtrTy, Int8PtrTy, Type::getInt32Ty(C), getSizeTTy(M), Type::getInt32Ty(C), Type::getInt32Ty(C)}, /*isVarArg*/ false); FunctionCallee RegVar = M.getOrInsertFunction( IsHIP ? "__hipRegisterVar" : "__cudaRegisterVar", RegVarTy); // Get the __cudaRegisterSurface function declaration. FunctionType *RegManagedVarTy = FunctionType::get(Type::getVoidTy(C), {Int8PtrPtrTy, Int8PtrTy, Int8PtrTy, Int8PtrTy, getSizeTTy(M), Type::getInt32Ty(C)}, /*isVarArg=*/false); FunctionCallee RegManagedVar = M.getOrInsertFunction( IsHIP ? "__hipRegisterManagedVar" : "__cudaRegisterManagedVar", RegManagedVarTy); // Get the __cudaRegisterSurface function declaration. FunctionType *RegSurfaceTy = FunctionType::get(Type::getVoidTy(C), {Int8PtrPtrTy, Int8PtrTy, Int8PtrTy, Int8PtrTy, Type::getInt32Ty(C), Type::getInt32Ty(C)}, /*isVarArg=*/false); FunctionCallee RegSurface = M.getOrInsertFunction( IsHIP ? "__hipRegisterSurface" : "__cudaRegisterSurface", RegSurfaceTy); // Get the __cudaRegisterTexture function declaration. FunctionType *RegTextureTy = FunctionType::get( Type::getVoidTy(C), {Int8PtrPtrTy, Int8PtrTy, Int8PtrTy, Int8PtrTy, Type::getInt32Ty(C), Type::getInt32Ty(C), Type::getInt32Ty(C)}, /*isVarArg=*/false); FunctionCallee RegTexture = M.getOrInsertFunction( IsHIP ? "__hipRegisterTexture" : "__cudaRegisterTexture", RegTextureTy); auto *RegGlobalsTy = FunctionType::get(Type::getVoidTy(C), Int8PtrPtrTy, /*isVarArg*/ false); auto *RegGlobalsFn = Function::Create(RegGlobalsTy, GlobalValue::InternalLinkage, IsHIP ? ".hip.globals_reg" : ".cuda.globals_reg", &M); RegGlobalsFn->setSection(".text.startup"); // Create the loop to register all the entries. IRBuilder<> Builder(BasicBlock::Create(C, "entry", RegGlobalsFn)); auto *EntryBB = BasicBlock::Create(C, "while.entry", RegGlobalsFn); auto *IfKindBB = BasicBlock::Create(C, "if.kind", RegGlobalsFn); auto *IfThenBB = BasicBlock::Create(C, "if.then", RegGlobalsFn); auto *IfElseBB = BasicBlock::Create(C, "if.else", RegGlobalsFn); auto *SwGlobalBB = BasicBlock::Create(C, "sw.global", RegGlobalsFn); auto *SwManagedBB = BasicBlock::Create(C, "sw.managed", RegGlobalsFn); auto *SwSurfaceBB = BasicBlock::Create(C, "sw.surface", RegGlobalsFn); auto *SwTextureBB = BasicBlock::Create(C, "sw.texture", RegGlobalsFn); auto *IfEndBB = BasicBlock::Create(C, "if.end", RegGlobalsFn); auto *ExitBB = BasicBlock::Create(C, "while.end", RegGlobalsFn); auto *EntryCmp = Builder.CreateICmpNE(EntriesB, EntriesE); Builder.CreateCondBr(EntryCmp, EntryBB, ExitBB); Builder.SetInsertPoint(EntryBB); auto *Entry = Builder.CreatePHI(PointerType::getUnqual(C), 2, "entry"); auto *AddrPtr = Builder.CreateInBoundsGEP(offloading::getEntryTy(M), Entry, {ConstantInt::get(Type::getInt32Ty(C), 0), ConstantInt::get(Type::getInt32Ty(C), 4)}); auto *Addr = Builder.CreateLoad(Int8PtrTy, AddrPtr, "addr"); auto *AuxAddrPtr = Builder.CreateInBoundsGEP(offloading::getEntryTy(M), Entry, {ConstantInt::get(Type::getInt32Ty(C), 0), ConstantInt::get(Type::getInt32Ty(C), 8)}); auto *AuxAddr = Builder.CreateLoad(Int8PtrTy, AuxAddrPtr, "aux_addr"); auto *KindPtr = Builder.CreateInBoundsGEP(offloading::getEntryTy(M), Entry, {ConstantInt::get(Type::getInt32Ty(C), 0), ConstantInt::get(Type::getInt32Ty(C), 2)}); auto *Kind = Builder.CreateLoad(Type::getInt16Ty(C), KindPtr, "kind"); auto *NamePtr = Builder.CreateInBoundsGEP(offloading::getEntryTy(M), Entry, {ConstantInt::get(Type::getInt32Ty(C), 0), ConstantInt::get(Type::getInt32Ty(C), 5)}); auto *Name = Builder.CreateLoad(Int8PtrTy, NamePtr, "name"); auto *SizePtr = Builder.CreateInBoundsGEP(offloading::getEntryTy(M), Entry, {ConstantInt::get(Type::getInt32Ty(C), 0), ConstantInt::get(Type::getInt32Ty(C), 6)}); auto *Size = Builder.CreateLoad(Type::getInt64Ty(C), SizePtr, "size"); auto *FlagsPtr = Builder.CreateInBoundsGEP(offloading::getEntryTy(M), Entry, {ConstantInt::get(Type::getInt32Ty(C), 0), ConstantInt::get(Type::getInt32Ty(C), 3)}); auto *Flags = Builder.CreateLoad(Type::getInt32Ty(C), FlagsPtr, "flags"); auto *DataPtr = Builder.CreateInBoundsGEP(offloading::getEntryTy(M), Entry, {ConstantInt::get(Type::getInt32Ty(C), 0), ConstantInt::get(Type::getInt32Ty(C), 7)}); auto *Data = Builder.CreateTrunc( Builder.CreateLoad(Type::getInt64Ty(C), DataPtr, "data"), Type::getInt32Ty(C)); auto *Type = Builder.CreateAnd( Flags, ConstantInt::get(Type::getInt32Ty(C), 0x7), "type"); // Extract the flags stored in the bit-field and convert them to C booleans. auto *ExternBit = Builder.CreateAnd( Flags, ConstantInt::get(Type::getInt32Ty(C), llvm::offloading::OffloadGlobalExtern)); auto *Extern = Builder.CreateLShr( ExternBit, ConstantInt::get(Type::getInt32Ty(C), 3), "extern"); auto *ConstantBit = Builder.CreateAnd( Flags, ConstantInt::get(Type::getInt32Ty(C), llvm::offloading::OffloadGlobalConstant)); auto *Const = Builder.CreateLShr( ConstantBit, ConstantInt::get(Type::getInt32Ty(C), 4), "constant"); auto *NormalizedBit = Builder.CreateAnd( Flags, ConstantInt::get(Type::getInt32Ty(C), llvm::offloading::OffloadGlobalNormalized)); auto *Normalized = Builder.CreateLShr( NormalizedBit, ConstantInt::get(Type::getInt32Ty(C), 5), "normalized"); auto *KindCond = Builder.CreateICmpEQ( Kind, ConstantInt::get(Type::getInt16Ty(C), IsHIP ? object::OffloadKind::OFK_HIP : object::OffloadKind::OFK_Cuda)); Builder.CreateCondBr(KindCond, IfKindBB, IfEndBB); Builder.SetInsertPoint(IfKindBB); auto *FnCond = Builder.CreateICmpEQ( Size, ConstantInt::getNullValue(Type::getInt64Ty(C))); Builder.CreateCondBr(FnCond, IfThenBB, IfElseBB); // Create kernel registration code. Builder.SetInsertPoint(IfThenBB); Builder.CreateCall(RegFunc, {RegGlobalsFn->arg_begin(), Addr, Name, Name, ConstantInt::get(Type::getInt32Ty(C), -1), ConstantPointerNull::get(Int8PtrTy), ConstantPointerNull::get(Int8PtrTy), ConstantPointerNull::get(Int8PtrTy), ConstantPointerNull::get(Int8PtrTy), ConstantPointerNull::get(Int32PtrTy)}); Builder.CreateBr(IfEndBB); Builder.SetInsertPoint(IfElseBB); auto *Switch = Builder.CreateSwitch(Type, IfEndBB); // Create global variable registration code. Builder.SetInsertPoint(SwGlobalBB); Builder.CreateCall(RegVar, {RegGlobalsFn->arg_begin(), Addr, Name, Name, Extern, Size, Const, ConstantInt::get(Type::getInt32Ty(C), 0)}); Builder.CreateBr(IfEndBB); Switch->addCase(Builder.getInt32(llvm::offloading::OffloadGlobalEntry), SwGlobalBB); // Create managed variable registration code. Builder.SetInsertPoint(SwManagedBB); Builder.CreateCall(RegManagedVar, {RegGlobalsFn->arg_begin(), AuxAddr, Addr, Name, Size, Data}); Builder.CreateBr(IfEndBB); Switch->addCase(Builder.getInt32(llvm::offloading::OffloadGlobalManagedEntry), SwManagedBB); // Create