//===-- ObjectFileELF64.cpp ----------------------------------- -*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "ObjectFileELF64.h" #include #include #include "lldb/Core/DataBuffer.h" #include "lldb/Core/Error.h" #include "lldb/Core/FileSpecList.h" #include "lldb/Core/PluginManager.h" #include "lldb/Core/Section.h" #include "lldb/Core/Stream.h" #define CASE_AND_STREAM(s, def, width) \ case def: s->Printf("%-*s", width, #def); break; using namespace lldb; using namespace lldb_private; void ObjectFileELF64::Initialize() { PluginManager::RegisterPlugin(GetPluginNameStatic(), GetPluginDescriptionStatic(), CreateInstance); } void ObjectFileELF64::Terminate() { PluginManager::UnregisterPlugin(CreateInstance); } const char * ObjectFileELF64::GetPluginNameStatic() { return "object-file.elf64"; } const char * ObjectFileELF64::GetPluginDescriptionStatic() { return "ELF object file reader (64-bit)."; } ObjectFile * ObjectFileELF64::CreateInstance(Module *module, DataBufferSP &dataSP, const FileSpec *file, addr_t offset, addr_t length) { if (ObjectFileELF64::MagicBytesMatch(dataSP)) { std::auto_ptr objfile_ap( new ObjectFileELF64(module, dataSP, file, offset, length)); if (objfile_ap->ParseHeader()) return objfile_ap.release(); } return NULL; } bool ObjectFileELF64::MagicBytesMatch(DataBufferSP& data_sp) { if (data_sp && data_sp->GetByteSize() > EI_PAD) { const uint8_t* magic = data_sp->GetBytes(); if (magic != NULL) { bool have_magic = (magic[EI_MAG0] == 0x7f && magic[EI_MAG1] == 'E' && magic[EI_MAG2] == 'L' && magic[EI_MAG3] == 'F'); bool have_64bit = magic[EI_CLASS] == ELFCLASS64; return have_magic && have_64bit; } } return false; } ObjectFileELF64::ObjectFileELF64(Module* module, DataBufferSP& dataSP, const FileSpec* file, addr_t offset, addr_t length) : ObjectFile(module, file, offset, length, dataSP), m_header(), m_program_headers(), m_section_headers(), m_sections_ap(), m_symtab_ap(), m_filespec_ap(), m_shstr_data() { if (file) m_file = *file; ::memset(&m_header, 0, sizeof(m_header)); } ObjectFileELF64::~ObjectFileELF64() { } ByteOrder ObjectFileELF64::GetByteOrder() const { if (m_header.e_ident[EI_DATA] == ELFDATA2MSB) return eByteOrderBig; if (m_header.e_ident[EI_DATA] == ELFDATA2LSB) return eByteOrderLittle; return eByteOrderInvalid; } size_t ObjectFileELF64::GetAddressByteSize() const { return m_data.GetAddressByteSize(); } unsigned ObjectFileELF64::SectionIndex(const SectionHeaderCollIter &I) { return std::distance(m_section_headers.begin(), I) + 1; } unsigned ObjectFileELF64::SectionIndex(const SectionHeaderCollConstIter &I) const { return std::distance(m_section_headers.begin(), I) + 1; } bool ObjectFileELF64::ParseHeader() { m_data.SetAddressByteSize(8); uint32_t offset = GetOffset(); if (m_data.GetU8(&offset, m_header.e_ident, EI_NIDENT) == NULL) return false; m_data.SetByteOrder(GetByteOrder()); // Read e_type and e_machine. if (m_data.GetU16(&offset, &m_header.e_type, 2) == NULL) return false; // Read e_version. if (m_data.GetU32(&offset, &m_header.e_version, 1) == NULL) return false; // Read e_entry, e_phoff and e_shoff. if (m_data.GetU64(&offset, &m_header.e_entry, 3) == NULL) return false; // Read e_flags. if (m_data.GetU32(&offset, &m_header.e_flags, 1) == NULL) return false; // Read e_ehsize, e_phentsize, e_phnum, e_shentsize, e_shnum and e_shstrndx. if (m_data.GetU16(&offset, &m_header.e_ehsize, 6) == NULL) return false; return true; } bool