surface variable registration code. Builder.SetInsertPoint(SwSurfaceBB); if (EmitSurfacesAndTextures) Builder.CreateCall(RegSurface, {RegGlobalsFn->arg_begin(), Addr, Name, Name, Data, Extern}); Builder.CreateBr(IfEndBB); Switch->addCase(Builder.getInt32(llvm::offloading::OffloadGlobalSurfaceEntry), SwSurfaceBB); // Create texture variable registration code. Builder.SetInsertPoint(SwTextureBB); if (EmitSurfacesAndTextures) Builder.CreateCall(RegTexture, {RegGlobalsFn->arg_begin(), Addr, Name, Name, Data, Normalized, Extern}); Builder.CreateBr(IfEndBB); Switch->addCase(Builder.getInt32(llvm::offloading::OffloadGlobalTextureEntry), SwTextureBB); Builder.SetInsertPoint(IfEndBB); auto *NewEntry = Builder.CreateInBoundsGEP( offloading::getEntryTy(M), Entry, ConstantInt::get(getSizeTTy(M), 1)); auto *Cmp = Builder.CreateICmpEQ( NewEntry, ConstantExpr::getInBoundsGetElementPtr( ArrayType::get(offloading::getEntryTy(M), 0), EntriesE, ArrayRef({ConstantInt::get(getSizeTTy(M), 0), ConstantInt::get(getSizeTTy(M), 0)}))); Entry->addIncoming( ConstantExpr::getInBoundsGetElementPtr( ArrayType::get(offloading::getEntryTy(M), 0), EntriesB, ArrayRef({ConstantInt::get(getSizeTTy(M), 0), ConstantInt::get(getSizeTTy(M), 0)})), &RegGlobalsFn->getEntryBlock()); Entry->addIncoming(NewEntry, IfEndBB); Builder.CreateCondBr(Cmp, ExitBB, EntryBB); Builder.SetInsertPoint(ExitBB); Builder.CreateRetVoid(); return RegGlobalsFn; } // Create the constructor and destructor to register the fatbinary with the CUDA // runtime. void createRegisterFatbinFunction(Module &M, GlobalVariable *FatbinDesc, bool IsHIP, EntryArrayTy EntryArray, StringRef Suffix, bool EmitSurfacesAndTextures) { LLVMContext &C = M.getContext(); auto *CtorFuncTy = FunctionType::get(Type::getVoidTy(C), /*isVarArg*/ false); auto *CtorFunc = Function::Create( CtorFuncTy, GlobalValue::InternalLinkage, (IsHIP ? ".hip.fatbin_reg" : ".cuda.fatbin_reg") + Suffix, &M); CtorFunc->setSection(".text.startup"); auto *DtorFuncTy = FunctionType::get(Type::getVoidTy(C), /*isVarArg*/ false); auto *DtorFunc = Function::Create( DtorFuncTy, GlobalValue::InternalLinkage, (IsHIP ? ".hip.fatbin_unreg" : ".cuda.fatbin_unreg") + Suffix, &M); DtorFunc->setSection(".text.startup"); auto *PtrTy = PointerType::getUnqual(C); // Get the __cudaRegisterFatBinary function declaration. auto *RegFatTy = FunctionType::get(PtrTy, PtrTy, /*isVarArg=*/false); FunctionCallee RegFatbin = M.getOrInsertFunction( IsHIP ? "__hipRegisterFatBinary" : "__cudaRegisterFatBinary", RegFatTy); // Get the __cudaRegisterFatBinaryEnd function declaration. auto *RegFatEndTy = FunctionType::get(Type::getVoidTy(C), PtrTy, /*isVarArg=*/false); FunctionCallee RegFatbinEnd = M.getOrInsertFunction("__cudaRegisterFatBinaryEnd", RegFatEndTy); // Get the __cudaUnregisterFatBinary function declaration. auto *UnregFatTy = FunctionType::get(Type::getVoidTy(C), PtrTy, /*isVarArg=*/false); FunctionCallee UnregFatbin = M.getOrInsertFunction( IsHIP ? "__hipUnregisterFatBinary" : "__cudaUnregisterFatBinary", UnregFatTy); auto *AtExitTy = FunctionType::get(Type::getInt32Ty(C), PtrTy, /*isVarArg=*/false); FunctionCallee AtExit = M.getOrInsertFunction("atexit", AtExitTy); auto *BinaryHandleGlobal = new llvm::GlobalVariable( M, PtrTy, false, llvm::GlobalValue::InternalLinkage, llvm::ConstantPointerNull::get(PtrTy), (IsHIP ? ".hip.binary_handle" : ".cuda.binary_handle") + Suffix); // Create the constructor to register this image with the runtime. IRBuilder<> CtorBuilder(BasicBlock::Create(C, "entry", CtorFunc)); CallInst *Handle = CtorBuilder.CreateCall( RegFatbin, ConstantExpr::getPointerBitCastOrAddrSpaceCast(FatbinDesc, PtrTy)); CtorBuilder.CreateAlignedStore( Handle, BinaryHandleGlobal, Align(M.getDataLayout().getPointerTypeSize(PtrTy))); CtorBuilder.CreateCall(createRegisterGlobalsFunction(M, IsHIP, EntryArray, Suffix, EmitSurfacesAndTextures), Handle); if (!IsHIP) CtorBuilder.CreateCall(RegFatbinEnd, Handle); CtorBuilder.CreateCall(AtExit, DtorFunc); CtorBuilder.CreateRetVoid(); // Create the destructor to unregister the image with the runtime. We cannot // use a standard global destructor after CUDA 9.2 so this must be called by // `atexit()` instead. IRBuilder<> DtorBuilder(BasicBlock::Create(C, "entry", DtorFunc)); LoadInst *BinaryHandle = DtorBuilder.CreateAlignedLoad( PtrTy, BinaryHandleGlobal, Align(M.getDataLayout().getPointerTypeSize(PtrTy))); DtorBuilder.CreateCall(UnregFatbin, BinaryHandle); DtorBuilder.CreateRetVoid(); // Add this function to constructors. appendToGlobalCtors(M, CtorFunc, /*Priority=*/101); } /// SYCLWrapper helper class that creates all LLVM IRs wrapping given images. struct SYCLWrapper { Module &M; LLVMContext &C; SYCLJITOptions Options; StructType *EntryTy = nullptr; StructType *SyclDeviceImageTy = nullptr; StructType *SyclBinDescTy = nullptr; SYCLWrapper(Module &M, const SYCLJITOptions &Options) : M(M), C(M.getContext()), Options(Options) { EntryTy = offloading::getEntryTy(M); SyclDeviceImageTy = getSyclDeviceImageTy(); SyclBinDescTy = getSyclBinDescTy(); } IntegerType *getSizeTTy() { switch (M.getDataLayout().getPointerSize()) { case 4: return Type::getInt32Ty(C); case 8: return Type::getInt64Ty(C); } llvm_unreachable("unsupported pointer type size"); } SmallVector getSizetConstPair(size_t First, size_t Second) { IntegerType *SizeTTy = getSizeTTy(); return SmallVector{ConstantInt::get(SizeTTy, First), ConstantInt::get(SizeTTy, Second)}; } /// Note: Properties aren't supported and the support is going /// to be added later. /// Creates a structure corresponding to: /// SYCL specific image descriptor type. /// \code /// struct __sycl.tgt_device_image { /// // version of this structure - for backward compatibility; /// // all modifications which change order/type/offsets of existing fields /// // should increment the version. /// uint16_t Version; /// // the kind of offload model the image employs. /// uint8_t OffloadKind; /// // format of the image data - SPIRV, LLVMIR bitcode, etc /// uint8_t Format; /// // null-terminated string representation of the device's target /// // architecture /// const char *Arch; /// // a null-terminated string; target- and compiler-specific options /// // which are suggested to use to "compile" program at runtime /// const char *CompileOptions; /// // a null-terminated string; target- and compiler-specific options /// // which are suggested to use to "link" program at runtime /// const char *LinkOptions; /// // Pointer to the device binary image start /// void *ImageStart; /// // Pointer to the device binary image end /// void *ImageEnd; /// // the entry table /// __tgt_offload_entry *EntriesBegin; /// __tgt_offload_entry *EntriesEnd; /// const char *PropertiesBegin; /// const char *PropertiesEnd; /// }; /// \endcode StructType *getSyclDeviceImageTy() { return StructType::create( { Type::getInt16Ty(C), // Version Type::getInt8Ty(C), // OffloadKind Type::getInt8Ty(C), // Format PointerType::getUnqual(C), // Arch PointerType::getUnqual(C), // CompileOptions PointerType::getUnqual(C), // LinkOptions PointerType::getUnqual(C), // ImageStart PointerType::getUnqual(C), // ImageEnd PointerType::getUnqual(C), // EntriesBegin PointerType::getUnqual(C), // EntriesEnd PointerType::getUnqual(C), // PropertiesBegin PointerType::getUnqual(C) // PropertiesEnd }, "__sycl.tgt_device_image"); } /// Creates a structure for SYCL specific binary descriptor type. Corresponds /// to: /// /// \code /// struct __sycl.tgt_bin_desc { /// // version of this structure - for backward compatibility; /// // all modifications which change order/type/offsets of existing fields /// // should increment the version. /// uint16_t Version; /// uint16_t NumDeviceImages; /// __sycl.tgt_device_image *DeviceImages; /// // the offload entry table /// __tgt_offload_entry *HostEntriesBegin; /// __tgt_offload_entry *HostEntriesEnd; /// }; /// \endcode StructType *getSyclBinDescTy() { return StructType::create( {Type::getInt16Ty(C), Type::getInt16Ty(C), PointerType::getUnqual(C), PointerType::getUnqual(C), PointerType::getUnqual(C)}, "__sycl.tgt_bin_desc"); } /// Adds a global readonly variable that is initialized by given /// \p Initializer to the module. GlobalVariable *addGlobalArrayVariable(const Twine &Name, ArrayRef Initializer, const Twine &Section = "") { auto *Arr = ConstantDataArray::get(M.getContext(), Initializer); auto *Var = new GlobalVariable(M, Arr->getType(), /*isConstant*/ true, GlobalVariable::InternalLinkage, Arr, Name); Var->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); SmallVector NameBuf; auto SectionName = Section.toStringRef(NameBuf); if (!SectionName.empty()) Var->setSection(SectionName); return Var; } /// Adds given \p Buf as a global variable into the module. /// \returns Pair of pointers that point at the beginning and the end of the /// variable. std::pair addArrayToModule(ArrayRef Buf, const Twine &Name, const Twine &Section = "") { auto *Var = addGlobalArrayVariable(Name, Buf, Section); auto *ImageB = ConstantExpr::getGetElementPtr(Var->getValueType(), Var, getSizetConstPair(0, 0)); auto *ImageE = ConstantExpr::getGetElementPtr( Var->getValueType(), Var, getSizetConstPair(0, Buf.size())); return std::make_pair(ImageB, ImageE); } /// Adds given \p Data as constant byte array in the module. /// \returns Constant pointer to the added data. The pointer type does not /// carry size information. Constant *addRawDataToModule(ArrayRef Data, const Twine &Name) { auto *Var = addGlobalArrayVariable(Name, Data); auto *DataPtr = ConstantExpr::getGetElementPtr(Var->getValueType(), Var, getSizetConstPair(0, 0)); return DataPtr; } /// Creates a global variable of const char* type and creates an /// initializer that initializes it with \p Str. /// /// \returns Link-time constant pointer (constant expr) to that /// variable. Constant *addStringToModule(StringRef Str, const Twine &Name) { auto *Arr = ConstantDataArray::getString(C, Str); auto *Var = new GlobalVariable(M, Arr->getType(), /*isConstant*/ true, GlobalVariable::InternalLinkage, Arr, Name); Var->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); auto *Zero = ConstantInt::get(getSizeTTy(), 0); Constant *ZeroZero[] = {Zero, Zero}; return ConstantExpr::getGetElementPtr(Var->getValueType(), Var, ZeroZero); } /// Each image contains its own set of symbols, which may contain different /// symbols than other images. This function constructs an array of /// symbol entries for a particular image. /// /// \returns Pointers to the beginning and end of the array. std::pair initOffloadEntriesPerImage(StringRef Entries, const Twine &OffloadKindTag) { SmallVector EntriesInits; std::unique_ptr MB = MemoryBuffer::getMemBuffer( Entries, /*BufferName*/ "", /*RequiresNullTerminator*/ false); for (line_iterator LI(*MB); !LI.is_at_eof(); ++LI) { GlobalVariable *GV = emitOffloadingEntry(M, /*Kind*/ OffloadKind::OFK_SYCL, Constant::getNullValue(PointerType::getUnqual(C)), /*Name*/ *LI, /*Size*/ 0, /*Flags*/ 0, /*Data*/ 0); EntriesInits.push_back(GV->getInitializer()); } auto *Arr = ConstantArray::get(ArrayType::get(EntryTy, EntriesInits.size()), EntriesInits); auto *EntriesGV = new GlobalVariable(M, Arr->getType(), /*isConstant*/ true, GlobalVariable::InternalLinkage, Arr, OffloadKindTag + "entries_arr"); auto *EntriesB = ConstantExpr::getGetElementPtr( EntriesGV->getValueType(), EntriesGV, getSizetConstPair(0, 0)); auto *EntriesE = ConstantExpr::getGetElementPtr( EntriesGV->getValueType(), EntriesGV, getSizetConstPair(0, EntriesInits.size())); return std::make_pair(EntriesB, EntriesE); } Constant *wrapImage(const OffloadBinary &OB, const Twine &ImageID, StringRef OffloadKindTag) { // Note: Intel DPC++ compiler had 2 versions of this structure // and clang++ has a third different structure. To avoid ABI incompatibility // between generated device images the Version here starts from 3. constexpr uint16_t DeviceImageStructVersion = 3; Constant *Version = ConstantInt::get(Type::getInt16Ty(C), DeviceImageStructVersion); Constant *OffloadKindConstant = ConstantInt::get( Type::getInt8Ty(C), static_cast(OB.getOffloadKind())); Constant *ImageKindConstant = ConstantInt::get( Type::getInt8Ty(C), static_cast(OB.getImageKind())); StringRef Triple = OB.getString("triple"); Constant *TripleConstant = addStringToModule(Triple, Twine(OffloadKindTag) + "target." + ImageID); Constant *CompileOptions = addStringToModule(Options.CompileOptions, Twine(OffloadKindTag) + "opts.compile." + ImageID); Constant *LinkOptions = addStringToModule( Options.LinkOptions, Twine(OffloadKindTag) + "opts.link." + ImageID); // Note: NULL for now. std::pair PropertiesConstants = { Constant::getNullValue(PointerType::getUnqual(C)), Constant::getNullValue(PointerType::getUnqual(C))}; StringRef RawImage = OB.getImage(); std::pair Binary = addArrayToModule( ArrayRef(RawImage.begin(), RawImage.end()), Twine(OffloadKindTag) + ImageID + ".data", ".llvm.offloading"); // For SYCL images offload entries are defined here per image. std::pair ImageEntriesPtrs = initOffloadEntriesPerImage(OB.getString("symbols"), OffloadKindTag); Constant *WrappedBinary = ConstantStruct::get( SyclDeviceImageTy, Version, OffloadKindConstant, ImageKindConstant, TripleConstant, CompileOptions, LinkOptions, Binary.first, Binary.second, ImageEntriesPtrs.first, ImageEntriesPtrs.second, PropertiesConstants.first, PropertiesConstants.second); return