ObjectFileELF64::GetUUID(UUID* uuid) { // FIXME: Return MD5 sum here. See comment in ObjectFile.h. return false; } uint32_t ObjectFileELF64::GetDependentModules(FileSpecList &files) { size_t num_modules = ParseDependentModules(); uint32_t num_specs = 0; for (unsigned i = 0; i < num_modules; ++i) { if (files.AppendIfUnique(m_filespec_ap->GetFileSpecAtIndex(i))) num_specs++; } return num_specs; } //---------------------------------------------------------------------- // ParseDependentModules //---------------------------------------------------------------------- size_t ObjectFileELF64::ParseDependentModules() { if (m_filespec_ap.get()) return m_filespec_ap->GetSize(); m_filespec_ap.reset(new FileSpecList()); if (!(ParseSectionHeaders() && GetSectionHeaderStringTable())) return 0; // Locate the dynamic table. user_id_t dynsym_id = 0; user_id_t dynstr_id = 0; for (SectionHeaderCollIter I = m_section_headers.begin(); I != m_section_headers.end(); ++I) { if (I->sh_type == SHT_DYNAMIC) { dynsym_id = SectionIndex(I); dynstr_id = I->sh_link + 1; // Section ID's are 1 based. break; } } if (!(dynsym_id && dynstr_id)) return 0; SectionList *section_list = GetSectionList(); if (!section_list) return 0; // Resolve and load the dynamic table entries and corresponding string // table. Section *dynsym = section_list->FindSectionByID(dynsym_id).get(); Section *dynstr = section_list->FindSectionByID(dynstr_id).get(); if (!(dynsym && dynstr)) return 0; DataExtractor dynsym_data; DataExtractor dynstr_data; if (dynsym->ReadSectionDataFromObjectFile(this, dynsym_data) && dynstr->ReadSectionDataFromObjectFile(this, dynstr_data)) { Elf64_Dyn symbol; const unsigned num_syms = dynsym_data.GetByteSize() / sizeof(Elf64_Dyn); unsigned offset = 0; // The only type of entries we are concerned with are tagged DT_NEEDED, // yielding the name of a required library. for (unsigned i = 0; i < num_syms; ++i) { if (!dynsym_data.ValidOffsetForDataOfSize(offset, sizeof(Elf64_Dyn))) break; symbol.d_tag = dynsym_data.GetU64(&offset); symbol.d_un.d_val = dynsym_data.GetU64(&offset); if (symbol.d_tag != DT_NEEDED) continue; const char *lib_name = dynstr_data.PeekCStr(symbol.d_un.d_val); m_filespec_ap->Append(FileSpec(lib_name)); } } return m_filespec_ap->GetSize(); } //---------------------------------------------------------------------- // ParseProgramHeaders //---------------------------------------------------------------------- size_t ObjectFileELF64::ParseProgramHeaders() { // We have already parsed the program headers if (!m_program_headers.empty()) return m_program_headers.size(); // If there are no program headers to read we are done. if (m_header.e_phnum == 0) return 0; m_program_headers.resize(m_header.e_phnum); if (m_program_headers.size() != m_header.e_phnum) return 0; const size_t ph_size = m_header.e_phnum * m_header.e_phentsize; const Elf64_Off ph_offset = m_offset + m_header.e_phoff; DataBufferSP buffer_sp(m_file.ReadFileContents(ph_offset, ph_size)); if (buffer_sp.get() == NULL || buffer_sp->GetByteSize() != ph_size) return 0; DataExtractor data(buffer_sp, m_data.GetByteOrder(), m_data.GetAddressByteSize()); uint32_t idx; uint32_t offset; for (idx = 0, offset = 0; idx < m_header.e_phnum; ++idx) { if (data.GetU32(&offset, &m_program_headers[idx], 8) == NULL) return 0; } if (idx < m_program_headers.size()) m_program_headers.resize(idx); return