WrappedBinary; } GlobalVariable *combineWrappedImages(ArrayRef WrappedImages, StringRef OffloadKindTag) { auto *ImagesData = ConstantArray::get( ArrayType::get(SyclDeviceImageTy, WrappedImages.size()), WrappedImages); auto *ImagesGV = new GlobalVariable(M, ImagesData->getType(), /*isConstant*/ true, GlobalValue::InternalLinkage, ImagesData, Twine(OffloadKindTag) + "device_images"); ImagesGV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); auto *Zero = ConstantInt::get(getSizeTTy(), 0); Constant *ZeroZero[] = {Zero, Zero}; auto *ImagesB = ConstantExpr::getGetElementPtr(ImagesGV->getValueType(), ImagesGV, ZeroZero); Constant *EntriesB = Constant::getNullValue(PointerType::getUnqual(C)); Constant *EntriesE = Constant::getNullValue(PointerType::getUnqual(C)); static constexpr uint16_t BinDescStructVersion = 1; auto *DescInit = ConstantStruct::get( SyclBinDescTy, ConstantInt::get(Type::getInt16Ty(C), BinDescStructVersion), ConstantInt::get(Type::getInt16Ty(C), WrappedImages.size()), ImagesB, EntriesB, EntriesE); return new GlobalVariable(M, DescInit->getType(), /*isConstant*/ true, GlobalValue::InternalLinkage, DescInit, Twine(OffloadKindTag) + "descriptor"); } /// Creates binary descriptor for the given device images. Binary descriptor /// is an object that is passed to the offloading runtime at program startup /// and it describes all device images available in the executable or shared /// library. It is defined as follows: /// /// \code /// __attribute__((visibility("hidden"))) /// __tgt_offload_entry *__sycl_offload_entries_arr0[]; /// ... /// __attribute__((visibility("hidden"))) /// __tgt_offload_entry *__sycl_offload_entries_arrN[]; /// /// __attribute__((visibility("hidden"))) /// extern const char *CompileOptions = "..."; /// ... /// __attribute__((visibility("hidden"))) /// extern const char *LinkOptions = "..."; /// ... /// /// static const char Image0[] = { ... }; /// ... /// static const char ImageN[] = { ... }; /// /// static const __sycl.tgt_device_image Images[] = { /// { /// Version, // Version /// OffloadKind, // OffloadKind /// Format, // Format of the image. // TripleString, // Arch /// CompileOptions, // CompileOptions /// LinkOptions, // LinkOptions /// Image0, // ImageStart /// Image0 + IMAGE0_SIZE, // ImageEnd /// __sycl_offload_entries_arr0, // EntriesBegin /// __sycl_offload_entries_arr0 + ENTRIES0_SIZE, // EntriesEnd /// NULL, // PropertiesBegin /// NULL, // PropertiesEnd /// }, /// ... /// }; /// /// static const __sycl.tgt_bin_desc FatbinDesc = { /// Version, //Version /// sizeof(Images) / sizeof(Images[0]), //NumDeviceImages /// Images, //DeviceImages /// NULL, //HostEntriesBegin /// NULL //HostEntriesEnd /// }; /// \endcode /// /// \returns Global variable that represents FatbinDesc. GlobalVariable *createFatbinDesc(ArrayRef OffloadFiles) { StringRef OffloadKindTag = ".sycl_offloading."; SmallVector WrappedImages; WrappedImages.reserve(OffloadFiles.size()); for (size_t I = 0, E = OffloadFiles.size(); I != E; ++I) WrappedImages.push_back( wrapImage(*OffloadFiles[I].getBinary(), Twine(I), OffloadKindTag)); return combineWrappedImages(WrappedImages, OffloadKindTag); } void createRegisterFatbinFunction(GlobalVariable *FatbinDesc) { auto *FuncTy = FunctionType::get(Type::getVoidTy(C), /*isVarArg*/ false); auto *Func = Function::Create(FuncTy, GlobalValue::InternalLinkage, Twine("sycl") + ".descriptor_reg", &M); Func->setSection(".text.startup"); // Get RegFuncName function declaration. auto *RegFuncTy = FunctionType::get(Type::getVoidTy(C), PointerType::getUnqual(C), /*isVarArg=*/false); FunctionCallee RegFuncC = M.getOrInsertFunction("__sycl_register_lib", RegFuncTy); // Construct function body IRBuilder Builder(BasicBlock::Create(C, "entry", Func)); Builder.CreateCall(RegFuncC, FatbinDesc); Builder.CreateRetVoid(); // Add this function to constructors. appendToGlobalCtors(M, Func, /*Priority*/ 1); } void createUnregisterFunction(GlobalVariable *FatbinDesc) { auto *FuncTy = FunctionType::get(Type::getVoidTy(C), /*isVarArg*/ false); auto *Func = Function::Create(FuncTy, GlobalValue::InternalLinkage, "sycl.descriptor_unreg", &M); Func->setSection(".text.startup"); // Get UnregFuncName function declaration. auto *UnRegFuncTy = FunctionType::get(Type::getVoidTy(C), PointerType::getUnqual(C), /*isVarArg=*/false); FunctionCallee UnRegFuncC = M.getOrInsertFunction("__sycl_unregister_lib", UnRegFuncTy); // Construct function body IRBuilder<> Builder(BasicBlock::Create(C, "entry", Func)); Builder.CreateCall(UnRegFuncC, FatbinDesc); Builder.CreateRetVoid(); // Add this function to global destructors. appendToGlobalDtors(M, Func, /*Priority*/ 1); } }; // end of SYCLWrapper } // namespace Error offloading::wrapOpenMPBinaries(Module &M, ArrayRef> Images, EntryArrayTy EntryArray, llvm::StringRef Suffix, bool Relocatable) { GlobalVariable *Desc = createBinDesc(M, Images, EntryArray, Suffix, Relocatable); if (!Desc) return createStringError(inconvertibleErrorCode(), "No binary descriptors created."); createRegisterFunction(M, Desc, Suffix); return Error::success(); } Error offloading::wrapCudaBinary(Module &M, ArrayRef Image, EntryArrayTy EntryArray, llvm::StringRef Suffix, bool EmitSurfacesAndTextures) { GlobalVariable *Desc = createFatbinDesc(M, Image, /*IsHip=*/false, Suffix); if (!Desc) return createStringError(inconvertibleErrorCode(), "No fatbin section created."); createRegisterFatbinFunction(M, Desc, /*IsHip=*/false, EntryArray, Suffix, EmitSurfacesAndTextures); return Error::success(); } Error offloading::wrapHIPBinary(Module &M, ArrayRef Image, EntryArrayTy EntryArray, llvm::StringRef Suffix, bool EmitSurfacesAndTextures) { GlobalVariable *Desc = createFatbinDesc(M, Image, /*IsHip=*/true, Suffix); if (!Desc) return createStringError(inconvertibleErrorCode(), "No fatbin section created."); createRegisterFatbinFunction(M, Desc, /*IsHip=*/true, EntryArray, Suffix, EmitSurfacesAndTextures); return Error::success(); } Error llvm::offloading::wrapSYCLBinaries(llvm::Module &M, ArrayRef Buffer, SYCLJITOptions Options) { SYCLWrapper W(M, Options); MemoryBufferRef MBR(StringRef(Buffer.begin(), Buffer.size()), /*Identifier*/ ""); SmallVector OffloadFiles; if (Error E = extractOffloadBinaries(MBR, OffloadFiles)) return E; GlobalVariable *Desc = W.createFatbinDesc(OffloadFiles); if (!Desc) return createStringError(inconvertibleErrorCode(), "No binary descriptors created."); W.createRegisterFatbinFunction(Desc); W.createUnregisterFunction(Desc); return Error::success(); }