m_program_headers.size(); } //---------------------------------------------------------------------- // ParseSectionHeaders //---------------------------------------------------------------------- size_t ObjectFileELF64::ParseSectionHeaders() { // We have already parsed the section headers if (!m_section_headers.empty()) return m_section_headers.size(); // If there are no section headers we are done. if (m_header.e_shnum == 0) return 0; m_section_headers.resize(m_header.e_shnum); if (m_section_headers.size() != m_header.e_shnum) return 0; const size_t sh_size = m_header.e_shnum * m_header.e_shentsize; const Elf64_Off sh_offset = m_offset + m_header.e_shoff; DataBufferSP buffer_sp(m_file.ReadFileContents(sh_offset, sh_size)); if (buffer_sp.get() == NULL || buffer_sp->GetByteSize() != sh_size) return 0; DataExtractor data(buffer_sp, m_data.GetByteOrder(), m_data.GetAddressByteSize()); uint32_t idx; uint32_t offset; for (idx = 0, offset = 0; idx < m_header.e_shnum; ++idx) { // Read sh_name and sh_type. if (data.GetU32(&offset, &m_section_headers[idx].sh_name, 2) == NULL) break; // Read sh_flags, sh_addr, sh_offset and sh_size. if (data.GetU64(&offset, &m_section_headers[idx].sh_flags, 4) == NULL) break; // Read sh_link and sh_info. if (data.GetU32(&offset, &m_section_headers[idx].sh_link, 2) == NULL) break; // Read sh_addralign and sh_entsize. if (data.GetU64(&offset, &m_section_headers[idx].sh_addralign, 2) == NULL) break; } if (idx < m_section_headers.size()) m_section_headers.resize(idx); return m_section_headers.size(); } size_t ObjectFileELF64::GetSectionHeaderStringTable() { if (m_shstr_data.GetByteSize() == 0) { if (m_header.e_shstrndx && m_header.e_shstrndx < m_section_headers.size()) { const Elf64_Shdr &sheader = m_section_headers[m_header.e_shstrndx]; const size_t byte_size = sheader.sh_size; const Elf64_Off offset = m_offset + sheader.sh_offset; DataBufferSP buffer_sp(m_file.ReadFileContents(offset, byte_size)); if (buffer_sp.get() == NULL || buffer_sp->GetByteSize() != byte_size) return 0; m_shstr_data.SetData(buffer_sp); } } return m_shstr_data.GetByteSize(); } uint32_t ObjectFileELF64::GetSectionIndexByName(const char *name) { if (!(ParseSectionHeaders() && GetSectionHeaderStringTable())) return UINT32_MAX; // Search the collection of section headers for one with a matching name. for (SectionHeaderCollIter I = m_section_headers.begin(); I != m_section_headers.end(); ++I) { const char *sectionName = m_shstr_data.PeekCStr(I->sh_name); if (!sectionName) return UINT32_MAX; if (strcmp(name, sectionName) != 0) continue; return SectionIndex(I); } return UINT32_MAX; } SectionList * ObjectFileELF64::GetSectionList() { if (m_sections_ap.get()) return m_sections_ap.get(); if (ParseSectionHeaders() && GetSectionHeaderStringTable()) { m_sections_ap.reset(new SectionList()); for (SectionHeaderCollIter I = m_section_headers.begin(); I != m_section_headers.end(); ++I) { const Elf64_Shdr &header = *I; ConstString name(m_shstr_data.PeekCStr(header.sh_name)); uint64_t size = header.sh_type == SHT_NOBITS ? 0 : header.sh_size; SectionSP section(new Section( 0, // Parent section. GetModule(), // Module to which this section belongs. SectionIndex(I), // Section ID. name, // Section name. eSectionTypeOther, // FIXME: Fill in as appropriate. header.sh_addr, // VM address. header.sh_size, // VM size in bytes of this section. header.sh_offset, // Offset of this section in the file. size, // Size of the section as found in the file. header.sh_flags)); // Flags for this section. m_sections_ap->AddSection(section); } } return m_sections_ap.get(); } static void ParseSymbols(Symtab *symtab, SectionList *section_list, const Elf64_Shdr &symtab_shdr, const DataExtractor &symtab_data, const DataExtractor &strtab_data) { assert (sizeof(Elf64_Sym) == symtab_shdr.sh_entsize); const unsigned numSymbols = symtab_data.GetByteSize() / sizeof(Elf64_Sym); unsigned offset = 0; Elf64_Sym symbol; static ConstString text_section_name(".text"); static ConstString init_section_name(".init"); static ConstString fini_section_name(".fini"); static ConstString ctors_section_name(".ctors"); static ConstString dtors_section_name(".dtors"); static ConstString data_section_name(".data"); static ConstString rodata_section_name(".rodata"); static ConstString rodata1_section_name(".rodata1"); static ConstString data2_section_name(".data1"); static ConstString bss_section_name(".bss"); for (unsigned i = 0; i < numSymbols; ++i) { if (!symtab_data.ValidOffsetForDataOfSize(offset, sizeof(Elf64_Sym))) break; symbol.st_name = symtab_data.GetU32(&offset); symbol.st_info = symtab_data.GetU8(&offset); symbol.st_other = symtab_data.GetU8(&offset); symbol.st_shndx = symtab_data.GetU16(&offset); symbol.st_value = symtab_data.GetU64(&offset); symbol.st_size = symtab_data.GetU64(&offset); Section *symbol_section = NULL; SymbolType symbol_type = eSymbolTypeInvalid; Elf64_Half symbol_idx = symbol.st_shndx; switch (symbol_idx) { case SHN_ABS: symbol_type = eSymbolTypeAbsolute; break; case SHN_UNDEF: symbol_type = eSymbolTypeUndefined; break; default: symbol_section = section_list->GetSectionAtIndex(symbol_idx).get(); break; } switch (ELF_ST_TYPE(symbol.st_info)) { default: case STT_NOTYPE: // The symbol's type is not specified. break; case STT_OBJECT: // The symbol is associated with a data object, such as a variable, // an array, etc. symbol_type = eSymbolTypeData; break; case STT_FUNC: // The symbol is associated with a function or other executable code. symbol_type = eSymbolTypeCode; break; case STT_SECTION: // The symbol is associated with a section. Symbol table entries of // this type exist primarily for relocation and normally have // STB_LOCAL binding. break; case STT_FILE: // Conventionally, the symbol's name gives the name of the source // file associated with the object file. A file symbol has STB_LOCAL // binding, its section index is SHN_ABS, and it precedes the other // STB_LOCAL symbols for the file, if it is present. symbol_type = eSymbolTypeObjectFile; break; } if (symbol_type == eSymbolTypeInvalid) { if (symbol_section) { const ConstString §_name = symbol_section->GetName(); if (sect_name == text_section_name || sect_name == init_section_name || sect_name == fini_section_name || sect_name == ctors_section_name || sect_name == dtors_section_name) { symbol_type = eSymbolTypeCode; } else if (sect_name == data_section_name || sect_name == data2_section_name || sect_name == rodata_section_name || sect_name == rodata1_section_name || sect_name == bss_section_name) { symbol_type = eSymbolTypeData; } } } uint64_t symbol_value = symbol.st_value; if (symbol_section != NULL) symbol_value -= symbol_section->GetFileAddress(); const char *symbol_name = strtab_data.PeekCStr(symbol.st_name); bool is_global = ELF_ST_BIND(symbol.st_info) == STB_GLOBAL; uint32_t flags = symbol.st_other << 8 | symbol.st_info; Symbol dc_symbol( i, // ID is the original symbol table index. symbol_name, // symbol name. false, // Is the symbol name mangled? symbol_type, // type of this symbol is_global, // Is this globally visible? false, // Is this symbol debug info? false, // Is this symbol a trampoline? false, // Is this symbol artificial? symbol_section, // Section in which this symbol is defined or null. symbol_value, // Offset in section or symbol value. symbol.st_size, // size in bytes of this symbol. flags); // Symbol flags. symtab->AddSymbol(dc_symbol); } } void ObjectFileELF64::ParseSymbolTable(Symtab *symbol_table, const Elf64_Shdr &symtab_hdr, user_id_t symtab_id) { assert(symtab_hdr.sh_type == SHT_SYMTAB || symtab_hdr.sh_type == SHT_DYNSYM); // Parse in the section list if needed. SectionList *section_list = GetSectionList(); if (!section_list) return; // Section ID's are ones based. user_id_t strtab_id = symtab_hdr.sh_link + 1; Section *symtab = section_list->FindSectionByID(symtab_id).get(); Section *strtab = section_list->FindSectionByID(strtab_id).get(); if (symtab && strtab) { DataExtractor symtab_data; DataExtractor strtab_data; if (symtab->ReadSectionDataFromObjectFile(this, symtab_data) && strtab->ReadSectionDataFromObjectFile(this, strtab_data)) { ParseSymbols(symbol_table, section_list, symtab_hdr, symtab_data, strtab_data); } } } Symtab * ObjectFileELF64::GetSymtab() { if (m_symtab_ap.get()) return m_symtab_ap.get(); Symtab *symbol_table = new Symtab(this); m_symtab_ap.reset(symbol_table); if (!(ParseSectionHeaders() && GetSectionHeaderStringTable())) return symbol_table; // Locate and parse all linker symbol tables. for (SectionHeaderCollIter I = m_section_headers.begin(); I != m_section_headers.end(); ++I) { if (I->sh_type == SHT_SYMTAB || I->sh_type == SHT_DYNSYM) { const Elf64_Shdr &symtab_section = *I; user_id_t section_id = SectionIndex(I); ParseSymbolTable(symbol_table, symtab_section, section_id); } } return symbol_table; } //===----------------------------------------------------------------------===// // Dump // // Dump the specifics of the runtime file container (such as any headers // segments, sections, etc). // ---------------------------------------------------------------------- void ObjectFileELF64::Dump(Stream *s) { DumpELFHeader(s, m_header); s->EOL(); DumpELFProgramHeaders(s); s->EOL(); DumpELFSectionHeaders(s); s->EOL(); SectionList *section_list = GetSectionList(); if (section_list) section_list->Dump(s, NULL, true); Symtab *symtab = GetSymtab(); if (symtab) symtab->Dump(s, NULL); s->EOL(); DumpDependentModules(s); s->EOL(); } //---------------------------------------------------------------------- // DumpELFHeader // // Dump the ELF header to the specified output stream //---------------------------------------------------------------------- void ObjectFileELF64::DumpELFHeader(Stream *s, const Elf64_Ehdr& header) { s->PutCString("ELF Header\n"); s->Printf("e_ident[EI_MAG0 ] = 0x%2.2x\n", header.e_ident[EI_MAG0]); s->Printf("e_ident[EI_MAG1 ] = 0x%2.2x '%c'\n", header.e_ident[EI_MAG1], header.e_ident[EI_MAG1]); s->Printf("e_ident[EI_MAG2 ] = 0x%2.2x '%c'\n", header.e_ident[EI_MAG2], header.e_ident[EI_MAG2]); s->Printf("e_ident[EI_MAG3 ] = 0x%2.2x '%c'\n", header.e_ident[EI_MAG3], header.e_ident[EI_MAG3]); s->Printf("e_ident[EI_CLASS ] = 0x%2.2x\n", header.e_ident[EI_CLASS]); s->Printf("e_ident[EI_DATA ] = 0x%2.2x ", header.e_ident[EI_DATA]); DumpELFHeader_e_ident_EI_DATA(s, header.e_ident[EI_DATA]); s->Printf ("\ne_ident[EI_VERSION] = 0x%2.2x\n", header.e_ident[EI_VERSION]); s->Printf ("e_ident[EI_PAD ] = 0x%2.2x\n", header.e_ident[EI_PAD]); s->Printf("e_type = 0x%4.4x ", header.e_type); DumpELFHeader_e_type(s, header.e_type); s->Printf("\ne_machine = 0x%4.4x\n", header.e_machine); s->Printf("e_version = 0x%8.8x\n", header.e_version); s->Printf("e_entry = 0x%8.8x\n", header.e_entry); s->Printf("e_phoff = 0x%8.8x\n", header.e_phoff); s->Printf("e_shoff = 0x%8.8x\n", header.e_shoff); s->Printf("e_flags = 0x%8.8x\n", header.e_flags); s->Printf("e_ehsize = 0x%4.4x\n", header.e_ehsize); s->Printf("e_phentsize = 0x%4.4x\n", header.e_phentsize); s->Printf("e_phnum = 0x%4.4x\n", header.e_phnum); s->Printf("e_shentsize = 0x%4.4x\n", header.e_shentsize); s->Printf("e_shnum = 0x%4.4x\n", header.e_shnum); s->Printf("e_shstrndx = 0x%4.4x\n", header.e_shstrndx); } //---------------------------------------------------------------------- // DumpELFHeader_e_type // // Dump an token value for the ELF header member e_type //---------------------------------------------------------------------- void ObjectFileELF64::DumpELFHeader_e_type(Stream *s, Elf64_Half e_type) { switch (e_type) { case ET_NONE: *s << "ET_NONE"; break; case ET_REL: *s << "ET_REL"; break; case ET_EXEC: *s << "ET_EXEC"; break; case ET_DYN: *s << "ET_DYN"; break; case ET_CORE: *s << "ET_CORE"; break; default: break; } } //---------------------------------------------------------------------- // DumpELFHeader_e_ident_EI_DATA // // Dump an token value for the ELF header member e_ident[EI_DATA] //---------------------------------------------------------------------- void ObjectFileELF64::DumpELFHeader_e_ident_EI_DATA(Stream *s, unsigned char ei_data) { switch (ei_data) { case ELFDATANONE: *s << "ELFDATANONE"; break; case ELFDATA2LSB: *s << "ELFDATA2LSB - Little Endian"; break; case ELFDATA2MSB: *s << "ELFDATA2MSB - Big Endian"; break; default: break; } } //---------------------------------------------------------------------- // DumpELFProgramHeader // // Dump a single ELF program header to the specified output stream //---------------------------------------------------------------------- void ObjectFileELF64::DumpELFProgramHeader(Stream *s, const Elf64_Phdr &ph) { DumpELFProgramHeader_p_type(s, ph.p_type); s->Printf(" %8.8x %8.8x %8.8x %8.8x %8.8x %8.8x (", ph.p_offset, ph.p_vaddr, ph.p_paddr, ph.p_filesz, ph.p_memsz, ph.p_flags); DumpELFProgramHeader_p_flags(s, ph.p_flags); s->Printf(") %8.8x", ph.p_align); } //---------------------------------------------------------------------- // DumpELFProgramHeader_p_type // // Dump an token value for the ELF program header member p_type which // describes the type of the program header // ---------------------------------------------------------------------- void ObjectFileELF64::DumpELFProgramHeader_p_type(Stream *s, Elf64_Word p_type) { const int kStrWidth = 10; switch (p_type) { CASE_AND_STREAM(s, PT_NULL , kStrWidth); CASE_AND_STREAM(s, PT_LOAD , kStrWidth); CASE_AND_STREAM(s, PT_DYNAMIC , kStrWidth); CASE_AND_STREAM(s, PT_INTERP , kStrWidth); CASE_AND_STREAM(s, PT_NOTE , kStrWidth); CASE_AND_STREAM(s, PT_SHLIB , kStrWidth); CASE_AND_STREAM(s, PT_PHDR , kStrWidth); default: s->Printf("0x%8.8x%*s", p_type, kStrWidth - 10, ""); break; } } //---------------------------------------------------------------------- // DumpELFProgramHeader_p_flags // // Dump an token value for the ELF program header member p_flags //---------------------------------------------------------------------- void ObjectFileELF64::DumpELFProgramHeader_p_flags(Stream *s, Elf64_Word p_flags) { *s << ((p_flags & PF_X) ? "PF_X" : " ") << (((p_flags & PF_X) && (p_flags & PF_W)) ? '+' : ' ') << ((p_flags & PF_W) ? "PF_W" : " ") << (((p_flags & PF_W) && (p_flags & PF_R)) ? '+' : ' ') << ((p_flags & PF_R) ? "PF_R" : " "); } //---------------------------------------------------------------------- // DumpELFProgramHeaders // // Dump all of the ELF program header to the specified output stream //---------------------------------------------------------------------- void ObjectFileELF64::DumpELFProgramHeaders(Stream *s) { if (ParseProgramHeaders()) { s->PutCString("Program Headers\n"); s->PutCString("IDX p_type p_offset p_vaddr p_paddr " "p_filesz p_memsz p_flags p_align\n"); s->PutCString("==== ---------- -------- -------- -------- " "-------- -------- ------------------------- --------\n"); uint32_t idx = 0; for (ProgramHeaderCollConstIter I = m_program_headers.begin(); I != m_program_headers.end(); ++I, ++idx) { s->Printf("[%2u] ", idx); ObjectFileELF64::DumpELFProgramHeader(s, *I); s->EOL(); } } } //---------------------------------------------------------------------- // DumpELFSectionHeader // // Dump a single ELF section header to the specified output stream //---------------------------------------------------------------------- void ObjectFileELF64::DumpELFSectionHeader(Stream *s, const Elf64_Shdr &sh) { s->Printf("%8.8x ", sh.sh_name); DumpELFSectionHeader_sh_type(s, sh.sh_type); s->Printf(" %8.8x (", sh.sh_flags); DumpELFSectionHeader_sh_flags(s, sh.sh_flags); s->Printf(") %8.8x %8.8x %8.8x %8.8x %8.8x %8.8x %8.8x", sh.sh_addr, sh.sh_offset, sh.sh_size, sh.sh_link, sh.sh_info, sh.sh_addralign, sh.sh_entsize); } //---------------------------------------------------------------------- // DumpELFSectionHeader_sh_type // // Dump an token value for the ELF section header member sh_type which // describes the type of the section //---------------------------------------------------------------------- void ObjectFileELF64::DumpELFSectionHeader_sh_type(Stream *s, Elf64_Word sh_type) { const int kStrWidth = 12; switch (sh_type) { CASE_AND_STREAM(s, SHT_NULL , kStrWidth); CASE_AND_STREAM(s, SHT_PROGBITS , kStrWidth); CASE_AND_STREAM(s, SHT_SYMTAB , kStrWidth); CASE_AND_STREAM(s, SHT_STRTAB , kStrWidth); CASE_AND_STREAM(s, SHT_RELA , kStrWidth); CASE_AND_STREAM(s, SHT_HASH , kStrWidth); CASE_AND_STREAM(s, SHT_DYNAMIC , kStrWidth); CASE_AND_STREAM(s, SHT_NOTE , kStrWidth); CASE_AND_STREAM(s, SHT_NOBITS , kStrWidth); CASE_AND_STREAM(s, SHT_REL , kStrWidth); CASE_AND_STREAM(s, SHT_SHLIB , kStrWidth); CASE_AND_STREAM(s, SHT_DYNSYM , kStrWidth); CASE_AND_STREAM(s, SHT_LOPROC , kStrWidth); CASE_AND_STREAM(s, SHT_HIPROC , kStrWidth); CASE_AND_STREAM(s, SHT_LOUSER , kStrWidth); CASE_AND_STREAM(s, SHT_HIUSER , kStrWidth); default: s->Printf("0x%8.8x%*s", sh_type, kStrWidth - 10, ""); break; } } //---------------------------------------------------------------------- // DumpELFSectionHeader_sh_flags // // Dump an token value for the ELF section header member sh_flags //---------------------------------------------------------------------- void ObjectFileELF64::DumpELFSectionHeader_sh_flags(Stream *s, Elf64_Word sh_flags) { *s << ((sh_flags & SHF_WRITE) ? "WRITE" : " ") << (((sh_flags & SHF_WRITE) && (sh_flags & SHF_ALLOC)) ? '+' : ' ') << ((sh_flags & SHF_ALLOC) ? "ALLOC" : " ") << (((sh_flags & SHF_ALLOC) && (sh_flags & SHF_EXECINSTR)) ? '+' : ' ') << ((sh_flags & SHF_EXECINSTR) ? "EXECINSTR" : " "); } //---------------------------------------------------------------------- // DumpELFSectionHeaders // // Dump all of the ELF section header to the specified output stream //---------------------------------------------------------------------- void ObjectFileELF64::DumpELFSectionHeaders(Stream *s) { if (!(ParseSectionHeaders() && GetSectionHeaderStringTable())) return; s->PutCString("Section Headers\n"); s->PutCString("IDX name type flags " "addr offset size link info addralgn " "entsize Name\n"); s->PutCString("==== -------- ------------ -------------------------------- " "-------- -------- -------- -------- -------- -------- " "-------- ====================\n"); uint32_t idx = 0; for (SectionHeaderCollConstIter I = m_section_headers.begin(); I != m_section_headers.end(); ++I, ++idx) { s->Printf("[%2u] ", idx); ObjectFileELF64::DumpELFSectionHeader(s, *I); const char* section_name = m_shstr_data.PeekCStr(I->sh_name); if (section_name) *s << ' ' << section_name << "\n"; } } void ObjectFileELF64::DumpDependentModules(lldb_private::Stream *s) { size_t num_modules = ParseDependentModules(); if (num_modules > 0) { s->PutCString("Dependent Modules:\n"); for (unsigned i = 0; i < num_modules; ++i) { const FileSpec &spec = m_filespec_ap->GetFileSpecAtIndex(i); s->Printf(" %s\n", spec.GetFilename().GetCString()); } } } bool ObjectFileELF64::GetTargetTriple(ConstString &target_triple) { static ConstString g_target_triple; if (g_target_triple) { target_triple = g_target_triple; return true; } std::string triple; switch (m_header.e_machine) { default: assert(false && "Unexpected machine type."); break; case EM_SPARC: triple.assign("sparc-"); break; case EM_386: triple.assign("i386-"); break; case EM_68K: triple.assign("68k-"); break; case EM_88K: triple.assign("88k-"); break; case EM_860: triple.assign("i860-"); break; case EM_MIPS: triple.assign("mips-"); break; case EM_PPC: triple.assign("powerpc-"); break; case EM_PPC64: triple.assign("powerpc64-"); break; case EM_ARM: triple.assign("arm-"); break; case EM_X86_64: triple.assign("x86_64-"); break; } // TODO: determine if there is a vendor in the ELF? Default to "linux" for now triple += "linux-"; // TODO: determine if there is an OS in the ELF? Default to "gnu" for now triple += "gnu"; g_target_triple.SetCString(triple.c_str()); target_triple = g_target_triple; return true; } //------------------------------------------------------------------ // PluginInterface protocol //------------------------------------------------------------------ const char * ObjectFileELF64::GetPluginName() { return "ObjectFileELF64"; } const char * ObjectFileELF64::GetShortPluginName() { return GetPluginNameStatic(); } uint32_t ObjectFileELF64::GetPluginVersion() { return 1; } void ObjectFileELF64::GetPluginCommandHelp (const char *command, Stream *strm) { } Error ObjectFileELF64::ExecutePluginCommand (Args &command, Stream *strm) { Error error; error.SetErrorString("No plug-in commands are currently supported."); return error; } Log * ObjectFileELF64::EnablePluginLogging (Stream *strm, Args &command) { return NULL; }